Journal of Lie Theory
Volume 16 (2006) 297-309
(© 2006 Heldermann Verlag

Central Extensions of
the Lie Algebra of Symplectic Vector Fields

Cornelia Vizman

Communicated by K.-H. Neeb

Abstract. For a perfect ideal h of the Lie algebra g, the extendibility of
continuous 2-cocycles from § to g is studied, especially for 2-cocycles of the
form ([X,-],-) on b with X € g, when a g-invariant symmetric bilinear form
(-,-) on B is available. The results are then applied to extend continuous 2-
cocycles from the Lie algebra of Hamiltonian vector fields to the Lie algebra of
symplectic vector fields on a compact symplectic manifold.
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1. Introduction

Given a compact 2n-dimensional symplectic manifold (M,w), we denote by H;
the Hamiltonian vector field associated to the Hamiltonian function f. Then
the Lie algebra ham(M,w) of Hamiltonian vector fields can be identified with
(Ce(M),{,}), the Lie algebra of zero integral functions with Poisson bracket
{f,9} = —w(Hy,H,;). The following continuous Lie algebra 2-cocycles on the
Fréchet Lie algebra ham(M,w) are considered in [6] Section 9:

ottty = [ gais

for av an arbitrary closed 1-form on M.

We study the extendibility of these 2-cocycles to continuous 2-cocycles on
the Fréchet Lie algebra shymp(M,w) of symplectic vector fields. It turns out that
this property depends only on the de Rham cohomology classes of o and w.
Denoting by (b1, b2) = [,, b1 A by A[w]""! the symplectic pairing on Hjp(M), in
Theorem 4.2 is shown that o, is extendible if and only if

(n—l)/}\/{[]/\bl/\bg/\bg/\ —nz bg,bg)

cycl

for all b, € Hjp(M).
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We observe that if X is the symplectic vector field defined by 1xw = a, the
restriction to ham(M,w) of the inner derivation ad(X) is ad(X)(f) = —a(Hy).
It follows that the cocycle o, is constructed with the derivation ad(X) and the
symp (M, w)-invariant inner product (Hy, Hy) = [, fgw™ on ham(M,w), namely
0o = ([X,],:). Moreover ham(M,w) is a perfect ideal of symp(M,w) and their
quotient is the abelian Lie algebra HJ}(M).

For this reason in Section 3 we consider for X € g the Lie algebra 2-
cocycles ox = ([X,],-) on the ideal b of g in the following general setting: a
perfect closed ideal h of the topological Lie algebra g, with g/h abelian and with
the canonical projection p : g — g/bh admitting continuous linear sections, and
an ad(g)-invariant bilinear form (-,-) on h. Choosing a continuous linear section

s:g/h— g, we define Q € A*(g/h)* by

Qa.bibauby) = 5 3 (s, sbi. [, b)),

cycl

where the cyclic sum is taken over the indices 1,2,3. One can view Q € H(g/h)
as a characteristic class corresponding to the g-invariant bilinear form (-, -) for the
Lie algebra extension

0—b—g-=g/h—0.

In particular ) does not depend on the choice of the section s. We prove that
ox is extendible to a continuous 2-cocycle on g if and only if ¢,x)@ = 0. This
is shown with the help of the transgression homomorphism ¢ which fits into the
exact sequence

H2(g) & H2(h) - H(a/h) % H(g).

Here H*(g) denotes the continuous cohomology of g and H}(h)? the continuous
g-invariant cohomology of bh.

A result from [6] Section 9 states that HZ(ham(M,w)) is isomorphic to
Hjp(M) by [a] — [04]. All [0,] are symp(M, w)-invariant cohomology classes, so
H?(ham(M,w))®™(M@) s also isomorphic to H},(M). We show that in this case
the transgression map is:

t: Hip(M) — A (Hyp(M))*

1) (by, ba, bs) = n(n — 1) /M @A by A by Ay A ]2 — 12 S (0, by) (b, ).

cycl
The second continuous cohomology space of the Lie algebra of symplectic vector
fields turns out to be isomorphic to Kert & A?H o (M)*.

