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Abstract. The concepts of parabolic induction of subalgebras and varieties
appeared independently in works of different authors. Here we introduce and
study the parabolic induction of projective orbits. This concept turns out to be
closely related to the above ones, and can be used as a method to study them.
As an application, we describe all subalgebras of a semisimple Lie algebra that
contain a given subalgebra obtained by parabolic induction.
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1. Introduction

Let G be a reductive algebraic group over the field of characteristic zero and P
be a proper parabolic subgroup of G . One says that a G-variety X is obtained
by parabolic induction from a P -variety Y if the radical of P acts trivially on
Y , and there exists a P -equivariant injective morphism ψ : Y → X giving rise
to a birational surjective morphism G ×P Y → X . The concept of the parabolic
induction of varieties has been used by Akhiezer ([1], Th. 4) and Cupit-Foutou
([2], Th. 1.3) in the study of two-orbit varieties, in the work of Wasserman ([8], pp.
378–379) and in the work of Luna ([3], pr. 3.4) where he classified the spherical
varieties of type A. A similar concept has been studied in the work of Kempf ([4]).

Let L be a Levi subgroup of P . The action G : X shares many properties
with the action L : Y . For example, the complexities and the ranks of these
actions coincide. In particular, the property of being spherical is preserved under
parabolic induction. This is the reason why in many problems it is natural to
study irreducible actions, those that cannot be obtained by a non-trivial parabolic
induction.

Let g , l and p be the tangent algebras of G , L and P respectively and
φ : p → l be the normal projection. Then we have gψ(y) = py = φ−1(ly) for
a generic point y ∈ Y . This is an example where the parabolic induction of
subalgebras appears. Let us recall this notion.
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Let g be an algebraic reductive Lie algebra, p be a parabolic subalgebra of
g , and φ be a homomorphism from p onto some algebraic reductive Lie algebra g̃ .
Let h̃ be a subalgebra of g̃ . Set h = φ−1(h̃). The pair (g, h) is said to be obtained
from the pair (g̃, h̃) by parabolic induction via the parabolic subalgebra p . We
will denote this by (g̃, h̃)−→p (g, h). In the case of parabolic induction of varieties we
have (l, ly)−→p (g, gψ(y)).

The parabolic induction of subalgebras is an interesting concept in itself.
For example, it was used in the work of Wasserman ([8], see Definition 2.3, the
notion of a prime subgroup) devoted to classification of wonderful varieties. The
parabolic induction of subalgebras preserves some properties of pairs (for example,
the complexity). Therefore, being interested in subalgebras of reductive algebras
having certain properties, one can reduce the study to subalgebras h ⊂ g such
that the pair (g, h) is irreducible, i.e. cannot be obtained by a non-trivial parabolic
induction.

Below we introduce the parabolic induction of projective orbits. This
concept appeared in a special case in the work of the author ([5], prop. 2.15, 2.16)
where it was applied to the study of two-orbit varieties with their embeddings in
projective spaces. It serves as a good model for both the parabolic induction of
varieties and subalgebras and can be used to prove the properties of theirs.

Let G be the connected algebraic group whose tangent algebra is g , T be a
maximal torus in G , t be its tangent algebra (a Cartan subalgebra of g), t(R) be
the real form of t consisting of elements with real eigenvalues and E = t(R)∗ . We
will fix a G-invariant inner product on g and identify t with t∗ (so that E ⊂ t).
For any representation space V of g let Φ = Φ(V ) ⊂ E be the system of weights of
T in V and V = ⊕λ∈ΦVλ be the weight decomposition. For any subset R ⊂ E set
VR := ⊕λ∈Φ∩RVλ and call VR the restriction of V to R . (In particular, V{ψ} = Vψ
for any weight ψ ). The convex hull of Φ in E will be called the weight polytope of
V and denoted by M(V ). Let V = ⊕φV (φ) be the decomposition into isotypic
components (relative to the G-action) and v =

∑
φ v(φ), where v(φ) ∈ V (φ).

