Central Extensions of the Lie Algebra of Symplectic Vector Fields

Cornelia Vizman

Communicated by K.-H. Neeb

Abstract. For a perfect ideal \mathfrak{h} of the Lie algebra \mathfrak{g} , the extendibility of continuous 2-cocycles from \mathfrak{h} to \mathfrak{g} is studied, especially for 2-cocycles of the form $\langle [X, \cdot], \cdot \rangle$ on \mathfrak{h} with $X \in \mathfrak{g}$, when a \mathfrak{g} -invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$ on \mathfrak{h} is available. The results are then applied to extend continuous 2-cocycles from the Lie algebra of Hamiltonian vector fields to the Lie algebra of symplectic vector fields on a compact symplectic manifold.

Mathematics Subject Classification: 17B56, 17B66.

Key Words and Phrases: Central extension, symplectic and Hamiltonian vector field.

1. Introduction

Given a compact 2n-dimensional symplectic manifold (M, ω) , we denote by H_f the Hamiltonian vector field associated to the Hamiltonian function f. Then the Lie algebra $\mathfrak{ham}(M, \omega)$ of Hamiltonian vector fields can be identified with $(C_0^{\infty}(M), \{,\})$, the Lie algebra of zero integral functions with Poisson bracket $\{f, g\} = -\omega(H_f, H_g)$. The following continuous Lie algebra 2-cocycles on the Fréchet Lie algebra $\mathfrak{ham}(M, \omega)$ are considered in [6] Section 9:

$$\sigma_{\alpha}(H_f, H_g) = \int_M f\alpha(H_g)\omega^n,$$

for α an arbitrary closed 1-form on M.

We study the extendibility of these 2-cocycles to continuous 2-cocycles on the Fréchet Lie algebra $\mathfrak{symp}(M,\omega)$ of symplectic vector fields. It turns out that this property depends only on the de Rham cohomology classes of α and ω . Denoting by $(b_1, b_2) = \int_M b_1 \wedge b_2 \wedge [\omega]^{n-1}$ the symplectic pairing on $H^1_{dR}(M)$, in Theorem 4.2 is shown that σ_{α} is extendible if and only if

$$(n-1)\int_{M} [\alpha] \wedge b_{1} \wedge b_{2} \wedge b_{3} \wedge [\omega]^{n-2} = n \sum_{cycl} ([\alpha], b_{1})(b_{2}, b_{3})$$

for all $b_i \in H^1_{dR}(M)$.

ISSN 0949–5932 / \$2.50 © Heldermann Verlag

VIZMAN

We observe that if X is the symplectic vector field defined by $i_X \omega = \alpha$, the restriction to $\mathfrak{ham}(M, \omega)$ of the inner derivation $\mathrm{ad}(X)$ is $\mathrm{ad}(X)(f) = -\alpha(H_f)$. It follows that the cocycle σ_{α} is constructed with the derivation $\mathrm{ad}(X)$ and the $\mathfrak{symp}(M, \omega)$ -invariant inner product $\langle H_f, H_g \rangle = \int_M fg\omega^n$ on $\mathfrak{ham}(M, \omega)$, namely $\sigma_{\alpha} = \langle [X, \cdot], \cdot \rangle$. Moreover $\mathfrak{ham}(M, \omega)$ is a perfect ideal of $\mathfrak{symp}(M, \omega)$ and their quotient is the abelian Lie algebra $H^1_{dR}(M)$.

For this reason in Section 3 we consider for $X \in \mathfrak{g}$ the Lie algebra 2cocycles $\sigma_X = \langle [X, \cdot], \cdot \rangle$ on the ideal \mathfrak{h} of \mathfrak{g} in the following general setting: a perfect closed ideal \mathfrak{h} of the topological Lie algebra \mathfrak{g} , with $\mathfrak{g}/\mathfrak{h}$ abelian and with the canonical projection $p : \mathfrak{g} \to \mathfrak{g}/\mathfrak{h}$ admitting continuous linear sections, and an $\mathrm{ad}(\mathfrak{g})$ -invariant bilinear form $\langle \cdot, \cdot \rangle$ on \mathfrak{h} . Choosing a continuous linear section $s : \mathfrak{g}/\mathfrak{h} \to \mathfrak{g}$, we define $Q \in \Lambda^4(\mathfrak{g}/\mathfrak{h})^*$ by

$$Q(a, b_1, b_2, b_3) = \frac{1}{3} \sum_{cycl} \langle [sa, sb_1], [sb_2, sb_3] \rangle,$$

where the cyclic sum is taken over the indices 1,2,3. One can view $Q \in H^4(\mathfrak{g}/\mathfrak{h})$ as a characteristic class corresponding to the \mathfrak{g} -invariant bilinear form $\langle \cdot, \cdot \rangle$ for the Lie algebra extension

$$0 \to \mathfrak{h} \to \mathfrak{g} \xrightarrow{p} \mathfrak{g}/\mathfrak{h} \to 0.$$

In particular Q does not depend on the choice of the section s. We prove that σ_X is extendible to a continuous 2-cocycle on \mathfrak{g} if and only if $i_{p(X)}Q = 0$. This is shown with the help of the transgression homomorphism t which fits into the exact sequence

$$H^2_c(\mathfrak{g}) \xrightarrow{i^*} H^2_c(\mathfrak{h})^{\mathfrak{g}} \xrightarrow{t} H^3_c(\mathfrak{g}/\mathfrak{h}) \xrightarrow{p^*} H^3_c(\mathfrak{g}).$$

Here $H_c^*(\mathfrak{g})$ denotes the continuous cohomology of \mathfrak{g} and $H_c^*(\mathfrak{h})^{\mathfrak{g}}$ the continuous \mathfrak{g} -invariant cohomology of \mathfrak{h} .

A result from [6] Section 9 states that $H_c^2(\mathfrak{ham}(M,\omega))$ is isomorphic to $H_{dR}^1(M)$ by $[\alpha] \mapsto [\sigma_{\alpha}]$. All $[\sigma_{\alpha}]$ are $\mathfrak{symp}(M,\omega)$ -invariant cohomology classes, so $H_c^2(\mathfrak{ham}(M,\omega))^{\mathfrak{symp}(M,\omega)}$ is also isomorphic to $H_{dR}^1(M)$. We show that in this case the transgression map is:

$$t: H^1_{dR}(M) \to \Lambda^3(H^1_{dR}(M))^*$$

$$t(a)(b_1, b_2, b_3) = n(n-1) \int_M a \wedge b_1 \wedge b_2 \wedge b_3 \wedge [\omega]^{n-2} - n^2 \sum_{cycl} (a, b_1)(b_2, b_3).$$

The second continuous cohomology space of the Lie algebra of symplectic vector fields turns out to be isomorphic to $\operatorname{Ker} t \oplus \Lambda^2 H^1_{dR}(M)^*$.