For the flat 2n-torus T?" with canonical symplectic form w, spmp(T?", w)
is the semidirect product of ham(T?",w) with R?**  the abelian Lie algebra of
constant vector fields. The transgression map ¢ : H>(h)® — H2(g/h) is trivial
for a Fréchet Lie algebra g which is a semidirect product of its perfect ideal b
with g/b. It follows that all the 2-cocycles o, are extendible to the Lie algebra of
symplectic vector fields, so H2(symp(T? w)) = H)o(T?) & A2Hlp(T?).

For any compact symplectic manifold (M,w) there is a canonical H}p(M)*-
valued 2-cohomology class A on ham(M,w) given by A([a]) = [0,] for any closed
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1-form «. For the 2-torus there is a canonical 2-cocycle ¥ representing A:

(7.9 = (g i= ([ f0r00)idol + ([ 0,00) ) € Hin(T) = Hin(T?)"

We know that > is extendlble because the transgression map vanishes. An ex-
tension of ¥ to a continuous 2-cocycle on the Lie algebra of symplectic vector
fields is ¥'(X,Y) = (fxdfy) for fx the unique zero integral function such that
ixw—(ixw) = dfx. The central extension defined by ¥’ is Kirillov’s 2-dimensional
central extension of the Lie algebra of symplectic vector fields on the 2-torus from
[2] Section 5.

Surfaces of higher genus g > 2 have injective transgression maps, so for
[a] # 0 the cocycle o, is not extendible to the Lie algebra of symplectic vector
fields.

Acknowledgments: We gratefully acknowledge Alessandro Savo for his
support and encouraging: part of this work was done during an EDGE postdoctoral
fellowship at La Sapienza University in Rome in 2002. We are grateful to Karl-
Hermann Neeb for his interest, patience and for the fruitful discussions. We also
thank the referee for his corrections and suggestions.

2. Extending continuous 2-cocycles on a perfect ideal ) to g

In this section we prove the exactness of a five term sequence involving the second
and third continuous cohomology space associated to a perfect ideal of a Fréchet—
Lie algebra.

Let g be a Fréchet-Lie algebra and 3 a topological g-module. On the space
C?(g,3) of continuous alternating 3-valued maps on g we define the differential

p+1

ng'<X1, ce ,Xp+1) = Z(—]_)H_IX O'(Xl, AN 7Xi7 ce ’Xp-i—l)

+Z D o([Xs, X, X1, Xiy o Xy o X )

E
i<j
The cohomology H}(g,3) of this chain complex is the continuous cohomology of g
with values in the g-module 3. We write H}(g) if 3 = R is the trivial g-module.
There is a bijection between H2(g,3) and topologically split Lie algebra extensions
of g by the g-module 3.
Given an ideal h of g, there is a natural action of g on C?(h) by

p
(Lxo)(Hy,...,Hy)) ==Y o(Hy,....[X,H],... Hy).
i=1
It commutes with dp, hence induces an action on H?(h). Let H}(h)? denote the
g-invariant continuous cohomology space of b.

We denote by h* the dual of h with its canonical g-module structure. Let
Cl(g,b*)7 be the space of linear maps 6 : g — h* such that the bilinear map
(X,H) € g xbh— 0(X)(H) is continuous and its restriction o : h x h — R is
alternating. Then B'(g, h*) is a subset of C!(g, h*)r and we define the cohomology
space H!(g,b*)r to be the quotient (Z'(g,h*) N Cl(g,b*)r)/B(g,h*). In the
discrete case this space is defined in [5], Remark II.3.
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Lemma 2.1 If b is a perfect ideal of the Fréchet—Lie algebra g, then the restric-
tion map induces an isomorphism in cohomology

p:l0] € Hi(g.h")r — [o] € HZ(h)®

defined by o(H, K) = 6(H)(K). Its inverse is uniquely determined by the relation
Lyo =dyf(X) forall X € g, i.e.

0(X)[H, K] = o([X, H],K) + o(H,[X,K]), HK€h. (1)

Proof.  To see that the restriction map p is well defined, we check that o is a 2-
cocycle whose cohomology class is g-invariant. Indeed, by the 1-cocycle condition
for 6 we get for X € g:

—(Lxo)(H,K) = o([X, H], K) + o(H,[X, K])
= 0([X, H))(K) + 0(H)([X, K]) = 6(X)([H, K]).