Let Γ be a face of M(V ). Denote the affine hull of Γ with Aff Γ and the
center of mass of Γ with zΓ . For any root α parallel to Γ, we have rαΓ = Γ,
therefore rαzΓ = zΓ (where rα is the reflection relative to α). Thus zΓ is
orthogonal to all roots parallel to Γ. We will call the subalgebra of g generated
by the linear span of Γ and the root vectors corresponding to the roots parallel
to Γ the reductive subalgebra associated with Γ and denote it with gΓ . We will
denote the subalgebra of g generated by the orthogonal complement to the linear
span of Γ and the root vectors corresponding to the roots orthogonal to the linear
span of Γ with g⊥Γ . We will call the subalgebra of g generated by t and the root
vectors corresponding to the roots having non-negative inner products with zΓ the
parabolic subalgebra associated with Γ and denote it with pΓ . We will denote the
corresponding subgroups of G with GΓ and PΓ . The following statement holds:

pΓ = (gΓ ⊕ g⊥Γ )� pu
Γ,

where pu
Γ is the unipotent radical of pΓ . Also set lΓ = gΓ ⊕ g⊥Γ . It is a Levi

subalgebra of pΓ . The space VΓ can be considered as a representation space of
gΓ . If V is g-irreducible, then VΓ is gΓ -irreducible (e.g. [6], Prop. 8).

For any vector v =
∑

λ∈Φ vλ , define the set of its weights by Φv := {λ ∈
Φ|vλ 6= 0} . The convex hull of this set will be called the support of v and denoted
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by supp v . For any point 〈v〉 ∈ P(V ) set supp 〈v〉 = supp v . We will call a face Γ
of M(V ) minimal for the orbit Gv if there is a point in this orbit whose support
lies in Γ, but there is no point whose support lies in any proper face of Γ. If
supp v ⊂ Γ and Γ is minimal for the orbit Gv , we will say that the orbit G〈v〉 is
obtained by parabolic induction from the orbit GΓ〈v〉 .

The following theorem summarizes the properties of the parabolic induction
of projective orbits.

Theorem 1.1. a) Any two minimal faces for the orbit Gv are equivalent under
the Weyl group.
b) The intersection of any G-orbit in V with VΓ is a single GΓ -orbit or empty.
c) If supp v ⊂ Γ, supp gv ⊂ Γ and Γ is minimal for the orbit Gv , then g ∈ PΓ

(in particular, the stabilizer of 〈v〉 lies in PΓ ).
d) If supp v ∈ Γ and Γ1 ⊂ Γ is minimal for the orbit GΓv then it is minimal for
the orbit Gv as well.

Theorem 1.2. Let supp v ⊂ Γ and Γ be minimal for the orbit Gv . Then
1) The G-variety G〈v〉 is obtained by parabolic induction from the PΓ -variety
GΓ〈v〉,
2) Let T ′ be a torus acting on V permutably with G, t′ be its tangent algebra and
let h be the projection of (g⊕ t′)v onto g. Then (gΓ, gΓ∩h)−→pΓ

(g, h) In particular,
(gΓ, (gΓ)〈v〉)−→pΓ

(g, g〈v〉) and (gΓ, (gΓ)v)−→pΓ
(g, gv).

It follows from these theorems that the map G×P VΓ → GVΓ is birational,
therefore, according to the theorem of Kempf ([4]), the variety GVΓ always has
rational singularities.

According to Theorem 1.2, the parabolic induction of orbits turns out to
be a convenient model for studying both the parabolic induction of varieties and
subalgebras.

Moreover, this construction can be applied to the study of projective or-
bits satisfying certain conditions for the following reason: the orbit obtained by
parabolic induction shares many properties with the orbit it has been obtained
from. As it was said earlier, this approach was used by the author ([5], prop. 2.15,
2.16) in the study of two-orbit varieties.

As one more application, we are going to prove a theorem on the parabolic
induction of subalgebras.

Let us introduce some notation. We will call a parabolic subalgebra p of
g admissible for a reductive algebra g̃ if there exists a homomorphism φ from p

onto g̃ ; a parabolic subalgebra p1 ⊃ p of g , an admissible enlargement of p for φ
if φ extends to a homomorphism φ1 from p1 onto g̃ . Let h̃ be a subalgebra of g̃

and (g̃, h̃)−→p (g, h).

