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Abstract. For integrable Banach-Lie algebras the corresponding simply
connected Banach-Lie groups are constructed in an explicite way. A concept

of discriminant subgroup of a normed Lie algebra is introduced and it is

shown that a Banach-Lie algebra is integrable if and only if its discriminant
subgroup is discrete. Relation of discriminant subgroup with the Ado and

Malcev theorems is also discussed.
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1. Introduction

While every finite dimensional Lie algebra arises as the Lie algebra of some Lie group
(E. Cartan [3],[4] 1930), there exist Banach-Lie algebras which are not enlargeable,
i.e. which do not integrate to a global Banach-Lie group. This was discovered by van
Est and Korthagen ([7], 1964). Using cohomological methods they associated to each
Banach-Lie algebra g an additive subgroup Π(g) (the ’period group’) of the center zg

of g in such a way that g is enlargeable if and only if Π(g) is discrete, and they found
a Banach-Lie algebra g with nondiscrete Π(g).

In 1970 an important contribution to the integration problem was provided
by a result of Świerczkowski ([16]). He showed that for each Banach-Lie algebra g
the Banach-Lie algebra of paths σ(g) := {l ∈ C([0, 1], g) : l(0) = e} (with pointwise
operations) is enlargeable. This implies the existence of a topological extension

0 −→ ω(g) i−→ σ(g)
exp−→ g −→ 0,

where exp : σ(g) 3 l → l(1) ∈ g , and ω(g) := ker(exp).
Let Σ(g) denote the simply connected Banach-Lie group corresponding to σ(g)

and Ω(g) be the normal Banach-Lie subgroup of Σ(g) corresponding to the ideal ω(g).
As a consequence of Świerczkowski’s result one gets the following criterion: a Banach-Lie
algebra g is enlargeable if and only if Ω(g) is closed in Σ(g).

Recently, Świerczkowski’s approach was refined by J.J. Duistermaat and J.A
Kolk [5]. Applying ordinary differential equations in Banach spaces and using the fact
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that H2(G,R) = 0 for each finite dimensional simply connected Lie group G , they
showed that Ω(g) is closed for finite dimensional g , thus getting a new proof of the
Cartan’s theorem.

In this paper we present yet another approach to the integration problem. Sim-
ilarly to Świerczkowski and Duistermaat-Kolk we construct the group as the Hausdorff
quotient G = exp gN

1 / exp gN
1,0 of two Banach-Lie groups. There are, however, major

differences:
In place of differential equations applied in [5] we are using the Baker-Campbell-

Hausdorff formula. This makes the construction more algebraic and less relying on the
completeness of g . Our arguments being technically simpler than those of Duistermaat
and Kolk, we are able to describe intrinsically obstructions to integration in terms of a
discriminant subgroup Γg of g . This enables us to obtain a relatively simple proof of
Cartan’s theorem with the simply connected Lie group G corresponding to g explicitely
described.

In our approach to the integration problem the group Γg plays an anologous rôle
to Π(g) in [7] : Theorem 4.2 below asserts that a Banach-Lie algebra g is enlargeable
iff Γg is discrete. It seems that Γg also may be useful when approaching the problem of
injective continuous representability of g in an associative Banach algebra. A necessary
condition applying Γg is given in Theorem 4.7 below.

To make the paper easier to read, in the first part we present the main ideas of
the construction, leaving technical details to the appendix. They may be of interest in
its own by revealing an interplay between algebraic properties of the Baker-Campbell-
Hausdorff formula and local (norm) estimates.

Acknowledgement. The author is deeply indebted to the referee. His numer-
ous comments improved the paper significantly.

2. The groups exp gN , exp gN
1 and exp gN

1,0

The Baker-Campbell-Hausdorff series (abbreviated to the B-C-H series) is a real power
series in non-commutative formal variables x, y which is obtained as the composition
Θ = W ◦ Z where

W (z) = log(1 + z) =
∞∑

n=1

(−1)n+1 zn

n

and

Z(x, y) = exey − 1 =
∑

j+k≥1

xj

j!
yk

k!
.

Gathering together terms of a given order we obtain

Θ(x, y) =
∞∑

m=1

Θm(x, y) (2.1)

where Θm(x, y) is the (finite) sum of all homogeneous terms of order m .
One of the cornerstones of Lie theory is the observation (cf. [2], [17]) that

Θm for m = 1, 2, . . . may be expressed as a finite linear combination of (m − 1)-fold
commutators of x and y . In particular, Θ1(x, y) = x + y and Θ2(x, y) = 1

2 (xy − yx).
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If g is a Lie algebra then substituting for the formal variables x and y in (2.1)
arbitrary elements of g and replacing the commutators by Lie brackets in g we obtain
the evaluated series with the terms Θm(x, y) in g .

It is known [2],[6], that if g is normed in such a way that the condition (2.3)
below is satisfied, then the series (2.1) is absolutely convergent for (x, y) ∈ Q , where

Q = {(x, y) ∈ g× g : ‖x‖+ ‖y‖ ≤ ln 2}

Moreover, if g is a Banach-Lie algebra the function Q 3 (x, y) → Θ(x, y) ∈ g
is jointly continuous and defines a local group structure on Q . This local group will be
denoted exp0(g) and called the local B-C-H group of g .

For a Lie algebra g let gN be be the set of all formal power series f(t) =
∞∑

n=1

antn with coefficients in g . If gN is equipped with the Cauchy-Lie bracket, i.e. for

f(t) =
∞∑

n=1

antn and g(t) =
∞∑

n=1

bntn ,

[f, g](t) =
∞∑

n=1

cntn where cn =
∑

k+j=n

[aj , bk],

then gN is a Lie algebra and

gN =
∞∏

j=1

Mj

where Mj for j = 1, 2, 3, . . . is the linear space composed of all series with only the
j -th coefficient nonvanishing. Moreover, the Lie bracket in gN satisfies the conditions

(2.2) [Mj ,Mk] ⊂ Mj+k.

The property of the B-C-H series that we strongly rely on in this paper is
its graded structure: since the n -th coefficient of the series is a linear combination
of (n − 1)-fold Lie brackets, (2.2) implies that the coordinates of this coefficient with
indices less than n vanish. Thus (cf. [2], Chapter III) for each pair of elements of gN

their B-C-H series is coordinatewise convergent. The function

gN × gN 3 (f, g) −→ f ◦ g := Θ(f, g) ∈ gN

is jointly continuous and defines a group structure on gN .
To see this one may consider all the continuous Lie algebra homomorphisms

Φn : gN → gN/tngN into the nilpotent Banach-Lie algebras gN/tngN =: qn . It is well
known that the BCH-multiplication on each qn makes the latter a group, and since the
mappings Φn separate points on gN , we deduce that also there the BCH-multiplication
is a group multiplication.



604 Wojtyński

Definition 2.1. Given a Lie algebra g , the above group will be called the B-C-H
group of gN in the sequel, and it will be denoted by exp gN .

