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Abstract. We consider a Riemannian manifold with a compatible f -stru-
cture which admits a parallelizable kernel. With some additional integrability
conditions it is called an (almost) S -manifold and it is a natural generalization
of a contact metric and a Sasakian manifold. Then we consider an action of a Lie
group preserving the given structures. In such a context we define a momentum
map and prove some reduction theorems.
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Introduction

A contact metric manifold may be seen as a Riemannian manifold of dimension
2n + 1 equipped with a compatible f -structure of the rank 2n and such that
certain integrability conditions are satisfied, cf. [4]. Such manifolds have been
intensively studied from the topological and geometrical points of view. A vast
set of examples of contact metric manifolds is available too; for a collection of
the recent results one may consult an excellent book by D.E. Blair, cf. [5]. In
the present paper we consider a generalization of the contact metric manifolds.
We consider Riemannian manifolds of dimension 2n + s equipped with an f -
structure ϕ of rank 2n which is compatible with the metric and such that certain
integrability conditions are satisfied; moreover, we assume the kernel bundle of
ϕ is parallelizable. We consider here the so called (almost) S -manifolds which
were defined by D.E. Blair, cf. [3]. These structures carries many similarities with
the metric contact and (almost) Sasakian manifolds; S -manifolds were studied
by various geometers, cf. [21, 11, 18, 15, 13]. An (almost) S -manifold determine
naturally the fundamental 2-form, called also the Sasaki form, cf. (2). This form
is closed but degenerate.

The aim of this paper is to prove a contact reduction theorem. Such
reduction were already profoundly studied in the case of contact, Sasakian and 3-
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Sasakian manifolds. Regular contact reduction of the exact contact manifolds was
studied by various authors, cf. [2, 19, 25]; then the generalizations were obtained
in [24, 29, 23, 16]. The Sasakian reduction was obtained in [20, 17] and 3-Sasakian
reduction was studied in [8, 9, 10].

In Section 2 of our paper we consider an (almost) S -manifold on which acts
a Lie group G which preserves the given structures. In this context we define asso-
ciated momentum and comomentum maps and obtain their characterization and
properties. In Section 3 we obtain reduction theorems for (almost) S -manifolds.
Our reduction is regular and taken at the zero value of the momentum map. We
also prove a version of a symplectic reduction theorem for a symplectic almost
Hermitian manifold obtained via the cone construction; we also compare it with
the reduction for S -manifold.

All manifolds, maps, distributions considered here are smooth i.e. of the
class C∞ ; we denote by Γ(−) the set of all sections of a corresponding bundle.
We use the convention that 2u ∧ v = u⊗ v − v ⊗ u .

1. Preliminaries

1.1. Actions of Lie groups on manifolds.

In the present subsection we recall basic definitions and properties considering an
action of a Lie group on a manifold. These are standard facts and the details may
be found in various old and new textbooks, for instance cf. [1, 12, 27].

Let M be an n-dimensional manifold and G a Lie group acting on the
left on M by ψ : G × M → M . We denote by g the Lie algebra of G . If
A ∈ g then by Ã we denote the vector field on M determined by A via the
action ψ , i.e. if x ∈ M then Ãx := deψx(A) where ψx : G → M is such that
ψx(a) = ψ(a, x) for each a ∈ G ; e denotes here the neutral element of G . In such
a way there is defined the map dψ : g → Γ(TM) such that dψ(A) = Ã . The map
dψ is an anti-homomorphism of Lie algebras, i.e. for each A,B ∈ g we have that

[Ã, B̃] = −[̃A,B] .

The group G acts by the adjoint representation Ad : G → Aut(g) on g ;
for each a ∈ G and A ∈ g we use the notation a · A := Ada(A). Then there is
the coadjoint action of Ad∗ : G → Aut(g∗) on the real dual space to g ; for each
a ∈ G and φ ∈ g∗ we put a · φ := Ad∗a−1(φ) = φ ◦ Ada−1 .

There is given a natural pairing 〈 , 〉 : g∗×g → R such that for each φ ∈ g∗

and A ∈ g we have 〈φ,A〉 := φ(A). We have the following useful property: if
f : M → g∗ and A ∈ g then d〈f, A〉 = 〈df,A〉 .

