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Abstract. We investigate which complex tori admits complex Lie subgroups
whose closure is not complex.
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It is mentioned in an article of J. Moser ([2]) that for the torus T = (C/Z[i])2 every
complex connected Lie subgroup of T has a closure which is a complex subtorus
of T . In general, i.e., if T is an arbitrary compact complex torus, the closure of
a complex Lie subgroup in a compact complex torus is a compact real subtorus
which need not be complex. For instance, let

T = (C/Z[i])× (C/Z[
√

2i])

and let H be the connected complex Lie subgroup which is the image in T of
the diagonal line {(z, z) : z ∈ C} in C2 . Then the preimage of H in C2 can be
described as

π−1(H) = {(z + n+mi, z + p+ q
√

2i) : z ∈ C;n,m, p, q ∈ Z}

whose closure is {(z, w) ∈ C2 : <(z − w) ∈ Z} and therefore of real dimension
three. Thus H̄ is a real subtorus of T of real codimension one.

Our goal is to determine precisely the class of those compact complex tori
for which this phenomenon may occur.

Theorem. Let T be a compact complex torus of dimension at least two.

Then the following two conditions are equivalent:

(i) For every connected complex Lie subgroup H of T the closure H̄ in T is a
complex subtorus of T .

(ii) There exists an elliptic curve E with complex multiplication such that T is
isogenous to En (with n = dim(T )).

We recall that an “elliptic curve” is a compact complex torus of dimension one and
that such an elliptic curve is said to have “complex multiplication” if EndQ(E) is
larger then Q .
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We recall that an endomorphism f of an elliptic curve E is a holomorphic
Lie group homomorphism from E to itself. Since E is a commutative group,
the set End(E) of all such endomorphisms is a Z-module in a natural way. Then
EndQ(E) is defined as End(E)⊗ZQ . Since every endomorphism g of E lifts to an
endomorphism of the universal covering (C,+), there is a natural homomorphism
from EndQ(E) to C . Thus EndQ(E) may be regarded as a Q-sub algebra of C .

For a given elliptic curve E there are two possibilities: Either EndQ(E)
= Q or EndQ(E) is larger than Q . In the latter case EndQ(E) (regarded as
subalgebra of C) must contain a complex number λ which is not real. For this
reason an elliptic curve is said to have “complex multiplication” if EndQ(E) 6= Q .

See e.g. [1] for more information about elliptic curves with complex multi-
plication.

Proof. First let us assume property (ii). Let λ0 ∈ EndQ(E) with λ0 6∈ R .
Then λ0m ∈ End(E) for some m ∈ N . Define λ = λ0m . Let E = C/Λ. Then we
can realize T as a quotient T = Cn/Γ where Γ is commensurable with Λn . For
every connected complex Lie subgroup H ⊂ T we consider its preimage under the
projection π : Cn → T . Then π−1(H) = V + Γ for some complex vector subspace
V of Cn . Now λ ·(V +Γ) = V +λ ·Γ and V +Γ are commensurable. Therefore the
connected components of their respective closures in Cn agree. It follows that the
connected component W of the closure of V + Γ in Cn is a real vector subspace
which is invariant under multiplication with λ . Since λ ∈ C\R , it follows that W
is a complex vector subspace. Consequently H̄ = π(W ) is a complex Lie subgroup
of T , i.e. a complex subtorus.

Now let us deal with the opposite direction. As a preparation let us discuss
real subtori of codimension one. If S is a real subtorus of T of real codimension
one, it corresponds to a real hyperplane H in Cn . Then H ∩ iH is a complex
hyperplane in Cn which projects onto a connected complex Lie subgroup A of
T . By construction either this complex Lie subgroup A is already closed (i.e. a
complex subtorus) or its closure equals S .

Let U = Cn and let P∗
C(U) resp. P∗

R(U) denote the spaces parametrizing
the complex resp. real hyperplanes in U . Then H 7→ H ∩ iH defines a surjective
continuous map from P∗

R(U) to P∗
C(U). Let P∗

Γ(U) denote the subset of those
real hyperplanes which are generated by their intersection with Γ. Observe that a
R-linear change of coordinates takes P∗

Γ(U) to P2n−1(Q) and P∗
R(U) to P2n−1(R).

Therefore P∗
Γ(U) is dense in P∗

R(U) and furthermore projects onto a dense subset
of P∗

C(U).

Let us now assume condition (i). Then for every real subtorus S of codi-
mension one the connected complex Lie subgroup A of codimension one con-
structed above can not have S as closure and therefore must be complex compact
subtorus. We thus obtain the following fact:

Let P′ denote the set of all complex hyperplanes in P∗
C(U) which project

onto compact complex subtori of T . Then P′ is dense in P∗
C(U).

As a consequence, there are compact complex subtori (Ci)i=1..n of codi-
mension one such that the intersection ∩iCi is discrete. It follows that there is a
surjective homomorphism of complex tori with finite kernel

ψ : T → Πn
i=1 (T/Ci) .
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Thus T is isogenous to a product of elliptic curves.

Let us now discuss two-dimensional quotient tori of B . If τ : T → B is a
projection onto a two-dimensional torus and L ⊂ B is a one-dimensional complex
Lie subgroup, then τ−1(L) = τ−1(L̄). Thus assuming condition (i) for T implies
the same condition for B . If we now define P′

B as the subset of those complex
lines in C2 whose image in B are complex subtori, then we obtain that P′

B must
be dense in P1(C).

Thus let us discuss P′
B for B = E ′ × E ′′ where E ′ and E ′′ are elliptic

curves. If E ′ is not isogenous to E ′′ , then E ′ × {e} and {e} × E ′′ are the only
subtori of B and P′

B can not be dense. Thus we may assume that E ′ is isogenous
to E ′′ .

If E ′ does not have complex multiplication, then P′
N ' P1(Q) whose closure

is P1(R) and which therefore is not dense.

This leaves the case where E ′ is isogenous to E ′′ and has complex multi-
plication.

If this is to hold for any two-dimensional quotient torus of T , it requires
that all the Ei are isogenous to each other and have complex multiplication.
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