For the flat 2n-torus \mathbb{T}^{2n} with canonical symplectic form ω , $\mathfrak{symp}(\mathbb{T}^{2n},\omega)$ is the semidirect product of $\mathfrak{ham}(\mathbb{T}^{2n},\omega)$ with \mathbb{R}^{2n} , the abelian Lie algebra of constant vector fields. The transgression map $t : H^2_c(\mathfrak{h})^{\mathfrak{g}} \to H^3_c(\mathfrak{g}/\mathfrak{h})$ is trivial for a Fréchet Lie algebra \mathfrak{g} which is a semidirect product of its perfect ideal \mathfrak{h} with $\mathfrak{g}/\mathfrak{h}$. It follows that all the 2-cocycles σ_{α} are extendible to the Lie algebra of symplectic vector fields, so $H^2_c(\mathfrak{symp}(\mathbb{T}^2,\omega)) \cong H^1_{dR}(\mathbb{T}^2) \oplus \Lambda^2 H^1_{dR}(\mathbb{T}^2)$.

For any compact symplectic manifold (M, ω) there is a canonical $H^1_{dR}(M)^*$ valued 2-cohomology class λ on $\mathfrak{ham}(M, \omega)$ given by $\lambda([\alpha]) = [\sigma_{\alpha}]$ for any closed

VIZMAN

1-form α . For the 2-torus there is a canonical 2-cocycle Σ representing λ :

$$\Sigma(f,g) = \langle fdg \rangle := \Big(\int_{\mathbb{T}^2} f\partial_x g\omega \Big) [dx] + \Big(\int_{\mathbb{T}^2} f\partial_y g\omega \Big) [dy] \in H^1_{dR}(\mathbb{T}^2) \cong H^1_{dR}(\mathbb{T}^2)^*.$$

We know that Σ is extendible because the transgression map vanishes. An extension of Σ to a continuous 2-cocycle on the Lie algebra of symplectic vector fields is $\Sigma'(X,Y) = \langle f_X df_Y \rangle$ for f_X the unique zero integral function such that $i_X \omega - \langle i_X \omega \rangle = df_X$. The central extension defined by Σ' is Kirillov's 2-dimensional central extension of the Lie algebra of symplectic vector fields on the 2-torus from [2] Section 5.

Surfaces of higher genus $g \geq 2$ have injective transgression maps, so for $[\alpha] \neq 0$ the cocycle σ_{α} is not extendible to the Lie algebra of symplectic vector fields.

Acknowledgments: We gratefully acknowledge Alessandro Savo for his support and encouraging: part of this work was done during an EDGE postdoctoral fellowship at La Sapienza University in Rome in 2002. We are grateful to Karl-Hermann Neeb for his interest, patience and for the fruitful discussions. We also thank the referee for his corrections and suggestions.

2. Extending continuous 2-cocycles on a perfect ideal \mathfrak{h} to \mathfrak{g}

In this section we prove the exactness of a five term sequence involving the second and third continuous cohomology space associated to a perfect ideal of a Fréchet– Lie algebra.

Let \mathfrak{g} be a Fréchet–Lie algebra and \mathfrak{z} a topological \mathfrak{g} -module. On the space $C^p_c(\mathfrak{g},\mathfrak{z})$ of continuous alternating \mathfrak{z} -valued maps on \mathfrak{g} we define the differential

$$d_{\mathfrak{g}}\sigma(X_1,\ldots,X_{p+1}) = \sum_{i=1}^{p+1} (-1)^{i+1} X_i \cdot \sigma(X_1,\ldots,\hat{X}_i,\ldots,X_{p+1}) + \sum_{i< j} (-1)^{i+j} \sigma([X_i,X_j],X_1,\ldots,\hat{X}_i,\ldots,\hat{X}_j,\ldots,X_{p+1}).$$

The cohomology $H_c^*(\mathfrak{g},\mathfrak{z})$ of this chain complex is the *continuous cohomology* of \mathfrak{g} with values in the \mathfrak{g} -module \mathfrak{z} . We write $H_c^*(\mathfrak{g})$ if $\mathfrak{z} = \mathbb{R}$ is the trivial \mathfrak{g} -module. There is a bijection between $H_c^2(\mathfrak{g},\mathfrak{z})$ and topologically split Lie algebra extensions of \mathfrak{g} by the \mathfrak{g} -module \mathfrak{z} .

Given an ideal \mathfrak{h} of \mathfrak{g} , there is a natural action of \mathfrak{g} on $C^p_c(\mathfrak{h})$ by

$$(L_X\sigma)(H_1,\ldots,H_p) = -\sum_{i=1}^p \sigma(H_1,\ldots,[X,H_i],\ldots,H_p).$$

It commutes with $d_{\mathfrak{h}}$, hence induces an action on $H^p_c(\mathfrak{h})$. Let $H^*_c(\mathfrak{h})^{\mathfrak{g}}$ denote the \mathfrak{g} -invariant continuous cohomology space of \mathfrak{h} .

We denote by \mathfrak{h}^* the dual of \mathfrak{h} with its canonical \mathfrak{g} -module structure. Let $C_c^1(\mathfrak{g},\mathfrak{h}^*)_T$ be the space of linear maps $\theta : \mathfrak{g} \to \mathfrak{h}^*$ such that the bilinear map $(X,H) \in \mathfrak{g} \times \mathfrak{h} \mapsto \theta(X)(H)$ is continuous and its restriction $\sigma : \mathfrak{h} \times \mathfrak{h} \to \mathbb{R}$ is alternating. Then $B^1(\mathfrak{g},\mathfrak{h}^*)$ is a subset of $C_c^1(\mathfrak{g},\mathfrak{h}^*)_T$ and we define the cohomology space $H_c^1(\mathfrak{g},\mathfrak{h}^*)_T$ to be the quotient $(Z^1(\mathfrak{g},\mathfrak{h}^*) \cap C_c^1(\mathfrak{g},\mathfrak{h}^*)_T)/B^1(\mathfrak{g},\mathfrak{h}^*)$. In the discrete case this space is defined in [5], Remark II.3.

Lemma 2.1 If \mathfrak{h} is a perfect ideal of the Fréchet–Lie algebra \mathfrak{g} , then the restriction map induces an isomorphism in cohomology

$$\rho: [\theta] \in H^1_c(\mathfrak{g}, \mathfrak{h}^*)_T \mapsto [\sigma] \in H^2_c(\mathfrak{h})^\mathfrak{g}$$

defined by $\sigma(H, K) = \theta(H)(K)$. Its inverse is uniquely determined by the relation $L_X \sigma = d_{\mathfrak{h}} \theta(X)$ for all $X \in \mathfrak{g}$, i.e.

$$\theta(X)[H,K] = \sigma([X,H],K) + \sigma(H,[X,K]), \quad H,K \in \mathfrak{h}.$$
 (1)

Proof. To see that the restriction map ρ is well defined, we check that σ is a 2-cocycle whose cohomology class is \mathfrak{g} -invariant. Indeed, by the 1-cocycle condition for θ we get for $X \in \mathfrak{g}$:

$$-(L_X\sigma)(H,K) = \sigma([X,H],K) + \sigma(H,[X,K])$$
$$= \theta([X,H])(K) + \theta(H)([X,K]) = \theta(X)([H,K]).$$

Specializing to $X \in \mathfrak{h}$ we obtain that σ is a Lie algebra 2-cocycle on \mathfrak{h} .

