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1. Introduction

The fundaments for the theory of subnormal subgroups has been laid down by
Wielandt in [15]. His results have inspired many authors, see [7] for more details.
The purpose of this note is to carry over the most important results of Wielandt
for finite groups into algebraic k -groups. In particular we shall investigate re-
lations between subnormality and nilpotence, the join theorem, some criteria of
subnormality, the norm and the Wielandt subgroup. In the case of groups defined
over an algebraically closed field some of these questions where analyzed in [18].

K will always denote an algebraically closed field and k will stay for an
arbitrary subfield of K . For definition and general facts on algebraic k -groups we
refer to [6], [9] and [12]. In the following proposition we collect some known facts
about rationality in k -groups that will be needed in the paper.

Proposition 1.1. Let G be an algebraic k -group.

(i) The subgroup generated by a family of connected k -subgroups of G is a
connected k -subgroup ([12], Corollary 2.2.7,(ii)).

(ii) If A and B are k -subgroups and A is connected then [A, B] is a connected
k -subgroup ([12], Corollary 2.2.8,(ii)).

Now, let G be a connected linear algebraic k -group.
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degli Studi - Milan

ISSN 0949–5932 / $2.50 c© Heldermann Verlag



778 Valsecchi

(iii) G contains maximal tori defined over k ([12], Theorem 13.3.6,(i) and Re-
mark 13.3.7).

(iv) Let Gt be the subgroup of G generated by its maximal tori. Then Gt is
the smallest closed, connected, normal subgroup of G whose factor group
is unipotent. If k is infinite then Gt is defined over k , generated by the
maximal k -tori of G and moreover Gt(k) is dense in Gt ([12], Proposition
13.3.11).

(v) G contains a maximal, connected, solvable (resp. unipotent) normal k -
subgroup Rk(G) (resp. Ru,k(G)) called the k -radical (resp. the unipotent
k -radical) of G. If Rk(G) (resp. Ru,k(G)) is reduced to the group formed
by the unit, then G is called k -semi-simple (resp. k -reductive). If k is a
perfect field, then Rk(G) = R(G) the radical of G and Ru,k(G) = Ru(G)
the unipotent radical of G. G is k -reductive if and only if Ru(G) does not
contain any non-trivial connected k -subgroup ([12], Proposition 14.4.5 and
Lemma 14.4.6).

Let G be an algebraic k -group. For a connected k -subgroup H of G we define the
notion of k -subnormality in a natural way: We shall say that H is k -subnormal
in G if there exists a non-negative integer m and a series

H = Hm E Hm−1 E · · · E H0 = G (1)

of connected (except for H0 = G which may be non-connected) k -subgroups
where every subgroup is normal in its predecessor. Then a connected k -subnormal
subgroup is subnormal in G also as abstract subgroup but the converse holds too.
In fact if H is a connected k -subgroup subnormal as an abstract subgroup in G
(i.e. we only require that the terms of the series are subgroups), then we know (see
[7], §1.1) that the most rapidly descending series of type (1), the so called normal
closure series, can be inductively defined in the following way: We set H0 = G ,
and we define Hi+1 = HHi for all finite i ≥ 0 where for two abstract subgroups
X and Y we define XY = 〈xy |x ∈ X, y ∈ Y 〉 . We have

H ≤ · · · E Hi+1 E Hi E · · · E H1 E H0 = G

and H = Hd for some integer d , called the defect of H in G . Since Hi = H[G,i H]
(see [7], Proposition 1.1.1 (i)) where [G,i H] is inductively defined as [G,0 H] = G
and [G,i H] = [[G,i−1 H], H] , we have by Proposition 1.1,(i),(ii) that all subgroups
Hi are connected k -subgroups for i ≥ 1, therefore H is k -subnormal in G . Thus,
for a connected k -subgroup H of G we will speak simply about its subnormality
in an algebraic k -group G using the notation H sn G .

