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Abstract. We consider a Riemannian manifold with a compatible f-stru-
cture which admits a parallelizable kernel. With some additional integrability
conditions it is called an (almost) S-manifold and it is a natural generalization
of a contact metric and a Sasakian manifold. Then we consider an action of a Lie
group preserving the given structures. In such a context we define a momentum
map and prove some reduction theorems.
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Introduction

A contact metric manifold may be seen as a Riemannian manifold of dimension
2n + 1 equipped with a compatible f-structure of the rank 2n and such that
certain integrability conditions are satisfied, cf. [4]. Such manifolds have been
intensively studied from the topological and geometrical points of view. A vast
set of examples of contact metric manifolds is available too; for a collection of
the recent results one may consult an excellent book by D.E. Blair, cf. [5]. In
the present paper we consider a generalization of the contact metric manifolds.
We consider Riemannian manifolds of dimension 2n + s equipped with an f-
structure ¢ of rank 2n which is compatible with the metric and such that certain
integrability conditions are satisfied; moreover, we assume the kernel bundle of
¢ is parallelizable. We consider here the so called (almost) S-manifolds which
were defined by D.E. Blair, cf. [3]. These structures carries many similarities with
the metric contact and (almost) Sasakian manifolds; S-manifolds were studied
by various geometers, cf. [21, 11, 18, 15, 13]. An (almost) S-manifold determine
naturally the fundamental 2-form, called also the Sasaki form, cf. (2). This form
is closed but degenerate.

The aim of this paper is to prove a contact reduction theorem. Such
reduction were already profoundly studied in the case of contact, Sasakian and 3-
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Sasakian manifolds. Regular contact reduction of the exact contact manifolds was
studied by various authors, cf. [2, 19, 25]; then the generalizations were obtained
in [24, 29, 23, 16]. The Sasakian reduction was obtained in [20, 17] and 3-Sasakian
reduction was studied in [8, 9, 10].

In Section 2 of our paper we consider an (almost) S-manifold on which acts
a Lie group G which preserves the given structures. In this context we define asso-
ciated momentum and comomentum maps and obtain their characterization and
properties. In Section 3 we obtain reduction theorems for (almost) S-manifolds.
Our reduction is regular and taken at the zero value of the momentum map. We
also prove a version of a symplectic reduction theorem for a symplectic almost
Hermitian manifold obtained via the cone construction; we also compare it with
the reduction for S-manifold.

All manifolds, maps, distributions considered here are smooth i.e. of the
class C*; we denote by I'(—) the set of all sections of a corresponding bundle.
We use the convention that 2u Av=u®v — v ® u.

1. Preliminaries

1.1. Actions of Lie groups on manifolds.

In the present subsection we recall basic definitions and properties considering an
action of a Lie group on a manifold. These are standard facts and the details may
be found in various old and new textbooks, for instance cf. [1, 12, 27].

Let M be an n-dimensional manifold and G a Lie group acting on the
left on M by ¢ : G x M — M. We denote by g the Lie algebra of G. If
A € g then by A we denote the vector field on M determined by A via the
action 1, ie. if z € M then A, := d..(A) where ¢, : G — M is such that
U.(a) = ¥(a,z) for each a € G; e denotes here the neutral element of G. In such
a way there is defined the map dip : g — I'(T'M) such that dy(A) = A. The map
diy is an arii—\lﬁmomorphism of Lie algebras, i.e. for each A, B € g we have that
[A,B] = —[A, B].

The group G acts by the adjoint representation Ad : G — Aut(g) on g;
for each a € G and A € g we use the notation a - A := Ad,(A). Then there is
the coadjoint action of Ad* : G — Aut(g*) on the real dual space to g; for each
ac€G and ¢ € g weput a-¢:=Ad'_,(¢) = po Ad,-1.

There is given a natural pairing (, ) : g* x g — R such that for each ¢ € g*
and A € g we have (¢, A) := ¢(A). We have the following useful property: if
f:M — g" and A € g then d(f, A) = (df, A).

Suppose that F' is a G-invariant 2-form on M. If AudF =0 forall A € g
then [A, B]JF = [B, A|oF = d(BL(AJF)) for each A, B € g.