Suppose that F is a G-invariant 2-form on M . If ÃydF = 0 for all A ∈ g

then [̃A,B]yF = [B̃, Ã]yF = d(B̃y(ÃyF )) for each A,B ∈ g .

1.2. Metric f -manifolds and associated structures. Let M be a (2n+ s)-
dimensional manifold equipped with an f -structure ϕ , i.e. ϕ is an endomorphism
of TM such that ϕ3+ϕ = 0. This is a natural generalization of an almost complex
structure, cf. [30]. Then (M,ϕ, ξi, η

j) (i, j = 1, . . . , s) is said to be an f -manifold
with a parallelizable kernel (for brevity: f.pk -manifold) if ξ1, . . . , ξs are vector
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fields and η1, . . . , ηs are 1-forms on M such that the following conditions hold

ϕ(ξi) = 0, ηi ◦ ϕ = 0, ϕ2 = −id +
s∑
i=1

ηi ⊗ ξi, η
i(ξj) = δij (1)

for all i, j = 1, . . . , s . It follows that ker(ϕ) = span{ξ1, . . . , ξs} . We put D :=
Im(ϕ) and we observe that TM = D ⊕ ker(ϕ).

Let g be a Riemannian metric on M ; then g and ϕ are said to be compatible
if for each X, Y ∈ TM holds g(ϕ(X), Y ) + g(X,ϕ(Y )) = 0. If g and ϕ are
compatible then it is possible to define also the Sasaki 2-form by posing:

F (X, Y ) := g(X,ϕ(Y )). (2)

The triples (M, g, ϕ) and (M, g, F ) determine each other via equation (2). More-
over, the decomposition TM = D ⊕ ker(ϕ) is orthogonal.

Remark 1.1. If there is given an action of a Lie group G on M such that G
preserves g and ϕ then G preserves also F and the decomposition D ⊕ ker(ϕ).

The structure (M, g, ϕ, ξi, η
j), (i, j = 1, . . . , s), is said to be a metric f -mani-

fold with a parallelizable kernel (or for brevity called: metric f.pk -manifold), if
(M,ϕ, ξi, η

j) is an f.pk -manifold and

g(X, Y ) = g(ϕ(X), ϕ(Y )) +
s∑
i=1

ηi(X)ηi(Y ) (3)

for each X,Y ∈ TM , cf. [18]. A metric g satisfying condition (3) is said to be
adapted for the f.pk -manifold. Such a metric always exists but is not unique. It
is easy to observe that an adapted metric is also compatible with ϕ . Hence there
is also given the Sasaki 2-form F .

Summing up, we have the following structure on the manifold M : an f -
structure ϕ , vector fields ξ1, . . . , ξs , 1-forms η1, . . . , ηs , an adapted Riemannian
metric g and the Sasaki 2-form F . These give Z := (M, g, ϕ, ξi, η

j) a metric
f.pk -manifold.

With the f -structure ϕ there is naturally associated Nϕ the tensor of type
(2, 1) defined in the following way: Nϕ := [ϕ, ϕ] + 2

∑s
i=1 dη

i ⊗ ξi where [ϕ, ϕ] is
the Nijenhuis torsion of ϕ , cf. [22].

Definition 1.2. It is said that

• Z is normal if Nϕ = 0

• Z is an almost S -manifold if dηi = F for i = 1, . . . , s

• Z is an S -manifold if dηi = F for i = 1, . . . , s and Z is normal.

The above definitions are natural generalizations of the notions of metric contact
and Sasakian manifolds, cf. [3].

The f.pk -manifolds may be seen from the point of view of the CR-geometry.
In fact, given an f.pk -manifold (M,ϕ, ξi, η

j), (i, j = 1, . . . , s) we may define an



474 Di Terlizzi and Konderak

almost CR-structure by considering (M,D, ϕ|Dϕ). Vice versa, given an almost CR-
structure (M,H, J) and a parallelization of an H -transversal subbundle of TM
we may easily obtain an f.pk -manifold. The conditions on Z for being (almost)
S -manifold may be expressed in the language of the CR-geometry. However, we
shall not use this language here.

