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Abstract. For a perfect ideal h of the Lie algebra g , the extendibility of
continuous 2-cocycles from h to g is studied, especially for 2-cocycles of the
form 〈[X, ·], ·〉 on h with X ∈ g , when a g-invariant symmetric bilinear form
〈·, ·〉 on h is available. The results are then applied to extend continuous 2-
cocycles from the Lie algebra of Hamiltonian vector fields to the Lie algebra of
symplectic vector fields on a compact symplectic manifold.
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1. Introduction

Given a compact 2n-dimensional symplectic manifold (M, ω), we denote by Hf

the Hamiltonian vector field associated to the Hamiltonian function f . Then
the Lie algebra ham(M, ω) of Hamiltonian vector fields can be identified with
(C∞

0 (M), {, }), the Lie algebra of zero integral functions with Poisson bracket
{f, g} = −ω(Hf , Hg). The following continuous Lie algebra 2-cocycles on the
Fréchet Lie algebra ham(M, ω) are considered in [6] Section 9:

σα(Hf , Hg) =

∫
M

fα(Hg)ω
n,

for α an arbitrary closed 1-form on M .

We study the extendibility of these 2-cocycles to continuous 2-cocycles on
the Fréchet Lie algebra symp(M, ω) of symplectic vector fields. It turns out that
this property depends only on the de Rham cohomology classes of α and ω .
Denoting by (b1, b2) =

∫
M

b1 ∧ b2 ∧ [ω]n−1 the symplectic pairing on H1
dR(M), in

Theorem 4.2 is shown that σα is extendible if and only if

(n− 1)

∫
M

[α] ∧ b1 ∧ b2 ∧ b3 ∧ [ω]n−2 = n
∑
cycl

([α], b1)(b2, b3)

for all bi ∈ H1
dR(M).
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We observe that if X is the symplectic vector field defined by iXω = α , the
restriction to ham(M, ω) of the inner derivation ad(X) is ad(X)(f) = −α(Hf ).
It follows that the cocycle σα is constructed with the derivation ad(X) and the
symp(M, ω)-invariant inner product 〈Hf , Hg〉 =

∫
M

fgωn on ham(M, ω), namely
σα = 〈[X, ·], ·〉 . Moreover ham(M, ω) is a perfect ideal of symp(M, ω) and their
quotient is the abelian Lie algebra H1

dR(M).

For this reason in Section 3 we consider for X ∈ g the Lie algebra 2-
cocycles σX = 〈[X, ·], ·〉 on the ideal h of g in the following general setting: a
perfect closed ideal h of the topological Lie algebra g , with g/h abelian and with
the canonical projection p : g → g/h admitting continuous linear sections, and
an ad(g)-invariant bilinear form 〈·, ·〉 on h . Choosing a continuous linear section
s : g/h → g , we define Q ∈ Λ4(g/h)∗ by

Q(a, b1, b2, b3) =
1

3

∑
cycl

〈[sa, sb1], [sb2, sb3]〉,

where the cyclic sum is taken over the indices 1,2,3. One can view Q ∈ H4(g/h)
as a characteristic class corresponding to the g-invariant bilinear form 〈·, ·〉 for the
Lie algebra extension

0 → h → g
p→ g/h → 0.

In particular Q does not depend on the choice of the section s . We prove that
σX is extendible to a continuous 2-cocycle on g if and only if ip(X)Q = 0. This
is shown with the help of the transgression homomorphism t which fits into the
exact sequence

H2
c (g)

i∗→ H2
c (h)g t→ H3

c (g/h)
p∗→ H3

c (g).

Here H∗
c (g) denotes the continuous cohomology of g and H∗

c (h)g the continuous
g-invariant cohomology of h .

A result from [6] Section 9 states that H2
c (ham(M, ω)) is isomorphic to

H1
dR(M) by [α] 7→ [σα] . All [σα] are symp(M, ω)-invariant cohomology classes, so

H2
c (ham(M, ω))symp(M,ω) is also isomorphic to H1

dR(M). We show that in this case
the transgression map is:

t : H1
dR(M) → Λ3(H1

dR(M))∗

t(a)(b1, b2, b3) = n(n− 1)

∫
M

a ∧ b1 ∧ b2 ∧ b3 ∧ [ω]n−2 − n2
∑
cycl

(a, b1)(b2, b3).

The second continuous cohomology space of the Lie algebra of symplectic vector
fields turns out to be isomorphic to Ker t⊕ Λ2H1

dR(M)∗ .

For the flat 2n-torus T2n with canonical symplectic form ω , symp(T2n, ω)
is the semidirect product of ham(T2n, ω) with R2n , the abelian Lie algebra of
constant vector fields. The transgression map t : H2

c (h)g → H3
c (g/h) is trivial

for a Fréchet Lie algebra g which is a semidirect product of its perfect ideal h

with g/h . It follows that all the 2-cocycles σα are extendible to the Lie algebra of
symplectic vector fields, so H2

c (symp(T2, ω)) ∼= H1
dR(T2)⊕ Λ2H1

dR(T2).