1.2. Metric f-manifolds and associated structures. Let M bea (2n+s)-
dimensional manifold equipped with an f-structure ¢, i.e. ¢ is an endomorphism
of TM such that ©®+¢ = 0. This is a natural generalization of an almost complex
structure, cf. [30]. Then (M, ¢, &, n’) (1,5 =1,...,s) is said to be an f-manifold
with a parallelizable kernel (for brevity: f.pk-manifold) if &,... & are vector
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fields and n!,...,n® are 1-forms on M such that the following conditions hold

p(&) =0, op=0, P =—id+> W' @&, ') =3 (1)
i=1
for all i,7 = 1,...,s. It follows that ker(¢) = span{{,...,&}. We put D =
Im(p) and we observe that TM = D @ ker(y).
Let g be a Riemannian metric on M ; then g and ¢ are said to be compatible
if for each X,Y € TM holds ¢g(p(X),Y) + g(X,p(Y)) = 0. If g and ¢ are
compatible then it is possible to define also the Sasaki 2-form by posing:

FIX,Y) = g(X,0(Y)). (2)

The triples (M, g, ) and (M, g, F') determine each other via equation (2). More-
over, the decomposition TM = D @ ker(p) is orthogonal.

Remark 1.1.  If there is given an action of a Lie group G on M such that G
preserves g and ¢ then G preserves also F' and the decomposition D @ ker(yp).

The structure (M, g,0,&,7%), (1,7 = 1,...,s), is said to be a metric f-mani-
fold with a parallelizable kernel (or for brevity called: metric f.pk-manifold), if
(M, p,&,n) is an f.pk-manifold and

9(X,Y) = g(p(X), oY) + Z 7' (X)n'(Y) (3)

for each X,Y € T'M, cf. [18]. A metric g satisfying condition (3) is said to be
adapted for the f.pk-manifold. Such a metric always exists but is not unique. It
is easy to observe that an adapted metric is also compatible with ¢. Hence there
is also given the Sasaki 2-form F'.

Summing up, we have the following structure on the manifold M: an f-
structure ¢, vector fields &, ...,&,, 1-forms n',...,n°, an adapted Riemannian
metric ¢ and the Sasaki 2-form F. These give Z := (M, g,¢,&,7°) a metric
f-pk-manifold.

With the f-structure ¢ there is naturally associated N, the tensor of type
(2,1) defined in the following way: N, := [p, @] + 2> ;_, dn' @ & where [p, ¢] is
the Nijenhuis torsion of ¢, cf. [22].

Definition 1.2. It is said that
e Z is normal if N, =0
e Z is an almost S-manifold if dn' = F for i=1,...,s
e Z is an S-manifold if dy' = F for i =1,...,s and Z is normal.

The above definitions are natural generalizations of the notions of metric contact
and Sasakian manifolds, cf. [3].

The f.pk-manifolds may be seen from the point of view of the CR-geometry.
In fact, given an f.pk-manifold (M, p,&,7°), (i,7 = 1,...,s) we may define an
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almost CR-structure by considering (M, D, ¢|p,). Vice versa, given an almost CR-
structure (M, H,J) and a parallelization of an H -transversal subbundle of 7'M
we may easily obtain an f.pk-manifold. The conditions on Z for being (almost)
S-manifold may be expressed in the language of the CR-geometry. However, we
shall not use this language here.

Definition 1.2 may be clarified by considering an s-cone over M . In particu-
lar if Z = (M, g,p,%,7°), (1,7 =1,...,s), is ametric fp.k-manifold then we call
an s-cone over M the set Cs(M) := M x R where R denotes the positive real
numbers. It is clear that there are the natural global coordinates r = (r1,...,7)
on R% . There are also the following injection an projection maps: u: M — C (M)
and p : C5(M) — M such that u(z) := (z,1,...,1) and p(z,r) := z. The mani-
fold Cs(M) carries a natural almost Hermitian structure J, h defined as follows:
for each X € D and each i € {1,...,s}

0 0

J(X) = p(X), J(&):= Tz‘a—ri, J(Tia_ri) ==& (4)
hi= Do (dre)? + g + D = Py @ ' (5)

It is straightforward to prove the following proposition, cf. [14].

Proposition 1.3.  If Z is an almost S-manifold then (Cs(M), h,J) is a sym-
plectic almost Hermitian with the Kdhler form

w=d (z rfni) - (Z 2rdr, Ani) + P

i=1 i=1

Moreover, Z is an S-manifold if and only if Cs(M) is Kdhler.