Let x⊗ t stand for the series f(t) ∈ gN with the first coefficient equal to x and
the remaining ones equal to 0. We also denote

g⊗ t = {x⊗ t : x ∈ g}.

The mapping i : g 3 x → x⊗ t ∈ exp gN will be called the canonical embedding.
Throughout the rest of this section we will consider g to be a Banach-Lie algebra

equipped with a norm satisfying

‖[x, y]‖ ≤ ‖x‖ · ‖y‖. (2.3)

By ◦ we will denote the B-C-H product (for various Lie algebras). We follow the
convention that expX for X ⊂ gN denotes the subgroup of exp gN generated by X .
We also abbreviate the B-C-H product f1 ◦ f2 ◦ . . . ◦ fm to ◦

∏m
i=1 fi .

Definition 2.2. For f =
∑∞

n=1 antn ∈ gN let

‖f‖1 =
∞∑

n=1

‖an‖ (2.4)

(we set ‖ f ‖1= ∞ if the series diverges).
Let

gN
1 =

{
f ∈ gN :‖ f ‖1< ∞

}
, (2.5)

gN
1,0 = {f ∈ gN

1 :
∞∑

n=1

an = 0}, (2.6)

α : gN
1 3 f =

∞∑
n=1

xntn →
∞∑

n=1

xn ∈ g. (2.7)

Proposition 2.3.
(a) gN

1 is a Banach-Lie subalgebra of gN with the norm ‖ · ‖1 which satisfies (2.3).
(b) gN

1,0 is a norm-closed Lie ideal of gN
1 .

(c) α is a continuous Lie algebra homomorphism.

Proof. (a) The situation is parallel (with the Lie product substituting the associative
product) to the one considered in the theory of convolution l1 (semigroup) Banach
algebras. l1 (semigroup) Banach algebras. We omit the proof.

(b) and (c) Observe that ‖ α(f) ‖≤‖ f ‖1 for each f ∈ gN
1 , α is a Lie algebra

homomorphism and ker α = gN
1,0 .

Definition 2.4.
(a) Let

exp gN
1 = {f ∈ exp gN : f = ◦

m∏
i=1

hi, hi ∈ gN
1 , m ∈ N}. (2.8)
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exp gN
1,0 = {f ∈ exp gN : f = ◦

m∏
i=1

hi, hi ∈ gN
1 , m ∈ N}. (2.9)

(b) For f ∈ exp gN
1 let

‖f‖(1) = inf

{
m∑

i=1

‖hi‖1 : f = ◦
m∏

i=1

hi, hi ∈ gN
1 , m ∈ N

}
. (2.10)

For f ∈ exp gN
1,0 let

‖ f ‖(1,0)= inf{
m∑

i=1

‖ hi ‖1: f = ◦
m∏

i=1

hi, hi ∈ gN
1,0, m ∈ N}. (2.11)

(c) For f1, f2 ∈ exp gN
1 let

ρ(1)(f1, f2) =‖ f−1
1 ◦ f2 ‖(1) . (2.12)

For f1, f2 ∈ exp gN
1,0 let

ρ(1,0)(f1, f2) =‖ f−1
1 ◦ f2 ‖(1,0) . (2.13)

Proposition 2.5.
(a) The functions ρ(1) and ρ(1,0) are metrics. The groups exp gN

1 and exp gN
1,0

equipped with the metrics ρ(1) and ρ(o,1) respectively are metric groups.
(b) The group exp gN

1 gN
1 is simply connected Banach-Lie group corresponding to

gN
1 and compatible with the metric ρ(1) .

(c) The group exp gN
1,0 is a connected Banach-Lie group corresponding to gN

1,0 and
compatible with the metric ρ(1,0) .

(d) The group exp gN
1,0 is the normal Lie subgroup of exp gN

1 corresponding to the
closed Lie ideal gN

1,0 .

Proof. (a) This is a consequence of Proposition 6.7 (a) (b) and Proposition 6.5 (see
Appendix).

(b) Let r be a number introduced in Proposition 6.2 and let α be as in Lemma
6.8 (c). For δ > 0 let Bδ = {f ∈ exp gN

1 :‖ f ‖(1)< δ} and observe that by Lemma
6.8(a)(c) B r

2
is homeomorphic to a suitable neighbourhood of 0 in gN

1 . Moreover the
local group of exp gN

1 restricted to Bα
2

coincides with the local B-C-H group of gN
1

restricted to this neighbourhood. The conclusion follows.
Clearly exp gN

1 as well as exp gN
1 are connected. To show that exp gN

1 is simply
connected let R[0,1] denote the multiplicative semigroup of the real numbers with the
underlying set {λ ∈ R : 0 ≤ λ ≤ 1} and let us note that exp gN

1 is closed with respect
to the action of R[0,1] given by R(0,1] × exp gN 3 (s, f) → s ∗ f ∈ exp gN where
s ∗ f :=

∑∞
n=1(s

nan)tn for f =
∑∞

n=1 antn . Indeed, for s ∈ R(0,1] and f1, f2 ∈ exp gN
one has s ∗ (f1 ◦ f2) = (s ∗ f1) ◦ (s ∗ f2), moreover for f ∈ gN

1 also s ∗ f ∈ gN
1 .
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Hint: To show continuity of the map R[0,1] × exp gN
1 3 (s, f) → s ∗ f ∈

exp gN
1 , observe that (2.12), and (6.2.1)(b),(c) together with Proposition 6.7(a) imply

for f1, f2 ∈ exp gN
1 and s1, s2 ∈ R[0,1] the inequality

ρ((s1 ∗ f1), (s2 ∗ f2)) ≤ ρ((s1 ∗ f1), (s2 ∗ f1)) + ρ((s2 ∗ f1), (s2 ∗ f2)).

This reduces the problem to showing that for a fixed f ∈ exp gN
1 the function R[0,1] →

s ∗ f ∈ exp gN
1 is continuous and also that for a fixed s ∈ R[0,1] the function exp :

gN
1 3 f → s ∗ f ∈ exp gN

1 is continuous. Next, the definition (2.11) and properties
(6.2.1)(b), (6.2.4) and (6.2.7) of the norm ‖ · ‖(1) enable further reduction to the
analogous statements with gN

1 substituting exp gN
1 .

(c) The proof is similar to the first part of the proof of (b).
(d) results from (c) and the observation (cf. the proof of Lemma 6.8 (d)) that

f ◦ φ ◦ f−1 ∈ gN
1,0 for f ∈ gN

1 and φ ∈ gN
1,0 .

3. The discriminant subgroup of a Banach-Lie algebra.

Let g be a Banach-Lie algebra with center zg and central descending series
(
gj

)
j≥1

(i.e. the sequence of ideals g1 = g and gj = [g, gj−1] for j ≥ 2, (cf. [2], Chap.I, Section
1, p.5). We will also consider the closed central descending series

(
gj

)
j≥1

which is the

sequence of the closures of the ideals in the central descending series. Define

g∞ =
∞⋂

j=1

gj .