A connected algebraic k -group G is said to be nilpotent if its lower central
series defined in the usual way inductively as γ1(G) = G and γi+1(G) = [G, γi(G)]
reaches the group formed by the unit. If H is a connected k -subgroup of G
then the normalizer NG(H) is not in general defined over k , so we define the k -
normalizer k -NG(H) as the subgroup generated by the connected k -subgroups of
G which contain H as a normal subgroup. Clearly k -NG(H) ≤ NG(H) and from
Proposition 1.1,(i) we have that k -NG(H) is a connected k -subgroup.
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Finally, we notice that we may reduce ourselves to connected linear algebraic
k -groups. In fact, a connected k -subgroup H is subnormal in G if and only if H
is subnormal in the identity component G◦ since H ≤ G◦ E G (and recall that G◦

is an algebraic k -group by [9], Section 1). By [9], Corollary 5 to Theorem 16, for
a connected algebraic k -group G we have that G = LD where L is the maximal
connected linear algebraic subgroup of G and D is the smallest normal algebraic
subgroup of G such that G/D is a linear algebraic group. L is k -closed but it
is not in general a k -subgroup (see [10], p. 49), while D is a connected central
k -subgroup of G . Therefore if H is a connected k -subgroup of G we obtain that
H is subnormal in G if and only if HD/D is subnormal in the linear algebraic
k -group G/D . We also notice that G is nilpotent if and only if G/D is nilpotent.
Using these facts, it will be clear that our results, even when they are stated only
for connected linear algebraic k -groups, are valid for arbitrary algebraic k -groups
except for Propositions 2.1 and 2.2 which are true only for connected algebraic
k -groups.

I would like to express my gratitude for comments and suggestions to
Th. Weigel, Milan and Th. Willert, Erlangen.

2. Nilpotence and subnormality

We prove the following proposition which is the equivalent for connected algebraic
k -groups of a well known result for finite groups.

Proposition 2.1. Let G be a connected linear algebraic k -group. The following
statements are equivalent.

1) G is nilpotent;

2) every connected k -subgroup of G is subnormal;

3) for every H connected, proper k -subgroup of G, then H < k -NG(H);

4) for every H connected, proper k -subgroup of G, then dim H < dim k -
NG(H);

5) every maximal connected k -subgroup of G is normal.

Proof. To show that the statements from 1) to 5) are equivalent, it will be
sufficient to prove that 5) implies 1). Let S be a maximal torus of G defined
over k (such a torus exists by Proposition 1.1,(iii)) and let C be its Cartan
subgroup which is a nilpotent connected closed subgroup of G , defined over k
by [12], Proposition 13.3.1,(ii). If C 6= G then let M be a maximal connected
k -subgroup of G such that C ≤ M 6= G . If g is an arbitrary element of G we
have that T g ≤ M g = M is a maximal torus of M , but then since maximal
tori are K -conjugated we have that there exists an element m ∈ M such that
T g = Tm , therefore gm−1 ∈ NG(T ) thus G = MNG(T ) but then G/M would be
a connected k -group isomorphic to NG(T )/M ∩ NG(T ) which is finite, therefore
G = M , a contradiction.

For the group of k -rational points G(k) we can prove the following
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Proposition 2.2. Let G be a connected linear algebraic k -group where k is
infinite. If for every connected k -subgroup H we have that H(k) is subnormal in
G(k), then G is nilpotent.

Proof. First of all we prove that G(k) ◦ is nilpotent. Let T be a maximal torus
of G which is defined over k . If T is reduced to the unit, then we have G = CG(T )
the Cartan subgroup associated to T which is nilpotent. So assume T 6= 1. By
our assumptions we have T (k) sn G(k). If

T (k) = Hn ≤ · · · E Hi+1 E Hi E · · · E H1 E H0 = G(k)

then (see [14], Lemma 5.10)

T = T (k) = Hn ≤ · · · E Hi+1 E Hi E · · · E H1 E H0 = G(k)

(since k is infinite, then the group of rational points of a k -torus is dense by
[12], Proposition 13.2.7,(ii)) therefore T sn G(k) but since T is connected we get
T sn G(k) ◦ . As we have already said in the introduction, we may use the normal
closure series in order to obtain a series of connected k -subgroups, each normal in
the one above, starting with G(k) ◦ and having T at the end. We show that T is
normal in G(k) ◦ . Set T E A E B where A and B are connected k -subgroups.
Similarly to the proof of Proposition 2.1 we take b ∈ B and then T b is a maximal
torus of A , therefore T b is conjugated to T in A . Hence T b = T a for some
a ∈ A , thus ba−1 ∈ NB(T ), then B ≤ ANB(T ) = NB(T ) i.e. T E B . By
induction we obtain T E G(k) ◦ and by the rigidity of T we get that G(k) ◦ is a
Cartan subgroup, hence nilpotent.