For any compact symplectic manifold (M, ω) there is a canonical H1
dR(M)∗ -

valued 2-cohomology class λ on ham(M, ω) given by λ([α]) = [σα] for any closed
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1-form α . For the 2-torus there is a canonical 2-cocycle Σ representing λ :

Σ(f, g) = 〈fdg〉 :=
( ∫

T2

f∂xgω
)
[dx] +

( ∫
T2

f∂ygω
)
[dy] ∈ H1

dR(T2) ∼= H1
dR(T2)∗.

We know that Σ is extendible because the transgression map vanishes. An ex-
tension of Σ to a continuous 2-cocycle on the Lie algebra of symplectic vector
fields is Σ′(X, Y ) = 〈fXdfY 〉 for fX the unique zero integral function such that
iXω−〈iXω〉 = dfX . The central extension defined by Σ′ is Kirillov’s 2-dimensional
central extension of the Lie algebra of symplectic vector fields on the 2-torus from
[2] Section 5.

Surfaces of higher genus g ≥ 2 have injective transgression maps, so for
[α] 6= 0 the cocycle σα is not extendible to the Lie algebra of symplectic vector
fields.

Acknowledgments: We gratefully acknowledge Alessandro Savo for his
support and encouraging: part of this work was done during an EDGE postdoctoral
fellowship at La Sapienza University in Rome in 2002. We are grateful to Karl-
Hermann Neeb for his interest, patience and for the fruitful discussions. We also
thank the referee for his corrections and suggestions.

2. Extending continuous 2-cocycles on a perfect ideal h to g

In this section we prove the exactness of a five term sequence involving the second
and third continuous cohomology space associated to a perfect ideal of a Fréchet–
Lie algebra.

Let g be a Fréchet–Lie algebra and z a topological g-module. On the space
Cp

c (g, z) of continuous alternating z-valued maps on g we define the differential

dgσ(X1, . . . , Xp+1) =

p+1∑
i=1

(−1)i+1Xi.σ(X1, . . . , X̂i, . . . , Xp+1)

+
∑
i<j

(−1)i+jσ([Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xp+1).

The cohomology H∗
c (g, z) of this chain complex is the continuous cohomology of g

with values in the g-module z . We write H∗
c (g) if z = R is the trivial g-module.

There is a bijection between H2
c (g, z) and topologically split Lie algebra extensions

of g by the g-module z .

Given an ideal h of g , there is a natural action of g on Cp
c (h) by

(LXσ)(H1, . . . , Hp) = −
p∑

i=1

σ(H1, . . . , [X, Hi], . . . , Hp).

It commutes with dh , hence induces an action on Hp
c (h). Let H∗

c (h)g denote the
g-invariant continuous cohomology space of h .

We denote by h∗ the dual of h with its canonical g-module structure. Let
C1

c (g, h∗)T be the space of linear maps θ : g → h∗ such that the bilinear map
(X, H) ∈ g × h 7→ θ(X)(H) is continuous and its restriction σ : h × h → R is
alternating. Then B1(g, h∗) is a subset of C1

c (g, h∗)T and we define the cohomology
space H1

c (g, h∗)T to be the quotient (Z1(g, h∗) ∩ C1
c (g, h∗)T )/B1(g, h∗). In the

discrete case this space is defined in [5], Remark II.3.
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Lemma 2.1 If h is a perfect ideal of the Fréchet–Lie algebra g, then the restric-
tion map induces an isomorphism in cohomology

ρ : [θ] ∈ H1
c (g, h∗)T 7→ [σ] ∈ H2

c (h)g

defined by σ(H, K) = θ(H)(K). Its inverse is uniquely determined by the relation
LXσ = dhθ(X) for all X ∈ g, i.e.

θ(X)[H, K] = σ([X, H], K) + σ(H, [X, K]), H,K ∈ h. (1)

Proof. To see that the restriction map ρ is well defined, we check that σ is a 2-
cocycle whose cohomology class is g-invariant. Indeed, by the 1-cocycle condition
for θ we get for X ∈ g :

−(LXσ)(H, K) = σ([X, H], K) + σ(H, [X, K])

= θ([X, H])(K) + θ(H)([X, K]) = θ(X)([H, K]).

Specializing to X ∈ h we obtain that σ is a Lie algebra 2-cocycle on h .

To show that the restriction map ρ is injective, we assume θ is an h∗ -valued
1-cocycle on g whose restriction to h is a coboundary σ = dhβ for β ∈ h∗ . Then
we have for X ∈ g and H, K ∈ h

θ(X)[H, K] = θ([X, H])(K) + θ(H)([X,K])

= −β([[X, H].K])− β([H, [X, K]]) = β([[H, K], X])

and the perfectness of h imply θ = dgβ .