Definition 1.2 may be clarified by considering an s-cone over M . In particu-
lar if Z = (M, g, ϕ, ξi, η

j), (i, j = 1, . . . , s), is a metric fp.k -manifold then we call
an s-cone over M the set Cs(M) := M ×Rs

+ where R+ denotes the positive real
numbers. It is clear that there are the natural global coordinates r = (r1, . . . , rs)
on Rs

+ . There are also the following injection an projection maps: u : M ↪→ Cs(M)
and p : Cs(M) → M such that u(x) := (x, 1, . . . , 1) and p(x, r) := x . The mani-
fold Cs(M) carries a natural almost Hermitian structure J , h defined as follows:
for each X ∈ D and each i ∈ {1, . . . , s}

J(X) := ϕ(X), J(ξi) := ri
∂

∂ri
, J(ri

∂

∂ri
) := −ξi (4)

h :=
s∑
i=1

(dri)
2 + ‖r‖2p∗g +

s∑
i=1

(r2
i − ‖r‖2)ηi ⊗ ηi. (5)

It is straightforward to prove the following proposition, cf. [14].

Proposition 1.3. If Z is an almost S -manifold then (Cs(M), h, J) is a sym-
plectic almost Hermitian with the Kähler form

ω = d

(
s∑
i=1

r2
i η

i

)
=

(
s∑
i=1

2ridri ∧ ηi
)

+ ‖r‖2F.

Moreover, Z is an S -manifold if and only if Cs(M) is Kähler.

2. A generalization of the momentum maps for almost S and Kähler
manifolds

Throughout all of this section we assume that M is a (2n+s)-dimensional manifold
and Z = (M, g, ϕ, ξi, η

j), (i, j = 1, . . . , s), is an almost S -manifold with F the
associated Sasaki 2-form. By (Cs(M), h, J, ω) we denote the symplectic almost
Hermitian manifold associated with Z . Moreover, we suppose that there is given
an action ψ : G ×M → M of the Lie group G on M ; for simplicity we write
a ·x := ψ(a, x) where a ∈ G and x ∈M . We suppose that the action ψ preserves
g, ϕ, ξi, η

j for i, j = 1, . . . , s .

Let ν : M → g∗ ⊗ Rs be the following map:

〈ν(x), A〉 :=
(
η1(Ãx), . . . , η

s(Ãx)
)
.

Definition 2.1. We call the map ν the momentum map associated with Z .

Then the map ν satisfies the following properties.

Proposition 2.2. (1). ν is G-equivariant, (2). for each A ∈ g we have that
〈dν,A〉 = −Ãy(dη1, . . . , dηs) = −Ãy(F, . . . , F ).



Di Terlizzi and Konderak 475

Proof. For each x ∈M , a ∈ G and A ∈ g the following holds

〈ν(a · x), A〉 = (η1(Ãa·x), . . . , η
s(Ãa·x))

= ((L∗aη
1)( ˜Ada−1(A)x), . . . , (L

∗
aη

s)( ˜Ada−1(A)x))

= (η1( ˜Ada−1(A)x), . . . , (η
s( ˜Ada−1(A)x))

= 〈ν(x), Ada−1(A)〉 = 〈a · ν(x), A〉;

La denotes here the multiplication by a on M . Hence it follows that ν is G-
equivariant. On the other hand for each A ∈ g

〈dν,A〉 = d〈ν, A〉 = d(η1(Ã), . . . , ηs(Ã))

= (d(Ãyη1), . . . , d(Ãyηs))

= (LÃη
1 − Ãydη1, . . . , LÃη

s − Ãydηs)

= −Ãy(dη1, . . . , dηs) = −Ã(F, . . . , F ).

Hence symplectic condition (2) follows.