Now consider the k -subgroup Gt generated by all the maximal tori of G .
The same argument shows therefore that Gt(k) ◦ = Gt is nilpotent (here we use
the density of Gt(k) given by Proposition 1.1,(iv)). Then Gt = T is the only
maximal k -torus of G and then G is equal to its Cartan subgroup, therefore G is
nilpotent.

Examples 2.3. The propositions above are not valid in general in the case of
non-connected algebraic k -groups as the example Z2 n K∗ shows (we suppose
K2 = K ). Here the cyclic group of order two acts via inversion on the one-
dimensional torus. Moreover, Proposition 2.2 does not hold for k finite. Consider
the example

G =

{(
a b
0 1

)
| (a, b) ∈ K2, a 6= 0

}
where char K = 2. G is a connected F2 -group and we have that G(F2) is the
cyclic group of order two but of course G is not nilpotent.

We may state a result concerning abstract non-nilpotent groups with all
subgroups subnormal. Such groups (obviously infinite) exist, as shown for the first
time in [5]. Proposition 2.2 implies immediately the following

Corollary 2.4. There exists no connected algebraic k -group such that its group
of k -rational points is a non-nilpotent group with all its subgroups subnormal.
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3. Join Theorem

We now turn to the problem concerning the subnormality of the subgroup gener-
ated by two connected subnormal k -subgroups. The respective question for finite
groups was answered affirmatively in [15]. As noticed by Wielandt the same proof
holds also for groups satisfying the maximal condition on subnormal subgroups.
Since algebraic K -groups satisfy the maximal condition on connected subnormal
K -subgroups the same proof applies to this case as well. Then the same holds
also for the join of subnormal k -subgroups since their join is defined over k by
Proposition 1.1,(i). Therefore we have the following

Proposition 3.1. The subgroup which is generated by two connected subnormal
k -subgroups of an algebraic k -group is subnormal.

Another result of Wielandt (see [7], Lemma 1.3.5 and Theorem 1.3.10) is
the following

Theorem 3.2. Let {Hλ|λ ∈ Λ} be a set of subnormal subgroups of an arbitrary
group G and let J be their join. Then J is subnormal in G if and only if the set
of subnormal subgroups of G lying in J contains a maximal member.

Also in this case the proof can be adapted for algebraic k -groups. So we
have

Proposition 3.3. The subgroup generated by a set of connected subnormal k -
subgroups of an algebraic k -group is subnormal.

4. Criteria of subnormality

There are several criteria to determine if a subgroup of a finite group is subnormal.
We present two of the most important. Let A be a subgroup of a finite group G .
If one of the following is satisfied, then A is subnormal in G .

1. AAg = AgA for all elements g of G , see [13] and [17].

2. A is subnormal in 〈A, Ag〉 for all elements g of G , see [17] and [4].

Before analyzing the respective results for connected linear algebraic k -
groups, we mention the following lemma which is immediate. This lemma may also
be thought as a subnormality criterion for connected linear algebraic k -groups.

Lemma 4.1. Let G be a connected linear algebraic k -group where k is infinite.
If a connected k -subgroup A is normalized by all elements of the group of k -
rational points G(k) then A sn G.

Proof. Consider the subgroup Gt generated by the maximal tori of G . By
Proposition 1.1,(iv) we have that Gt is a normal connected k -subgroup of G ,
moreover G/Gt is unipotent and Gt(k) is dense in Gt . Now, since G(k) ≤ NG(A)
we have Gt(k) ≤ NG(A) and by the density we obtain Gt ≤ NG(A) therefore
A E AGt sn G .