In connection with the problems of integration and of continuous embedding of
a given Banach-Lie algebra into a Banach algebra, a role is played by

Eg = {x ∈ g : x⊗ t ∈ exp gN
1,0}.

Define
Γg = Eg ∩ zg.

Let us observe that for x, y ∈ Γg , the elements x⊗t , y⊗t are central in exp gN ,
hence (x⊗ t) ◦ (y ⊗ t) = (x + y)⊗ t ∈ exp gN

1,0 ∩ g ⊗ t , i.e. x + y ∈ Γg . It follows that
Γg is an additive subgroup of zg .

Definition 3.1. Γg will be called the discriminant subgroup of g .

Proposition 3.2.
(a) If ‖ x ‖< 2π then x ∈ Eg implies x ∈ zg .
(b) If g is the Lie algebra of a connected Banach-Lie group G , ZG is the center of

G and exp : g → G is the exponential map, then

Eg ⊂ {x ∈ g : expx ∈ ZG}.
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(c) Eg ⊂ ḡ∞.

Proof. (a) Let x ⊗ t ∈ exp gN
1,0 . Considering exp gN

1,0 with its Banach manifold
topology, i.e. the topology implemented by the metric (2.13), we see (cf. Lemma
6.8(b)) that Bβ = {f ∈ gN

1,0 :‖ f ‖1< β} is a neighbourhood of the unit element in
exp gN

1,0 for small β > 0. Since (−y⊗ t) ◦ (x⊗ t) ◦ (y⊗ t) = ead(y⊗t)(x⊗ t) using (6.2.6)
we infer that (−y ⊗ t) ◦ (x⊗ t) ◦ (y ⊗ t) ∈ (x⊗ t) ◦Bβ , for sufficiently small y i.e. that

(−y ⊗ t) ◦ (x⊗ t) ◦ (y ⊗ t) ◦ (−x⊗ t) ∈ gN
1,0. (3.1)

Note that Ax(f) = (x⊗t)◦f ◦(−x⊗t) = ead(x⊗t)(f) is a bounded linear operator
on gN

1 , and thus the mapping y → (−y ⊗ t) ◦Ax(y ⊗ t) is defined and differentiable in
some neighbourhood of zero in g and by (3.1) it maps this neighbourhood into gN

1,0 . e
same applies to its differential at 0 and we infer that for each y ∈ g ,

ead(x⊗t)(y ⊗ t)− (y ⊗ t) ∈ gN
1,0.

Applying the homomorphism α we get eadx(y)− y = 0 for each y ∈ g , i.e.

eadx = I. (3.2)

If ‖ x ‖< 2π then also ‖ adx ‖< 2π and (3.2) implies adx = 0, i.e. x ∈ z .
(b) It is well known that (3.2) is equivalent to the condition

exp(x) exp y(exp(x))−1 = exp(y),

i.e. exp(x) ∈ ZG .
(c) Let m be a positive integer. To show that Eg ⊂ ḡm let x⊗ t = ◦

∏k
j=1 fj ,

where fj ∈ gN
1,0 for j = 1, . . . , k . Decompose this coordinatewise convergent iterated

B-C-H series into two parts: x⊗ t = W + V , where W =
∑m−1

i=1 ai and V =
∑∞

i=m ai ,
where ai for i = 1, 2, . . . , is the i-th homogeneous part. Due to the graded structure
of gN , the m− 1 initial coordinates of V vanish and its i− th coordinate vi belongs
to gm for i = m,m + 1, . . . . For W =

∑∞
j=1 wjt

j the equality x ⊗ t = W + V
implies that w1 = x and wj = 0 for 1 < j ≤ m − 1. Also wj = −vj for j ≥ m .
Since fj ∈ gN

1,0 for j = 1 . . . k , each aj is in gN
1,0 and thus W ∈ gN

1,0 . It follows that
x =

∑m−1
i=1 wi = −

∑∞
i=m wi =

∑∞
i=m vi ∈ ḡm .

Proposition 3.3. The following are equivalent:
(a) Γg is closed.
(b) exp gN

1,0 is closed in exp gN
1

Proof. We claim that there exist a neighbourhood U of 0 in gN
1 , a neighbourhood

V1 of 0 in g and a neighbourhood V2 of 0 in gN
1,0 such that the mapping

σ : V1 × V2 3 (k, φ) → k ◦ φ ∈ U

is a homeomorphism identifying k with k ⊗ t . Indeed σ is defined on the product
of suitable neighbourhoods Ṽ1 of 0 in g and Ṽ2 of 0 in gN

1,0 , it is differentiable and
d(0,0)σ(x, k) = x⊗ t + k , in particular d(0,0)σ is an isomorphism. The claim follows.
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Let V1 and V2 be such neighbourhoods. Observe that the assertion of the
proposition follows from the equality

U ∩ exp gN
1,0 = (Γg ∩ V1) ◦ V2 (3.3).

The inclusion (Γg ∩ V1) ◦ V2 ⊂ U ∩ exp gN
1,0 is obvious.

To show the reverse inclusion, let f = (x⊗ t) ◦ h ∈ exp gN
1,0 ∩ U where x ∈ V1

and h ∈ V2 . Then x⊗ t ∈ exp gN
1,0 , i.e. x ∈ Γg ∩ V1.

Proposition 3.4.
(a) If g is separable then Γg is at most countable.
(b) If g is separable and Γg is closed then Γg is discrete.

Proof. (a) By Lemma 6.8 (b), Br ∩ gN
1,0 is a neighbourhood of the unit in exp gN

1,0 .
Let x ∈ Γg . Since x is in the center of g hence (x⊗t)+(Br∩gN

1,0) = (x⊗t)◦(Br∩gN
1,0)

thus (x⊗t)+(Br∩gN
1,0) is a neighbourhood of x⊗t in exp gN

1,0 . Observe that for x1 6= x2

the corresponding neighbourhoods are disjoint and moreover (y⊗t) ∈ (x⊗t)+(Br∩gN
1,0)

implies x = y . Since for g separable, exp gN
1,0 is also separable, this yields the statement.

(b) If Γg is closed but not discrete then being a complete and perfect metric
space it cannot be countable, contrary to (a).

Proposition 3.5. Let g be a finite dimensional real or complex Lie algebra. Then
Γg = {0} .
Proof. Let gC be the complexification of the real normed Lie algebra g . From
Definition 3.1 one deduces that Γg ⊂ ΓgC

. It follows that we may restrict attention to
the complex case.