2. A generalization of the momentum maps for almost & and Kahler
manifolds

Throughout all of this section we assume that M is a (2n+s)-dimensional manifold
and Z = (M, g,0,&,7°), (i,j = 1,...,s), is an almost S-manifold with F the
associated Sasaki 2-form. By (Cs(M),h, J,w) we denote the symplectic almost
Hermitian manifold associated with Z. Moreover, we suppose that there is given
an action ¢ : G x M — M of the Lie group G on M; for simplicity we write
a-x :=1(a,x) where a € G and x € M. We suppose that the action 1) preserves
g,0,&,m0 fori,j=1,...,s.
Let v: M — g* ® R® be the following map:

(@), 4) = (1 (A, ..o ()

Definition 2.1.  We call the map v the momentum map associated with Z.

Then the map v satisfies the following properties.

Proposition 2.2.  (1). v is G-equivariant, (2). for each A € g we have that
(dv, Ay = —AL(dn',...,dp°) = —AL(F,...,F).
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Proof. Foreach x € M, a € G and A € g the following holds
H(Au): "7775([1 z))
(L") (Ady-1(A), ), ..., (Lin) (Ady—:(A),))

Y Ady(A),), .., (1*(Ady1(A),))
v(z), Ady-r (A)) = {a - v(z), A);

(Wla-x),A) = (1
(
(n
{

L, denotes here the multiplication by a on M. Hence it follows that v is G-
equivariant. On the other hand for each A € g

(dv,A) = dlv,A) =d@n'(A),....,n°(4))

(d(fhnl),; L d(Am®)) )
= (Lyn' — Audn', ..., Lin® — ALdn®)
= —Al(dnt,....dy*) = —A(F,...,F).

Hence symplectic condition (2) follows. ]

Let h(2) :={X e ['(TM)| XJF is exact} and we call it Hamiltonian vector fields
associated with Z. Then it is easy to observe that h(Z) is a vector subspace
of I'(T'M). Moreover, for each X,Y € h(Z) we have [X,Y | F = Lx(YJF) —
YI(LxF)=d(XJiYiF))=Yi(XidF)=2d(F(Y,X)). Hence [X,Y] € h(Z) and
then it is a Lie subalgebra of I'(T'M).

We put sp(2) :={X € I'(T'M)|XJF is closed}. This is a vector subspace
of I'(T'M) and we call it the space of symplectic vector fields associated with Z.
We observe that the property of X_F being closed is equivalent to LxF = 0.
Moreover, for each X,Y € sp(Z) we have that Lixy|F = Lx(LyF)—Ly(LxF) =
0; therefore sp(Z) is a Lie subalgebra of I'(T'M).

Clearly h(Z) is a Lie subalgebra of sp(Z). Let A € g then for each
i€{l,...,s} wehave AuF = Audny’ = L ;0" —d(An') = d(—n'(A)). This implies
that dip sends g into h(Z). Summing up, we get the following inclusions of the
Lie algebras:

Im(dy) C h(2) Csp(Z) C T(TM). (6)

Moreover, we have the following exact sequence

X—[XJF]
—_—

0 —— bh(Z) — sp(2) Hap(M) —— 0.

In the case of an action ¢ on the almost S-manifold it is possible to define the
comomentum map v* : g — C=(M,R*) as v*(A) := —(A',..., An®). The map
v* is not a homomorphism since we have not any reasonable Poisson structure on
C>(M,R*). However the following diagram commutes

0 RS .standa?rd COO(M7 Rs) L) F(T*M ® RS) — 0
I/*T Tb@id (7)

W, D(TM @ R?)

where b(X) := (XJF) for X € I'(T'M). The upper row of the diagram is not
exact at I'(T*M ® R®). The commutativity of diagram (7) is a description of
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the fact that v* preserves some geometric structures from g to I'(7*M,R?®). The
relationship between v and v* is given by the equality: v*(A)(z) = —(v(z), A)
for each x € M and A € g.

An almost S-manifold M carries a foliation F defined by the distribution
ker(p) = span{¢i,...,&}. Then there are defined on M the Lie subalgebra of
[(TM) of the basic vector fields

Lp(TM) :={X e '(TM)|LxY € I'(ker(y)) for all Y € I'(ker(y))},

cf. [26]. Then sp(Z) is contained in T'g(T'M); if fact, for each i € {1,...,s} and
cach X € sp(2Z) we have that [X,§]0F = Lx(&0F) —&§u(LxF) = —&(X 2dF) —
&(d(XoF)) =0. It follows that [X, ] € I'(ker(y)) since [X,§;] is an annihilator
of F'. (From inclusions (6) we get that Im(dy) and h(Z) are also contained in
T(TM).