Given [σ] ∈ H2
c (h)g , there is a map θ ∈ C1(g, h∗) such that LXσ = dhθ(X)

for all X ∈ g . It is uniquely determined since h is a perfect Lie algebra, and it
extends the 2-cocycle σ . The fact that θ is an h∗ -valued 1-cocycle on g follows
from

dh(θ[X, Y ]) = L[X,Y ]σ = LX(dhθ(Y ))− LY (dhθ(X)) = dh(LXθ(Y )− LY θ(X))

since [LX , LY ] = L[X,Y ] and [h, h] = h .

It remains to check that θ : g×h → R is continuous. This is the only place
where the Fréchet assumption is needed. Since h is a perfect Lie algebra, the Lie
bracket induces a continuous surjective map on the completion Λ2(h)c of Λ2h with
respect to the projective tensor topology. By the open mapping theorem for Fréchet
spaces [7], the linear continuous surjective map 1g × [·, ·] : g×Λ2(h)c → g× h is a
quotient map. Because σ is continuous, the fact that the composition θ◦(1g×[·, ·])
is continuous on g × Λ2(h)c implies that θ is continuous. Hence [θ] ∈ H1

c (g, h∗)T

is the preimage of [σ] ∈ H2
c (h)g and thus ρ is surjective.

Assume that h is a perfect ideal of g and the exact sequence

0 → h
i→ g

p→ g/h → 0 (2)

is topologically split, i.e. p admits a continuous section s : g/h → g . Then we can
define a transgression map

t : H2
c (h)g → H3

c (g/h), t([σ]) = [dgσ′], (3)
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where σ′ ∈ C2
c (g) is any continuous alternating extension of the 1-cocycle θ : g →

h∗ defined by (1). It is well defined since

(iHdgσ
′)(X, Y ) = −σ′([X, Y ], H) + σ′(X, [Y, H])− σ′(Y, [X, H])

= −θ([X,Y ])(H) + θ(X)[Y, H]− θ(Y )[X, H] = (dgθ)(X, Y )(H) = 0

implies that dgσ
′ indeed factors through a 3-cocycle on g/h , denoted dgσ′ . Its

cohomology class in H3
c (g/h) does not depend on the choice of the continuous

extension σ′ : two choices σ′ and σ′
1 differ by p∗β with β ∈ C2

c (g/h), hence dgσ′

and dgσ′
1 differ by the coboundary dg/hβ .

Proposition 2.2 If the extension 0 → h
i→ g

p→ g/h → 0 is a semidirect product
and h is perfect, then the transgression map vanishes.

Proof. Denoting by · the Lie algebra action of g/h on h , the Lie bracket on
the semidirect product is

[(H1, b1), (H2, b2)] = ([H1, H2] + b1 ·H2 − b2 ·H1, [b1, b2])

for H1, H2 ∈ h and b1, b2 ∈ g/h .

Given [σ] ∈ H2
c (h)g , there is a unique h∗ -valued 1-cocycle θ on g deter-

mined by LXσ = dhθ(X), X ∈ g . In particular θ(H, b) = iHσ + θ(b). An
alternating extension σ′ ∈ C2

c (g) of θ is

σ′((H1, b1), (H2, b2)) = σ(H1, H2) + θ(b1)(H2)− θ(b2)(H1).

A short computation leads to

dgσ
′((H1, b1), (H2, b2), (H3, b3))

= dhσ(H1, H2, H3) +
∑
cycl

(dhθ(b1)− Lb1σ)(H2, H3)−
∑
cycl

dgθ(b1, b2)(H3) = 0,

hence t([σ]) = 0.

Theorem 2.3 If h is a perfect ideal of the Fréchet–Lie algebra g and (2) is
topologically split, then the sequence

0 → H2
c (g/h)

p∗→ H2
c (g)

i∗→ H2
c (h)g t→ H3

c (g/h)
p∗→ H3

c (g)

is exact. In particular H2
c (g)/H2

c (g/h) is isomorphic to Ker t.

Proof. There are four things to be shown.

The map p∗ : H2
c (g/h) → H2

c (g) is injective: Assume p∗[β] = 0, i.e. β is a
continuous 2-cocycle on g/h such that p∗β = dgα for a continuous linear map α
on g . Then [h, h] = h implies that α vanishes on h . So α = p∗ᾱ for a continuous
linear map ᾱ on g/h and β = dg/hᾱ .

Im p∗ = Ker i∗ : First i∗p∗ = 0 implies Im p∗ ⊂ Ker i∗ . For the converse let
[ω] ∈ Ker i∗ . Then there is a continuous linear map α on h with i∗ω = dhα . For
any α′ extending α continuously to g , the 2-cocycle ω′ = ω − dgα

′ vanishes h .