Let g = S + R be a Levi decomposition of g , i.e. S is a semisimple (Levi)
subalgebra of g and R is the radical of g . Let x ∈ Γg so that x ⊗ t = ◦

∏k
j=1 fj ,

where fj ∈ gN
1,0 for j = 1, . . . , k . With no loss of generality we may assume that

each fj is as small as we wish. Decomposing fj = sj + rj for j = 1, 2, . . . , k , where
sj ∈ SN

1,0 and rj ∈ RN
1,0 , and applying the inverse mapping theorem to the function

F : SN
1,0 × RN

1,0 3 (s, r) → s ◦ r ∈ gN
1,0 (cf. the proof of Proposition 3.3), we may write

each fj as the B-C-H product fj = s′j ◦ r′j where s′j ∈ SN
1,0 and r′j ∈ RN

1,0 . Changing
the order and applying the fact that exp RN

1,0 is a normal subgroup of exp gN
1,0 , we get

x⊗ t = ◦
k∏

j=1

(s′j ◦ r′j) = s0 ◦
k∏

j=1

r′′j , (3.4)

where r′′j ∈ RN
1,0 for j = 1, . . . , k and s0 = ◦

∏k
j=1 s′j ∈ expSN

1,0 has its coordinates
in S .

Thus each coordinate of x⊗ t is the sum of the corresponding coordinate of s0

which belongs to S and an element of R . It follows that s0 = 0, i.e. x⊗ t ∈ expRN
1,0 .

Let R = A + N be the Iwasawa decomposition of R , where A is an abelian
subalgebra and N is a nilpotent ideal. Arguments as before with A substituting S
and N substituting R yield x⊗ t ∈ expNN

1,0 . But then Proposition 3.2(c) implies that
x ∈ N̄∞ = {0} .
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4. Results

For a Banach-Lie algebra g with discriminant subgroup Γg and exp gN
1 equipped with

the metric (2.11) define
G = exp gN

1 / exp gN
1,0. (4.1)

Let h be the Banach-Lie algebra corresponding to a Banach-Lie group H . Let
I : g → h be a continuous homomorphism. Then δ : gN

1 3 f → I(α(f)) ∈ h is a
Lie algebra homomorphism which may be also treated as a continuous homomorphism
of the corresponding local B-C-H groups. Since these local groups may be identified
respectively with a local group of exp gN

1 and a local group of H (the first by Proposition
2.5(b)), and moreover the group exp gN

1 is simply connected, the local homomorphism
δ may be extended to a global continuous homomorphism δ̃ : exp gN

1 → H .

Lemma 4.1.
(a) If I is injective then exp gN

1,0 is closed in exp gN
1 , and G is a Banach-Lie group

corresponding to g . Moreover, Γg is discrete.
(b) If I is an isomorphism and H is simply connected, then ker δ̃ = exp gN

1,0 and
H = G .

Proof. (a) Since by Lemma 6.8(a), U ⊂ gN
1 for a sufficiently small neighbourhood U

of e in exp gN
1 and moreover δ̃(f) = I(α(f)) for f ∈ U , we get ker δ̃∩U = gN

1,0∩U and
the inclusion exp gN

1,0 ⊂ ker δ̃ implies gN
1,0 ∩U = exp gN

1,0 ∩U . It follows that exp gN
1,0 is

closed in exp gN
1 and that exp gN

1,0 is the connected component of the identity in ker δ̃ .
Considering if necessary a smaller neighbourhood V of e in exp gN

1 we observe
that for x1, x2 ∈ V their cosets mod exp gN

1,0 are equal iff α(x1) = α(x2). Thus α maps
a neighbourhood of unity in G to a neighbourhood of 0 in g transferring the quotient
group multiplication to the B-C-H multiplication in g .

We also observe that U ∩ (g⊗ t) ∩ exp gN
1,0 = {0} , hence Γg is discrete.

(b) If I is an isomorphism, then δ is open and hence also δ̃ is open. It follows
that H = exp gN

1 / ker δ̃ topologically. Thus the inclusion exp gN
1,0 ⊂ ker δ̃ induces a

continuous homomorphism of G onto H . Since both groups have the same Lie algebra,
are connected and H is simply connected this homomorphism has to be injective, i.e.
ker δ̃ = exp gN

1,0 .

Theorem 4.2.
(a) If g is the Lie algebra of a simply connected Banach-Lie group H then Γg is

discrete, exp gN
1,0 is closed in exp gN

1 , and H ∼= G . Moreover, the exponential
map exp : g → G , may be interpreted as the restriction to g⊗ t of the quotient
homomorphism π : exp gN

1 → G .
(b) If Γg is discrete, then exp gN

1,0 is closed in exp gN
1 and G is the simply connected

Banach-Lie group corresponding to g .

Proof. (a) The first part results from Lemma 4.1(a) and (b). For the second part,
given x ∈ g the function φx : R 3 s → π(sx ⊗ t) ∈ G is a continuous one-parameter
subgroup of G , and identifying a local group of G with the appropriate local B-C-H
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group of g we infer that the groups φx for x ∈ g are the only continuous one-parameter
subgroups of G . It follows that exp(x) = φx(1) = π(x⊗ t).

(b) By Proposition 3.3, exp gN
1,0 is closed in exp gN

1,0 . For G defined by (4.1)
consider the map φ : g 3 x → π(x ⊗ t) ∈ G where π : exp gN

1,0 → G is the quotient
homomorphism. Applying σ defined in the proof of Proposition 3.3 (a) and Lemma 6.8
(a) we see that restriction of φ to a sufficiently small neighbourhood of 0 is an open
map.

Observe that for discrete Γg and suitably small x, y ∈ g equality φ(x) = φ(y) is
equivalent to π((x⊗t)(y⊗t)−1) ∈ exp gN

1,0 and this by (3.3) implies ((x⊗t)◦(y⊗t)−1) ∈
gN
1,0 Hence 0 = x⊗(−y) = α((x⊗t)◦(y⊗t)−1) i.e. −x = −y .It follows that φ restricted

to a suitably small neighbourhood of 0 maps it homeomorphically onto a neighbourhood
of the unit in G .

Note also that for a suitably small neighbourhood U of 0 in g (3.3) yields

(φ|U )−1 = α|φ(u). (4.2)

This shows that a local group of G is isomorphic to the appropriate local B-C-H group
of g . Thus G is a Lie group corresponding to g . Part (a) now entails that G is simply
connected.

Proposition 3.2 (b) may now be formulated in a more precise way:

Corollary 4.3. If g is the Lie algebra of a simply connected Banach-Lie group G ,
and exp : g → G is the exponential map, then

Eg = {x ∈ g : expx = e}. (4.3)

Proof. By Theorem 4.2(a),

Eg = {x ∈ g : x⊗ t ∈ exp gN
1,0} = {x ∈ g : π(x⊗ t) = e} = {x ∈ g : exp(x) = e}.

Example 4.4. Let g be the Lie algebra of all bounded linear operators on an infinite
dimensional Hilbert space H . Then Γg consists of all 2kπi-multiples of the identity
operator I where k is an integer.