Then we put hp(Z) = {[X] € T(T'M/ker(p))|X € h(Z)} which is a
Lie algebra with the bracket inherited from h(Z). The canonical isomorphism
D — TM/ker(p) defines the inclusion of the vector spaces: hp(Z) — I'(D).

We denote by C¥ (M) := {f € C°(M)|df (ker(¢)) = 0}; these are called
basic functions on M, cf. [26]. If f € CF(M) then there exist Xy € h(Z) such
that df = XyJF; this follows from the fact that df annihilates ker(y) and F' is
non degenerate on D. Moreover, X + I'(ker(y¢)) C h(Z). We have the following
exact sequence of vector spaces

J—[Xy]
_

0 — R— C¥(M) hp(Z) —— 0.

On the set CF (M) there is defined a bracket { , } such that

{1, fa} = =X pa(Xp 0F) (8)

where df; = Xy, 0F and dfy = Xy,0F. We observe that although the associated
Hamiltonian vector fields Xy, Xy, are not unique but still definition (8) is well
posed.

Lemma 2.3. (C¥(M),{, }) is a Poisson algebra.

Proof.  These are standard procedures to prove the Jacobi identity and Leibniz
rule for { , } and we omit them here. We only need to prove that {fi, fo} €
Cx(M) for each elements fi,fo € CF(M). Let Xy, Xy be the associated
Hamiltonian vector fields. For each i € {1,...,s} we have

gi—'d(sz—'(XﬁJF)) = L&i(Xf2J(Xf1JF)) = (L&Xﬁ)J(Xfl—JF) (
+Xf2J((L§¢Xf1)JF) + Xf24<Xf1—'(£inF> + szJ(XflJ(d(giJF)) = 0;

in particular we use here the facts that L¢, Xy, , Le, Xy, and & belong to I'(ker(yp))
which annihilates F'. Then our assertion follows from (9). ]

*

The comomentum map v* may be written as v* = (v5,...,v) where v} : g —

C>®(M) is given by v (A) = —A' for i € {1,...,s}. It may be easily proved
that v; has its values in C(M); if fact,

§iad(v; (A) = —&a(Lin') + &a(AIF) =0
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because F' is G-invariant and &; annihilates F'. We observe that the diagram
commutes

g . p(2)
X
Vz*l |
X
. Fe1X)
Cx(M) —5 bp(2).

Moreover, we have the following proposition

Proposition 2.4. The map v} is a homomorphism of the Lie algebras for each
ie{l,...,s}.

Proof. For given A, B € g we have that the associated Hamiltonian vector

P

fields are the following: X = A, XyrB) = B and X, <(a.8) = A, B]. Then
we have

v ([A, B]) = —[A, Bluy' = =Bu(AJF)) = {v](A),;(B)} .
Hence our assertion follows. n

Then the action ¢ : G x M — M may be extended naturally to the action
U G xCy(M) — Cy(M) such that ¥(a,(x,r)) := (¢¥(a,z),r) where a € G,
r € M and r = (r1,...,r;) € R}. It is an easy observation that ¥ acts by
holomorphic and isometric transformations on Cy(M).

Remark 2.5. Let ¥ : G x Cy(M) — C,(M) be an action of G by the holo-
morphic and isometric transformations preserving &i,...,&s. Then it is easy to
observe that there exists an action ¢ : G x M — M preserving g, 0, &1,...,& such
that for each a € G and each (z,7) € Cy(M) holds ¥(a, (x,7)) = (¢(a,z),7).
This may be proved by observing that the invariance of &i,...,& by U implies

that 5 5
0, (na—n) :riﬁ_ri forall i1=1,...,s

These leads to a system of PDEs; the solution of this system forces the action ¥
to leave invariant the R% component of Cs(M).

Let p: Cs(M) — g* @ R® be the map defined as follows: if (z,7) € Cs(M)
and A € g then (u(x,r), A) := (r¥n*(AL), ..., 7*n*(As)).

Definition 2.6.  We call u the momentum map for Cs(M) associated with Z.
Then pu satisfies the following properties.