To show that the restriction map ρ is injective, we assume θ is an \mathfrak{h}^* -valued 1-cocycle on \mathfrak{g} whose restriction to \mathfrak{h} is a coboundary $\sigma = d_{\mathfrak{h}}\beta$ for $\beta \in \mathfrak{h}^*$. Then we have for $X \in \mathfrak{g}$ and $H, K \in \mathfrak{h}$

$$\theta(X)[H,K] = \theta([X,H])(K) + \theta(H)([X,K]) = -\beta([[X,H].K]) - \beta([H,[X,K]]) = \beta([[H,K],X])$$

and the perfectness of \mathfrak{h} imply $\theta = d_{\mathfrak{g}}\beta$.

Given $[\sigma] \in H^2_c(\mathfrak{h})^{\mathfrak{g}}$, there is a map $\theta \in C^1(\mathfrak{g}, \mathfrak{h}^*)$ such that $L_X \sigma = d_{\mathfrak{h}} \theta(X)$ for all $X \in \mathfrak{g}$. It is uniquely determined since \mathfrak{h} is a perfect Lie algebra, and it extends the 2-cocycle σ . The fact that θ is an \mathfrak{h}^* -valued 1-cocycle on \mathfrak{g} follows from

$$d_{\mathfrak{h}}(\theta[X,Y]) = L_{[X,Y]}\sigma = L_X(d_{\mathfrak{h}}\theta(Y)) - L_Y(d_{\mathfrak{h}}\theta(X)) = d_{\mathfrak{h}}(L_X\theta(Y) - L_Y\theta(X))$$

since $[L_X, L_Y] = L_{[X,Y]}$ and $[\mathfrak{h}, \mathfrak{h}] = \mathfrak{h}$.

It remains to check that $\theta : \mathfrak{g} \times \mathfrak{h} \to \mathbb{R}$ is continuous. This is the only place where the Fréchet assumption is needed. Since \mathfrak{h} is a perfect Lie algebra, the Lie bracket induces a continuous surjective map on the completion $\Lambda^2(\mathfrak{h})_c$ of $\Lambda^2\mathfrak{h}$ with respect to the projective tensor topology. By the open mapping theorem for Fréchet spaces [7], the linear continuous surjective map $1_{\mathfrak{g}} \times [\cdot, \cdot] : \mathfrak{g} \times \Lambda^2(\mathfrak{h})_c \to \mathfrak{g} \times \mathfrak{h}$ is a quotient map. Because σ is continuous, the fact that the composition $\theta \circ (1_{\mathfrak{g}} \times [\cdot, \cdot])$ is continuous on $\mathfrak{g} \times \Lambda^2(\mathfrak{h})_c$ implies that θ is continuous. Hence $[\theta] \in H^1_c(\mathfrak{g}, \mathfrak{h}^*)_T$ is the preimage of $[\sigma] \in H^2_c(\mathfrak{h})^{\mathfrak{g}}$ and thus ρ is surjective.

Assume that \mathfrak{h} is a perfect ideal of \mathfrak{g} and the exact sequence

$$0 \to \mathfrak{h} \xrightarrow{i} \mathfrak{g} \xrightarrow{p} \mathfrak{g}/\mathfrak{h} \to 0 \tag{2}$$

is topologically split, i.e. p admits a continuous section $s : \mathfrak{g}/\mathfrak{h} \to \mathfrak{g}$. Then we can define a *transgression map*

$$t: H_c^2(\mathfrak{h})^{\mathfrak{g}} \to H_c^3(\mathfrak{g}/\mathfrak{h}), \quad t([\sigma]) = [\overline{d_{\mathfrak{g}}\sigma'}], \tag{3}$$

Vizman

where $\sigma' \in C_c^2(\mathfrak{g})$ is any continuous alternating extension of the 1-cocycle $\theta : \mathfrak{g} \to \mathfrak{h}^*$ defined by (1). It is well defined since

$$(i_H d_g \sigma')(X, Y) = -\sigma'([X, Y], H) + \sigma'(X, [Y, H]) - \sigma'(Y, [X, H]) = -\theta([X, Y])(H) + \theta(X)[Y, H] - \theta(Y)[X, H] = (d_g \theta)(X, Y)(H) = 0$$

implies that $d_{\mathfrak{g}}\sigma'$ indeed factors through a 3-cocycle on $\mathfrak{g}/\mathfrak{h}$, denoted $\overline{d_{\mathfrak{g}}\sigma'}$. Its cohomology class in $H^3_c(\mathfrak{g}/\mathfrak{h})$ does not depend on the choice of the continuous extension σ' : two choices σ' and σ'_1 differ by $p^*\beta$ with $\beta \in C^2_c(\mathfrak{g}/\mathfrak{h})$, hence $\overline{d_{\mathfrak{g}}\sigma'}$ and $\overline{d_{\mathfrak{g}}\sigma'_1}$ differ by the coboundary $d_{\mathfrak{g}/\mathfrak{h}}\beta$.

Proposition 2.2 If the extension $0 \to \mathfrak{h} \xrightarrow{i} \mathfrak{g} \xrightarrow{p} \mathfrak{g}/\mathfrak{h} \to 0$ is a semidirect product and \mathfrak{h} is perfect, then the transgression map vanishes.

Proof. Denoting by \cdot the Lie algebra action of $\mathfrak{g}/\mathfrak{h}$ on \mathfrak{h} , the Lie bracket on the semidirect product is

$$[(H_1, b_1), (H_2, b_2)] = ([H_1, H_2] + b_1 \cdot H_2 - b_2 \cdot H_1, [b_1, b_2])$$

for $H_1, H_2 \in \mathfrak{h}$ and $b_1, b_2 \in \mathfrak{g}/\mathfrak{h}$.

Given $[\sigma] \in H^2_c(\mathfrak{h})^{\mathfrak{g}}$, there is a unique \mathfrak{h}^* -valued 1-cocycle θ on \mathfrak{g} determined by $L_X \sigma = d_{\mathfrak{h}} \theta(X), X \in \mathfrak{g}$. In particular $\theta(H, b) = i_H \sigma + \theta(b)$. An alternating extension $\sigma' \in C^2_c(\mathfrak{g})$ of θ is

$$\sigma'((H_1, b_1), (H_2, b_2)) = \sigma(H_1, H_2) + \theta(b_1)(H_2) - \theta(b_2)(H_1).$$

A short computation leads to

$$d_{\mathfrak{g}}\sigma'((H_1, b_1), (H_2, b_2), (H_3, b_3)) = d_{\mathfrak{h}}\sigma(H_1, H_2, H_3) + \sum_{cycl} (d_{\mathfrak{h}}\theta(b_1) - L_{b_1}\sigma)(H_2, H_3) - \sum_{cycl} d_{\mathfrak{g}}\theta(b_1, b_2)(H_3) = 0,$$

hence $t([\sigma]) = 0$.

Theorem 2.3 If \mathfrak{h} is a perfect ideal of the Fréchet-Lie algebra \mathfrak{g} and (2) is topologically split, then the sequence

$$0 \to H^2_c(\mathfrak{g}/\mathfrak{h}) \xrightarrow{p^*} H^2_c(\mathfrak{g}) \xrightarrow{i^*} H^2_c(\mathfrak{h})^{\mathfrak{g}} \xrightarrow{t} H^3_c(\mathfrak{g}/\mathfrak{h}) \xrightarrow{p^*} H^3_c(\mathfrak{g})$$

is exact. In particular $H_c^2(\mathfrak{g})/H_c^2(\mathfrak{g}/\mathfrak{h})$ is isomorphic to Kert.