Indeed, g is the Lie algebra of the group of all bounded and invertible endomor-
phisms of H , which by Kuiper’s theorem [13] is simply connected. Thus Corollary 4.3
implies the conclusion.

Theorem 4.5. Let g be a finite dimensional real Lie algebra. Then Γg = {0} ,
exp gN

1,0 is closed in exp gN
1 and G = exp gN

1 / exp gN
1,0 is the simply connected Lie group

of g .

Proof. Since Γg = {0} by Proposition 3.5, we can apply Theorem 4.2(b).

Definition 4.6. Let [g, g]0 = {[x, y] : x, y ∈ g} and let Γ0
g = Γg ∩ [g, g]0 .



Wojtyński 611

Theorem 4.7. For g a Banach-Lie algebra let ρ : g → A be a continuous homomor-
phism into an associative Banach algebra A. Then ρ(Γ0

g) = 0 .

Proof. With no loss of generality, we may assume that A is complex, unital and that
ρ(g) generates A . Let us apply Lemma 4.1 with h = A , and H = Ã , where Ã is the
group of units of A . We get a local homomorphism δ of the form δ(f) = exp(ρ(αf))
for small f ∈ gN

1,0 , where exp : A → Ã .

Let us observe that for x ∈ g and δ̃ as in Lemma 4.1 one has

δ̃(x⊗ t) = exp(ρ(x)). (4.4)

Indeed, (4.4) holds for small x by the definition of δ . Since x⊗ t = ( x
n ⊗ t)n we get

δ̃(x⊗ t) = (δ̃(
x

n
⊗ t))n = (exp ρ(

x

n
))n = exp(ρ(x)).

Let x0 ∈ Γ0
g . Suppose that ρ(x0) 6= 0. Then the one-parameter subgroup R 3

s → φ(s) = δ̃(sx0 ⊗ t) is central, non-trivial and 1-periodic. Consider the induced
representation of the circle group T = R/Z and the resulting representation C(T ) 3
f → af ∈ A of the convolution algebra C(T ) of all continuous complex functions on
T , where

af =
∫

T

f(s)φ(s)ds (4.5).

( integration with respect to the normalized Lebesgue measure.) The condition ρ(x0) 6=
0 implies that there exists a non-zero b = af with f(s) = e2kπis for a certain integer
k . Observe that b is central and b = b2 . Thus we get a decomposition of A into the
direct sum of ideals:

A = bA⊕ (e− b)A.

Consider the representation induced by ρ in bA . Invariance of the measure ds yields
φ(s) · b = e2kπisb for s ∈ T , hence the operators of multiplication from the left by
φ(s) when restricted to bA are multiples of the identity. This contradicts the Wielands
theorem (canonical commutation relations cannot be realized in a Banach algebra ) (cf.
also [12], Problem 182).

As observed by the referee, another shorter proof of Theorem 4.7 may be
obtained by reduction via Corollary 4.3 to the following Lemma of van Est and
Świerczkowski ([8] p.54 )

Lemma . Let G be a simply connected Banach-Lie group such that its Lie algebra g
contains two elements p, q with the properties

(i) 0 6= [p, q] ∈ centre of g .
(ii) the one-parameter subgroup tangent to [p, q] is a circle.

Then g is not faithfully representable.
The first step of reduction is the observation that Theorem 4.7 may be equiva-

lently formulated in the following way:
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Theorem 4.7’. For g′ a Banach-Lie algebra let ρ′ : g′ → A be a continuous injective
homomorphism into an associative Banach algebra A . Then (Γg′)0 = {0} .
Proof. To show the equivalence of theorems 4.7 and 4.7’ note that Theorem 4.7’ is
a special case of Theorem 4.7.

Assume that Theorem 4.7’ holds true and let g, ρ, A be as in assumption of the
Theorem 4.7. For g′ = g/ ker ρ consider the induced representation ρ′ : g′ → A . Note
that for a continuous surjective homomorphism π : g → g′ one has

π(Γg) ⊂ Γg′ . (4.5)

Substituting here for π the quotient homomorphism, we see that the condition (Γg′)0 =
{0} implies the assertion of Theorem 4.7.

Proof of the Theorem 4.7’ Let z′ be the center of g′ . Since g′ admits a
continuous injective representation into an associative Banach algebra, g′ is enlargeable.
Let G′ be its simply connected Banach-Lie group and let exp g′ → G′ be the exponential
map. By Corollary 4.3 Γg′ = ker exp∩z′ . Thus each nonzero element of (Γg′)0 would
confirm with the assumptions of the Lemma what contradicts the injectivity of ρ′ .

5. Remarks

In this paper, we describe intrinsic obstructions to integration of a Lie algebra g in terms
of the discriminant subgroup Γg . We do not know whether it is equal to the period
group Π(g) of van Est and Korthagen. The following was observed by the referee of
the paper:

Proposition 5.1. The following are equivalent
(a) Γg is discrete.
(b) Π(g) is discrete.
(c) g is enlargeable.

Proof. The conditions (b) and (c) are equivalent by [7], the conditions (a) and (c)
are equivalent by Theorem 4.2.

It was also observed by the referee that each of the conditions (a),(b),(c) implies
Π(g) = Γg . In fact, (c) implies by Corollary 4.3 that Γg = kerexp ∩ z ,where z is the
center of g . The same characterization holds for Π(g), namely Proposition III.8 in
Glöckner-Neeb [10] asserts that (c) implies Π(g) = kerexp ∩ z .

It was noted by the referee of the earlier version of the paper that the statement
(a) of Proposition 3.4 which was observed earlier implies (b) of the same Proposition.
This raises the question whether for non-separable g the situation when Γg is closed but
not discrete may really occur. In such a case our method of integration would provide
a new class of topological groups.

Representing a simply connected Lie group G in the form (4.1), we get a
new insight into finite dimensional Lie group theory. For instance, Corollary 4.3 and
Proposition 3.2(c) imply the statement:

If x ∈ g generates a periodic one-parameter subgroup in the associated simply
connected group G then x ∈ g∞ .
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Nonenlargeability of a Banach-Lie algebra g may be equivalently formulated by
stating that the local B-C-H group of g does not embed in any global group. Let us
note (cf. [14]) that a necessary and sufficient condition for an abstract local group H
to embed in a global group is the following generalized associativity law:

for each m ∈ N , each m-tuple A = (a1, a2, . . . , am) of elements of H and each
distribution of parentheses (indicating how to evaluate A in H ), the evaluated elements
(if they exist) do not depend on this distribution.

It follows that a Banach-Lie algebra g is not integrable to a Banach-Lie group iff
for each neighbourhood V of zero in g there exists a positive integer m and an m -tuple
A = (x1, x2, . . . , xm) of elements of V such that for two distributions of parentheses
the resulting iterated B-C-H products (say w1 and w2 ) do exist in V but are different.