Let us study the subalgebras of g containing h . There are two obvious
ways to construct such subalgebras:
(1) enlarging the subalgebra of g̃ : take any subalgebra h̃1 ⊃ h̃ of g̃ and let
(g̃, h̃1)−→p (g, h1); then h1 ⊃ h .
(2) enlarging the parabolic subalgebra: take any admissible enlargement p1 ⊃ p

for φ and let (g̃, h̃)−→p1 (g, h1); then h1 ⊃ h .

These two operations are nearly enough to construct any subalgebra of g

containing h . We shall need only one more operation not changing h but g̃ :
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(3) passing to a deeper parabolic induction: suppose that the pair (g̃, h̃) is
reducible, so it can be obtained from a pair (g̃1, h̃1) by parabolic induction via
a parabolic subalgebra p̃1 of g̃ (with a homomorphism φ̃1 ). Then we can replace
g̃ by g̃1 so that (g̃1, h̃1)−→p1 (g, h), where p1 = φ−1(p̃1) and φ1 = φ̃1 ◦ φ .

Obviously, any composition of these operations also leads to a subalgebra
of g containing h . The theorem we are going to prove claims that these three
operations are enough to obtain all subalgebras of g containing h .

Theorem 1.3. Let g̃ be an reductive algebraic Lie algebra, p be an admissible
for g̃ parabolic subalgebra of g, h̃ be a subalgebra of g̃ and the pair (g, h) be
obtained from (g̃, h̃) by parabolic induction via p. Then the subalgebras of g

containing h are exactly the subalgebras obtained by enlarging the subalgebra of
g̃, then passing to a deeper parabolic induction and finally enlarging the parabolic
subalgebra.

Theorem 1.3 can be used to classify the subalgebras of semisimple algebras
satisfying certain conditions. For example, it was used by the author to classify the
maximal non-horospherical subalgebras of a semisimple Lie algebra (unpublished).

I would like to express my deepest gratitude to my scientific supervisor
E.B. Vinberg, for having generously spent time on reading this material and for
his priceless consultations.

Notation:
G: a connected reductive algebraic group;
g: the tangent algebra of G;
T : a maximal torus of G;
t: the tangent algebra of T ;
b: a Borel subalgebra of g containing t;
∆: the system of roots of g;
∆+ ⊂ ∆: the system of positive roots of g;
pu: the unipotent radical of a parabolic subalgebra p of g;
u = bu: the maximal unipotent subalgebra of b and g;
W : the Weyl group of the pair (G, T );
rα: the reflection relative to a root α;
n: the element of W corresponding to an element n ∈ N(T );
〈M〉: the linear span of a set M in a vector space;
gx: the stabilizing subalgebra of a point x.

The vector space E = t(R)∗ will be in certain cases considered as an affine
space and its elements as points.

If α ∈ E , then hα is an element of t such that hα is orthogonal to Kerα
and α(hα) = 2.

If α ∈ ∆, then eα will denote the root vector, corresponding to α (defined
up to a scalar factor). We will claim that [eα, e−α] = hα (thus, {hα, eα, e−α} will
be an sl2 -triple).

The notation x ∼ y means that both vectors x and y are non-zero and are
proportional to each other.

We shall call a face of the weight polytope dominant, if its center of mass
lies in the dominant (closed) Weyl chamber.
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For a hyperplane H in an affine space A we will denote the two closed half-
spaces, into which H divides A , with H± . In case when 0 6∈ H we will assume
that 0 ∈ H− .

A hyperplane H in an affine space A is called a hyperplane of support of
a set M ⊂ A , if the intersection H ∩M is nonempty, and M is contained in H+

or H− .

2. Parabolic induction of projective orbits

In this section we will prove Theorems 1.1 and 1.2.

First we will study some properties of convex polytopes invariant under the
Weyl group.