302 Vizman

Then ω′ vanishes also on g × h because h is a perfect ideal and ω′(X, [H, K]) =
−ω′(H, [K, X]) − ω′(K, [X, H]) = 0. It follows that ω′ is of the form p∗β for a
continuous 2-cocycle β on g/h , hence [ω] = p∗[β] ∈ Im p∗ .

Im i∗ = Ker t : If ω is a 2-cocycle on g , then ti∗[ω] = [dgω] = 0, hence
Ker t ⊃ Im i∗ . To show the reverse inclusion, let [σ] ∈ Ker t and θ : g → h∗ the
unique 1-cocycle from Lemma 1 extending σ . Because the transgression of [σ]
is zero, there exists γ ∈ C2

c (g/h) such that dgσ′ = dg/hγ , with σ′ a continuous
extension of θ . Then ω = σ′− p∗γ is a continuous 2-cocycle on g extending σ , so
[σ] = i∗[ω] and Ker t ⊂ Im i∗ .

Im t = Ker p∗ : First p∗t([σ]) = p∗[dgσ′] = [dgσ
′] = 0 implies Im t ⊂ Ker p∗ .

For the converse let [β] ∈ Ker p∗ , so there is a continuous 2-cochain σ′ on g

such that p∗β = dgσ
′ . The restriction σ of σ′ to h satisfies dhσ = 0 and

LXσ = dhi
∗iXσ′ . So the 1-cocycle θ : g → h∗ from Lemma 2.1 corresponding

to [σ] ∈ H2
c (h)g is θ(X) = i∗iXσ′ and σ′ is a continuous extension of the map

(X, H) 7→ θ(X)(H) to g× g . Hence t[σ] = [dgσ′] = [β] and Ker p∗ ⊂ Im t .

Remark 2.4 The 2-cocycle σ on h with [σ] ∈ H2
c (h)g can be extended to a

continuous 2-cocycle on g if and only if its transgression is zero. If g/h is abelian,
each extension σ′ of the unique h∗ -valued 1-cocycle θ which restricts to σ is a
2-cocycle on g extending σ and all the other extensions are obtained by adding
elements of the form p∗β with β ∈ Λ2(g/h)∗ .

Any continuous linear section s : g/h → g defines the continuous retraction
η : g → h by η(X) = X − spX for X ∈ g . Then there is a unique continuous
extension σ′ of θ vanishing on the image of s :

σ′(X, Y ) = θ(X)(η(Y ))− θ(Y )(η(X))− σ(η(X), η(Y ))

= σ(η(X), η(Y )) + θ(spX)(η(Y ))− θ(spY )(η(X)).

The 5-term exact sequence from Theorem 2.3 written for discrete Lie algebra
cohomology spaces is the content of Theorem 6 for m = 2 in [1]. The Hochschild-
Serre spectral sequence for an ideal h of g is the spectral sequence associated to
the filtration F pCp+q(g) = {σ ∈ Cp+q(g) : iH1 . . . iHq+1σ = 0, for all Hi ∈ h} . This
means dr : Ep,q

r → Ep+r,q−r+1
r is induced by dg , with

Ep,q
r = {a ∈ F pCp+q : dga ∈ F p+rCp+q+1}/(dg(F

p−r+1Cp+q−1) + F p+1Cp+q).

The E2 -term is in this case Ep,q
2 = Hp(g/h, Hq(h)) and the spectral sequence

abuts to H∗(g). For perfect h we obtain that the map d3 : E0,2
3 → E3,0

3 from the
Hochschild-Serre spectral sequence can be identified with the transgression map
t : H2(h)g → H3(g/h).

The restriction map i∗ : H2(g) → H2(h)g for an arbitrary ideal h of g is
studied in [5].

3. Special 2-cocycles on h

In [6] Section 3, a Lie algebra 2-cocycle σD(H, K) := 〈D(H), K〉 on h is associated
to every anti self-dual derivation D of a Lie algebra h with respect to an invariant
symmetric bilinear form 〈·, ·〉 on h , i.e. 〈D(H), K〉+ 〈H, D(K)〉 = 0.
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A particular case is the continuous 2-cocycle σX = 〈[X, ·], ·〉 for X ∈ g ,
where h is an ideal of the topological Lie algebra g with an ad(g)-invariant
continuous symmetric bilinear form 〈·, ·〉 on h (here D = ad(X)|h ). For H ∈ h

the cocycle σH is the coboundary of 〈H, ·〉 ∈ C1
c (h). Hence we get a linear map

λ : g/h → H2
c (h). When g/h is finite dimensional, we can view λ as a canonical

(g/h)∗ -valued 2-cohomology class on h .