Let h(Z) := {X ∈ Γ(TM)| XyF is exact} and we call it Hamiltonian vector fields
associated with Z . Then it is easy to observe that h(Z) is a vector subspace
of Γ(TM). Moreover, for each X, Y ∈ h(Z) we have [X, Y ]yF = LX(Y yF ) −
Y y(LXF ) = d(Xy(Y yF ))−Y y(XydF ) = 2d(F (Y,X)). Hence [X, Y ] ∈ h(Z) and
then it is a Lie subalgebra of Γ(TM).

We put sp(Z) := {X ∈ Γ(TM)|XyF is closed} . This is a vector subspace
of Γ(TM) and we call it the space of symplectic vector fields associated with Z .
We observe that the property of XyF being closed is equivalent to LXF = 0.
Moreover, for each X, Y ∈ sp(Z) we have that L[X,Y ]F = LX(LY F )−LY (LXF ) =
0; therefore sp(Z) is a Lie subalgebra of Γ(TM).

Clearly h(Z) is a Lie subalgebra of sp(Z). Let A ∈ g then for each
i ∈ {1, . . . , s} we have ÃyF = Ãydηi = LÃη

i−d(Ãyηi) = d(−ηi(Ã)). This implies
that dψ sends g into h(Z). Summing up, we get the following inclusions of the
Lie algebras:

Im(dψ) ⊂ h(Z) ⊂ sp(Z) ⊂ Γ(TM). (6)

Moreover, we have the following exact sequence

0 −−−→ h(Z) −−−→ sp(Z)
X 7→[XyF ]−−−−−−→ H1

dR(M) −−−→ 0.

In the case of an action ψ on the almost S -manifold it is possible to define the
comomentum map ν∗ : g → C∞(M,Rs) as ν∗(A) := −(Ãyη1, . . . , Ãyηs). The map
ν∗ is not a homomorphism since we have not any reasonable Poisson structure on
C∞(M,Rs). However the following diagram commutes

0 −−−→ Rs standard−−−−−−→
immersion

C∞(M,Rs)
d−−−→ Γ(T ∗M ⊗ Rs) −−−→ 0

ν∗

x x[⊗id

g
dψ−−−→ Γ(TM ⊗ Rs)

(7)

where [(X) := (XyF ) for X ∈ Γ(TM). The upper row of the diagram is not
exact at Γ(T ∗M ⊗ Rs). The commutativity of diagram (7) is a description of
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the fact that ν∗ preserves some geometric structures from g to Γ(T ∗M,Rs). The
relationship between ν and ν∗ is given by the equality: ν∗(A)(x) = −〈ν(x), A〉
for each x ∈M and A ∈ g .

An almost S -manifold M carries a foliation F defined by the distribution
ker(ϕ) = span{ξ1, . . . , ξs} . Then there are defined on M the Lie subalgebra of
Γ(TM) of the basic vector fields

ΓB(TM) := {X ∈ Γ(TM)|LXY ∈ Γ(ker(ϕ)) for all Y ∈ Γ(ker(ϕ))} ,

cf. [26]. Then sp(Z) is contained in ΓB(TM); if fact, for each i ∈ {1, . . . , s} and
each X ∈ sp(Z) we have that [X, ξi]yF = LX(ξiyF )− ξiy(LXF ) = −ξi(XydF )−
ξi(d(XyF )) = 0. It follows that [X, ξi] ∈ Γ(ker(ϕ)) since [X, ξi] is an annihilator
of F . ¿From inclusions (6) we get that Im(dψ) and h(Z) are also contained in
ΓB(TM).

Then we put hD(Z) := {[X] ∈ Γ(TM/ ker(ϕ))|X ∈ h(Z)} which is a
Lie algebra with the bracket inherited from h(Z). The canonical isomorphism
D → TM/ ker(ϕ) defines the inclusion of the vector spaces: hD(Z) ↪→ Γ(D).

We denote by C∞
B (M) := {f ∈ C∞(M)|df(ker(ϕ)) = 0} ; these are called

basic functions on M , cf. [26]. If f ∈ C∞
B (M) then there exist Xf ∈ h(Z) such

that df = XfyF ; this follows from the fact that df annihilates ker(ϕ) and F is
non degenerate on D . Moreover, Xf + Γ(ker(ϕ)) ⊂ h(Z). We have the following
exact sequence of vector spaces

0 −−−→ R −→ C∞
B (M)

f−→[Xf ]
−−−−−→ hD(Z) −−−→ 0.