Let M ⊂ E be such a polytope and Γ be a face of it. Let ∆‖(Γ) be the set
of roots parallel to Γ. As we explained above, ∆‖(Γ)⊥zΓ . Let ∆⊥(Γ) be the set
of roots orthogonal to zΓ and not parallel to Γ, ∆+(Γ) be the set of roots having
positive inner product with zΓ .

The polytope M is an intersection of some (closed) half-spaces H−
i . Let

S±(Γ) = ((∩Γ⊂Hi
H±
i )\Aff Γ)− p

for any point p ∈ Γ. Clearly S+(Γ) and S−(Γ) do not depend on p . They are
opposite convex cones. Let S0(Γ) be the complementary set to S−(Γ) ∪ S+(Γ).

The following three lemmas generalize some results of Vinberg (see [7], p.
9-12).

Lemma 2.1. 1) If α ∈ ∆⊥(Γ) then α is orthogonal to the linear span 〈Γ〉 of
Γ in E;

2) ∆‖(Γ)⊥∆⊥(Γ);

3) ∆‖(Γ) ∪∆⊥(Γ) = ∆ ∩ S0(Γ);

4) ∆+(Γ) = ∆ ∩ S+(Γ).

Proof. Let α be a root. If α is orthogonal to zΓ then rαΓ = Γ, therefore
either α ‖ Γ, or α⊥〈Γ〉 . This proves 1) and 2).

In both cases rαS±(Γ) = S±(Γ), but rαα = −α , therefore α 6∈ S±(Γ).
Thus ∆‖(Γ) ∪∆⊥(Γ) ⊂ S0(Γ).

On the other hand, if α ∈ S0(Γ), then rαΓ = Γ, therefore α⊥zΓ . This
proves 3).

Now let α be a root having a positive inner product with zΓ . We have
rαzΓ ∈M , therefore zΓ − rαzΓ ∈ S+(Γ) (this vector does not lie in S0(Γ) because
it is proportional to α , so has a non-zero inner product with zΓ ). Since (α, zΓ) > 0,
zΓ − rαzΓ = cα for some positive c . Consequently, α ∈ S+(Γ).

Therefore α ∈ ∆+(Γ) if and only if α ∈ S+(Γ) (if and only if −α ∈ S−(Γ)).
This proves 4).

Choose a system of positive roots ∆+ ⊃ ∆+(Γ). Let C be the corresponding
dominant Weyl chamber. Denote the group generated by rα for α ∈ ∆‖(Γ) with
WΓ . Let

CΓ = {λ ∈ Aff Γ : (λ, α) ≥ 0 ∀α ∈ ∆+ ∩∆‖(Γ)}.
Obviously, zΓ ∈ CΓ , and CΓ is a fundamental region for the action WΓ : Aff Γ.
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Lemma 2.2. C ∩ Γ = CΓ ∩ Γ.

Proof. Obviously, C ∩ Γ ⊂ C ∩ Aff Γ ⊂ CΓ . On the other hand, for any
α ∈ ∆+(Γ) and p ∈ Γ we have (α, p) ≥ (α, zΓ) ≥ 0. Therefore

CΓ ∩ Γ ⊂ {λ ∈ Aff Γ : (λ, α) ≥ 0 ∀α ∈ ∆+ ∩∆‖(Γ)} ∩ Γ ⊂
⊂ {λ ∈ E : (λ, α) ≥ 0 ∀α ∈ ∆+ ∩∆‖(Γ)} ∩ {λ ∈ E : (λ, α) ≥ 0 ∀α ∈ ∆+(Γ)} =

= {λ ∈ E : (λ, α) ≥ 0 ∀α ∈ ∆+} = C.

Lemma 2.3. For any face Γ1 ⊂ Γ there is an element w ∈ WΓ such that wΓ1

is dominant.

Proof. According to the choice of ∆+ , zΓ ∈ CΓ ∩ Γ ⊂ C . Choose an element
w ∈ WΓ such that wzΓ1 ∈ CΓ . Since zΓ1 ∈ Γ, wzΓ1 ∈ Γ, thus according to Lemma
2.2, wzΓ1 ∈ CΓ ∩ Γ = C ∩ Γ ⊂ C .