Proposition 3.1 Let h be a perfect ideal of the topological Lie algebra g with
an ad(g)-invariant symmetric bilinear form 〈·, ·〉 on h and assume that (2) is
topologically split with g/h abelian. Then the cohomology class of the cocycle σX =
〈[X, ·], ·〉 is g-invariant and its image t([σX ]) ∈ Λ3(g/h)∗ under the transgression
map is (b1, b2, b3) 7→

∑
cycl〈[X, sb1], [sb2, sb3]〉, with s : g/h → g any continuous

section of (2).

Proof. For Y ∈ g and H, K ∈ h we compute

(LY σX)(H, K) = −σX([Y,H], K)− σX(H, [Y, K])

= 〈[X, K], [Y,H]〉 − 〈[X, H], [Y,K]〉
= −〈H, [Y, [X, K]]〉+ 〈H, [X, [Y,K]]〉
= −〈H, [K, [X, Y ]]〉 = −〈[X,Y ], [H, K]〉.

At the last step we use [g, g] ⊂ h (since g/h is abelian). We get that LY σX =
dh(θX(Y )) with θX(Y ) = 〈[X, Y ], ·〉 , so the cohomology class [σX ] is g-invariant
and θX is the unique h∗ -valued 1-cocycle on g extending σX .

Let σ′
X ∈ C2

c (g) be a continuous extension of the 1-cocycle θX . Then
t([σX ]) = [dgσ′

X ] and

dgσ′
X(b1, b2, b3) =

∑
cycl

σ′
X(sb1, [sb2, sb3])

=
∑
cycl

θX(sb1)([sb2, sb3]) =
∑
cycl

〈[X, sb1], [sb2, sb3]〉,

for b1, b2, b3 ∈ g/h .

Characteristic classes for Lie algebra extensions: A short exact
sequence of Lie algebras:

0 → h
i→ g

p→ k → 0, (4)

is an extension g of k by h . The extension is called abelian if h is an abelian
Lie algebra. In this case h carries a canonical k-module structure induced by
the adjoint action of g on h . An abelian extension of the Lie algebra k by the
k-module h is described by a cohomology class in H2(k, h).

The characteristic classes are the cohomological objects associated to a non-
abelian extension of k by h . These are images of the Weil homomorphism defined
below and are elements of H∗(k, V ), with V an arbitrary k-module.

A linear section s : k → g for (4) is called a connection. The defect of
s to be a Lie algebra homomorphism is the curvature Ω : k × k → h , defined
by Ω(b1, b2) = [sb1, sb2] − s[b1, b2] . Denoting by η : g → h the corresponding
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retraction, the structure equation and the Bianchi identity hold in the following
form: p∗Ω = −dη + 1

2
[η, η] and dp∗Ω = −[p∗Ω, η] ; see [8] Section 3.

We can recover the notions of connection and curvature of a principal bundle
in this way. There is an exact sequence of Lie algebras and C∞(M)-modules
associated to the principal G-bundle P → M ,

0 → C∞(P, g)G → X(P )G → X(M) → 0,

i.e. the Lie algebra of G-invariant vector fields of P is an extension of the Lie alge-
bra of vector fields on M by the Lie algebra of G-equivariant g-valued functions
on P (vertical G-invariant vector fields on P ). A C∞(M)-linear section s can be
identified with the horizontal lift of a principal connection and Ω comes from its
curvature 2-form on P .

With the help of the curvature Ω, an analogue of the Weil homomorphism
can be constructed like in [3] Section 2. For any k-module V , let In

V (h) be the set
of g-equivariant V -valued symmetric n-linear mappings on h , i.e.

n∑
i=1

ϕ(H1, . . . , [X, Hi], . . . , Hn) = p(X)ϕ(H1, . . . , Hn), for all X ∈ g.

Then the Weil homomorphism

W : In
V (h) → H2n(k, V ), W (ϕ) := [Alt(ϕ ◦ (Ω⊗ · · · ⊗ Ω))],

does not depend on the chosen connection s . Here Alt denotes anti-symmetrization
of multilinear forms.

Remark 3.2 Let h be an ideal of the Lie algebra g with an ad(g)-invariant
symmetric bilinear form 〈·, ·〉 on h . Then 〈·, ·〉 ∈ I2

R(h) and the characteristic
class Q = W (〈·, ·〉) ∈ H4(g/h) is the cohomology class of the 4-cocycle

(a, b1, b2, b3) 7→
1

3

∑
cycl

〈Ω(a, b1), Ω(b2, b3)〉, bi ∈ g/h. (5)

We can reformulate Proposition 3.1 as:

Corollary 3.3 If h is a perfect ideal of the topological Lie algebra g with an
ad(g)-invariant symmetric bilinear form 〈·, ·〉 on h, and (2) is topologically split
with g/h abelian, then the transgression of σX = 〈[X, ·], ·〉 is t[σX ] = 3ip(X)Q for
the characteristic class Q = W (〈·, ·〉) ∈ Λ4(g/h)∗ .