On the set C∞
B (M) there is defined a bracket { , } such that

{f1, f2} := −Xf2y(Xf1yF ) (8)

where df1 = Xf1yF and df2 = Xf2yF . We observe that although the associated
Hamiltonian vector fields Xf1 , Xf2 are not unique but still definition (8) is well
posed.

Lemma 2.3. (C∞
B (M), { , }) is a Poisson algebra.

Proof. These are standard procedures to prove the Jacobi identity and Leibniz
rule for { , } and we omit them here. We only need to prove that {f1, f2} ∈
C∞
B (M) for each elements f1, f2 ∈ C∞

B (M). Let Xf1 , Xf2 be the associated
Hamiltonian vector fields. For each i ∈ {1, . . . , s} we have

ξiyd(Xf2y(Xf1yF )) = Lξi(Xf2y(Xf1yF )) = (LξiXf2)y(Xf1yF )

+Xf2y((LξiXf1)yF ) +Xf2y(Xf1y(ξiydF ) +Xf2y(Xf1y(d(ξiyF )) = 0;
(9)

in particular we use here the facts that LξiXf1 , LξiXf2 and ξi belong to Γ(ker(ϕ))
which annihilates F . Then our assertion follows from (9).

The comomentum map ν∗ may be written as ν∗ = (ν∗1 , . . . , ν
∗
s ) where ν∗i : g →

C∞(M) is given by ν∗i (A) = −Ãyηi for i ∈ {1, . . . , s} . It may be easily proved
that ν∗i has its values in C∞

B (M); if fact,

ξiyd(ν
∗
i (A)) = −ξiy(LÃη

i) + ξiy(ÃyF ) = 0
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because F is G-invariant and ξi annihilates F . We observe that the diagram
commutes

g
dψ−−−→ h(Z)

ν∗i

y y X
↓

[X]

C∞
B (M)

f 7→[Xf ]
−−−−→ hD(Z).

Moreover, we have the following proposition

Proposition 2.4. The map ν∗i is a homomorphism of the Lie algebras for each
i ∈ {1, . . . , s}.

Proof. For given A,B ∈ g we have that the associated Hamiltonian vector

fields are the following: Xν∗i (A) = Ã , Xν∗i (B) = B̃ and Xν∗i ([A,B]) = [̃A,B] . Then
we have

ν∗i ([A,B]) = −[̃A,B]yηi = −B̃y(ÃyF )) = {ν∗i (A), ν∗i (B)} .

Hence our assertion follows.

Then the action ψ : G×M →M may be extended naturally to the action
Ψ : G × Cs(M) → Cs(M) such that Ψ(a, (x, r)) := (ψ(a, x), r) where a ∈ G ,
x ∈ M and r = (r1, . . . , rs) ∈ Rs

+ . It is an easy observation that Ψ acts by
holomorphic and isometric transformations on Cs(M).

Remark 2.5. Let Ψ̃ : G × Cs(M) → Cs(M) be an action of G by the holo-
morphic and isometric transformations preserving ξ1, . . . , ξs . Then it is easy to
observe that there exists an action ψ̃ : G×M →M preserving g, ϕ, ξ1, . . . , ξs such
that for each a ∈ G and each (x, r) ∈ Cs(M) holds Ψ̃(a, (x, r)) = (ψ̃(a, x), r).
This may be proved by observing that the invariance of ξ1, . . . , ξs by Ψ̃ implies
that

Ψ̃∗

(
ri
∂

∂ri

)
= ri

∂

∂ri
for all i = 1, . . . , s.

These leads to a system of PDEs; the solution of this system forces the action Ψ̃
to leave invariant the Rs

+ component of Cs(M).

Let µ : Cs(M) → g∗ ⊗Rs be the map defined as follows: if (x, r) ∈ Cs(M)
and A ∈ g then 〈µ(x, r), A〉 := (r2

1η
1(Ãx), . . . , r

2
sη

s(Ãx)).