Specializing to X € h we obtain that o is a Lie algebra 2-cocycle on §.

To show that the restriction map p is injective, we assume 6 is an h*-valued
1-cocycle on g whose restriction to h is a coboundary o = dy3 for 3 € h*. Then
we have for X € g and H,K € §

0(X)[H, K] = 0([X, H])(K) + 0(H)([X, K])
= _6([[)(7 H}K]) - ﬁ([Hv [X’ KH) - ﬁ([[}L K]vX])

and the perfectness of h imply 0 = dy3.

Given [o] € H2(H)9, there is a map 6 € C''(g, h*) such that Lxo = dyf(X)
for all X € g. It is uniquely determined since § is a perfect Lie algebra, and it
extends the 2-cocycle . The fact that 6 is an h*-valued 1-cocycle on g follows
from

dy(01X,Y]) = Lixy10 = Lx(dyf(Y)) — Ly (dy0(X)) = dy(Lx0(Y) — Ly 6(X))

since [Lx, Ly] = Lixy] and [h,h] =b.

It remains to check that 6 : g x h — R is continuous. This is the only place
where the Fréchet assumption is needed. Since § is a perfect Lie algebra, the Lie
bracket induces a continuous surjective map on the completion A%(h). of A%h with
respect to the projective tensor topology. By the open mapping theorem for Fréchet
spaces [7], the linear continuous surjective map 14 x [+,-] : g x A%(h). — gx b isa
quotient map. Because ¢ is continuous, the fact that the composition fo (14X [-,])
is continuous on g x A%(fh). implies that € is continuous. Hence [0] € H!(g, h*)r
is the preimage of [o] € H?(h)? and thus p is surjective. ]

Assume that b is a perfect ideal of g and the exact sequence
0—h>gtg/h—0 (2)

is topologically split, i.e. p admits a continuous section s : g/h — g. Then we can
define a transgression map

t: HZ(h)* — Hi(g/h), t([o]) = [dgo], (3)
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where ¢’ € C?(g) is any continuous alternating extension of the 1-cocycle 0 : g —
h* defined by (1). It is well defined since

(ingO,)<X7 Y) = _OJ([X’ Y]7H) +OJ(X7 [K H]) - OJ<Y7 [X7 H])
= —0([X,Y])(H) + 0(X)[Y, H] = 0(Y)[X, H] = (dy0)(X,Y)(H) = 0

implies that dgo’ indeed factors through a 3-cocycle on g/bh, denoted @. Its
cohomology class in H2(g/h) does not depend on the choice of the continuous
extension o’: two choices ¢’ and o} differ by p*8 with 3 € C?(g/h), hence dyo’
and m differ by the coboundary dg/y/3.

Proposition 2.2 [f the extension 0 — b iR g2 g/b — 0 is a semidirect product
and b is perfect, then the transgression map vanishes.

Proof.  Denoting by - the Lie algebra action of g/h on b, the Lie bracket on
the semidirect product is

[(Hl,bl), (HQ, bg)] = ([Hl, HQ] + bl : H2 — bg : Hl, [bhbg])

for Hy, Hy € b and by, by € g/b.

Given [o] € H?(h)®, there is a unique h*-valued 1-cocycle 6 on g deter-
mined by Lxo = dpfd(X), X € g. In particular 6(H,b) = igo + 6(b). An
alternating extension o’ € C?(g) of 0 is

o'((Hi,b1), (Ha,b2)) = o(Hy, Ha) + 0(b1)(Ha) — 0(b2) (H).
A short computation leads to

dgo'((Hy,by), (Ha, by), (Hs, bs))
= dyo(Hy, Hy, Hs) + Y _(dyf(by) — Ly, 0)(H, Hz) — > dgf(by, by) (Hs) = 0,

cycl cycl

hence t([o]) = 0. ]

Theorem 2.3 If b is a perfect ideal of the Fréchet-Lie algebra g and (2) is
topologically split, then the sequence

0~ HX(g/h) > Hi(a) = HZ(0)" = Hi(a/b) ™ 1 (o)
is exact. In particular H*(g)/H?(g/b) is isomorphic to Kert.

Proof.  There are four things to be shown.