Proof. The curvature is in this case Ω(a, b) = [sa, sb] . With Proposition 3.1
we obtain

t([σX ])(b1, b2, b3) =
∑
cycl

〈[sp(X), sb1], [sb2, sb3]〉+
∑
cycl

〈[η(X), sb1], [sb2, sb3]〉

= 3Q(p(X), b1, b2, b3) +
∑
cycl

〈η(X), [sb1, [sb2, sb3]]〉 = 3ip(X)Q(b1, b2, b3),

using the relation X = sp(X) + η(X) in the first line.

Remark 3.4 It follows from Remark 2.4 that σX is extendible to g if and only if
ip(X)Q = 0. So the vanishing of the characteristic class Q ensures the extendibility
of all σX for X ∈ g .
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4. 2-cocycles on the Lie algebras of Hamiltonian and symplectic
vector fields

Let (M, ω) be a compact connected 2n-dimensional symplectic manifold. A vec-
tor field X is called symplectic if LXω = 0 and the vector field Hf is called
Hamiltonian with Hamiltonian function f if iHf

ω = df . Since M is com-
pact and connected, each Hamiltonian vector field has a unique zero integral
Hamiltonian function. The Lie algebra ham(M, ω) of Hamiltonian vector fields
on M is an ideal of the Fréchet–Lie algebra symp(M, ω) of symplectic vector
fields. It can be identified with the Lie algebra of zero integral functions on
M with the Poisson bracket {f, g} = −ω(Hf , Hg). The quotient Lie algebra
symp(M, ω)/ham(M, ω) = H1

dR(M) is abelian and the projection of a symplectic
vector field X is p(X) = [iXω] , so that

0 → ham(M, ω) → symp(M, ω)
p→ H1

dR(M) → 0 (6)

is a topologically split exact sequence of Lie algebras. We also know that the Lie
algebra of Hamiltonian vector fields is perfect [4]. The inner product 〈Hf , Hg〉 =∫

M
fgωn is symp(M, ω)-invariant. Indeed, for any symplectic vector field X , the

Lie bracket [X, Hf ] = HLXf and LXf is a zero integral Hamiltonian function. So

〈[X,Hf ], Hg〉+ 〈Hf , [X, Hg]〉 =

∫
M

(gLXf + fLXg)ωn =

∫
M

LX(fg)ωn = 0.

Hence all the requirements from Section 3 are satisfied.

The special 2-cocycles σX = 〈[X, ·], ·〉 for X ∈ symp(M, ω) coincide with
the cocycles on the Lie algebra of Hamiltonian vector fields considered in [6] Section
9:

σX(Hf , Hg) = 〈[X,Hf ], Hg〉 = −〈Hf , [X, Hg]〉 = 〈Hf , Hα(Hg)〉 =

∫
M

fα(Hg)ω
n,

where α = iXω is a closed 1-form. In the third equality we use LXg = ω(Hg, X) =
−α(Hg). It follows from the proof of Proposition 3.1 that the ham(M, ω)∗ -
valued 1-cocycle θX on symp(M, ω) extending σX is in this case θX(Y )(Hf ) =
〈[X, Y ], Hf〉 = −

∫
M

fω(X, Y )ωn . Note that the Hamiltonian function −ω(X,Y )
for [X,Y ] has non-zero integral in general.

To see which of the cocycles σX are extendible to the Lie algebra of
symplectic vector fields, we compute the characteristic class Q = 〈·, ·〉 . Let
Ω be the curvature of a connection s : H1

dR(M) → symp(M, ω), a continu-
ous section of (6). We denote by (·, ·) the symplectic pairing on H1

dR(M), i.e.
(b1, b2) =

∫
M

b1 ∧ b2 ∧ [ω]n−1 . Then [isbω] = b and
∫

M
ω(sb1, sb2)ω

n = n(b1, b2).
We get that Ω(b1, b2) = [sb1, sb2] is the Hamiltonian vector field with the zero
integral Hamiltonian function f = n(b1, b2)− ω(sb1, sb2).

Proposition 4.1 The characteristic class Q = W (〈·, ·〉) ∈ Λ4H1
dR(M)∗ of the Lie

algebra extension (6) is

Q(a, b1, b2, b3) =
1

3
n(n− 1)

∫
M

a ∧ b1 ∧ b2 ∧ b3 ∧ [ω]n−2 − 1

3
n2

∑
cycl

(a, b1)(b2, b3),

with a, bi ∈ H1
dR(M) and the cyclic sum taken over the indices 1,2,3.
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Proof. Using formula (5) in Section 3 and the fact that Ω(b1, b2) is the Hamil-
tonian vector field with zero integral Hamiltonian function n(b1, b2)− ω(sb1, sb2),
we compute:

3Q(a, b1, b2, b3) =
∑
cycl

〈Ω(a, b1), Ω(b2, b3)〉

=
∑
cycl

∫
M

(n(a, b1)− ω(sa, sb1))(n(b2, b3)− ω(sb2, sb3))ω
n

=
∑
cycl

∫
M

ω(sa, sb1)ω(sb2, sb3)ω
n − n2

∑
cycl

(a, b1)(b2, b3).

