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Abstract. We construct an infinite family of closed connected orientable
3—manifolds by pairwise identifications of faces in the boundary of certain
polyhedral 3—cells. We determine geometric presentations (that is, induced
by Heegaard diagrams of the constructed manifolds) of the fundamental
group, and study the split extension of it. Then we prove that these
manifolds are n—fold cyclic coverings of the 3—sphere branched over some
pretzel links. Our results generalize those of Helling, Kim and Mennicke
[Comm. in Algebra 23 (1995), 5169-5206] and Cavicchioli and Paoluzzi
[Manuscripta Math. 101 (2000), 457-494] on cyclic branched coverings of
the Whitehead link, and their fundamental groups.
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1. Introduction

In 1933 Seifert and Weber constructed a nice example of a compact orientable
hyperbolic 3-manifold by pairwise identification of faces of the 27/5-regular do-
decahedron in the hyperbolic 3—space (see, for example, [11] and [14]). It is well-
known that this manifold is the 5-fold cyclic branched covering of the 3-sphere
branched over the Whitehead link (with covering isometry corresponding to the
cyclic symmetry of the dodecahedron). In [6] Helling, Kim and Mennicke gen-
eralized the Seifert-Weber polyhedral scheme to construct a 2-parameter family
of closed orientable 3-manifolds M, ; which are n—fold strongly cyclic branched
coverings of the Whitehead link. According to [16], strongly cyclic branched cov-
ering for M, means that n and £k are coprime, so the branching indices on the
components of the Whitehead link are equal to n. For (n,k) = (5,2) we get the
Seifert-Weber hyperbolic 3-manifold. For (n,k) = (5,1) the manifold M, , was
also considered in [1]. A polyhedral description of the whole family of (possibly,
nonstrongly) cyclic branched coverings of the Whitehead link was given by Cav-
icchioli and Paoluzzi [3]. In the present paper we generalize polyhedral schemata
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from [3] and [6] to define (see Theorem 2.1) an infinite 3-parameter family of
closed connected orientable 3-manifolds M, ,, for n > 2, 1 < k < n —1 and
¢>1. Here M,y = M, ¢ for £ = 1. By the construction, M, j, admits a cyclic
symmetry of order n. In Theorem 2.5 we prove that this symmetry induces a
cyclic covering of the 3—sphere branched over the 2-bridge link W, determined by
the rational parameter (6¢ + 2)/(2¢ + 1), that is, the pretzel link P(2,1,2¢) (for
the theory of knots and links see, for example, [2], [10], and [12]). In particular,
Wi is the Whitehead link and M5, ; is the Seifert-Weber dodecahedral hyperbolic
3-manifold. The crucial step in the proof is to apply methods from [3] to modify
Heegaard diagrams of closed 3—orbifolds (i.e., Heegaard diagrams of their underly-
ing manifolds plus the curves of the singular sets) by simplifications along closed
curves and cancellations of handles. This extends to the case of orbifolds some
techniques described in [5] for link complements. In Theorem 2.2 we determine
geometric presentations (that is, induced by Heegaard diagrams of the constructed
manifolds) of the fundamental group, and study the split extension of it (see The-
orem 2.4). Finally, we discuss the classification problem for our manifolds up to
homeomorphism (resp. isometry).

2. A generalization of the manifolds M, ;

For every n > 2, / > 1 and 1 < k < n — 1, let us consider the combinatorial
3—cell P, , whose 2-sphere boundary consists of two n—gons F' and F' in the
northern and southern hemispheres, respectively, and 2n (3¢ + 2)—gons, labelled
by F; and F}, i = 1,2,...,n, in the equatorial zone. Then 0P, , has exactly
2n + 2 faces, 3n(f + 1) edges and n(3¢ + 1) vertices. The side pairing of index
k is again determined by identifying the pairs of faces (Fj, F}) and (F, F"), and
k is the shift to do before gluing F; with F] (see Figure 1 for P, x, = Piog3,
where d = (n,k) = (4,2) = 2). The resulting identification space M,y , has d
vertices, n+d 1—cells, n+1 2—cells, and one 3—cell, hence it is a closed 3—manifold.
Let G,k denote the fundamental group of M, ., and a; (i = 1,...,n) and b
the affine transformations which identify the pairs of faces (Fj, F}) and (F,F"),
respectively. Following the cycles of equivalent edges we get for the label z; (=i
in the figure), i = 1,...,n, the relation