The map p* : H>(g/h) — HZ2(g) is injective: Assume p*[3] =0, i.e. 8 is a
continuous 2-cocycle on g/h such that p* = dga for a continuous linear map «
on g. Then [h,h] = b implies that « vanishes on h. So o = p*a for a continuous
linear map @ on g/h and 3 = dg/par.

Imp* = Ker¢*: First ¢*p* = 0 implies Im p* C Ker¢*. For the converse let
[w] € Keri*. Then there is a continuous linear map a on h with i*w = dya. For
any o extending o continuously to g, the 2-cocycle W' = w — dgo/ vanishes .
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Then ' vanishes also on g x h because b is a perfect ideal and /(X [H, K]) =
—'(H,[K,X]) — (K, [X,H]) = 0. It follows that " is of the form p*g for a
continuous 2-cocycle § on g/h, hence [w] = p*[5] € Im p*.

Imi* = Kert: If w is a 2-cocycle on g, then ti*[w] = [dgw] = 0, hence
Kert D Imi*. To show the reverse inclusion, let [0] € Kert and 6 : g — h* the
unique 1-cocycle from Lemma 1 extending o. Because the transgression of [o]
is zero, there exists v € C2(g/h) such that dgo’ = dgyy, with ¢’ a continuous
extension of #. Then w = ¢’ — p*y is a continuous 2-cocycle on g extending o, so
[0] = i*[w] and Kert C Imi*.

Imt = Kerp*: First p*t([o]) = p*[da0’] = [dg0’] = 0 implies Imt C Ker p*.
For the converse let [3] € Kerp*, so there is a continuous 2-cochain ¢’ on g
such that p*8 = dgo’. The restriction o of o' to bh satisfies dyo = 0 and
Lxo = dyi*ixo’'. So the l-cocycle 6 : g — b* from Lemma 2.1 corresponding
to [o] € H2(h)? is §(X) = i*ixo’ and o’ is a continuous extension of the map

(X,H) — 0(X)(H) to g x g. Hence t[o] = [d4o’] = [#] and Kerp* C Imt. ]

Remark 2.4 The 2-cocycle o on h with [0] € H?(h)? can be extended to a
continuous 2-cocycle on g if and only if its transgression is zero. If g/b is abelian,
each extension ¢’ of the unique h*-valued 1-cocycle 6 which restricts to o is a
2-cocycle on g extending o and all the other extensions are obtained by adding
elements of the form p*3 with 3 € A%(g/h)*.

Any continuous linear section s : g/h — g defines the continuous retraction
n:g—hby nX)=X—spX for X € g. Then there is a unique continuous
extension ¢’ of # vanishing on the image of s:

o' (X,Y) =6(X)(n(Y)) = 0(Y)(n(X)) — a(n(X),n(Y))
= o(n(X),n(Y)) +0(spX)(n(Y)) = 0(spY) (n(X)).

The 5-term exact sequence from Theorem 2.3 written for discrete Lie algebra
cohomology spaces is the content of Theorem 6 for m = 2 in [1]. The Hochschild-
Serre spectral sequence for an ideal §h of g is the spectral sequence associated to
the filtration FPC?*(g) = {0 € C**9(g) : ip, ...ig,,,0 =0, for all H; € h}. This
means d, : EP? — EPT4"t1 ig induced by dg, with

EP4 = {a € FPCP*Y : dga € FPHCPHIHY J(dg(FP i Cpraly 4 priigoete),

The FEs-term is in this case EY? = HP(g/h, H1(h)) and the spectral sequence
abuts to H*(g). For perfect h we obtain that the map dj : E§’2 — Eg’o from the
Hochschild-Serre spectral sequence can be identified with the transgression map
t: HA(h)s — H(a/h).

The restriction map i* : H?(g) — H?(h)? for an arbitrary ideal b of g is
studied in [5].

3. Special 2-cocycles on b

In [6] Section 3, a Lie algebra 2-cocycle op(H, K) := (D(H), K) on b is associated
to every anti self-dual derivation D of a Lie algebra § with respect to an invariant
symmetric bilinear form (-,-) on b, i.e. (D(H),K) + (H, D(K)) = 0.
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A particular case is the continuous 2-cocycle ox = ([X,-],-) for X € g,
where b is an ideal of the topological Lie algebra g with an ad(g)-invariant
continuous symmetric bilinear form (-,-) on b (here D = ad(X)|y). For H € §
the cocycle oy is the coboundary of (H,-) € C!}(h). Hence we get a linear map
A:g/bh — H?(h). When g/b is finite dimensional, we can view A as a canonical
(g/h)*-valued 2-cohomology class on b.