For algebraic k -groups we will follow in principle the analogue proofs for
finite groups.
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Proposition 4.2. Let G be a connected linear algebraic k -group where k is an
infinite field. If AAg = AgA for all elements g of G(k) then A sn G.

Proof. First of all we show that AG = G implies A = G using induction on
dim G− dim A . If A is normal we have nothing to prove. If all elements of
G(k) normalize G then by Lemma 4.1 we obtain A sn G . So let g be an element
of G(k) such that Ag 6= A and consider the connected k -subgroup AAg . Since
dim G − dim AAg < dim G − dim A and since AAg satisfies the same hypothesis
as A , we have G = AAg but then we deduce g ∈ A and G = A . The result on
the subnormality of A follows by induction on dim G , recalling that the terms of
the normal closure series of A in G are connected k -subgroups.

Example 4.3. The condition AAg = AgA is not necessary for a connected
k -subgroup A to be subnormal. In the group U(4, K) consider

A =




1 a 0 0
0 1 0 0
0 0 1 b
0 0 0 1


∣∣∣∣∣∣∣∣ a, b ∈ K

 and g =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 .

One may verify that AAg 6= AgA .

For finite groups and other classes of groups the second criterion under
examination is a consequence of the so called first maximizer lemma (see [4]). We
now present an adapted version for connected linear algebraic k -groups.

Lemma 4.4. Let G be a connected linear algebraic k -group. Let A be a
connected k -subgroup of G and suppose that A is not subnormal in G, but A sn H
for all connected proper k -subgroups H of G containing A. Then

(i) A is contained in a unique maximal connected k -subgroup M (we call M
the Wielandt k -maximizer of A), and

(ii) if g ∈ G(k), then Ag ≤ M implies M g = M .

Proof. Let S be the set of all proper k -subgroups of G containg A and which
are generated by conjugates of A . We notice that the elements of S are connected
k -groups, and then S satisfies the maximal condition with respect to inclusion.
Moreover, if H1 ∈ S , H2 ∈ S , and H1 ≤ H2 , then H1 sn H2 as a consequence of
Proposition 3.1. We set L = 〈H |H ∈ S〉 . The proof that L ∈ S follows as in [7],
Lemma 7.3.15.

Now, set M = k -NG(L). Clearly we have A sn L E M and then M is
a connected proper k -subgroup of G . Let X be a connected proper k -subgroup
of G containing A . By assumption we have A sn X . Setting N = AX , we have
N ∈ S and then N ≤ L which implies N sn L . Thus A ≤ N = NX sn LX by
Proposition 3.1, therefore LX is a connected proper k -subgroup of G containing
A and generated by conjugates of A , thus LX ∈ S hence LX ≤ L but then
L E 〈L, X〉 which implies X ≤ k -NG(L) = M . We have obtained that M is
a maximal connected k -subgroup of G and moreover that M is the only such
subgroup which contains A . Let g be an element of G(k) such that Ag ≤ M . It
follows A ≤ M g−1

therefore M g = M .
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Proposition 4.5. Let G be a connected linear algebraic k -group where k is
infinite. A connected k -subgroup A of G is subnormal in G if and only if A is
subnormal in 〈A, Ag〉 for all elements g of G(k).

Proof. Let G be a counterexample of minimal dimension thus A is subnormal
in every connected proper k -subgroup H which contains it. By the first maximizer
lemma there exists a Wielandt k -maximizer M of A . The assumption Ag ≤ M
for all g ∈ G(k) implies that all elements of G(k) normalize M but then M sn G
by Lemma 4.1 hence A sn G , a contradiction.

Example 4.6. Lemma 4.1, Propositions 4.2 and 4.5 are not valid in general
when the field of definition k is finite. We present an example where k = F2

which was suggested to me by Th. Weigel. Set K as the algebraic closure of the
field F2 . Now consider the special linear group

SL(2, K) =

{(
a b
c d

)
| ad− bc = 1

}
.