It remains to calculate the first cyclic sum, which we denote by

S
not.
=

∑
cycl

∫
M

ω(sa, sb1)ω(sb2, sb3)ω
n.

Applying the formula iXα ∧ β = (−1)|α|+1α ∧ iXβ for |α| + |β| = dim M + 1, we
obtain

S = n
∑
cycl

∫
M

isb1isaω ∧ isb2ω ∧ isb3ω ∧ ωn−1

= n
∑
cycl

∫
M

ω(sb2, sb1)isaω ∧ isb3ω ∧ ωn−1

−n
∑
cycl

∫
M

ω(sb3, sb1)isaω ∧ isb2ω ∧ ωn−1

+n(n− 1)
∑
cycl

∫
M

isaω ∧ isb1ω ∧ isb2ω ∧ isb3ω ∧ ωn−2

=
∑
cycl

∫
M

ω(sa, sb3)ω(sb2, sb1)ω
n −

∑
cycl

∫
M

ω(sa, sb2)ω(sb3, sb1)ω
n

+n(n− 1)
∑
cycl

∫
M

a ∧ b1 ∧ b2 ∧ b3 ∧ [ω]n−2

= −2S + 3n(n− 1)

∫
M

a ∧ b1 ∧ b2 ∧ b3 ∧ [ω]n−2.

We get

S = n(n− 1)

∫
M

a ∧ b1 ∧ b2 ∧ b3 ∧ [ω]n−2

and the result follows.

Theorem 4.2 Given a closed 1-form α on the symplectic manifold (M, ω), the
2-cocycle σα(Hf , Hg) =

∫
M

fα(Hg)ω
n on the Lie algebra of Hamiltonian vector

fields is extendible to the Lie algebra of symplectic vector fields if and only if the
de Rham cohomology class a = [α] satisfies the relation

(n− 1)

∫
M

a ∧ b1 ∧ b2 ∧ b3 ∧ [ω]n−2 = n
∑
cycl

(a, b1)(b2, b3) (7)

for all bi ∈ H1
dR(M).
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Proof. The transgression of [σα] is

t([σα])(b1, b2, b3) = n(n− 1)

∫
M

a ∧ b1 ∧ b2 ∧ b3 ∧ [ω]n−2 − n2
∑
cycl

(a, b1)(b2, b3) (8)

by Corollary 3.3 and Proposition 4.1. Then the result follows from Remark 2.4.

The following result was announced in [6] Section 9:

Theorem 4.3 The second continuous cohomology space of the Lie algebra of
Hamiltonian vector fields on a compact symplectic manifold M is isomorphic to
H1

dR(M), the isomorphism being [α] 7→ [σα], with σα(Hf , Hg) =
∫

M
fα(Hg)ω

n .

Each cohomology class [σα] is symp(M, ω)-invariant, hence the second con-
tinuous symp(M, ω)-invariant cohomology space of ham(M, ω) is again H1

dR(M).

Corollary 4.4 The second continuous cohomology space of the Lie algebra of
symplectic vector fields is isomorphic to Ker t⊕Λ2H1

dR(M)∗ , where t : H1
dR(M) →

Λ3H1
dR(M)∗ is the transgression map given by (8).

Example 4.5 For surfaces the condition (7) becomes
∑

cycl(a, b1)(b2, b3) = 0. On

surfaces of genus 1 all σα are extendible, since dim H1
dR(M) = 2 implies that

the transgression map vanishes. On surfaces of genus ≥ 2 none of the σα are
extendible, i.e. Ker t = 0. Indeed, for any non-zero element a ∈ H1

dR(M), we can
find b1, b2, b3 ∈ H1

dR(M) such that (a, b1) = (b2, b3) = 1 and (a, b2) = (a, b3) =
(b1, b2) = (b1, b3) = 0, hence t(a)(b1, b2, b3) 6= 0.

Specializing the previous example to the 2-torus T2 = R2/Z2 with canonical
symplectic form ω = dx∧dy , one obtains Kirillov’s 2-dimensional central extension
of symp(T2, ω) from [2] Section 5. We recall that the canonical H1

dR(M)∗ -valued
2-cohomology class λ on ham(M, ω) mentioned in the beginning of Section 3
is λ([α]) = [σα] for any closed 1-form α . The definition is correct since the
cohomology class of the cocycle σα depends only on the de Rham cohomology
class of α .