Proposition 3.1 Let b be a perfect ideal of the topological Lie algebra g with
an ad(g)-invariant symmetric bilinear form (-,-) on b and assume that (2) is
topologically split with g/b abelian. Then the cohomology class of the cocycle ox =
([X,-],-) is g-invariant and its image t([ox]) € A*>(g/h)* under the transgression
map is (bi, bz, b3) > > ([X, sbi], [sba, sbs]), with s : g/b — g any continuous
section of (2).

Proof. For Y € g and H, K € h we compute

(Lyox)(H,K) = —ox([Y,H|, K) — ox(H,[Y, K])
= (X & [Y, H]) = (X, H], [V, K])
= =, [V, [X, K] + (H, [X, [Y, KJ))
=~ [K, [X,Y])) = —([X, Y], [H, K]).

At the last step we use [g,g] C b (since g/b is abelian). We get that Lyox =
dy(0x(Y)) with 0x(Y) = ([X,Y],-), so the cohomology class [ox] is g-invariant
and fx is the unique h*-valued 1-cocycle on g extending ox.

Let o € C?(g) be a continuous extension of the l-cocycle fx. Then
t(lox]) = [dgo’y] and

dgoly (b1, by, bs) = Y 0% (sby, [sba, sbs))

cycl

=) " Ox(sby)([sba, sbs]) = > _([X, sbi], [sba, sbs]).,

cycl cycl

for bl,bg,bgeg/b. |

Characteristic classes for Lie algebra extensions: A short exact
sequence of Lie algebras:

O—>[j—i>g£>{?—>(), (4)

is an extension g of € by h. The extension is called abelian if h is an abelian
Lie algebra. In this case h carries a canonical €-module structure induced by
the adjoint action of g on h. An abelian extension of the Lie algebra £ by the
t-module b is described by a cohomology class in H?(€,h).

The characteristic classes are the cohomological objects associated to a non-
abelian extension of € by h. These are images of the Weil homomorphism defined
below and are elements of H*(¢, V'), with V' an arbitrary €-module.

A linear section s : ¢ — g for (4) is called a connection. The defect of
s to be a Lie algebra homomorphism is the curvature €2 : € x ¢ — b, defined
by Q(by,by) = [sby, sbs] — s[by, bs]. Denoting by n : g — b the corresponding
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retraction, the structure equation and the Bianchi identity hold in the following
form: p*Q = —dn + 3[n,n] and dp*Q = —[p*Q, 7]; see [8] Section 3.

We can recover the notions of connection and curvature of a principal bundle
in this way. There is an exact sequence of Lie algebras and C°°(M)-modules
associated to the principal G-bundle P — M,

0 — C%(P,g)% — X(P)¥ — X(M) — 0,

i.e. the Lie algebra of G-invariant vector fields of P is an extension of the Lie alge-
bra of vector fields on M by the Lie algebra of G-equivariant g-valued functions
on P (vertical G-invariant vector fields on P). A C*°(M)-linear section s can be
identified with the horizontal lift of a principal connection and {2 comes from its
curvature 2-form on P.

With the help of the curvature €2, an analogue of the Weil homomorphism
can be constructed like in [3] Section 2. For any €-module V', let I{}(h) be the set
of g-equivariant V -valued symmetric n-linear mappings on b, i.e.

ZQOHI,.. (X, H),..., H,) =p(X)e(Hy,... H,), foral Xeg.

Then the Weil homomorphism
W Ip(h) — H*(e,V), W(p):=[Alt(po (Q® - 2 Q))],

does not depend on the chosen connection s. Here Alt denotes anti-symmetrization
of multilinear forms.