Now let M = M(V ) be a weight polytope. Then WΓ is the Weyl group of
GΓ and 〈Γ〉 = gΓ ∩ E .

Lemma 2.4. Let v ∈ V be a vector such that supp v ⊂ Γ. Then

1) If α ∈ ∆+(Γ) then eα ∈ gv ;

2) If α ∈ ∆⊥(Γ) then eα ∈ gv and hα ∈ gv .

Proof. Due to Lemma 2.1, for all p ∈ Γ and α ∈ ∆+(Γ) ∪ ∆⊥(Γ) the vector
p+ α is not a weight. Therefore eα ∈ gv . If α ∈ ∆⊥(Γ) then the same is true for
−α , therefore the whole sl2 -triple {e−α, hα, eα} stabilizes v .

According to Lemma 2.4, both the unipotent radical pu
Γ of p and g⊥Γ act

trivially on VΓ . This proves the following:

Lemma 2.5. If supp v ⊂ Γ and b ∈ PΓ then there is g ∈ GΓ such that bv = gv .

We will need one more lemma:

Lemma 2.6. Let n ∈ N(T ) be an element such that w = n stabilizes the face
Γ. Then n = n1n2 , where n1 ∈ N(T ) ∩ GΓ and n2 ∈ N(T ) ∩ G⊥

Γ . In particular,
n ∈ PΓ .

Proof. The element w can be decomposed as a product of two commuting
elements: w = w1w2 , where w1 (resp. w2 ) is a product of reflections relative to
roots lying in ∆‖(Γ) (resp. ∆⊥(Γ)).

Let n1 and n2 be some representatives of w1 and w2 in N(T ) ∩ GΓ and
N(T ) ∩G⊥

Γ , respectively. Then n differs from n1n2 by an element of T , and one
can correct n1 and n2 so that n = n1n2 .
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Proof. (of Theorem 1.1) For convenience suppose that Γ is dominant.

a) Let v1, v2 ∈ Gv be two vectors whose supports lie in Γ1 and Γ2 ,
respectively, and v2 = gv1 . Apply the Bruhat decomposition and decompose
g as g = b2nb1 , where b1 ∈ PΓ1 , b2 ∈ PΓ2 and n ∈ N(T ). Then the face Γ1

(resp. Γ2 ) is the minimal face containing the support of b1v1 (resp. of b−1
2 v2 ),

consequently nΓ1 = Γ2 .

b) Let supp v1 ⊂ Γ, supp v2 ⊂ Γ, and v2 ∼ gv1 . Apply the Bruhat
decomposition and decompose g as g = b2nb1 , where b1, b2 ∈ PΓ and n ∈ N(T ).
Then b−1

2 v2 ∼ nb1v1 . The supports of b−1
2 v2 and b1v1 lie in Γ. According to

Lemma 2.5 we can assume that b1, b2 ∈ GΓ and prove the theorem for the case
when b1 = b2 = e , so v2 ∼ nv1 .

Let Γ1 ⊂ Γ and Γ2 ⊂ Γ be the minimal faces containing the supports
of v1 and v2 respectively. Then Γ2 = nΓ1 . According to Lemma 2.3, there are
elements w1, w2 ∈ WΓ such that the faces w1Γ1 and w2Γ2 are dominant, therefore
coincide. Let w = w−1

2 w1 . Then Γ2 = wΓ1 and w ∈ WΓ . The element w has
a representative if GΓ , therefore we can reduce the theorem to the case when
Γ1 = Γ2 .

Now we have an element n ∈ N(T ) so that nΓ1 = Γ1 . According to Lemma
2.6, one can choose an element n′ of N(T ) ∩GΓ1 such that n′v1 = nv1 . Now it is
enough to note that GΓ1 ⊂ GΓ .

c) Decompose g as g = b2nb1 , where b1, b2 ∈ PΓ and n ∈ N(T ). Then
b−1
2 gv = nb1v .