Take the element g =

(
1 1
1 0

)
. Its centralizer in SL(2, K) is

CSL(2,K)(g) =

{(
b + d b

b d

)
| bd + d2 − b2 = 1

}
.

Set T = CSL(2,K)(g). This is a maximal k -torus of SL(2, K). Now, the
group of k -rational points SL(2, K)(F2) can be generated as follows

SL(2, K)(F2) =

〈(
0 1
1 0

)
,

(
1 1
1 0

) 〉
,

therefore one can see that SL(2, K)(F2) is isomorphic to the symmetric group of
degree three S3 . It is also easy to verify that T is normalized by the group of
k -rational points.

Now, T is a connected F2 -subgroup of the connected linear algebraic F2 -
group SL(2, K) which is normalized by the group of F2 -rational points, so that
T verifies the hypothesis of Lemma 4.1, Propositions 4.2 and 4.5 but of course
T is not subnormal in SL(2, K) since the latter is even a F2 -simple group, i.e.
SL(2, K) does not contain any connected normal F2 -subgroup.

5. The norm and the Wielandt subgroup

Let G be an abstract group. The norm of G introduced in [1] is defined as follows:

Norm(G) =
⋂

H≤G

NG(H), (2)

thus the norm is constituted by the elements of G which normalize every subgroup
of G . Norm(G) is a characteristic subgroup of G which is contained in the second
center Z2(G) of G (see [11]).
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For any group G , the Wielandt subgroup ω(G) was defined in [16] as

ω(G) =
⋂

HEEG

NG(H). (3)

In the subgroup ω(G) subnormality is a transitive relation. The Wielandt sub-
group may well be trivial (for example when G is the infinite dihedral group),
but in [16] it is shown that ω(G) contains every minimal normal subgroup of G
whose subnormal subgroups satisfy the minimal condition. In particular ω(G) is
not trivial when G is a non-trivial finite group.

If G is an algebraic k -group and if we take the intersection in (2) and (3)
over the connected k -subgroups of G then such groups are not in general defined
over k when k is not perfect.

For example we consider [12], 12.1.6. Assume that k is a non-perfect field
of characteristic 2 and take a ∈ k \ k2 . Define

G = {(x, y) ∈ K2 |x2 − ay2 6= 0},

with multiplication

(x, y)(x′, y′) = (xx′ + ayy′, xy′ + x′y).

G is a connected linear algebraic k -group. If the k -homomorphism φ : G → Gm

is defined by φ(x, y) = x2 − ay2 then the kernel of φ is not a k -subgroup. Now,
let us take the algebraic k -group L with underlying variety G × Ga × Ga and
multiplication defined by

(g, x, y)(g′, x′, y′) = (gg′, φ(g′)x + x′, φ(g′−1)y + y′)

where g, g′ ∈ G and x, x′, y, y′ ∈ Ga . Take the connected subnormal k -subgroup
of L formed by the elements (1, a, a) where a ∈ Ga . Its normalizer is the subgroup
Ker φ × Ga × Ga of L which is not defined over k . In this case one can verify
that this would be the Wielandt subgroup of G while the norm would be Ker
φ× {0} × {0} . Both of them are not defined over k .

For this reason we introduce the following definitions:

1. The k -norm of G is the subgroup k -Norm(G) generated by all connected k -
subgroups H of G which satisfies the condition: L E 〈H, L〉 for all connected
k -subgroups L of G .

2. The k -Wielandt subgroup of G is the subgroup k -ω(G) generated by all
connected k -subgroups H of G which satisfies the condition: S E 〈H, S〉
for all connected subnormal k -subgroups S of G .

k -Norm(G) and k -ω(G) are connected k -subgroups of G by Proposition 1.1,(i).
In the example above we have k -N(L) = 〈1〉 and k -ω(L) = {1} ×Ga ×Ga .

The properties of the k -norm depend on the characteristic of k . If char
k = 0 then k -Norm(G) = Z(G)◦ , which corresponds to a result for local compact
topological groups, see [8].