a’i(ai_—llai_—lk)a’i—(k-H)(a’z'_—l(k+1)—1ai_—12(k+1)+1) -
X '“i—(é—l)(kﬂ)(“z’_—l(e—l)(kﬂ)—l“z'_—le(k+1)+1)“i—€(k+1)b_1 =1
and for the label y;, i =1,...,d, d = (n, k), the relation
Qi kQiy 2k - - - Gitk(n—1) = L.
Therefore we have the following result
Theorem 2.1. The polyhedral 3 —cell P, , with identifications, n > 2, £ > 1,

1 <k <n-—1, constructed above, defines a closed connected orientable 3 -manifold
M, ke which has a spine modeled on the finite presentation Gy ¢ =

(a1, ..., 00,b:b= ai(a;jla;jk)ai—(k+1)(az:l(k+1)fla’1112(k+1)+1) ..

-1 1 .
a’i—w—l)(k'i'l)(a’if(éfl)(k+1)71aifﬁ(k—.kl)—kl)a’i—@(k-l-l)’ (i=1,...,n),
Qi Qi kg Qi -2k - - - At k(n—1) = 1, (@ =1,..., d))

where the indices are taken mod n, and d = (n, k).
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: >
shift k =2
Figure 1. The polyhedral scheme P, ¢ = Py 23 with identifications

Of course, if ¢ = 1, then the manifolds M, ;, are exactly the manifolds
M, considered in [3] and [6]. Suppose now that n and k are coprime, i.e.,

d = (n,k) = 1. Then the quotient complex M, ;, has exactly one vertex,
so we can obtain a further presentation for G, = 7 (M, k) Wwith generators
Z1,...%n,y and relators arising from the boundaries of the 2-cells Fi,..., F,, F' of

the polyhedral scheme. For each ¢ =1,...,n, the boundary cycle of the polygons
F; and F] is

— (1 -1 —1 -1
y= (xi+£(k+1)71xi+(£fl)(k+1)fl - -xi+2(k+1)—1xi+k)
Z; ($i+k+1$i+2(k+1) - -xi+(£71)(k+1)$i+£(k+1))

-1 -1 -1 -1
($i+(e—1)(k+1)+195i+(z—2)(k+1)+1 x 'xz’+(k+1)+1xi+1)
where the indices are taken mod n, and the boundary cycle of the polygons F'
and F' is
T1X2...Typ = 1.

Then we have the following result.

Theorem 2.2.  If n and k are coprime, then the fundamental group Gy of
the manifold My e, n>2, £>1, 1<k <n-—1, admits the finite presentation

Grpe = (T, ., Tp, Y 0 T1Tg. .. Ty = 1,

— (-1 -1 -1 -1
Y= (xi+£(lc+1)—1xz’—|—(€—1)(k+1)—1 - ‘xi+2(k+1)—1xi+k)

xi(xz’+k+1$i+2(ls+1) .- -$i+(e—1)(k+1)$i+z(k+1))

-1 -1 -1 -1
(xi+(€—1)(k+1)+1xi+(£—2)(lc+1)+1 - 'xi+(k+1)+1xi+1)
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(i=1,...,n; indices mod n) )

which corresponds to a spine (or, equivalently, to a Heegaard diagram) of the
manifold (hence it is geometric).

In particular, if £ =n — 1, then we get the following result.