We claim that in this situation w1 ◦ w−1
2 ∈ Γg povided this product can be

defined. For this, given m ∈ N , an m -tuple A = (x1, x2, . . . , xm) of elements of g and
a distribution of parentheses, simultaneously with w ∈ exp0 g resulting as the iterated
B-C-H product we consider w̃ ∈ exp gN

1 obtained similarly to w but starting from xi⊗t
instead of xi (i = 1, . . . ,m) and using the B-C-H product in exp gN

1 instead of that in
exp0(g). Since exp gN

1 is a full group, all the elements w̃ obtained for a fixed m -tuple
A and any distributions of parentheses are equal. Elements w ∈ g and w̃ ∈ exp gN

1

resulting from a common A and common choice of parentheses will be called similar.
The least m such that an m -tuple A with some choice of parentheses produces w̃ will
be called the length of w̃ .

Our claim may be deduced from the following statement:

Lemma 5.2. Let w ∈ g and w̃ ∈ exp gN
1 be a pair of similar elements. Then

(w ⊗ t) ◦ w̃−1 ∈ exp gN
1,0. (5.1)

Before proving the lemma we indicate how the claim may be deduced from it.
For a fixed A let w1 , w2 be obtained for certain choices of parentheses. Let w̃1, w̃2 be
the similar elements to w1, w2 respectively. Then w̃1 = w̃2 and by (5.1),

w1 ◦ w−1
2 ⊗ t = (w1 ◦ w−1

2 ⊗ t) ◦ (w̃1 ◦ w̃2
−1)−1 ∈ exp gN

1,0.

Proof. We proceed by induction on the length of w̃ . (5.1) is obvious for length 1.
Observe that for sufficiently small elements x, y ∈ g we get

v = ((x ◦ y)⊗ t) ◦ ((x⊗ t) ◦ (y ⊗ t))−1) ∈ gN
1

by Proposition 6.1. Moreover α : gN
1,0 → g being a homomorphism of local B-C-H

groups, α(v) = x ◦ y − (α(x⊗ t) ◦ α(y ⊗ t)) = 0, i.e.

((x ◦ y)⊗ t) ◦ ((x⊗ t) ◦ (y ⊗ t))−1 ∈ gN
1,0. (5.2)

Suppose that (5.1) holds for each pair (z, z̃) with the length of z̃ less than n
and consider a pair (w, w̃) with the length of w̃ equal to n . Let w = w1 ◦ w2 and
w̃ = w̃1 ◦ w̃2 with the length of w̃j for j = 1, 2 less than n . Applying (5.2) we get the
following equalities modulo exp gN

1,0 which hold provided w1 and w2 are sufficiently
small :

(w⊗ t)◦ w̃−1 = (w1 ◦w2⊗ t)◦ ((w1⊗ t)◦ (w2⊗ t))−1 ◦ ((w1⊗ t)◦ (w2⊗ t))◦ (w̃1 ◦ w̃2)−1 =

= (w1 ⊗ t) ◦ ((w2 ⊗ t)) ◦ w̃2
−1) ◦ (w1 ⊗ t)−1 ◦ (w1 ⊗ t) ◦ w̃1

−1.

Since exp gN
1,0 is a normal subgroup of exp gN

1 , the induction hypothesis gives (5.1).
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Question 5.3 Given a neighbourhood V of 0 in g , let Γg,V be the additive
subgroup of g generated by all the elements w1 ◦ w−1

2 with w1, w2, w1 ◦ w−1
2 ∈ V and

w1 , w2 having a common similar element. What is the relation of Γg and Γg,V ?
We believe that the present approach is not limited to the class of normed Lie

algebras which are complete. Since adjustments to meet a more general situation would
increase the volume, we leave it to a future publication.

6. Appendix

In this section we present some technical details omitted in the main text for its
transparency. We organize it in two subsections corresponding to the main subjects
treated. These are: the norm inequalities in local B-C-H groups and the ’group norms’
and resulting Banach manifold structure on exp gN

1 and on exp gN
1,0 .

6.1. Norm inequalities in local Banach-Lie groups

Let g be a Banach-Lie algebra equipped with a norm satisfying condition (2.3).
For y1, y2 ∈ g consider the series Θ(y1, y2) (cf. (2.2)). If this series converges we
denote its sum by y1 ◦ y2 and we say that y1 ◦ y2 is correctly defined. Proceeding
by induction assume that y1 ◦ . . . ◦ ym−1 is correctly defined and consider the series
Θ(y1 ◦ . . . ◦ ym−1, ym). If it converges we denote its sum by y1 ◦ . . . ◦ ym and we say
that y1 ◦ . . . ◦ ym is correctly defined.

Proposition 6.1. There exists r > 0 such that for each integer m ≥ 2 the inequality

m∑
i=1

‖ yi ‖< r

implies that y1 ◦ . . . ◦ ym is correctly defined.

Proof. Using the Taylor expansion at 0 of the function Θ(x, y) we infer (compare
Remark 6.3 below) that there exists a positive constant R (which may and will be
assumed to be less than 1

2 ln2) and a positive constant M not depending on the
particular choice of g , such that for x, y ∈ g with ‖ x ‖≤ R , ‖ y ‖≤ R one has

‖x ◦ y − (x + y)‖ ≤ M‖x‖ · ‖y‖. (6.1.1)

Note that (6.1.1) implies

1 + M‖x ◦ y‖ ≤ (1 + M‖x‖ · (1 + M‖y‖). (6.1.2)

Let r = 1
M ln(1 + MR). We claim that for each integer m ≥ 2 and y1, . . . , ym ∈ g the

inequality
∑m

i=1 ‖yi‖ < r implies that

y1 ◦ . . . ◦ ym is correctly defined, (a)
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1 + M‖y1 ◦ . . . ◦ ym‖ ≤ (1 + M‖y1‖) · . . . · (1 + M‖ym‖), (b) (6.1.3)

‖y1 ◦ . . . ◦ ym‖ ≤ R. (c)

We prove (6.1.3) by induction. For m = 2 observe that r < R ≤ 1
2 ln2 and thus

(6.1.3)(a) holds. Also (6.1.3)(b) reduces to (6.1.2). To prove (6.1.3)(c) note that (6.1.2)
implies

ln(1 + M‖y1 ◦ y2‖) ≤ ln(1 + M‖y1‖) + ln(1 + M‖y2‖)

≤ M(‖y1‖+ ‖y2‖) ≤ ln(1 + MR)

and so ‖y1 ◦ y2‖ ≤ R .
Passing to the general case assume that

∑m
i=1 ‖yi‖ < r . Then

∑m−1
i=1 ‖yi‖ < r

so by the induction hypothesis x = y1 ◦ . . . ◦ ym−1 is correctly defined and has norm
at most R . Moreover, since ‖ym‖ ≤ R and R ≤ 1

2 ln2 also y1 ◦ . . . ◦ ym is correctly
defined.