Note that the supports of b−1
2 gv and b1v lie in Γ, and, moreover, the support

of b1v is not contained in any proper face of Γ. Hence, n stabilizes the face Γ,
therefore, according to Lemma 2.6, n is contained in PΓ ; consequently, g ∈ PΓ .

d) Suppose that Γ1 is not minimal for Gv . Then there is an element g ∈ G
such that the support of gv is a proper face of Γ1 . But according to point b) there
is an element g′ ∈ GΓ such that g′v = gv , and we come to a contradiction.

Proof. (of Theorem 1.2) To prove the first part of the theorem it is enough to
consider the map ψ : G ×P GΓ〈v〉 → GΓ〈v〉 , ψ(g × x) = gx and notice that it is
proper.

Now let H be the connected subgroup of G whose tangent algebra is h and
g ∈ H . Then supp gv = supp v , therefore g ∈ PΓ according to the point c) of
Theorem 1.1. On the other hand, h contains pu

Γ and g⊥Γ by Lemma 2.4.

3. An application to the parabolic induction
of subalgebras

Let p be a parabolic subalgebra of g containing t , p = l � pu be its Levi
decomposition such that l ⊃ t , and hp ∈ t be an element such that α(hp) > 0 and
α(hp) ∈ Z for all roots of pu and α(hp) = 0 for all roots of l . For a weight φ let
H(hp, φ) = {λ ∈ E : λ(hp) = φ(hp)} .

The following lemma is known (see, e.g. [6]), but for convenience of the
reader we give the proof here.
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Lemma 3.1. Let G : V be an irreducible representation and φ be its highest
weight, Then H(hp, φ) is a hyperplane of support of M(V ) and

{v ∈ V : puv = 0} = VH(hp,φ).

Proof. Let L be the connected subgroup of G whose tangent algebra is l . Take
a vector W ∈ V such that puw = 0. Consider the subspace 〈Lw〉 ⊂ V . Obviously,
puv = 0 for any v ∈ 〈Lw〉 . It follows that if v is a highest weight vector with
respect to L , then it is a highest vector with respect to G . Therefore, v ∈ 〈LVφ〉 ,
whence supp v ⊂ H(hp, φ).

On the other hand, V = 〈GVφ〉 and puVφ = 0 implies that M(V ) ⊂
H(hp, φ)− .

Lemma 3.2. Let p be a parabolic subalgebra of g and h1 ⊃ pu . Then there is
a vector space V , a vector v ⊂ V , a hyperplane of support H of M(V ) orthogonal
to hp and a one-dimensional torus T ′ acting on V permutably with G, such that
1) supp v ⊂ H ;
2) h1 is the projection of (g⊕ t′)v onto g, where t′ is the tangent algebra of T ′ .

Proof. According to the Chevalley theorem, there exists a representation space
U of G and a vector u ∈ U such that g〈u〉 = h1 . We may also assume that there
is no proper G-invariant subspace of U containing u .

Since h1 ⊃ pu , then by Lemma 3.1, all the numbers φ(hp) for all φ such
that u(φ) 6= 0 are non-negative. Suppose that for all φ such that u(φ) 6= 0 we
have φ(hp) = 0. Then the statement of the lemma holds for V = U , v = u and
H = H(hp, 0).

Otherwise choose some ψ such that u(ψ) 6= 0 and ψ(hp) > 0. Set
U ′ = U ⊗ U(ψ) and u′ = u ⊗ u(ψ). Obviously for all φ such that u′(φ) 6= 0
we have φ(hp) > 0. Let us prove that G〈u′〉 = G〈u〉 .

If g ∈ G〈u〉 then gu ∼ u , so gu(ψ) ∼ u(ψ) for all ψ . Therefore G〈u〉 ⊂ G〈u′〉 .
Let us prove the inverse inclusion. If g ∈ G〈u′〉 then g(u⊗u(ψ)) ∼ u⊗u(ψ), hence
gu ∼ u , so g ∈ G〈u〉 .