Proposition 5.1. If G is a connected k -group where k is a field of character-
istic 0, then k -Norm(G) = Z(G)◦ .
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Proof. Assume that G is unipotent, and let x ∈ G . Since 〈x〉 ' K+ (see [3])
and Aut (K+) ' K∗ , we deduce that an element of k -Norm(G) is central. Since
k -Norm(G) is connected we get the result. ¿From this it is also immediate to
obtain the statement when G is nilpotent. Now, let H be one of the connected k -
subgroup that generates k -Norm(G). If T is a maximal torus of G defined over k ,
then H normalizes T and by the rigidity of T we have that [H, T ] = 1. Therefore
k -Norm(G) centralizes every maximal k -torus of G . Moreover k -Norm(G) is
contained in every Cartan subgroup. Let C be one. C is a connected nilpotent
k -group and since for such groups the statement holds, we have k -Norm(G) ≤ k -
Norm(C) = Z(C)◦ . We get the statement observing that by [12], 13.3.12,(ii)
G is generated by the maximal tori of G defined over k together with a Cartan
subgroup and by the fact that trivially Z(G)◦ ≤ k -Norm(G) because Z(G)◦ is
defined over k since k is perfect, see [12], 12.1.7.

When char k = p > 0, in general k -Norm(G) � Z2(G) as the following
example taken from [2] shows.

Example 5.2. Let G be the group of matrices of the form
1 x0 x1 x2 x3

0 1 xp
0 xp

1 xp
2

0 0 1 xp2

0 xp2

1

0 0 0 1 xp3

0

0 0 0 0 1


where x0, x1, x2.x3 ∈ K and K is a field of characteristic p > 0. G is a group of
maximal class, i.e. its nilpotency class equals its dimension, which is 4. Therefore
every connected K -subgroup is contained in the commutator subgroup G′ of G
which is formed by the matrices where x0 = 0. Since in G′ every connected
K -subgroup is normal, then K -Norm(G) = G′ = Z3(G).

Now we show that the k -Wielandt subgroup of a non-trivial algebraic k -
group is not trivial. We may reduce ourselves to connected algebraic k -groups and
by Rosenlicht’s Theorem we make a further reduction to the connected linear case,
because otherwise our group G = LD would contain the central k -subgroup D
which of course would be contained in the k -Wielandt subgroup. As a first step,
we use [16] to show that k -ω(G) is not trivial if G(k) is dense in the non-trivial
algebraic k -group G .

Proposition 5.3. Let N be a minimal connected normal k -subgroup of the
connected linear algebraic k -group G and assume that G(k) is dense in G. Then
N normalizes every connected subnormal k -subgroup of G.

Proof. Let H be a connected subnormal k -subgroup of G of defect n . If
n ≤ 1, then obviously N normalizes H . We suppose n > 1 and we proceed by
induction on n . Now, [HG, N ] is a connected normal k -subgroup of N therefore
[HG, N ] = 1 or [HG, N ] = N . In the former case obviously [H, N ] = 1, hence
N normalizes H . If [HG, N ] = N then we have N ≤ HG . Let M be a
minimal connected normal k -subgroup of HG such that M ≤ N . The subgroup
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M g is a minimal connected normal k -subgroup of HG for any g ∈ G(k). By
induction it follows that M g normalizes H for any g ∈ G(k) but then since

MG(k) = MG(k) = MG we obtain that N = MG normalizes H .

The Example 4.6 shows that if the group of k -rational points is not dense
then in general MG(k) 6= MG

Now we deal with non-k -reductive groups, see Proposition 1.1,(v). The
problem is to look for the right connected k -subgroup which normalizes every
connected subnormal k -subgroup of G .

Proposition 5.4. Let G be a non-k -reductive connected linear algebraic k -
group. Then the k -Wielandt subgroup of G is not trivial.

Proof. Define N to be a minimal normal connected k -subgroup contained in
the last non-trivial term of the lower central series of the unipotent k -radical
Ru,k(G). By Proposition 1.1,(ii) this term is a connected k -subgroup. Notice that
N is contained in the center of the unipotent radical of G . Let S be a connected
subnormal k -subgroup of G . We prove that S E 〈N, S〉 . We need to distinguish
the solvable from the non-solvable case.