Proof. There are four things to be shown.

The map $p^*: H^2_c(\mathfrak{g}/\mathfrak{h}) \to H^2_c(\mathfrak{g})$ is injective: Assume $p^*[\beta] = 0$, i.e. β is a continuous 2-cocycle on $\mathfrak{g}/\mathfrak{h}$ such that $p^*\beta = d_{\mathfrak{g}}\alpha$ for a continuous linear map α on \mathfrak{g} . Then $[\mathfrak{h}, \mathfrak{h}] = \mathfrak{h}$ implies that α vanishes on \mathfrak{h} . So $\alpha = p^*\bar{\alpha}$ for a continuous linear map $\bar{\alpha}$ on $\mathfrak{g}/\mathfrak{h}$ and $\beta = d_{\mathfrak{g}/\mathfrak{h}}\bar{\alpha}$.

Im $p^* = \text{Ker } i^*$: First $i^*p^* = 0$ implies $\text{Im } p^* \subset \text{Ker } i^*$. For the converse let $[\omega] \in \text{Ker } i^*$. Then there is a continuous linear map α on \mathfrak{h} with $i^*\omega = d_{\mathfrak{h}}\alpha$. For any α' extending α continuously to \mathfrak{g} , the 2-cocycle $\omega' = \omega - d_{\mathfrak{g}}\alpha'$ vanishes \mathfrak{h} .

Then ω' vanishes also on $\mathfrak{g} \times \mathfrak{h}$ because \mathfrak{h} is a perfect ideal and $\omega'(X, [H, K]) = -\omega'(H, [K, X]) - \omega'(K, [X, H]) = 0$. It follows that ω' is of the form $p^*\beta$ for a continuous 2-cocycle β on $\mathfrak{g}/\mathfrak{h}$, hence $[\omega] = p^*[\beta] \in \operatorname{Im} p^*$.

Im $i^* = \text{Ker } t$: If ω is a 2-cocycle on \mathfrak{g} , then $ti^*[\omega] = [\overline{d_{\mathfrak{g}}\omega}] = 0$, hence Ker $t \supset \text{Im } i^*$. To show the reverse inclusion, let $[\sigma] \in \text{Ker } t$ and $\theta : \mathfrak{g} \to \mathfrak{h}^*$ the unique 1-cocycle from Lemma 1 extending σ . Because the transgression of $[\sigma]$ is zero, there exists $\gamma \in C_c^2(\mathfrak{g}/\mathfrak{h})$ such that $\overline{d_{\mathfrak{g}}\sigma'} = d_{\mathfrak{g}/\mathfrak{h}}\gamma$, with σ' a continuous extension of θ . Then $\omega = \sigma' - p^*\gamma$ is a continuous 2-cocycle on \mathfrak{g} extending σ , so $[\sigma] = i^*[\omega]$ and Ker $t \subset \text{Im } i^*$.

Im $t = \operatorname{Ker} p^*$: First $p^*t([\sigma]) = p^*[\overline{d_{\mathfrak{g}}\sigma'}] = [d_{\mathfrak{g}}\sigma'] = 0$ implies $\operatorname{Im} t \subset \operatorname{Ker} p^*$. For the converse let $[\beta] \in \operatorname{Ker} p^*$, so there is a continuous 2-cochain σ' on \mathfrak{g} such that $p^*\beta = d_{\mathfrak{g}}\sigma'$. The restriction σ of σ' to \mathfrak{h} satisfies $d_{\mathfrak{h}}\sigma = 0$ and $L_X\sigma = d_{\mathfrak{h}}i^*i_X\sigma'$. So the 1-cocycle $\theta : \mathfrak{g} \to \mathfrak{h}^*$ from Lemma 2.1 corresponding to $[\sigma] \in H^2_c(\mathfrak{h})^{\mathfrak{g}}$ is $\theta(X) = i^*i_X\sigma'$ and σ' is a continuous extension of the map $(X, H) \mapsto \theta(X)(H)$ to $\mathfrak{g} \times \mathfrak{g}$. Hence $t[\sigma] = [\overline{d_{\mathfrak{g}}\sigma'}] = [\beta]$ and $\operatorname{Ker} p^* \subset \operatorname{Im} t$.

Remark 2.4 The 2-cocycle σ on \mathfrak{h} with $[\sigma] \in H^2_c(\mathfrak{h})^{\mathfrak{g}}$ can be extended to a continuous 2-cocycle on \mathfrak{g} if and only if its transgression is zero. If $\mathfrak{g}/\mathfrak{h}$ is abelian, each extension σ' of the unique \mathfrak{h}^* -valued 1-cocycle θ which restricts to σ is a 2-cocycle on \mathfrak{g} extending σ and all the other extensions are obtained by adding elements of the form $p^*\beta$ with $\beta \in \Lambda^2(\mathfrak{g}/\mathfrak{h})^*$.

Any continuous linear section $s : \mathfrak{g}/\mathfrak{h} \to \mathfrak{g}$ defines the continuous retraction $\eta : \mathfrak{g} \to \mathfrak{h}$ by $\eta(X) = X - spX$ for $X \in \mathfrak{g}$. Then there is a unique continuous extension σ' of θ vanishing on the image of s:

$$\sigma'(X,Y) = \theta(X)(\eta(Y)) - \theta(Y)(\eta(X)) - \sigma(\eta(X),\eta(Y))$$

= $\sigma(\eta(X),\eta(Y)) + \theta(spX)(\eta(Y)) - \theta(spY)(\eta(X)).$

The 5-term exact sequence from Theorem 2.3 written for discrete Lie algebra cohomology spaces is the content of Theorem 6 for m = 2 in [1]. The Hochschild-Serre spectral sequence for an ideal \mathfrak{h} of \mathfrak{g} is the spectral sequence associated to the filtration $F^p C^{p+q}(\mathfrak{g}) = \{ \sigma \in C^{p+q}(\mathfrak{g}) : i_{H_1} \dots i_{H_{q+1}} \sigma = 0, \text{ for all } H_i \in \mathfrak{h} \}$. This means $d_r : E_r^{p,q} \to E_r^{p+r,q-r+1}$ is induced by $d_{\mathfrak{g}}$, with

$$E_r^{p,q} = \{a \in F^p C^{p+q} : d_{\mathfrak{g}}a \in F^{p+r} C^{p+q+1}\} / (d_{\mathfrak{g}}(F^{p-r+1}C^{p+q-1}) + F^{p+1}C^{p+q}).$$

The E_2 -term is in this case $E_2^{p,q} = H^p(\mathfrak{g}/\mathfrak{h}, H^q(\mathfrak{h}))$ and the spectral sequence abuts to $H^*(\mathfrak{g})$. For perfect \mathfrak{h} we obtain that the map $d_3: E_3^{0,2} \to E_3^{3,0}$ from the Hochschild-Serre spectral sequence can be identified with the transgression map $t: H^2(\mathfrak{h})^{\mathfrak{g}} \to H^3(\mathfrak{g}/\mathfrak{h})$.

The restriction map $i^* : H^2(\mathfrak{g}) \to H^2(\mathfrak{h})^{\mathfrak{g}}$ for an arbitrary ideal \mathfrak{h} of \mathfrak{g} is studied in [5].