For (6.1.3)(b), applying (6.1.2) and the induction hypothesis (6.1.3)(b) with
respect to x one gets

1 + M‖y1 ◦ . . . ◦ ym‖ = 1 + M‖x ◦ ym‖

≤ (1 + M‖x‖) · (1 + M‖ym‖) ≤ (1 + M‖y1‖) · . . . · (1 + M‖ym‖).

To prove (6.1.3)(c) note that (6.1.3)(b) implies

ln(1 + M‖y1 ◦ . . . ◦ ym‖) ≤
m∑

i=1

ln(1 + M‖yi‖) ≤ M
m∑

i=1

‖yi‖ ≤ ln(1 + MR)

and so ‖y1 ◦ . . . ◦ ym‖ ≤ R . This completes the proof.

For N the set of positive integers and x ∈ g define

‖x‖◦ = inf {
m∑

i=1

‖yi‖ : x = y1 ◦ . . . ◦ ym, m ∈ N}. (6.1.4)

Observe that ‖x‖◦ is well defined, since each x ∈ g has an obvious representation with
m = 1 and y1 = x . Moreover

‖x‖◦ ≤ ‖x‖. (6.1.5)

Proposition 6.2. There exist r > 0 and L ≥ 1 such that ‖x‖◦ < r implies

‖x‖ ≤ L‖x‖◦. (6.1.6)

Proof. Let r ,R and M be as in the proof of Proposition 6.1. Let K be such that
for 0 ≤ s ≤ R ,

Ks ≤ ln(1 + Ms),

and let

w = y1 ◦ . . . ◦ ym with
m∑

i=1

‖ yi ‖< r. (6.1.7)
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As in the proof of (6.1.3)(c) we get

K ‖ w ‖≤ ln(1 + M ‖ w ‖) ≤ ln(
m∏

i=1

(1 + M ‖ yi ‖)) ≤ M
m∑

i=1

‖ yi ‖

and letting L = M
K gives

‖ w ‖≤ L
m∑

i=1

‖ yi ‖

for w satisfying the condition (6.1.7). This gives the required conclusion.

Remark 6.3. The constants r < ln 2
2 and L > 1 in Proposition 6.2 may be chosen

universally for all Banach-Lie algebras, provided the norm satisfies the condition (2.3).
Since we do not need the Remark and moreover our proof, based on modified

Dynkin estimates (like the proof of Lemma 6.8(c) below) is rather long we decided not
to present it here.

6.2. Group norms

Throughout the rest of this section r > 0 and L ≥ 1 are the constants
introduced in Proposition 6.2.

Definition 6.4. Let P be a group. Put {f, g} = fgf−1g−1 for f, g ∈ P . A function
P 3 f →‖ f ‖∈ R+ satisfying

‖f‖ = 0 ⇔ f = e, (a)

‖f · g‖ ≤ ‖f‖+ ‖g‖, (b)

‖f−1‖ = ‖f‖, (c) (6.2.1)

∃ε>0 ∃C>0(‖ f ‖< ε, ‖ g ‖< ε) ⇒ (‖ {f, g} ‖≤ C ‖ f ‖ · ‖ g ‖)
and {g ∈ G :‖ g ‖< ε} generates G (d)

is said to be a group norm on P .
The following two propositions correspond to well-known facts in the theory of

normed linear spaces. We omit the proofs.

Proposition 6.5. Let ‖ · ‖ be a group norm on P . Then
(a) The function

P × P 3 (f, g) → ρl(f, g) = ‖f−1 · g‖ ∈ R+ (6.2.2)

is a left-invariant metric providing P with a topological group structure.
(b) The function

P × P 3 (f, g) → ρr(f, g) = ‖f · g−1‖ ∈ R+ (6.2.3)

is a right-invariant metric providing P with a topological group structure.
(c) The metrics (6.2.2) and (6.2.3) are equivalent and define the same topology

on P .
A topological group equipped with a group norm which induces the topology

will be called a normed group. The topology induced by a group norm will be referred
to as a norm topology.
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Proposition 6.6. Let P be a normed group with a closed normal subgroup H and
let Q = P/H . Then

Q 3 fH →‖ fH ‖P/H= inf
h∈H

‖ f · h ‖= inf
h∈H

‖ h · f ‖∈ R+

is a group norm inducing the quotient topology of Q .

Proposition 6.7. Let g be a Banach-Lie algebra with norm ‖ · ‖ . Then
(a) The function (2.10) is a group norm on exp gN

1 .
(b) The function (2.11) is a group norm on exp gN

1,0 .
To prove this proposition we will need the following properties of the functions

(2.10) and (2.11).

Lemma 6.8.
(a) If f ∈ exp gN

1 and ‖ f ‖(1)< r , then f ∈ gN
1 and

‖ f ‖(1)≤‖ f ‖1≤ L ‖ f ‖(1) . (6.2.4)

(b) If f ∈ exp gN
1,0 and ‖ f ‖(1,0)< r then f ∈ gN

1,0 and

‖ f ‖(1,0)≤‖ f ‖1≤ L ‖ f ‖(1,0) . (6.2.5)

(c) There exist constants C1, C2 > 0 and 0 < α ≤ r such that for f1, f2 ∈ gN
1

satisfying ‖ f1 ‖1 + ‖ f2 ‖1≤ α ,

C1 ‖ f1 − f2 ‖1≤‖ f1 ◦ f−1
2 ‖1≤ C2 ‖ f1 − f2 ‖1 . (6.2.6)

(d) If f1, f2 ∈ exp gN
1 , then

‖f1 ◦ f2 ◦ f−1
1 ‖(1) ≤ ‖f2‖(1)e‖f1‖(1) . (6.2.7)

If f1 ∈ exp gN
1 and f2 ∈ exp gN

1,0 , then

‖f1 ◦ f2 ◦ f−1
1 ‖(1,0) ≤ ‖f2‖(1,0)e

‖f1‖(1) . (6.2.7′)

(e) For x ∈ g ,
‖x⊗ t‖(1) = ‖x‖. (6.2.8)

Proof. (a) Let f = ◦
∏m

i=1 hi where hi ∈ gN
1 and

∑m
i=1 ‖hi‖1 < r . From Proposition

6.2 (applied to the Banach-Lie algebra gN
1 ) the product h1 ◦ h2 ◦ . . . ◦ hm is correctly

defined and f ∈ gN
1 . Also ‖f‖1 ≤ L‖f‖(1) .

(b) The proof of (6.2.5) is similar to that of (6.2.4).
(c) To show the right hand inequality of (6.2.6) we follow Dynkin’s method (cf.

[6]) yielding the upper bound of the sum of the norms of all Lie monomials in the B-C-H
series.