Proposition 2.7.  (1). p is G-equivariant, (2). for each A € g we have that
(dp, A) = —A_ (d(r3) An' +riF, .. d(r2) An® 4+ r2F)

(3). for each A € g we have (37, du;, A) = —Aw where = (1, ..., pts), (4).

up=v.
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Proof.  The action VU is determined by v and then property (1) may be proved
in a similar way as that one of Proposition 2.2. On the other hand for each A € g
we have

(dp.A) = (A3 A", d(riAmS>)
—r2Audnt, ... 2(dry)n*(A) — r?/Ldns>

d(r
2(dr
= —A, (d(rl) ANt +riF L d(r]) A+ rIE)

/\/\

therefore (2) follows. Point (3) follows from (2) and from Proposition 1.3. Point
(4) follows from the definitions of v and pu. u

We define p* : g — C°(Cs(M),R®) by pu*(A) = — (r%nl(fl), . ,r?n%[l)) where
A € g; we call u* the comomentum map of Cs(M) associated with Z. Then we

have the following commuting diagram

0 R® standard COO(CS<M)7RS) L) F(T*OS(M)(X)RS) — 50

immersion
w T Tb@id

— L, D(TC(M) @ R?)

where b(X) := X JF for each X € I'(T'C5(M)). There is the following relationship
between the momentum and comomentum maps: for each A € g and (z,7) €
CS(M> we have /L*(A)(LC, T) = —</L<LU, T)7 A) :

3. Reduction theorems

Throughout all of this section we assume that Z = (M,g,¢,&. 1), (1,7 =
1,...,s), is an almost S-manifold and by (Cs(M), h,J) we denote the symplectic
almost Hermitian manifold associated with Z, cf. Proposition 1.3; we denote by
w the associated Kéhler 2-form on C(M). Moreover, we suppose that there is
given an action ¢ : G x M — M of the Lie group G on M ; we suppose that the
action 1) preserves g,¢,&,n’ for i,5 = 1,...,s. The orbits of the action v are
denoted by O. Let v: M — g*® R® be the momentum map associated with Z
such that v71(0) # @. It is easy to observe that v~1(0) is G-invariant. We also
put for brevity u; : v~1(0) — M for the canonical immersion, M := G\r~*(0)
and 7 : v71(0) — M for the canonical projection; since we have the decomposition
TM = D @ ker(¢) then we denote by pp : TM — D the projection on the first
component of the decomposition. We suppose that the action ¢ restricted to
v~1(0) is free and proper, cf. [6]. Then it follows that the action ¥ on p~'(0) is
also free and proper.

Theorem 3.1.  If for each x € v=10) the map pp : T,0 — D, 1is injective then
there exists on M the natural structure of an almost S-manifold Z. Moreover, Z
18 an S -manifold if and only if Z is so.
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Proof. Let z € v !(0) then

ker(d,v) = {X € T,M|{dv(X),A) =0 for all A € g}
= {X e T,M|F(X,A,)=0forall Acg}
= (Txo)lF

where (T,0)1F is the orthogonal space to T, with respect to . We observe
that dim(ker(d,v)) = 2n + s — dim(pp(7,,0)). Since pp : 7,0 — D is injective
so dim(ker(d,v)) = 2n + s — d. The property that the map above is injective
is maintained in some open neighbourhood of v»~!(0). Hence v has a constant
rank equal to d in some open neighbourhood of v~'(0). Therefore from the local
expression of a map of constant rank, cf. page 41 of [28], it follows that v~*(0) is
a regular closed submanifold of M of dimension 2n + s — d.

Since G -v~1(0) € v~1(0) then it follows that for each A € g the vector field A is
tangent to »~1(0). Therefore, in restriction to v~ 1(0), we have that F(A, B) =
for each A, B € g. Moreover, since for each ¢ € {1,...,s} we have that {&_.F =0
then it follows that & are tangent to v~1(0) too.

Since G acts freely and properly on v~1(0) then 7 : v=1(0) — M is a left principal
fibre bundle with structure group G, cf. [7]. We observe that 7*, F' are G-invariant
and A, = vi(z) =0 = (Aw,X) foreacthV* 0), X eT,v(0), Aeg
and ¢ € {1,...,s}. This means that ujF and ujn' are tensorial forms on the left
principal G bundle v=1(0), cf. [22]. Hence there exist the forms 7', ...,7° and F
on M such that 7*7 = uin’ and 7*F = uiF for i =1,...,s. The G-invariant
vector fields & project to the vector fields & on M for i € {1, ...,8}. Moreover,
di; =n'(&§) = (7 71')(&) = 7'(&;) and 7*(dnj’) = d(n*7)') = uiF = 7*F'. Therefore,
dn' = F since 7 is a submersion.