Suppose that S is contained in the radical R(G) of G . R(G) is a connected
normal solvable closed subgroup of G . Let T be a maximal torus of R(G). We
have R(G) = T n Ru(G). It is even enough to suppose that S is a connected
closed subgroup.

Now, if S is contained in Ru(G), then N trivially normalizes S since N is
contained in the center of Ru(G).

If S is not contained in Ru(G), then we may set S = TS n US where TS

is a non-trivial maximal torus of S and US ≤ Ru(G) is the unipotent radical of
S . The product SN (recall that N E G) is a connected algebraic k -group by
Proposition 1.1,(i). S is clearly subnormal in SN and we have SN = TS n USN ,
in particular TS is a maximal k -torus of SN .

Set L as the last term of the normal closure series of S in SN different
from S , so that S E L and L is a connected k -subgroup of SN which contains
S as a proper subgroup. Clearly TS is a maximal torus of L as well. If l ∈ L
then the maximal torus Sl is contained in S , but then Sl is a maximal torus of
S as well. We know that maximal tori of S are conjugated, therefore there exists
an element s of S such that T l = T s , thus ls−1 ∈ NL(T ) from which we deduce
L ≤ SNL(TS). If CL is the Cartan subgroup of the maximal torus T in L , by the
rigidity of T , we get moreover that L = SCL , so that in particular L = TS nUSC1

where C1 is a connected closed subgroup contained in the centralizer of TS (C1 is
in fact the unipotent part of CL ).

One can repeat this argument inductively along the subnormal series which
leads S to SN (induction on the defect of S in SN ), obtaining at the last step
that SN = TS n 〈US, C〉 where C is a connected closed subgroup contained in
the centralizer of TS . Recalling that N is central in Ru(G), then US is normal
in 〈US, C〉 , so we get [S, SN ] = [TSUS, TSUSC] = [US, TS][US, US][US, C] ≤ S so
that S E 〈N, S〉 .

Now, suppose that our connected subnormal k -subgroup S is not con-
tained in the radical R(G). Therefore SR(G)/R(G) is a connected subnormal
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k -subgroup of the connected algebraic k -group G/R(G). We have that G/R(G)
is a semi-simple group and its connected K -subnormal subgroups are in fact nor-
mal, thus SR(G) is a normal connected k -subgroup of G (see Proposition 1.1,(i)).

Moreover SR(G)/R(G) is a connected K -simple group (i.e. it contains no
connected normal K -subgroups) and therefore it is generated by its maximal tori.
Since SR(G)/R(G) is naturally isomorphic to the group S/S ∩ R(G), we obtain
that S = 〈(S ∩ R(G))◦, St〉 where St is the subgroup generated by the maximal
tori of S .

Now, since (S ∩ R(G))◦ E S ∩ R(G) E S sn G , we have that (S ∩ R(G))◦

is a connected closed subnormal subgroup of G contained in the radical R(G),
therefore by the case above we have that such a subgroup is normalized by N (the
case above works in general for connected subnormal K -subgroups).

Let T be a maximal torus of S . We shall get the statement if we prove
that T is normalized by N . The subgroup S is clearly subnormal in SN . We
may suppose S ∩N = 1. Let

S = Sm E Sm−1 E · · · E S0 = SN

be normal closure series associated to S , where m is a non-negative integer. It is
clear that we may set Si = S n Ni where Ni is a connected closed subgroup of N
for all i ∈ {0, . . . ,m} . From this we deduce the existence of the series

T = Tm E Tm−1 E · · · E S0 = TN

where Ti = T n Ni for all i ∈ {0, . . . ,m} . Now, T is a maximal torus of SN
(recall that N is unipotent) which is subnormal. By an argument similar to the
proof of Proposition 2.2 we obtain that T is normalized (in fact centralized) by
N , and this ends the proof.

Now let G be a connected linear algebraic k -reductive group, i.e. a group
such that Ru.k(G) = 1. If, in addition, G is reductive, the result we are looking
for is straightforward.