Remark 3.2 Let h be an ideal of the Lie algebra g with an ad(g)-invariant
symmetric bilinear form (-,-) on h. Then (-,-) € I2(h) and the characteristic
class Q = W({(-,-)) € H*(g/h) is the cohomology class of the 4-cocycle

(a, bl,bg,b?,) — %Z<Q((I,b1),9(b2,b3)>, bz - g/b (5)

cycl

We can reformulate Proposition 3.1 as:

Corollary 3.3 If b s a perfect ideal of the topological Lie algebra g with an
ad(g) -invariant symmetric bilinear form (-,-) on b, and (2) is topologically split
with g/b abelian, then the transgression of ox = ([X,-],) is tlox] = 3ipx)Q for
the characteristic class Q = W ({-,-)) € A*(g/h)*.

Proof.  The curvature is in this case Q(a,b) = [sa, sb]. With Proposition 3.1
we obtain

t([ox]) (b1, bs, bs) = > ([sp(X), sbu], [sba, sbs]) + Y ([n(X), sbr], [sbs, sbs])

cycl cycl
= 3Q(p(X), b1, bz, bs) + > _((X), [y, [sba, sbs]]) = Bipx)@ (b1, ba, bs),
cycl
using the relation X = sp(X) + n(X) in the first line. n

Remark 3.4 It follows from Remark 2.4 that oy is extendible to g if and only if
ipx)@ = 0. So the vanishing of the characteristic class () ensures the extendibility
of all ox for X € g.
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4. 2-cocycles on the Lie algebras of Hamiltonian and symplectic
vector fields

Let (M,w) be a compact connected 2n-dimensional symplectic manifold. A vec-
tor field X is called symplectic if Lxw = 0 and the vector field H; is called
Hamiltonian with Hamiltonian function f if ig,w = df. Since M is com-
pact and connected, each Hamiltonian vector field has a unique zero integral
Hamiltonian function. The Lie algebra ham(M,w) of Hamiltonian vector fields
on M is an ideal of the Fréchet-Lie algebra symp(M,w) of symplectic vector
fields. It can be identified with the Lie algebra of zero integral functions on
M with the Poisson bracket {f,g} = —w(Hs, H;). The quotient Lie algebra
symp(M,w)/ham(M,w) = Hin(M) is abelian and the projection of a symplectic
vector field X is p(X) = [ixw], so that

0 — ham(M,w) — symp(M,w) 2 Hip(M) — 0 (6)

is a topologically split exact sequence of Lie algebras. We also know that the Lie
algebra of Hamiltonian vector fields is perfect [4]. The inner product (Hy, H,) =
| o fgw™ is symp(M, w)-invariant. Indeed, for any symplectic vector field X', the
Lie bracket [X, Hf| = Hy,y and Lx f is a zero integral Hamiltonian function. So

<[X7Hf]’Hg>+<Hf7[X>Hg]>:/M(QLXf'f‘fLXg)Wn:/MLX(fg)wnzo'

Hence all the requirements from Section 3 are satisfied.

The special 2-cocycles ox = ([X,-],-) for X € symp(M,w) coincide with
the cocycles on the Lie algebra of Hamiltonian vector fields considered in [6] Section
9:

ox(Hy, Hy) = (X, H], Hy) = —(Hy, [X, H,]) = (Hy, H / Jali

where o = ixw is a closed 1-form. In the third equality we use Lxg = w(H,, X) =
—a(H,). It follows from the proof of Proposition 3.1 that the ham(M,w)*-
valued 1-cocycle fx on 51)mp(M w) extending ox is in this case Ox(Y)(Hy) =
((X,Y],Hy) = — [, fw(X,Y)w". Note that the Hamiltonian function —w(X,Y")
for [X,Y] has non-zero integral in general.

To see which of the cocycles ox are extendible to the Lie algebra of
symplectic vector fields, we compute the characteristic class @ = (-,-). Let
Q) be the curvature of a connection s : Hip(M) — symp(M,w), a continu-
ous section of (6). We denote by (-,-) the symplectic pairing on H},(M), i.e.
(bi,b2) = [, 01 Aba A[w]"™ . Then [igw] = b and [, w(sby, sby)w™ = n(by, by).
We get that Q(by,by) = [sby, sby] is the Hamiltonian vector field with the zero
integral Hamiltonian function f = n(by,bs) — w(sby, sby).