We get f1 ◦ (−f2) =
∑∞

n=1
(−1)n+1

n Wn where Wn has associative form

(exey − 1)n =
∑
Sn

fk1
1 (−f2)j1 . . . fkn

1 (−f2)jn

k1!j1! . . . kn!jn!
,
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where Sn is the set of all 2n -multiindices (k1, k2, . . . , kn, j1, j2, . . . , jn) with ki, ji ∈ N
and ki + ji ≥ 1 for i = 1, 2, . . . , n . The Lie form of Wn is (cf. [2] Chapter 2, Section
3, p. 2 )

Wn =
∑
Sn

1
k1 + j1 + . . . + kn + jn

·

[f1, [. . . [f1,︸ ︷︷ ︸
k1times

[(−f2), [. . . [(−f2),︸ ︷︷ ︸
j1times

. . . [f1, [. . . [f1,︸ ︷︷ ︸
kntimes

[(−f2), [. . . [(−f2), (−f2)︸ ︷︷ ︸
jntimes

] . . .]

k1!j1! . . . kn!jn!
.

Let us observe that each nonvanishing homogeneous Lie monomial in Wn ter-
minates either with [f1, (−f2)] or [(−f2), f1] . Since [f1, (−f2)] = [f1, f1 − f2] and also
[f1, (−f2)] = [f1 − f2,−f2] , applying (2.3) we get ‖[f1,−f2]‖1 ≤ ‖f1‖1‖f2‖1 · 2‖f1−f2‖1

‖f1+f2‖1
Following Dynkin this leads to the estimate

‖Wn‖1 ≤ (e‖f1‖1+‖f2‖1 − 1)n · 2‖f1 − f2‖1
‖f1 + f2‖1

.

Since
∑∞

n=1
an

n = − log(1− a) for 0 ≤ a < 1 we get

‖f1 ◦f−1
2 ‖1 = ‖

∞∑
n=1

(−1)n+1

n
Wn‖1 ≤

∞∑
n=1

‖Wn‖1
n

≤ ‖f1−f2‖1 ·2
log(2− e‖f1‖1+‖f2‖1)−1

(‖f1‖1 + ‖f2‖1)

and the right hand inequality of (6.2.6) follows with C2 = −2 log(2−er)
r .

As remarked by the referee the inequalities 6.2.6 may be obtained much simpler
but with constants depending on the Lie algebra:

The first order Taylor expansion of the smooth map (f, g) → f◦(f+g)−1 around
(f, 0) reads f ◦ (f + g)−1 = −g + A(f) · g + o(‖ g ‖) , where A(f) is a continuous linear
map depending continuously on f , with A(0) = 0 (and where the remainder is o(‖ g ‖)
uniformly in f ). Thus f1 ◦ f−1

2 = f1 ◦ (f1 + (f2− f1))−1 = (A(f1)− id) · (f2− f1) + o(‖
f2 − f1 ‖) , from which the assertion is apparent.

To show the left hand inequality of (6.2.6) with the constant C1 not depending
of the Lie algebra, observe that by Lemma 6.8(a) we may assume that for α sufficiently
small f2 = h ◦ f1 where h ∈ gN

1 . Then ‖f1 − f2‖1 = ‖h + Θ1(f1, h)‖1 for f1 and h
siutably small where ‖Θ1(f1, h)‖1 ≤ D‖f1‖‖h‖ for some constant D .

The conclusion follows.
(d) To show (6.2.7) observe that for f1, f2 ∈ exp gN ,

f1 ◦ f2 ◦ f−1
1 = eadf1 (f2) =

∞∑
n=1

adn
f1

(f2)
n!

,

where the series is coordinatewise convergent due to the graded structure of gN .
The above formula may be justified by arguments similar to those explaining the

group properties and joint continuity of the function

gN × gN 3 (f, g) −→ f ◦ g := Θ(f, g) ∈ gN
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in the Section 2.
Let us note that if f1, f2 ∈ gN

1 then by (2.3) ‖ adn
f1

(f2) ‖1≤‖ f1 ‖n
1‖ f2 ‖1 , and

the above series converges absolutely in gN
1 so that in particular f1 ◦ f2 ◦ f−1

1 ∈ gN
1 and

‖ f1 ◦ f2 ◦ f−1
1 ‖1≤‖ f2 ‖1 e‖f1‖1 . (6.2.9)

Given ε > 0 let f1 = ◦
∏m

i=1 hi and f2 = ◦
∏n

j=1 kj where hi, kj ∈ gN
1 and suppose∑m

i=1 ‖ hi ‖1≤‖ f1 ‖(1) +ε and
∑n

j=1 ‖ kj ‖1≤‖ f2 ‖(1) +ε . Then

f1 ◦ f2 ◦ f−1
1 = ◦

n∏
j=1

(h1 ◦ (h2(◦ . . . (hm ◦ kj ◦ h−1
m ) ◦ . . .) ◦ h−1

2 ) ◦ h−1
1 ),

thus,

‖f1 ◦ f2 ◦ f−1
1 ‖(1) ≤

n∑
j=1

(
m∏

i=1

e‖hi‖1)‖kj‖1 ≤ e‖f1‖(1)+ε(‖f2‖(1) + ε).

The conclusion follows.
The proof of (6.2.7’) is similar.
(e) Since ‖x ⊗ t‖1 = ‖x‖ and ‖x ⊗ t‖(1) ≤ ‖x ⊗ t‖1 , we get ‖x ⊗ t‖(1) ≤ ‖x‖ .

Given ε > 0 let x⊗ t = ◦
∏m

i=1 hi with hi ∈ gN
1 and ‖(x⊗ t)‖(1) + ε ≥

∑m
i=1 ‖hi‖1 . Let

a1,i denote the first coordinate of hi , i = 1, 2, . . . ,m . Then x =
∑m

i=1 a1,i and

‖x‖ ≤
m∑

i=1

‖a1,i‖ ≤
m∑

i=1

‖hi‖1 ≤ ‖x⊗ t‖(1) + ε.

The conclusion follows.

Proof of Proposition 6.7. We prove (a) only. The argument for (b) is similar.
The properties (b) and (c) of (6.2.1) and the implication ⇐ in (a) are straightforward
and we omit their proofs (for (c) note that (◦

∏p
j=1 hj)−1 = ◦

∏p
j=1−hp−j ).

For the implication ⇒ in (6.2.1)(a), pick f =
∑∞

i=1 ait
i ∈ exp gN

1 with ‖f‖(1) =
0. By Lemma 6.8(a), f ∈ gN

1 and ‖f‖1 = 0. Thus f = 0. For (6.2.1)(d), let ‖f‖1 and
‖g‖1 be sufficiently small. Then, by Lemma 6.8(c),

‖f ◦ g ◦ f−1 ◦ g−1‖1 ≤ C2‖f ◦ g ◦ f−1 − g‖1

= C2‖eadf (g)− g‖1 ≤ C3(e‖f‖1 − 1)‖g‖1 ≤ C4‖f‖1‖g‖1
where C2, C3, C4 are appropriate constants. Applying Lemma 6.8(a) we get (6.2.1)(d).
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