3. Special 2-cocycles on \mathfrak{h}

In [6] Section 3, a Lie algebra 2-cocycle $\sigma_D(H, K) := \langle D(H), K \rangle$ on \mathfrak{h} is associated to every anti self-dual derivation D of a Lie algebra \mathfrak{h} with respect to an invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$ on \mathfrak{h} , i.e. $\langle D(H), K \rangle + \langle H, D(K) \rangle = 0$.

Vizman

A particular case is the continuous 2-cocycle $\sigma_X = \langle [X, \cdot], \cdot \rangle$ for $X \in \mathfrak{g}$, where \mathfrak{h} is an ideal of the topological Lie algebra \mathfrak{g} with an $\mathrm{ad}(\mathfrak{g})$ -invariant continuous symmetric bilinear form $\langle \cdot, \cdot \rangle$ on \mathfrak{h} (here $D = \mathrm{ad}(X)|_{\mathfrak{h}}$). For $H \in \mathfrak{h}$ the cocycle σ_H is the coboundary of $\langle H, \cdot \rangle \in C_c^1(\mathfrak{h})$. Hence we get a linear map $\lambda : \mathfrak{g}/\mathfrak{h} \to H_c^2(\mathfrak{h})$. When $\mathfrak{g}/\mathfrak{h}$ is finite dimensional, we can view λ as a canonical $(\mathfrak{g}/\mathfrak{h})^*$ -valued 2-cohomology class on \mathfrak{h} .

Proposition 3.1 Let \mathfrak{h} be a perfect ideal of the topological Lie algebra \mathfrak{g} with an $\operatorname{ad}(\mathfrak{g})$ -invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$ on \mathfrak{h} and assume that (2) is topologically split with $\mathfrak{g}/\mathfrak{h}$ abelian. Then the cohomology class of the cocycle $\sigma_X =$ $\langle [X, \cdot], \cdot \rangle$ is \mathfrak{g} -invariant and its image $t([\sigma_X]) \in \Lambda^3(\mathfrak{g}/\mathfrak{h})^*$ under the transgression map is $(b_1, b_2, b_3) \mapsto \sum_{cycl} \langle [X, sb_1], [sb_2, sb_3] \rangle$, with $s : \mathfrak{g}/\mathfrak{h} \to \mathfrak{g}$ any continuous section of (2).

Proof. For $Y \in \mathfrak{g}$ and $H, K \in \mathfrak{h}$ we compute

$$(L_Y \sigma_X)(H, K) = -\sigma_X([Y, H], K) - \sigma_X(H, [Y, K])$$

= $\langle [X, K], [Y, H] \rangle - \langle [X, H], [Y, K] \rangle$
= $-\langle H, [Y, [X, K]] \rangle + \langle H, [X, [Y, K]] \rangle$
= $-\langle H, [K, [X, Y]] \rangle = -\langle [X, Y], [H, K] \rangle$.

At the last step we use $[\mathfrak{g},\mathfrak{g}] \subset \mathfrak{h}$ (since $\mathfrak{g}/\mathfrak{h}$ is abelian). We get that $L_Y \sigma_X = d_{\mathfrak{h}}(\theta_X(Y))$ with $\theta_X(Y) = \langle [X,Y], \cdot \rangle$, so the cohomology class $[\sigma_X]$ is \mathfrak{g} -invariant and θ_X is the unique \mathfrak{h}^* -valued 1-cocycle on \mathfrak{g} extending σ_X .

Let $\underline{\sigma'_X} \in C_c^2(\mathfrak{g})$ be a continuous extension of the 1-cocycle θ_X . Then $t([\sigma_X]) = [\overline{d_{\mathfrak{g}}\sigma'_X}]$ and

$$\overline{d_{\mathfrak{g}}\sigma'_X}(b_1, b_2, b_3) = \sum_{cycl} \sigma'_X(sb_1, [sb_2, sb_3])$$
$$= \sum_{cycl} \theta_X(sb_1)([sb_2, sb_3]) = \sum_{cycl} \langle [X, sb_1], [sb_2, sb_3] \rangle,$$

for $b_1, b_2, b_3 \in \mathfrak{g}/\mathfrak{h}$.

Characteristic classes for Lie algebra extensions: A short exact sequence of Lie algebras:

$$0 \to \mathfrak{h} \xrightarrow{i} \mathfrak{g} \xrightarrow{p} \mathfrak{k} \to 0, \tag{4}$$

is an extension \mathfrak{g} of \mathfrak{k} by \mathfrak{h} . The extension is called abelian if \mathfrak{h} is an abelian Lie algebra. In this case \mathfrak{h} carries a canonical \mathfrak{k} -module structure induced by the adjoint action of \mathfrak{g} on \mathfrak{h} . An abelian extension of the Lie algebra \mathfrak{k} by the \mathfrak{k} -module \mathfrak{h} is described by a cohomology class in $H^2(\mathfrak{k}, \mathfrak{h})$.

The characteristic classes are the cohomological objects associated to a nonabelian extension of \mathfrak{k} by \mathfrak{h} . These are images of the Weil homomorphism defined below and are elements of $H^*(\mathfrak{k}, V)$, with V an arbitrary \mathfrak{k} -module.

A linear section $s : \mathfrak{k} \to \mathfrak{g}$ for (4) is called a *connection*. The defect of s to be a Lie algebra homomorphism is the *curvature* $\Omega : \mathfrak{k} \times \mathfrak{k} \to \mathfrak{h}$, defined by $\Omega(b_1, b_2) = [sb_1, sb_2] - s[b_1, b_2]$. Denoting by $\eta : \mathfrak{g} \to \mathfrak{h}$ the corresponding

retraction, the structure equation and the Bianchi identity hold in the following form: $p^*\Omega = -d\eta + \frac{1}{2}[\eta, \eta]$ and $dp^*\Omega = -[p^*\Omega, \eta]$; see [8] Section 3.

We can recover the notions of connection and curvature of a principal bundle in this way. There is an exact sequence of Lie algebras and $C^{\infty}(M)$ -modules associated to the principal G-bundle $P \to M$,

$$0 \to C^{\infty}(P, \mathfrak{g})^G \to \mathfrak{X}(P)^G \to \mathfrak{X}(M) \to 0,$$

i.e. the Lie algebra of G-invariant vector fields of P is an extension of the Lie algebra of vector fields on M by the Lie algebra of G-equivariant \mathfrak{g} -valued functions on P (vertical G-invariant vector fields on P). A $C^{\infty}(M)$ -linear section s can be identified with the horizontal lift of a principal connection and Ω comes from its curvature 2-form on P.

With the help of the curvature Ω , an analogue of the Weil homomorphism can be constructed like in [3] Section 2. For any \mathfrak{k} -module V, let $I_V^n(\mathfrak{h})$ be the set of \mathfrak{g} -equivariant V-valued symmetric n-linear mappings on \mathfrak{h} , i.e.

$$\sum_{i=1}^{n} \varphi(H_1, \dots, [X, H_i], \dots, H_n) = p(X)\varphi(H_1, \dots, H_n), \quad \text{for all } X \in \mathfrak{g}.$$

Then the Weil homomorphism

$$W: I_V^n(\mathfrak{h}) \to H^{2n}(\mathfrak{k}, V), \quad W(\varphi) := [\operatorname{Alt}(\varphi \circ (\Omega \otimes \cdots \otimes \Omega))],$$

does not depend on the chosen connection s. Here Alt denotes anti-symmetrization of multilinear forms.