Let W be the orthogonal subbundle to pp(T'O)) & ¢(pp(TO)) in D. We observe
that o(T,0) = o(pp(T,0)) and T, O = Im(d,y) for each x € v~1(0). Then we
have the following decomposition

D = o(TO) @ pp(TO) D W. (10)

Then it is a standard procedure to prove the following properties:
e the decomposition in (10) are G-invariant and orthogonal;
e o(TO) L Tv~1(0) and the decomposition
=Tv~1(0)
TM = o(TO)®TO & W @ ker(p) (11)

is G-invariant but usually not orthogonal; a non trivial fact is that the decompo-
sition of Tv~1(0) is a direct sum of the corresponding components. This follows
from the assumption that pp : TO — D is a monomorphism of vector bundles;

e (W) C W and F|wxw is non degenerate;

o d,m : ker(p,) ® W, — T;M is an isomorphism of vector spaces for each
r €v H0) and T = 7(x);

o PPA-- AN FT2H L),

Then we put D := dr(W). The definition of D is well posed since W is G-
invariant. Since for each x € v=1(0), ¥ = w(z) € M we have that d,7 :
W, @ ker(p,) — Tz M is an isomorphism then we may define the horizontal lifting
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operator in the following way: if X; € Tz M then by X# we denote the unique
element of W, @ ker(y,) such that d,7m(X?) = X;. Then the lifting may be
extended to vector fields: if X € T(TM) then there is uniquely defined the
horizontal vector field X € T'(Tv=1(0)). It is easy to observe that £f = ¢
for all i € {1,...,s}. Then we define an endomorphism @ of TM such that
@(X) == dr(p(XH)) for each X € TM. It follows that ¢*> = —id +>_;_ 7' ® ;.
Moreover, we have

T (9(X, o(Y))
hence §(X,¢(Y)) = F(X,Y) and then F is determined by g and ¢. Whole-
together we get that Z = (M,g,0,&,7) (i,5 = 1,...,s) is an almost S-
manifold.

On the other hand we have that [X% Y] = [X Y]+ terms belonging to
D(TO|,-1(p)). Then it follows that [p,o](X?,YH#) = ([p,¢](X,Y))"+ terms
belonging to I'(TO @ ¢(T'O)|,-1(p)). This implies that

g(X", o(YH) = F(X", V") =7*(F(X,Y))

N (XYY = (NH(X,Y))" + terms belonging to I' (TO & ¢(TO)|,-1(g)) -

;From the direct sum decomposition (11) it follows that the vanishing of N, is
equivalent to the vanishing of N;. This implies that Z is an S-manifold if and
only if Z is so. [ ]

The momentum map pu : Cs(M) — g* @ R® associated with Z, cf. Definition 2.6,
allows us to obtain the following reduction theorem.

Theorem 3.2.  If the map pp : TO — D is injective then G\pu~'(0) carries a
natural structure of symplectic almost Hermitian manifold. Moreover, if Z is an

S -manifold then G\u~'(0) is Kahler.

Proof. = We put, for brevity, M’ := G\p~*(0). Then we observe that

o) = o
= {
= {

It follows that p~!(0) is a regular submanifold of C,(M) because v~1(0) is a
regular submanifold M. The induced action of ¥ on p~!(0) is free and proper
therefore the canonical projection II : u~'(0) — M’ is a left principal fibre
bundle with structure group G. The manifold p~!(0) carries the Riemannian
metric inherited from Cy(M), cf. (5). Then we have the orthogonal and G-
invariant decomposition T~ 1(0) = Tv~=1(0) & TR*. ;From (11) follows that
Tu=(0) = TODW @ker(p)®TR® which is G-invariant but usually not orthogonal.
The manifold Cy(M) carries also the G-invariant almost complex structure J
given explicitly by (4). It is easy to observe that the bundle W @ ker(p) @ TR*® is
G- and J-invariant. The following map
dl=dr®id

—_—

W & ker(p) @ TR TM' =TM & TR* = TC,(M) (12)
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is a G-invariant morphism of vector bundles which is an isomorphism when re-
stricted to the fibres. We define an almost Hermitian structure (M’, ¢, J') via the
map (12). On the other hand M’ may be equipped with the almost Hermitian
symplectic structure being an s-cone over an S-manifold M, cf. Proposition 1.3.
It is easy to observe that these two almost Hermitian structures on M’ coincide.
Then our assertion follows from Proposition 1.3 and Theorem 3.1. [ ]

The last part of the proof of the above theorem may be simply summed up by
saying that the operations of taking an s-cone over and (almost) S-manifold and
the reduction commute with each other; it is a generalization of the result of
Grantcharov and Ornea, cf. [20].
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