Proposition 4.1 The characteristic class Q = W({-,-)) € A*Hlx(M)* of the Lie
algebra extension (6) is
1
Q(a, by, by, bs) = (n—l)/a/\bl/\bg/\bg,/\ ——n2zabl (b, bs),
3 M cycl

with a,b; € Hix(M) and the cyclic sum taken over the indices 1,2,3.
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Proof.  Using formula (5) in Section 3 and the fact that Q(by, by) is the Hamil-
tonian vector field with zero integral Hamiltonian function n(by, by) — w(sby, sby),
we compute:

3Q(a, by, by, bs) = > (Q(a, by), bz, bs))

cycl

— Z /M(n(a, b1) — w(sa, sby))(n(be, bsg) — w(sby, sbs))w"

cycl
= Z/ w(sa, sby)w(sby, sby)w" — n? Z(a, b1) (b2, b3).
cycl M cycl
It remains to calculate the first cyclic sum, which we denote by
g e Z/ w(sa, sby)w(sbg, sbs)w".
cycl M
Applying the formula ixa A 8 = (1)l la Aix3 for || + |8] = dim M + 1, we

obtain

S = n E / Tsby bsaW N\ LshyW A Tgpaw A\ Wl
M

cycl

= n Z/ w(8by, sb1 )isqw A dgpyw A w"
M

cycl

—-n Z/ w(sbs, 501 )igqw A dgpw AWt
M

cycl

+n(n —1) Z / Tsa A Ty W A Ty A Tgpyw A W™ 2
M

cycl

= Z/ w(sa, sbg)w(st,sbl)w”—Z/ w(sa, sba)w(sbs, sby)w"
M M

cycl cycl
+n(n — 1)2/ aAby Aby Abg A Jw]" 2
eyel 7 M
= —25+3n(n— 1)/ aAby Aby Abs Aw]" 2.
We get N
S:n(n—l)/ aAby Aby Abg A Jw]" 2
and the result follows. N [

Theorem 4.2 Given a closed 1-form « on the symplectic manifold (M,w), the
2-cocycle oo(Hy, Hy) = [,, fa(Hg)w™ on the Lie algebra of Hamiltonian vector
fields is extendible to the Lie algebra of symplectic vector fields if and only if the
de Rham cohomology class a = [a] satisfies the relation

(n— 1)/Ma/\61 Nby Abg Aw]™ =n> (a,b)(by, bs) (7)

cycl

for all b; € Hyp(M).
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Proof.  The transgression of [o,] is
t([oa]) (b1, by, b3) = n(n — 1)/ aNby Aby Nbs A [w]"™> =0 (a,b1) (b2, bs) (8)
M

cycl
by Corollary 3.3 and Proposition 4.1. Then the result follows from Remark 2.4. m

The following result was announced in [6] Section 9:

Theorem 4.3 The second continuous cohomology space of the Lie algebra of
Hamultonian vector fields on a compact symplectic mamfold M is isamorphic to
Hyp(M), the isomorphism being [a] — [04], with oo(Hy, Hy) = [,, fo(H,

Each cohomology class [o,] is symp(M, w)—invariant, hence the second con-
tinuous shmp(M, w)-invariant cohomology space of ham(M,w) is again Hix(M).

Corollary 4.4 The second continuous cohomology space of the Lie algebra of
symplectic vector fields is isomorphic to Kert® A*Hjp(M)*, where t : Hjp(M) —
A3H(M)* is the transgression map given by (8).

Example 4.5 For surfaces the condition (7) becomes . ,(a,b1)(b2,b3) = 0. On
surfaces of genus 1 all o, are extendible, since dim H}z(M) = 2 implies that
the transgression map vanishes. On surfaces of genus > 2 none of the o, are
extendible, i.e. Kert = 0. Indeed, for any non-zero element a € H}n(M), we can
find by, by, b3 € Hjp(M) such that (a,b1) = (ba,b3) = 1 and (a,bs) = (a,b3) =
(bl, bz) = (bl, bg) = 0, hence t(a)(b1, bg, bg) 7& 0.

Specializing the previous example to the 2-torus T? = R?/Z? with canonical
symplectic form w = dxAdy, one obtains Kirillov’s 2-dimensional central extension
of symp(T? w) from [2] Section 5. We recall that the canonical H},(M)*-valued
2-cohomology class A on ham(M,w) mentioned in the beginning of Section 3
is AM([a]) = [oa] for any closed 1-form «. The definition is correct since the
cohomology class of the cocycle o, depends only on the de Rham cohomology
class of a.

