On a Special Class of Complex Tori

Jörg Winkelmann

Communicated by F. Knop

Abstract. We investigate which complex tori admits complex Lie subgroups whose closure is not complex.

Keywords and phrases: Complex tori, Lie subgroups.

Mathematics Subject Index 2000: 22E10.

It is mentioned in an article of J. Moser ([2]) that for the torus $T = (\mathbb{C}/\mathbb{Z}[i])^2$ every complex connected Lie subgroup of T has a closure which is a complex subtorus of T. In general, i.e., if T is an arbitrary compact complex torus, the closure of a complex Lie subgroup in a compact complex torus is a compact real subtorus which need not be complex. For instance, let

$$T = (\mathbb{C}/\mathbb{Z}[i]) \times (\mathbb{C}/\mathbb{Z}[\sqrt{2}i])$$

and let H be the connected complex Lie subgroup which is the image in T of the diagonal line $\{(z, z) : z \in \mathbb{C}\}$ in \mathbb{C}^2. Then the preimage of H in \mathbb{C}^2 can be described as

$$\pi^{-1}(H) = \{(z + n + mi, z + p + q\sqrt{2}i) : z \in \mathbb{C}; n, m, p, q \in \mathbb{Z}\}$$

whose closure is $\{(z, w) \in \mathbb{C}^2 : \Re(z - w) \in \mathbb{Z}\}$ and therefore of real dimension three. Thus \bar{H} is a real subtorus of T of real codimension one.

Our goal is to determine precisely the class of those compact complex tori for which this phenomenon may occur.

Theorem. Let T be a compact complex torus of dimension at least two.

Then the following two conditions are equivalent:

(i) For every connected complex Lie subgroup H of T the closure \bar{H} in T is a complex subtorus of T.

(ii) There exists an elliptic curve E with complex multiplication such that T is isogenous to E^n (with $n = \dim(T)$).

We recall that an “elliptic curve” is a compact complex torus of dimension one and that such an elliptic curve is said to have “complex multiplication” if $\text{End}_\mathbb{Q}(E)$ is larger than \mathbb{Q}.

ISSN 0949–5932 / $2.50 © Heldermann Verlag
We recall that an endomorphism \(f \) of an elliptic curve \(E \) is a holomorphic Lie group homomorphism from \(E \) to itself. Since \(E \) is a commutative group, the set \(\text{End}(E) \) of all such endomorphisms is a \(\mathbb{Z} \)-module in a natural way. Then \(\text{End}_\mathbb{Q}(E) \) is defined as \(\text{End}(E) \otimes \mathbb{Z} \mathbb{Q} \). Since every endomorphism \(g \) of \(E \) lifts to an endomorphism of the universal covering \((\mathbb{C},+) \), there is a natural homomorphism from \(\text{End}_\mathbb{Q}(E) \) to \(\mathbb{C} \). Thus \(\text{End}_\mathbb{Q}(E) \) may be regarded as a \(\mathbb{Q} \)-subalgebra of \(\mathbb{C} \).

For a given elliptic curve \(E \) there are two possibilities: Either \(\text{End}_\mathbb{Q}(E) = \mathbb{Q} \) or \(\text{End}_\mathbb{Q}(E) \) is larger than \(\mathbb{Q} \). In the latter case \(\text{End}_\mathbb{Q}(E) \) (regarded as subalgebra of \(\mathbb{C} \)) must contain a complex number \(\lambda \) which is not real. For this reason an elliptic curve is said to have “complex multiplication” if \(\text{End}_\mathbb{Q}(E) \neq \mathbb{Q} \).

See e.g. [1] for more information about elliptic curves with complex multiplication.

Proof. First let us assume property \((ii)\). Let \(\lambda_0 \in \text{End}_\mathbb{Q}(E) \) with \(\lambda_0 \not\in \mathbb{R} \). Then \(\lambda_0 m \in \text{End}(E) \) for some \(m \in \mathbb{N} \). Define \(\lambda = \lambda_0 m \). Let \(E = \mathbb{C}/\Lambda \). Then we can realize \(T \) as a quotient \(T = \mathbb{C}^n/\Gamma \) where \(\Gamma \) is commensurable with \(\Lambda^n \). For every connected complex Lie subgroup \(H \subset T \) we consider its preimage under the projection \(\pi : \mathbb{C}^n \to T \). Then \(\pi^{-1}(H) = V + \Gamma \) for some complex vector subspace \(V \) of \(\mathbb{C}^n \). Now \(\lambda \cdot (V + \Gamma) = V + \lambda \cdot \Gamma \) and \(V + \Gamma \) are commensurable. Therefore the connected components of their respective closures in \(\mathbb{C}^n \) agree. It follows that the connected component \(W \) of the closure of \(V + \Gamma \) in \(\mathbb{C}^n \) is a real vector subspace which is invariant under multiplication with \(\lambda \). Since \(\lambda \in \mathbb{C} \setminus \mathbb{R} \), it follows that \(W \) is a complex vector subspace. Consequently \(\bar{H} = \pi(W) \) is a complex Lie subgroup of \(T \), i.e. a complex subtorus.