Definition 2.6. We call µ the momentum map for Cs(M) associated with Z .

Then µ satisfies the following properties.

Proposition 2.7. (1). µ is G-equivariant, (2). for each A ∈ g we have that

〈dµ,A〉 = −Ãy
(
d(r2

1) ∧ η1 + r2
1F, . . . , d(r

2
s) ∧ ηs + r2

sF
)
,

(3). for each A ∈ g we have 〈
∑s

i=1 dµi, A〉 = −Ãyω where µ = (µ1, . . . , µs), (4).
u∗µ = ν .
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Proof. The action Ψ is determined by ψ and then property (1) may be proved
in a similar way as that one of Proposition 2.2. On the other hand for each A ∈ g

we have

〈dµ,A〉 =
(
d(r2

1Ãyη1), . . . , d(r2
sÃyηs)

)
=

(
2(dr1)η

1(Ã)− r2
1Ãydη1, . . . , 2(drs)η

s(Ã)− r2
sÃydηs

)
= −Ãy

(
d(r2

1) ∧ η1 + r2
1F, . . . , d(r

2
s) ∧ ηs + r2

sF
)
;

therefore (2) follows. Point (3) follows from (2) and from Proposition 1.3. Point
(4) follows from the definitions of ν and µ .

We define µ∗ : g → C∞(Cs(M),Rs) by µ∗(A) := −
(
r2
1η

1(Ã), . . . , r2
sη

s(Ã)
)

where

A ∈ g ; we call µ∗ the comomentum map of Cs(M) associated with Z . Then we
have the following commuting diagram

0 −−−→ Rs standard−−−−−−→
immersion

C∞(Cs(M),Rs)
d−−−→ Γ(T ∗Cs(M)⊗ Rs) −−−→ 0

µ∗
x x[⊗id

g
dΨ−−−→ Γ(TCs(M)⊗ Rs)

where [(X) := XyF for each X ∈ Γ(TCs(M)). There is the following relationship
between the momentum and comomentum maps: for each A ∈ g and (x, r) ∈
Cs(M) we have µ∗(A)(x, r) = −〈µ(x, r), A〉 .

3. Reduction theorems

Throughout all of this section we assume that Z = (M, g, ϕ, ξi, η
j), (i, j =

1, . . . , s), is an almost S -manifold and by (Cs(M), h, J) we denote the symplectic
almost Hermitian manifold associated with Z , cf. Proposition 1.3; we denote by
ω the associated Kähler 2-form on Cs(M). Moreover, we suppose that there is
given an action ψ : G×M → M of the Lie group G on M ; we suppose that the
action ψ preserves g, ϕ, ξi, η

j for i, j = 1, . . . , s . The orbits of the action ψ are
denoted by O . Let ν : M → g∗ ⊗ Rs be the momentum map associated with Z
such that ν−1(0) 6= Ø. It is easy to observe that ν−1(0) is G-invariant. We also
put for brevity u1 : ν−1(0) ↪→ M for the canonical immersion, M̄ := G\ν−1(0)
and π : ν−1(0) → M̄ for the canonical projection; since we have the decomposition
TM = D ⊕ ker(ϕ) then we denote by pD : TM → D the projection on the first
component of the decomposition. We suppose that the action ψ restricted to
ν−1(0) is free and proper, cf. [6]. Then it follows that the action Ψ on µ−1(0) is
also free and proper.

Theorem 3.1. If for each x ∈ ν−1(0) the map pD : TxO → Dx is injective then
there exists on M̄ the natural structure of an almost S -manifold Z̄ . Moreover, Z
is an S -manifold if and only if Z̄ is so.
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Proof. Let x ∈ ν−1(0) then

ker(dxν) = {X ∈ TxM |〈dν(X), A〉 = 0 for all A ∈ g}
= {X ∈ TxM |F (X, Ãx) = 0 for all A ∈ g}
= (TxO)⊥F

where (TxO)⊥F is the orthogonal space to TxO with respect to F . We observe
that dim(ker(dxν)) = 2n + s − dim(pD(TxO)). Since pD : TxO → D is injective
so dim(ker(dxν)) = 2n + s − d . The property that the map above is injective
is maintained in some open neighbourhood of ν−1(0). Hence ν has a constant
rank equal to d in some open neighbourhood of ν−1(0). Therefore from the local
expression of a map of constant rank, cf. page 41 of [28], it follows that ν−1(0) is
a regular closed submanifold of M of dimension 2n+ s− d .