Remark 3.2 Let \mathfrak{h} be an ideal of the Lie algebra \mathfrak{g} with an $\mathrm{ad}(\mathfrak{g})$ -invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$ on \mathfrak{h} . Then $\langle \cdot, \cdot \rangle \in I^2_{\mathbb{R}}(\mathfrak{h})$ and the characteristic class $Q = W(\langle \cdot, \cdot \rangle) \in H^4(\mathfrak{g}/\mathfrak{h})$ is the cohomology class of the 4-cocycle

$$(a, b_1, b_2, b_3) \mapsto \frac{1}{3} \sum_{cycl} \langle \Omega(a, b_1), \Omega(b_2, b_3) \rangle, \quad b_i \in \mathfrak{g}/\mathfrak{h}.$$
(5)

We can reformulate Proposition 3.1 as:

Corollary 3.3 If \mathfrak{h} is a perfect ideal of the topological Lie algebra \mathfrak{g} with an $\operatorname{ad}(\mathfrak{g})$ -invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$ on \mathfrak{h} , and (2) is topologically split with $\mathfrak{g}/\mathfrak{h}$ abelian, then the transgression of $\sigma_X = \langle [X, \cdot], \cdot \rangle$ is $t[\sigma_X] = 3i_{p(X)}Q$ for the characteristic class $Q = W(\langle \cdot, \cdot \rangle) \in \Lambda^4(\mathfrak{g}/\mathfrak{h})^*$.

Proof. The curvature is in this case $\Omega(a, b) = [sa, sb]$. With Proposition 3.1 we obtain

$$t([\sigma_X])(b_1, b_2, b_3) = \sum_{cycl} \langle [sp(X), sb_1], [sb_2, sb_3] \rangle + \sum_{cycl} \langle [\eta(X), sb_1], [sb_2, sb_3] \rangle$$

= $3Q(p(X), b_1, b_2, b_3) + \sum_{cycl} \langle \eta(X), [sb_1, [sb_2, sb_3]] \rangle = 3i_{p(X)}Q(b_1, b_2, b_3),$

using the relation $X = sp(X) + \eta(X)$ in the first line.

Remark 3.4 It follows from Remark 2.4 that σ_X is extendible to \mathfrak{g} if and only if $i_{p(X)}Q = 0$. So the vanishing of the characteristic class Q ensures the extendibility of all σ_X for $X \in \mathfrak{g}$.

4. 2-cocycles on the Lie algebras of Hamiltonian and symplectic vector fields

Let (M, ω) be a compact connected 2n-dimensional symplectic manifold. A vector field X is called symplectic if $L_X \omega = 0$ and the vector field H_f is called Hamiltonian with Hamiltonian function f if $i_{H_f}\omega = df$. Since M is compact and connected, each Hamiltonian vector field has a unique zero integral Hamiltonian function. The Lie algebra $\mathfrak{ham}(M, \omega)$ of Hamiltonian vector fields on M is an ideal of the Fréchet–Lie algebra $\mathfrak{symp}(M, \omega)$ of symplectic vector fields. It can be identified with the Lie algebra of zero integral functions on M with the Poisson bracket $\{f,g\} = -\omega(H_f, H_g)$. The quotient Lie algebra $\mathfrak{symp}(M, \omega)/\mathfrak{ham}(M, \omega) = H^1_{dR}(M)$ is abelian and the projection of a symplectic vector field X is $p(X) = [i_X \omega]$, so that

$$0 \to \mathfrak{ham}(M,\omega) \to \mathfrak{symp}(M,\omega) \xrightarrow{p} H^1_{dR}(M) \to 0$$
(6)

is a topologically split exact sequence of Lie algebras. We also know that the Lie algebra of Hamiltonian vector fields is perfect [4]. The inner product $\langle H_f, H_g \rangle = \int_M fg\omega^n$ is $\mathfrak{symp}(M, \omega)$ -invariant. Indeed, for any symplectic vector field X, the Lie bracket $[X, H_f] = H_{L_X f}$ and $L_X f$ is a zero integral Hamiltonian function. So

$$\langle [X, H_f], H_g \rangle + \langle H_f, [X, H_g] \rangle = \int_M (gL_X f + fL_X g)\omega^n = \int_M L_X(fg)\omega^n = 0.$$

Hence all the requirements from Section 3 are satisfied.

The special 2-cocycles $\sigma_X = \langle [X, \cdot], \cdot \rangle$ for $X \in \mathfrak{symp}(M, \omega)$ coincide with the cocycles on the Lie algebra of Hamiltonian vector fields considered in [6] Section 9:

$$\sigma_X(H_f, H_g) = \langle [X, H_f], H_g \rangle = -\langle H_f, [X, H_g] \rangle = \langle H_f, H_{\alpha(H_g)} \rangle = \int_M f \alpha(H_g) \omega^n,$$

where $\alpha = i_X \omega$ is a closed 1-form. In the third equality we use $L_X g = \omega(H_g, X) = -\alpha(H_g)$. It follows from the proof of Proposition 3.1 that the $\mathfrak{ham}(M, \omega)^*$ -valued 1-cocycle θ_X on $\mathfrak{symp}(M, \omega)$ extending σ_X is in this case $\theta_X(Y)(H_f) = \langle [X, Y], H_f \rangle = -\int_M f \omega(X, Y) \omega^n$. Note that the Hamiltonian function $-\omega(X, Y)$ for [X, Y] has non-zero integral in general.

To see which of the cocycles σ_X are extendible to the Lie algebra of symplectic vector fields, we compute the characteristic class $Q = \langle \cdot, \cdot \rangle$. Let Ω be the curvature of a connection $s : H^1_{dR}(M) \to \mathfrak{symp}(M, \omega)$, a continuous section of (6). We denote by (\cdot, \cdot) the symplectic pairing on $H^1_{dR}(M)$, i.e. $(b_1, b_2) = \int_M b_1 \wedge b_2 \wedge [\omega]^{n-1}$. Then $[i_{sb}\omega] = b$ and $\int_M \omega(sb_1, sb_2)\omega^n = n(b_1, b_2)$. We get that $\Omega(b_1, b_2) = [sb_1, sb_2]$ is the Hamiltonian vector field with the zero integral Hamiltonian function $f = n(b_1, b_2) - \omega(sb_1, sb_2)$.

Proposition 4.1 The characteristic class $Q = W(\langle \cdot, \cdot \rangle) \in \Lambda^4 H^1_{dR}(M)^*$ of the Lie algebra extension (6) is

$$Q(a, b_1, b_2, b_3) = \frac{1}{3}n(n-1)\int_M a \wedge b_1 \wedge b_2 \wedge b_3 \wedge [\omega]^{n-2} - \frac{1}{3}n^2 \sum_{cycl} (a, b_1)(b_2, b_3),$$

with $a, b_i \in H^1_{dR}(M)$ and the cyclic sum taken over the indices 1,2,3.