Now let us deal with the opposite direction. As a preparation let us discuss real subtori of codimension one. If \(S \) is a real subtorus of \(T \) of real codimension one, it corresponds to a real hyperplane \(H \) in \(\mathbb{C}^n \). Then \(H \cap iH \) is a complex hyperplane in \(\mathbb{C}^n \) which projects onto a connected complex Lie subgroup \(A \) of \(T \). By construction either this complex Lie subgroup \(A \) is already closed (i.e. a complex subtorus) or its closure equals \(S \).

Let \(U = \mathbb{C}^n \) and let \(\mathbb{P}^*_\mathbb{C}(U) \) resp. \(\mathbb{P}^*_\mathbb{R}(U) \) denote the spaces parametrizing the complex resp. real hyperplanes in \(U \). Then \(H \mapsto H \cap iH \) defines a surjective continuous map from \(\mathbb{P}^*_\mathbb{R}(U) \) to \(\mathbb{P}^*_\mathbb{C}(U) \). Let \(\mathbb{P}_\mathbb{C}(U) \) denote the subset of those real hyperplanes which are generated by their intersection with \(\Gamma \). Observe that a \(\mathbb{R} \)-linear change of coordinates takes \(\mathbb{P}_\mathbb{C}(U) \) to \(\mathbb{P}_{2n-1}(\mathbb{Q}) \) and \(\mathbb{P}_\mathbb{R}(U) \) to \(\mathbb{P}_{2n-1}(\mathbb{R}) \). Therefore \(\mathbb{P}_\mathbb{C}(U) \) is dense in \(\mathbb{P}^*_\mathbb{R}(U) \) and furthermore projects onto a dense subset of \(\mathbb{P}^*_\mathbb{C}(U) \).

Let us now assume condition \((i)\). Then for every real subtorus \(S \) of codimension one the connected complex Lie subgroup \(A \) of codimension one constructed above can not have \(S \) as closure and therefore must be complex compact subtorus. We thus obtain the following fact:

Let \(\mathbb{P}' \) denote the set of all complex hyperplanes in \(\mathbb{P}^*_\mathbb{C}(U) \) which project onto compact complex subtori of \(T \). Then \(\mathbb{P}' \) is dense in \(\mathbb{P}^*_\mathbb{C}(U) \).

As a consequence, there are compact complex subtori \((C_i)_{i=1,n} \) of codimension one such that the intersection \(\bigcap C_i \) is discrete. It follows that there is a surjective homomorphism of complex tori with finite kernel

\[\psi : T \to \prod_{i=1}^n (T/C_i). \]
Thus T is isogenous to a product of elliptic curves.

Let us now discuss two-dimensional quotient tori of B. If $\tau : T \to B$ is a projection onto a two-dimensional torus and $L \subset B$ is a one-dimensional complex Lie subgroup, then $\tau^{-1}(\overline{L}) = \tau^{-1}(\overline{L})$. Thus assuming condition (i) for T implies the same condition for B. If we now define \mathbb{P}_B' as the subset of those complex lines in \mathbb{C}^2 whose image in B are complex subtori, then we obtain that \mathbb{P}_B' must be dense in $\mathbb{P}_1(\mathbb{C})$.

Thus let us discuss \mathbb{P}_B' for $B = E' \times E''$ where E' and E'' are elliptic curves. If E' is not isogenous to E'', then $E' \times \{e\}$ and $\{e\} \times E''$ are the only subtori of B and \mathbb{P}_B' can not be dense. Thus we may assume that E' is isogenous to E''.

If E' does not have complex multiplication, then $\mathbb{P}_N \simeq \mathbb{P}_1(\mathbb{Q})$ whose closure is $\mathbb{P}_1(\mathbb{R})$ and which therefore is not dense.

This leaves the case where E' is isogenous to E'' and has complex multiplication.

If this is to hold for any two-dimensional quotient torus of T, it requires that all the E_i are isogenous to each other and have complex multiplication. ■

References

Jörg Winkelmann
Institut Elie Cartan (Mathématiques)
Université Henri Poincaré Nancy 1
B.P. 239
F-54506 Vandœuvre-les-Nancy Cedex
France
jwinkel@member.ams.org

Received October 3, 2004
and in final form Mai 5, 2005