Corollary 2.3. The fundamental group G n—1, of the closed 3 -manifold M, n_1,
n>2, £>1, admits the following geometric balanced presentations

Gnn-1e=(a1,..., 00, b apap_1...0201 =1,

b= lai(aa)) ai
(1=1,...n))

(T1y- Ty Y o 1T Ty = 1,

o

I Y A=
Y=, 1%; Tjp

G=1,...,n))

where the indices are taken mod n.

Now we study the split extension group of G, ¢ by the cyclic automorphism
corresponding to the presentation given in Theorem 2.1. More precisely, we have
the following theorem.

Theorem 2.4. Let H,, k4 be the split extension group of Gy ke, where n > 2,
£>1and 1 <k <n-—1. Then H,, is isomorphic to the fundamental group
of the orbifold On,%(Wg) whose underlying space is the 3—sphere S and whose

singular set is the 2-bridge link W, = gﬁ—ﬁ, i.e., the pretzel link P(2,1,20) (if
(=1, then W, = § is the Whitehead link) with branching indices n and n/d on

its components, where d = (n, k) (see Figure 2 ).

Proof.  Let us consider the finite presentation of G, ¢ given in the statement
of Theorem 2.1. Let p be the automorphism of G, defined by p(a;) = a;41
(indices mod n), and p(b) = b. The split extension group H, ¢ of G,k has the
finite presentation

Hype=(a,b,p: p" =1, pb=bp,
ap~Faptpap? ... p—k(n—l)apk(n—l) —1,

b= a(p—(n—l)a—lpn—1+ka—1p—k)pk+1ap—(k+1)

(p(k+1)+1a71pf(k+1)71p2(k+1)71 72(k+1)—|—1) o

a’lp

3 .p(i,—l)(k+1)ap—(£—1)(k+1)( (=141 =1 p=(E=1)(k+1)-1

(k+1)—

P

P 1a—1p—£(k+1)+1)pé(k+1)apfz(lﬂ-l) >

g<a,bap: p* =1, pb=bp, (ap_k)% =15

1
b= (apa—1pk—1a—1p)£alo—€(k+1) >
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where a; = a, a;41 = p_tap’ and b = p~'bp. Setting 7 = ap~* and eliminating
a=T7p* and
h= (Tp,rflpflelp)ﬁTpr(k+1)+k

yields the finite presentation
Hope=(m,p: p" =1, 74 =1, wep = pwy)
where
we = (Tpr~ 7 p)er

Because
wy = T PATE | Teell plet ettt

where ¢; is the sign (+1) of (2¢ 4+ 1)i reduced mod 2(6¢ + 2) in the interval

(—(6£+2),6¢ 4 2), the word w, corresponds to the 2-bridge link W, = gﬁ—ﬁ. In

particular, the finite presentation (p, 7 : wyp = pw,) defines the link group of
W, where p and 7 are meridians around its components. Therefore, H,;, is
the fundamental group of the orbifold On,g(We) defined in the statement of the
theorem. [ ]

Mn k¢ n>2, 0>1, I<k<n-1, d=nk)
n-fold cyclic covering

n

O n/d

On 2 (Wi) 1 = (S3, )

1273 2095 2

6/+2 1 _
Wi = 3pg=2+ —F =P(@2.120)
1+ﬁ

Figure 2. Representing the manifolds M, ; , as branched coverings

Theorem 2.5. The closed connected orientable 3-manifolds M, ., n > 2,
£>1,1<k<n-—1, are cyclic branched n—fold coverings of the 2-bridge link
W, = gﬁ—ﬁ in the 3—sphere, where the branching indices of its components are n
and 2, respectively, where d = (n, k).

d 2
Proof.  Let us consider the automorphism p of Gy, ;. defined in the proof of
Theorem 2.4, and denote the corresponding homeomorphism of M, ; ,, also by
p- Since p corresponds to the n-rotational symmetry of the polyhedron P, ,, it
follows that the %fpiece I, i of Py e, pictured in Figure 3, is the fundamental
polyhedron for the quotient space M, x./< p >.
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U times