Proposition 5.5. Let G be an algebraic k -group. Assume that G is a reductive
k -group and G 6= 〈1〉. Then the k -Wielandt subgroup of G is not trivial.

Proof. If k is infinite, by [12], Corollary 13.3.9,(ii) we have that the group of
k -rational points G(k) is dense in G , therefore the result follows by Proposition
5.3.

Let k be finite. If G is semi-simple, then connected subnormal k -subgroups
are in fact normal, therefore in this case the k -Wielandt subgroup coincide with
G . If G is not semi-simple, the radical R(G) is a non-trivial central torus, which
is defined over k by [12], 12.1.7. Hence R(G) is contained in the k -Wielandt
subgroup.

Finally, we treat the case of non-reductive k -reductive groups.

Proposition 5.6. Let G be an algebraic k -group. Assume that G is non-
reductive k -reductive group. Then the k -Wielandt subgroup of G is not trivial.
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Proof. We notice that our assumptions can be verified only when k is a non-
perfect field by Proposition 1.1,(v). By hypothesis we have that the unipotent
radical Ru(G) of G is not trivial. Let S be a connected subnormal k -subgroup of
G . Assume that S is contained in R(G). By Proposition 1.1,(v) S is not contained
in Ru(G), so that we may write S = TS n US as the usual decomposition of a
connected algebraic solvable group, where TS is a non-trivial maximal k -torus of
S (see Proposition 1.1,(iii)) and the unipotent part US is not defined over k , if
it is not trivial. By Proposition 1.1,(ii), the derived subgroup S ′ is a connected
k -subgroup of S contained in US , but then by Proposition 1.1,(v) we get S ′ = 1.
Moreover, S = TS × US is subnormal in the connected algebraic group SRu(G),
and TS is a maximal k -torus of SRu(G). With a proof analogue to the first part
of Proposition 5.4, we may prove that Ru(G) = 〈US, C〉 where C is a connected k -
subgroup which centralizes TS , therefore TS is centralized by Ru(G). Let T be the
subgroup generated by the maximal k -tori of connected subnormal k -subgroups of
G contained in R(G). We have proved that T is a connected central k -subgroup
of R(G). In fact T is also a normal k -torus of G .

Assume that T is not trivial. We prove that T is in the k -Wielandt
subgroup of G . Of course T normalizes every connected subnormal k -subgroup
of G contained in R(G). On the contrary, let S be a connected subnormal
k -subgroup of G not contained in R(G). Recall the second part of the proof
of Proposition 5.4, where we considered a connected subnormal k -subgroup not
contained in the radical of G . The facts stated there over the field K are obviously
still valid, so we have S = 〈(S ∩R(G))◦, St〉 where St is generate by the maximal
k -tori of S . The subgroup (S ∩ R(G))◦ may be not defined over k but it is
normalized by T since T is central in R(G). With an argument similar to the
last part of the proof of Proposition 5.4 we may show that T normalizes St as
well. Therefore, T is contained in the k -Wielandt subgroup of G , and we get the
statement.

Finally, assume that T is trivial, i.e. there is no connected subnormal k -
subgroup of G contained in R(G). In particular, R(G) is generated by its maximal
tori, hence also G is generated by its maximal tori, so that, using notation and
result of Proposition 1.1,(iv) we get G = Gt , and the group of k -rational points
of G is dense in G . Now, Proposition 5.3 implies that the k -Wielandt subgroup
is not trivial in this case as well.

In view of the reduction to the connected linear case and of Propositions
5.4, 5.5 and 5.6, we obtain the following

Theorem 5.7. Let G be an algebraic k -group, G 6= 〈1〉. Then the k -Wielandt
subgroup of G is not trivial.
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[13] Szép, J., Bemerkung zu einem Satz von O. Ore, Publ. Math. Debrecen 3
(1953), 81–82.

[14] Wehrfritz, B. A. F., “Infinite linear groups,” Springer-Verlag, 1973.

[15] Wielandt, H., Eine Verallgemeinerung der invarianten Untergruppen,
Math. Z. 45 (1939), 209–244.
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