Since G · ν−1(0) ⊂ ν−1(0) then it follows that for each A ∈ g the vector field Ã is
tangent to ν−1(0). Therefore, in restriction to ν−1(0), we have that F (Ã, B̃) = 0
for each A,B ∈ g . Moreover, since for each i ∈ {1, . . . , s} we have that ξiyF = 0
then it follows that ξi are tangent to ν−1(0) too.

Since G acts freely and properly on ν−1(0) then π : ν−1(0) → M̄ is a left principal
fibre bundle with structure group G , cf. [7]. We observe that ηi , F are G-invariant
and Ãxyηi = νi(x) = 0 = F (Ãx, X) for each x ∈ ν−1(0), X ∈ Txν

−1(0), A ∈ g

and i ∈ {1, . . . , s} . This means that u∗1F and u∗1η
i are tensorial forms on the left

principal G-bundle ν−1(0), cf. [22]. Hence there exist the forms η̄1, . . . , η̄s and F̄
on M̄ such that π∗η̄i = u∗1η

i and π∗F̄ = u∗1F for i = 1, . . . , s . The G-invariant
vector fields ξi project to the vector fields ξ̄i on M̄ for i ∈ {1, . . . , s} . Moreover,
δij = ηi(ξj) = (π∗η̄i)(ξj) = η̄i(ξ̄j) and π∗(dη̄i) = d(π∗η̄i) = u∗1F = π∗F̄ . Therefore,
dη̄i = F̄ since π is a submersion.

Let W be the orthogonal subbundle to pD(TO))⊕ ϕ(pD(TO)) in D . We observe
that ϕ(TxO) = ϕ(pD(TxO)) and TxO = Im(dxψ) for each x ∈ ν−1(0). Then we
have the following decomposition

D = ϕ(TO)⊕ pD(TO)⊕W. (10)

Then it is a standard procedure to prove the following properties:
• the decomposition in (10) are G-invariant and orthogonal;
• ϕ(TO) ⊥ Tν−1(0) and the decomposition

TM = ϕ(TO)⊕
=Tν−1(0)︷ ︸︸ ︷

TO ⊕W ⊕ ker(ϕ) (11)

is G-invariant but usually not orthogonal; a non trivial fact is that the decompo-
sition of Tν−1(0) is a direct sum of the corresponding components. This follows
from the assumption that pD : TO → D is a monomorphism of vector bundles;
• ϕ(W ) ⊂ W and F |W×W is non degenerate;
• dxπ : ker(ϕx) ⊕ Wx → Tx̄M̄ is an isomorphism of vector spaces for each
x ∈ ν−1(0) and x̄ = π(x);
• η̄1 ∧ · · · ∧ η̄s ∧ F̄ 2n−2d 6= 0.

Then we put D̄ := dπ(W ). The definition of D̄ is well posed since W is G-
invariant. Since for each x ∈ ν−1(0), x̄ = π(x) ∈ M̄ we have that dxπ :
Wx⊕ ker(ϕx) → Tx̄M̄ is an isomorphism then we may define the horizontal lifting
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operator in the following way: if X̄x̄ ∈ Tx̄M̄ then by X̄H
x we denote the unique

element of Wx ⊕ ker(ϕx) such that dxπ(X̄H
x ) = X̄x̄ . Then the lifting may be

extended to vector fields: if X̄ ∈ Γ(TM̄) then there is uniquely defined the
horizontal vector field X̄H ∈ Γ(Tν−1(0)). It is easy to observe that ξ̄Hi = ξi
for all i ∈ {1, . . . , s} . Then we define an endomorphism ϕ̄ of TM̄ such that
ϕ̄(X̄) := dπ(ϕ(X̄H)) for each X̄ ∈ TM̄ . It follows that ϕ̄2 = −id +