Figure 3. The *—piece II, s

Moreover, the fundamental group of the orbifold M,, /< p > is isomorphic to
H, .. The faces of the complex II, ;, are pairwise equivalent under the identi-
fications F' = F' and F; = F] induced by the side pairings of P, ;.. The faces
Fy and F| are to be paired so that the index stars in Figure 3 match up. Note
that the topological space underlying the orbifold M, s ¢/< p > is just the closed
3-manifold M. The fundamental group of M, is isomorphic to the group
presented by (x y:y lztzlz=¢ =1, x = 1), and so it is trivial. A Heegaard
diagram of My, (plus the arc from N to S representing the symmetry axis of
the rotation p) is depicted in Figure 4. Since M, o, is a simply—connected closed
3—manifold of Heegaard genus < 2, it is a genuine 3—sphere by [9]. In other words,
the space underlying the quotient orbifold M, x./< p > is topologically homeo-
morphic to S®. Furthermore, the singular set of M, /< p > is the image of the
rotational axis of p, consisting of points of order n, plus the image of the edges of
type z;, consisting of points of order n/d, where d = (n, k). The cellular decom-
position of the ——plece IL,, ¢ in Figure 3 defines in a natural way a decomposition
of Myg, (& 83) into handles. The 3-handle is a neighbourhood in M, of the
images of the vertices of II, s .. The 2-handles are neighbourhoods of the images
of the edges of II, s ,. The 1-handles are neighbourhoods of the images of the
faces of II,, ; ¢ which are identified in pairs. There is a unique 0-handle obtained
after cutting off all other handles; it is the image of a 3-ball inside the polyhedron
II,, x¢. All the information concerning the side pairings of the boundary faces of
II,, . are stored in the planar graph shown in Figure 4.
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Figure Figure 4. A Heegaard diagram of the quotient space (= S?) obtained from II,, s ¢
plus the arc from N to S representing the symmetry axis of the rotation