Choose some natural numbers n(φ) so that all the numbers n(φ)φ(hp)
coincide for all φ such that u′(φ) 6= 0. Define V = ⊕(U ′(φ)⊗n(φ)) and v =∑

(u′(φ)⊗n(φ)) ∈ V . Let T ′ be a one-dimensional torus acting on V via

t · (
∑

(u′(φ)⊗n(φ)) =
∑

(tnu′(φ)⊗n(φ))

Set Γ = H ∩M(V ); then supp v ⊂ Γ. and we are done.

Lemma 3.3. Let G : V be a representation, H be a hyperplane of support of
M(V ) orthogonal to hp , and Γ = M(V )∩H . Then there is an ideal n ⊂ g⊥Γ such
that l = gΓ ⊕ n.
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Proof. Let us first prove that gΓ ⊂ l ⊂ lΓ The subalgebras gΓ , l and lΓ are
lΓ are regular, the second and the third contain t , thus it is enough to prove the
inclusion for the root vectors.

If α is a root of gΓ then α ‖ Γ, therefore α⊥hp , proving the first inclusion.
Now if α is a root of l then α⊥hp . Notice that Γ = M(V ) ∩H and both M(V )
and H are rα -invariant, therefore rαΓ = Γ hence α⊥zΓ .

This proves the inclusion of subalgebras. Now it is enough to notice that
the set of roots of l can be represented as an intersection of a vector space with
the set ∆.

Now we are going to prove Theorem 1.3. Let h1 be a subalgebra of g

containing h . The idea of the proof is to construct a certain representation space
V of G and a vector v ∈ V such that
1) The stabilizer g〈v〉 is “almost” equal to h1 (they may differ by a one-dimensional
subalgebra of t);
2) The support of v is contained in a face Γ of M(V ) such that gΓ ⊂ p .

Together these two statements will allow us to use Theorem 1.1 and describe
h1 as stated in Theorem 1.3.

Proof. (of Theorem 1.3) Let V , v , H and Γ be the same with Lemma 3.2.

According to Lemma 3.3, l = gΓ ⊕ n , where n is an ideal in g⊥Γ , hence the
space VΓ is a representation space of l .

We have l ' g̃⊕ (Kerφ ∩ l). Since V = 〈Gv〉 , 〈P−
Γ v〉 is open in 〈Gv〉 (P−

Γ

is the opposite parabolic subgroup to PΓ ) and (P−
Γ v)Γ = GΓv , then VΓ = 〈GΓv〉 .

Consequently Kerφ ∩ l acts trivially on VΓ . Therefore after identifying g̃

with a complement to (Kerφ ∩ l) in l we can consider VΓ to be a representation
space of g̃ . Moreover there is an ideal n′ ∈ n such that g̃ = gΓ ⊕ n′ .

Let Γ1 ⊂ Γ be a minimal face of M(VΓ) for the orbit GΓv . According
to point d) of Theorem 1.1, it is a minimal face of M(V ) for the orbit Gv as
well. Note that if the statement of the theorem is true for h ⊂ h1 , it is true for
g · h ⊂ g · h1 for any g ∈ G̃ , where G̃ is the connected subgroup of G whose
tangent algebra is g̃ . We have just shown that GΓ ⊂ G̃ , therefore it suffices to
prove the theorem for the case when supp (v) ⊂ Γ1 .

Due to theorem 1.2, The pair (g, h1) is obtained from (gΓ1 , h1 ∩ gΓ1) by
parabolic induction via pΓ1 . We have a map φ from pΓ1 on gΓ1 such that
φ−1(gΓ1 , h1 ∩ gΓ1) = h1 . Restricting this map to g̃ we deduce that the pair
(g̃, h1 ∩ g̃) is obtained from (gΓ1 , h1 ∩ gΓ1) by parabolic induction via pΓ1 ∩ g̃ .

Thus the following three operations lead from (g, h) to (g, h1):

1) replace h̃ with h1 ∩ g̃ ;

2) replace g̃ with gΓ1 , h1 ∩ g̃ with h1 ∩ gΓ1 and p with (pΓ1 ∩ g̃) � pu ;

3) enlarge the parabolic subalgebra to pΓ1 .
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