∑s
i=1 η̄

i ⊗ ξ̄i.
Moreover, we have

π∗(ḡ(X̄, ϕ̄(Ȳ )) = g(X̄H , ϕ(Ȳ H)) = F (X̄H , Ȳ H) = π∗(F̄ (X̄, Ȳ ))

hence ḡ(X̄, ϕ̄(Ȳ )) = F̄ (X̄, Ȳ ) and then F̄ is determined by ḡ and ϕ̄ . Whole-
together we get that Z̄ := (M̄, ḡ, ϕ̄, ξ̄i, η̄

j) (i, j = 1, . . . , s) is an almost S -
manifold.

On the other hand we have that [X̄H , Ȳ H ] = [X̄, Ȳ ]H+ terms belonging to
Γ(TO|ν−1(0)). Then it follows that [ϕ, ϕ](X̄H , Ȳ H) = ([ϕ̄, ϕ̄](X̄, Ȳ ))H+ terms
belonging to Γ(TO ⊕ ϕ(TO)|ν−1(0)). This implies that

Nϕ(X̄
H , Ȳ H) = (Nϕ̄(X̄, Ȳ ))H + terms belonging to Γ

(
TO ⊕ ϕ(TO)|ν−1(0)

)
.

¿From the direct sum decomposition (11) it follows that the vanishing of Nϕ is
equivalent to the vanishing of Nϕ̄ . This implies that Z is an S -manifold if and
only if Z̄ is so.

The momentum map µ : Cs(M) → g∗ ⊗ Rs associated with Z , cf. Definition 2.6,
allows us to obtain the following reduction theorem.

Theorem 3.2. If the map pD : TO → D is injective then G\µ−1(0) carries a
natural structure of symplectic almost Hermitian manifold. Moreover, if Z is an
S -manifold then G\µ−1(0) is Kähler.

Proof. We put, for brevity, M ′ := G\µ−1(0). Then we observe that

µ−1(0) = {(x, r) ∈ Cs(M)| (r2
1η

1(Ãx), . . . , r
2
sη

s(Ãx)) = 0}
= {(x, r) ∈ Cs(M)| η1(Ãx) = . . . ηs(Ãx) = 0}
= {(x, r) ∈ Cs(M)| ν(x) = 0}
= ν−1(0)× Rs

+ = Cs(ν
−1(0)).

It follows that µ−1(0) is a regular submanifold of Cs(M) because ν−1(0) is a
regular submanifold M . The induced action of Ψ on µ−1(0) is free and proper
therefore the canonical projection Π : µ−1(0) → M ′ is a left principal fibre
bundle with structure group G . The manifold µ−1(0) carries the Riemannian
metric inherited from Cs(M), cf. (5). Then we have the orthogonal and G-
invariant decomposition Tµ−1(0) = Tν−1(0) ⊕ TRs . ¿From (11) follows that
Tµ−1(0) = TO⊕W⊕ker(ϕ)⊕TRs which is G-invariant but usually not orthogonal.
The manifold Cs(M) carries also the G-invariant almost complex structure J
given explicitly by (4). It is easy to observe that the bundle W ⊕ ker(ϕ)⊕ TRs is
G- and J -invariant. The following map

W ⊕ ker(ϕ)⊕ TRs dΠ=dπ⊕id−−−−−−→ TM ′ = TM̄ ⊕ TRs = TCs(M̄) (12)
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is a G-invariant morphism of vector bundles which is an isomorphism when re-
stricted to the fibres. We define an almost Hermitian structure (M ′, g′, J ′) via the
map (12). On the other hand M ′ may be equipped with the almost Hermitian
symplectic structure being an s-cone over an S -manifold M̄ , cf. Proposition 1.3.
It is easy to observe that these two almost Hermitian structures on M ′ coincide.
Then our assertion follows from Proposition 1.3 and Theorem 3.1.

The last part of the proof of the above theorem may be simply summed up by
saying that the operations of taking an s-cone over and (almost) S -manifold and
the reduction commute with each other; it is a generalization of the result of
Grantcharov and Ornea, cf. [20].
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