We identify Hj,(T?) with its dual via a — [, - A a. There is a canonical
2-cocycle X representing A, namely

S(Hy, Hy) — [(fdg)] € Hip(T?) = Hip(T)",

with (-) denoting the average of a 1-form on the 2-torus

(adz + bdy) = (/T aw)dw—l— (/T bw)dy.

/ de NX(Hy, H / foygdx Ndy = 04, (Hy, Hy)
T2

and the same identity holds for dy.

Indeed,

It follows from Example 4.5 above that ¥ can be extended to a 2-cocycle on
the Lie algebra of symplectic vector fields on the 2-torus. The 1-cocycle extending
Y is

© : shmp(T?,w) — ham(T* w)" @ Hip(T?),  O(X)(Hy) = —[{fixw)].
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To see this we show that Lx¥ = dy(O(X)). We use df Adg = —{f, g}w in the
following calculation:

(Lx®)(Hy, Hy) = =[(Lx fdg)] + [{Lxgdf)] = —[{ix(df A dg))]
= [{f; g¥ixw)] = =O(X)([H}, Hy]) = dy(O(X))(Hy, Hy).

With Remark 2.4 we can find a special extension ¥’ of X. If « is a closed
I-form on T?, then o — () is an exact 1-form. For X a symplectic vector field,
ixw is closed and we denote by fx the unique zero integral function such that
ixw — (ixw) = dfy. Let ¥’ be the 2-cocycle extending > and vanishing on the
image of the connection s defined by s([dz]) = —0,, s([dy]) = 0,. In this case the
retraction 7 : shymp(T? w) — ham(T? w) is n(X) = X — s[ixw] = X — s[(ixw)] =
Hy, . Hence

Y(X,Y)=0(X)0(Y)) - eY)n(X)) - Bn((X),n(Y))
= —(frixw) + (fxiyvw) — (fxdfy)
= —(frdfx) + (fx(ivw)) — (fy(ixw)) = = (frdfx) = (fxdfy)

is the extension we were looking for.

This means ¥'(0,, Hf) = ¥'(0,,Hy) = 0 and X'(H;, H,) = X(Hf, Hy) =
[(fdg)]. It defines Kirillov’s 2-dimensional central extension of the Lie algebra of
symplectic vector fields on the 2-torus

—

0 — H'(T?) — symp(T2,w) — symp(T? w) — 0.
The bracket is given by: [0,,Hf| = Hp,y, [0y, Hf] = Hy,p, [0:,0,] = 0,

(Hy,,Hy,| = Hyy, g0 + (fidfa), the Lie algebra symp(T? w) being linearly gen-
erated by 9,, 9, and ham(T? w).

Example 4.6 For the flat 2n-torus T?" with canonical symplectic form w, the
Lie algebra of symplectic vector fields is the semidirect product of the Lie algebra
of Hamiltonian vector fields with R?*", the abelian Lie algebra of constant vector
fields. Proposition 2.2 shows that the transgression map t : H(h)® — H2(g/h)
is trivial for a Fréchet—Lie algebra g which is a semidirect product of its perfect
ideal h and the quotient Lie algebra g/b. It follows that all the 2-cocycles o, are
extendible. In particular we recover the result from Example 4.5 for the 2-torus.

Example 4.7 Thurston’s symplectic manifold ([9] page 10) is M = R*/T" with
I' the discrete group generated by the following symplectic diffeomorphisms of
(R, dxy A dyy + dasy A dys):

21, Y1, %2 + 1, 42)

L1, Y1, T2, Y2 (
(21,91, 22,2 + 1)
(
(

( )
(21,1, %2, Y2)
( ) r1+ 1,41, 72, Y2)

( x1, 01 + 1,20 + Yo, y2).

N
N
T1,Y1,T2,Y2) —
T1, Y1, T2, Y2) —

Since T'/[[",T| = Z?, the first de Rham cohomology group is 3-dimensional. Then
the map ¢ : Hjp(M) = R* — A3Hj,(M)* = R has a non-trivial kernel, so there
are 2-cocycles g, on ham(M,w) which can be extended to shymp(M,w).
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