Let us consider the oriented arc in Figure 4 with endpoints labelled 3/+3 (in OF)
and 1 (in 0F}). Denote it by 1.1. The endpoint 1 of this arc is glued onto another
point (labelled by 1 in OF]) by the identification of the faces F; and F]. Denote
by 1.2 the oriented arc starting at 1 (in dF]) which ends to the point labelled
2041 (in OF]). Go on like this until you return to the initial arc 1.1. We obtain
the cycle o which represents a 2-handle in M;,. There remains only one arc in
the graph, and we denote it by 2.1. It connects the point labelled 2£+ 2 (in OF})
with the point labelled 2¢ +2 (in OF]), and represents the 2-handle along y in
M. By construction, we have exactly four 2-discs F', F', Fy, F| (i.e., two
1-handles in Mj,) and two cycle relations (i.e., two 2-handles in M, ;) in our
graph. For every planar graph (as that in Figure 4) we define the complexity of
the graph (see [5]) to be the pair (g,n), where g is the number of 1-handles (i.e.,
half the number of faces in the polyhedral schemata) and n is the number of arcs
of the graph (i.e., the number of edges in the polyhedral schemata). In our case,
we have (g,n) = (2,30 +2). We write (g,n) > (¢',n') if either ¢ > ¢’ or g = ¢
and n > n'.
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Now we apply techniques from [3] (see also [5]) to modify the graph (without
changing the represented manifold M; 3, = S?) in order to diminish the complexity
of it. We have already pointed out that the singular set of our orbifold M,, /< p >
consists of the symmetry axis (with branching index n) and the image of the
edges of type z; in the polyhedron P, ;. (with branching index n/d). The axis is
represented in Figure 4 as a marked line inside the semispace, starting and ending
in two points N and S which are equivalent in the side pairing. While diminishing
complexity we must take care to check what happens to the axis. It will be cut
into pieces and rearranged inside the semispace. Let A denote a Jordan curve
in the plane (the dotted circle in Figure 4) which intersects the graph only along
its arcs and transversally. The curve A separates the pairs of identified 2—discs
(F, F') and (F}, F]) such that the number of points along their boundaries is larger
than the number of intersections of A with the graph. Figure 5 is obtained from
Figure 4 by a simplification along the closed simple curve A which surrounds the
“holes” F' and Fi. The resulting graph is again a Heegaard diagram for M, g,
(=2'S?). The graphical move is realized as follows. Dig a 2-ball along the curve A
and glue it back along the pair of 2—discs (F}, F|) which disappear. The marked
line representing the symmetry axis is modified consequently as done in Figure 5.
The complexity of the new planar graph is (¢, n') = (2,£+43) < (g,n) = (2, 3(+2).
To diminish “g”we have to cancel a 1-handle with a 2-handle. To do this we
need to check that the sequence of arcs defining the glueing diagram for the 2—
handle intersects the two discs defining the 1-handle in exactly one point each
one. Also in this case, we must see how the remaining arcs of the graph are
deformed. The procedure gives at the end a Heegaard diagram of lower genus for
the quotient space. Figure 6 is obtained from Figure 5 by cancelling the 2-handle
along y between the “holes” At and A~ defining a 1-handle. The result is again
a Heegaard diagram (of genus one) for the quotient space Mo, = S® underlying
the orbifold M, ¢/ < p >= 11,k ¢/ ~. The marked line in Figure 6 represents
the symmetry axis, modified according to the above move. We get a reduction of
the complexity of the graph; in fact, we now have (¢”,n") = (1,1). The graphical
move is realized as follows. Push the 1-handle with one of its “feet”, say AT, along
the attaching sphere y of the 2-handle until we come to A~. Of course, in doing
so, we have to pull along with A* all the other cocores of the 2-handles running
over the A-handle. In our case, we have to pull along with A" the cocore x and
the singular arcs representing the symmetry axis (see Figure 5). This explains how
the remaining edges of the graph adjacent to AT and A~ must be changed when
(A", A7) and the arc 2.1 (representing the cocore y) are erased (see Figure 6).
We note that the singular set consists of the axis of symmetry (with branching
index n) together with the cocore of the 2-handle along z (with branching index
n/d). Cancelling the 2-handle along x between the “holes” F' and F’ we get the
singular set of the branched covering which is the link pictured in Figure 7. It
is equivalent to the 2-bridge link W, determined by the rational parameter gﬁ—jﬁ
with branching indices n and n/d on its components, where ¢ > 1 and d = (n, k).

]
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Figure 5. Simplification along the closed simple curve A

Figure 6. Cancelling the handle along y between AT and A~

Figure 7. The 2-bridge link W, = gﬁ—ﬁ as singular set
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As it is well-known the n—fold strongly cyclic covering of S® branched over
a link L has the same geometric structure of the orbifold which has S? as its
underlying space and L as its singular set (see for example [4]). By Theorem
3.1 of [8] the orbifold O, ,(W,) is hyperbolic for every n > 3 and spherical for
n = 1,2. This implies immediately the following consequence about the geometric
structures of our manifold.

Theorem 2.6. If n and k are coprime, then the manifolds My e, n > 1,
£>1,0<k<n-—1, has a hyperbolic structure for every n > 3, and a spherical
structure for n = 1,2 (in particular, Mo, = S* and My, is homeomorphic to
the lens space L(6¢+ 2,20+ 1) ).

By Theorem 4.1 of [13] the symmetry group of the 2-bridge link W, = gﬁ—ﬁ
is isomorphic to either Dy or Zs @ Zy (see also [7]). So we can apply Theorem 1
of [15] for the case d = (n,k) =1 to get the topological classification of manifolds

M-

Theorem 2.7. Ifn>3,¢, ¢ >1 and d= (n,k)=(n,k') =1, then M, e is
isometric (homeomorphic) to My, o if and only if £ =10 and k' = k*' (mod n).
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