Proof. Using formula (5) in Section 3 and the fact that $\Omega(b_1, b_2)$ is the Hamiltonian vector field with zero integral Hamiltonian function $n(b_1, b_2) - \omega(sb_1, sb_2)$, we compute:

$$3Q(a, b_1, b_2, b_3) = \sum_{cycl} \langle \Omega(a, b_1), \Omega(b_2, b_3) \rangle$$

= $\sum_{cycl} \int_M (n(a, b_1) - \omega(sa, sb_1))(n(b_2, b_3) - \omega(sb_2, sb_3))\omega^n$
= $\sum_{cycl} \int_M \omega(sa, sb_1)\omega(sb_2, sb_3)\omega^n - n^2 \sum_{cycl} (a, b_1)(b_2, b_3).$

It remains to calculate the first cyclic sum, which we denote by

$$S \stackrel{not.}{=} \sum_{cycl} \int_{M} \omega(sa, sb_1) \omega(sb_2, sb_3) \omega^n.$$

Applying the formula $i_X \alpha \wedge \beta = (-1)^{|\alpha|+1} \alpha \wedge i_X \beta$ for $|\alpha| + |\beta| = \dim M + 1$, we obtain

$$S = n \sum_{cycl} \int_{M} i_{sb_{1}} i_{sa} \omega \wedge i_{sb_{2}} \omega \wedge i_{sb_{3}} \omega \wedge \omega^{n-1}$$

$$= n \sum_{cycl} \int_{M} \omega(sb_{2}, sb_{1}) i_{sa} \omega \wedge i_{sb_{3}} \omega \wedge \omega^{n-1}$$

$$-n \sum_{cycl} \int_{M} \omega(sb_{3}, sb_{1}) i_{sa} \omega \wedge i_{sb_{2}} \omega \wedge \omega^{n-1}$$

$$+n(n-1) \sum_{cycl} \int_{M} i_{sa} \omega \wedge i_{sb_{1}} \omega \wedge i_{sb_{2}} \omega \wedge i_{sb_{3}} \omega \wedge \omega^{n-2}$$

$$= \sum_{cycl} \int_{M} \omega(sa, sb_{3}) \omega(sb_{2}, sb_{1}) \omega^{n} - \sum_{cycl} \int_{M} \omega(sa, sb_{2}) \omega(sb_{3}, sb_{1}) \omega^{n}$$

$$+n(n-1) \sum_{cycl} \int_{M} a \wedge b_{1} \wedge b_{2} \wedge b_{3} \wedge [\omega]^{n-2}$$

$$= -2S + 3n(n-1) \int_{M} a \wedge b_{1} \wedge b_{2} \wedge b_{3} \wedge [\omega]^{n-2}.$$

We get

$$S = n(n-1) \int_{M} a \wedge b_1 \wedge b_2 \wedge b_3 \wedge [\omega]^{n-2}$$

and the result follows.

Theorem 4.2 Given a closed 1-form α on the symplectic manifold (M, ω) , the 2-cocycle $\sigma_{\alpha}(H_f, H_g) = \int_M f\alpha(H_g)\omega^n$ on the Lie algebra of Hamiltonian vector fields is extendible to the Lie algebra of symplectic vector fields if and only if the de Rham cohomology class $a = [\alpha]$ satisfies the relation

$$(n-1)\int_{M} a \wedge b_{1} \wedge b_{2} \wedge b_{3} \wedge [\omega]^{n-2} = n \sum_{cycl} (a, b_{1})(b_{2}, b_{3})$$
(7)

for all $b_i \in H^1_{dR}(M)$.

Proof. The transgression of $[\sigma_{\alpha}]$ is

$$t([\sigma_{\alpha}])(b_1, b_2, b_3) = n(n-1) \int_M a \wedge b_1 \wedge b_2 \wedge b_3 \wedge [\omega]^{n-2} - n^2 \sum_{cycl} (a, b_1)(b_2, b_3)$$
(8)

by Corollary 3.3 and Proposition 4.1. Then the result follows from Remark 2.4. ■

The following result was announced in [6] Section 9:

Theorem 4.3 The second continuous cohomology space of the Lie algebra of Hamiltonian vector fields on a compact symplectic manifold M is isomorphic to $H^1_{dR}(M)$, the isomorphism being $[\alpha] \mapsto [\sigma_{\alpha}]$, with $\sigma_{\alpha}(H_f, H_g) = \int_M f\alpha(H_g)\omega^n$.

Each cohomology class $[\sigma_{\alpha}]$ is $\mathfrak{symp}(M, \omega)$ -invariant, hence the second continuous $\mathfrak{symp}(M, \omega)$ -invariant cohomology space of $\mathfrak{ham}(M, \omega)$ is again $H^1_{dR}(M)$.

Corollary 4.4 The second continuous cohomology space of the Lie algebra of symplectic vector fields is isomorphic to Ker $t \oplus \Lambda^2 H^1_{dR}(M)^*$, where $t : H^1_{dR}(M) \to \Lambda^3 H^1_{dR}(M)^*$ is the transgression map given by (8).

Example 4.5 For surfaces the condition (7) becomes $\sum_{cycl}(a, b_1)(b_2, b_3) = 0$. On surfaces of genus 1 all σ_{α} are extendible, since dim $H^1_{dR}(M) = 2$ implies that the transgression map vanishes. On surfaces of genus ≥ 2 none of the σ_{α} are extendible, i.e. Ker t = 0. Indeed, for any non-zero element $a \in H^1_{dR}(M)$, we can find $b_1, b_2, b_3 \in H^1_{dR}(M)$ such that $(a, b_1) = (b_2, b_3) = 1$ and $(a, b_2) = (a, b_3) = (b_1, b_2) = (b_1, b_3) = 0$, hence $t(a)(b_1, b_2, b_3) \neq 0$.

Specializing the previous example to the 2-torus $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ with canonical symplectic form $\omega = dx \wedge dy$, one obtains Kirillov's 2-dimensional central extension of $\mathfrak{symp}(\mathbb{T}^2, \omega)$ from [2] Section 5. We recall that the canonical $H^1_{dR}(M)^*$ -valued 2-cohomology class λ on $\mathfrak{ham}(M, \omega)$ mentioned in the beginning of Section 3 is $\lambda([\alpha]) = [\sigma_{\alpha}]$ for any closed 1-form α . The definition is correct since the cohomology class of the cocycle σ_{α} depends only on the de Rham cohomology class of α .

We identify $H^1_{dR}(\mathbb{T}^2)$ with its dual via $a \mapsto \int_{\mathbb{T}^2} \cdot \wedge a$. There is a canonical 2-cocycle Σ representing λ , namely

$$\Sigma(H_f, H_g) \mapsto [\langle f dg \rangle] \in H^1_{dR}(\mathbb{T}^2) \cong H^1_{dR}(\mathbb{T}^2)^*,$$

with $\langle \cdot \rangle$ denoting the average of a 1-form on the 2-torus

$$\langle adx + bdy \rangle = \left(\int_{\mathbb{T}^2} a\omega \right) dx + \left(\int_{\mathbb{T}^2} b\omega \right) dy.$$

Indeed,

$$\int_{\mathbb{T}^2} dx \wedge \Sigma(H_f, H_g) = \int_{\mathbb{T}^2} f \partial_y g dx \wedge dy = \sigma_{dx}(H_f, H_g)$$

and the same identity holds for dy.