We identify H1
dR(T2) with its dual via a 7→

∫
T2 · ∧ a . There is a canonical

2-cocycle Σ representing λ , namely

Σ(Hf , Hg) 7→ [〈fdg〉] ∈ H1
dR(T2) ∼= H1

dR(T2)∗,

with 〈·〉 denoting the average of a 1-form on the 2-torus

〈adx + bdy〉 =
( ∫

T2

aω
)
dx +

( ∫
T2

bω
)
dy.

Indeed, ∫
T2

dx ∧ Σ(Hf , Hg) =

∫
T2

f∂ygdx ∧ dy = σdx(Hf , Hg)

and the same identity holds for dy .

It follows from Example 4.5 above that Σ can be extended to a 2-cocycle on
the Lie algebra of symplectic vector fields on the 2-torus. The 1-cocycle extending
Σ is

Θ : symp(T2, ω) → ham(T2, ω)∗ ⊗H1
dR(T2), Θ(X)(Hf ) = −[〈fiXω〉].
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To see this we show that LXΣ = dh(Θ(X)). We use df ∧ dg = −{f, g}ω in the
following calculation:

(LXΣ)(Hf , Hg) = −[〈LXfdg〉] + [〈LXgdf〉] = −[〈iX(df ∧ dg)〉]
= [〈{f, g}iXω〉] = −Θ(X)([Hf , Hg]) = dh(Θ(X))(Hf , Hg).

With Remark 2.4 we can find a special extension Σ′ of Σ. If α is a closed
1-form on T2 , then α − 〈α〉 is an exact 1-form. For X a symplectic vector field,
iXω is closed and we denote by fX the unique zero integral function such that
iXω − 〈iXω〉 = dfX . Let Σ′ be the 2-cocycle extending Σ and vanishing on the
image of the connection s defined by s([dx]) = −∂y , s([dy]) = ∂x . In this case the
retraction η : symp(T2, ω) → ham(T2, ω) is η(X) = X − s[iXω] = X − s[〈iXω〉] =
HfX

. Hence

Σ′(X, Y ) = Θ(X)(η(Y ))−Θ(Y )(η(X))− Σ(η(X), η(Y ))

= −〈fY iXω〉+ 〈fXiY ω〉 − 〈fXdfY 〉
= −〈fY dfX〉+ 〈fX〈iY ω〉〉 − 〈fY 〈iXω〉〉 = −〈fY dfX〉 = 〈fXdfY 〉

is the extension we were looking for.

This means Σ′(∂x, Hf ) = Σ′(∂y, Hf ) = 0 and Σ′(Hf , Hg) = Σ(Hf , Hg) =
[〈fdg〉] . It defines Kirillov’s 2-dimensional central extension of the Lie algebra of
symplectic vector fields on the 2-torus

0 → H1(T2) → ̂symp(T2, ω) → symp(T2, ω) → 0.

The bracket is given by: [∂x, Hf ] = H∂xf , [∂y, Hf ] = H∂yf , [∂x, ∂y] = 0,
[Hf1 , Hf2 ] = H{f1,f2} + 〈f1df2〉 , the Lie algebra symp(T2, ω) being linearly gen-
erated by ∂x , ∂y and ham(T2, ω).

Example 4.6 For the flat 2n-torus T2n with canonical symplectic form ω , the
Lie algebra of symplectic vector fields is the semidirect product of the Lie algebra
of Hamiltonian vector fields with R2n , the abelian Lie algebra of constant vector
fields. Proposition 2.2 shows that the transgression map t : H2

c (h)g → H3
c (g/h)

is trivial for a Fréchet–Lie algebra g which is a semidirect product of its perfect
ideal h and the quotient Lie algebra g/h . It follows that all the 2-cocycles σα are
extendible. In particular we recover the result from Example 4.5 for the 2-torus.

Example 4.7 Thurston’s symplectic manifold ([9] page 10) is M = R4/Γ with
Γ the discrete group generated by the following symplectic diffeomorphisms of
(R4, dx1 ∧ dy1 + dx2 ∧ dy2):

(x1, y1, x2, y2) 7→ (x1, y1, x2 + 1, y2)

(x1, y1, x2, y2) 7→ (x1, y1, x2, y2 + 1)

(x1, y1, x2, y2) 7→ (x1 + 1, y1, x2, y2)

(x1, y1, x2, y2) 7→ (x1, y1 + 1, x2 + y2, y2).

Since Γ/[Γ, Γ] = Z3 , the first de Rham cohomology group is 3-dimensional. Then
the map t : H1

dR(M) = R3 → Λ3H1
dR(M)∗ = R has a non-trivial kernel, so there

are 2-cocycles σα on ham(M, ω) which can be extended to symp(M, ω).
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