It follows from Example 4.5 above that Σ can be extended to a 2-cocycle on the Lie algebra of symplectic vector fields on the 2-torus. The 1-cocycle extending Σ is

$$\Theta:\mathfrak{symp}(\mathbb{T}^2,\omega)\to\mathfrak{ham}(\mathbb{T}^2,\omega)^*\otimes H^1_{dR}(\mathbb{T}^2),\quad \Theta(X)(H_f)=-[\langle fi_X\omega\rangle].$$

To see this we show that $L_X \Sigma = d_{\mathfrak{h}}(\Theta(X))$. We use $df \wedge dg = -\{f, g\}\omega$ in the following calculation:

$$(L_X \Sigma)(H_f, H_g) = -[\langle L_X f dg \rangle] + [\langle L_X g df \rangle] = -[\langle i_X (df \wedge dg) \rangle]$$

= $[\langle \{f, g\} i_X \omega \rangle] = -\Theta(X)([H_f, H_g]) = d_{\mathfrak{h}}(\Theta(X))(H_f, H_g).$

With Remark 2.4 we can find a special extension Σ' of Σ . If α is a closed 1-form on \mathbb{T}^2 , then $\alpha - \langle \alpha \rangle$ is an exact 1-form. For X a symplectic vector field, $i_X \omega$ is closed and we denote by f_X the unique zero integral function such that $i_X \omega - \langle i_X \omega \rangle = df_X$. Let Σ' be the 2-cocycle extending Σ and vanishing on the image of the connection s defined by $s([dx]) = -\partial_y$, $s([dy]) = \partial_x$. In this case the retraction $\eta : \mathfrak{symp}(\mathbb{T}^2, \omega) \to \mathfrak{ham}(\mathbb{T}^2, \omega)$ is $\eta(X) = X - s[i_X \omega] = X - s[\langle i_X \omega \rangle] =$ H_{f_X} . Hence

$$\begin{split} \Sigma'(X,Y) &= \Theta(X)(\eta(Y)) - \Theta(Y)(\eta(X)) - \Sigma(\eta(X),\eta(Y)) \\ &= -\langle f_Y i_X \omega \rangle + \langle f_X i_Y \omega \rangle - \langle f_X df_Y \rangle \\ &= -\langle f_Y df_X \rangle + \langle f_X \langle i_Y \omega \rangle \rangle - \langle f_Y \langle i_X \omega \rangle \rangle = -\langle f_Y df_X \rangle = \langle f_X df_Y \rangle \end{split}$$

is the extension we were looking for.

This means $\Sigma'(\partial_x, H_f) = \Sigma'(\partial_y, H_f) = 0$ and $\Sigma'(H_f, H_g) = \Sigma(H_f, H_g) = [\langle f dg \rangle]$. It defines Kirillov's 2-dimensional central extension of the Lie algebra of symplectic vector fields on the 2-torus

$$0 \to H^1(\mathbb{T}^2) \to \mathfrak{symp}(\mathbb{T}^2, \omega) \to \mathfrak{symp}(\mathbb{T}^2, \omega) \to 0.$$

The bracket is given by: $[\partial_x, H_f] = H_{\partial_x f}, \ [\partial_y, H_f] = H_{\partial_y f}, \ [\partial_x, \partial_y] = 0,$ $[H_{f_1}, H_{f_2}] = H_{\{f_1, f_2\}} + \langle f_1 df_2 \rangle,$ the Lie algebra $\mathfrak{symp}(\mathbb{T}^2, \omega)$ being linearly generated by ∂_x, ∂_y and $\mathfrak{ham}(\mathbb{T}^2, \omega)$.

Example 4.6 For the flat 2n-torus \mathbb{T}^{2n} with canonical symplectic form ω , the Lie algebra of symplectic vector fields is the semidirect product of the Lie algebra of Hamiltonian vector fields with \mathbb{R}^{2n} , the abelian Lie algebra of constant vector fields. Proposition 2.2 shows that the transgression map $t : H_c^2(\mathfrak{h})^{\mathfrak{g}} \to H_c^3(\mathfrak{g}/\mathfrak{h})$ is trivial for a Fréchet–Lie algebra \mathfrak{g} which is a semidirect product of its perfect ideal \mathfrak{h} and the quotient Lie algebra $\mathfrak{g}/\mathfrak{h}$. It follows that all the 2-cocycles σ_{α} are extendible. In particular we recover the result from Example 4.5 for the 2-torus.

Example 4.7 Thurston's symplectic manifold ([9] page 10) is $M = \mathbb{R}^4/\Gamma$ with Γ the discrete group generated by the following symplectic diffeomorphisms of $(\mathbb{R}^4, dx_1 \wedge dy_1 + dx_2 \wedge dy_2)$:

$$(x_1, y_1, x_2, y_2) \mapsto (x_1, y_1, x_2 + 1, y_2)$$

$$(x_1, y_1, x_2, y_2) \mapsto (x_1, y_1, x_2, y_2 + 1)$$

$$(x_1, y_1, x_2, y_2) \mapsto (x_1 + 1, y_1, x_2, y_2)$$

$$(x_1, y_1, x_2, y_2) \mapsto (x_1, y_1 + 1, x_2 + y_2, y_2)$$

Since $\Gamma/[\Gamma,\Gamma] = \mathbb{Z}^3$, the first de Rham cohomology group is 3-dimensional. Then the map $t: H^1_{dR}(M) = \mathbb{R}^3 \to \Lambda^3 H^1_{dR}(M)^* = \mathbb{R}$ has a non-trivial kernel, so there are 2-cocycles σ_{α} on $\mathfrak{ham}(M,\omega)$ which can be extended to $\mathfrak{symp}(M,\omega)$.

VIZMAN

References

- Hochschild, G., and J.-P. Serre, *Cohomology of Lie algebras*, Ann. of Math. 57 (1953), 591–603.
- [2] Kirillov, A. A., La géometrie des moments pour les groupes de difféomorphismes, Progress in Math. **92** (1990), 73–82.
- [3] Lecomte, P., Sur la suite exacte canonique associé a un fibré principal, Bull. Soc. Math. France 113 (1985), 259–271.
- [4] Lichnerowicz, A., *Lie algebra of infinitesimal automorphisms of a unimodular structure*, Ann. Inst. Fourier **24** (1974), 219–266.
- [5] Neeb, K.-H., *Inflation and restriction for Lie algebras*, Preprint, TU Darmstadt, 2003.
- [6] Roger, C., Extensions centrales d'algèbres et de groupes de Lie de dimension infinie, algèbre de Virasoro et généralisations, Rep. Math. Phys. 35 (1995), 225–266.
- [7] Rudin, W., "Functional analysis," 2nd ed., International Series in Pure and Applied Math., McGraw-Hill 1991.
- [8] Teleman, N., A characterisitic ring of a Lie algebra extension. I, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. **52** (1972), 498–506.
- [9] Weinstein, A., "Lectures on symplectic manifolds," Regional conference series in mathematics, no.29, Amer. Math. Soc. Providence, Rhode Island 1979.

Cornelia Vizman West University of Timisoara Department of Mathematics Bd. V.Parvan 4 300223-Timisoara Romania vizman@math.uvt.ro

Received April 12, 2005 and in final form September 28, 2005