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Abstract. In this paper, we determine a range of p for which there is Lp -
continuity of the Bergman projector in the tube domain over Vinberg’s cone.
This is the simplest example of a homogeneous non-symmetric cone. Our main
tool is the existence of a suitable isometry between the cone and its dual.
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1. Introduction

Let V be the Euclidean vector space of 3×3 matrices with real entries of the form

x =

 x1 x4 x5

x4 x2 0
x5 0 x3

 ,

where the inner product is defined as follows

(x|y) = Trace(xy) = x1y1 + x2y2 + x3y3 + 2x4y4 + 2x5y5.

Let

Ω = {x ∈ V : Qj(x) > 0, j = 1, 2, 3},

where

Q1(x) = x1, Q2(x) = x2 −
x2

4

x1

, Q3(x) = x3 −
x2

5

x1

,

be the Vinberg’s cone. Then Ω is a proper open convex cone and its dual cone is
given by

Ω∗ = {ξ ∈ V : Q∗
j(ξ) > 0, j = 1, 2, 3}
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where

Q∗
1(ξ) = ξ1 −

ξ2
4

ξ2
− ξ2

5

ξ3
, Q∗

2(ξ) = ξ2, Q∗
3(ξ) = ξ3.

In [4], Casalis proved that the cone Ω is non self-dual for any positive symmetric
bilinear form defined on V.

In the sequel, we will use these notations: for all α = (α1, α2, α3) ∈ R3, x ∈
Ω and ξ ∈ Ω∗

Qα(x) =
3∏

j=1

Q
αj

j (x) and (Q∗)α(ξ) =
3∏

j=1

(Q∗
j)

αj(ξ).

Let TΩ = V + iΩ be the associated tube domain. We put τ = (2, 3
2
, 3

2
).

For ν = (ν1, ν2, ν3) ∈ R3 we denote by Lp
ν(TΩ), 1 ≤ p ≤ ∞, the Lebesgue space

Lp(TΩ, Q
ν−τ (=mw)dv(w)) where Q−2τ (=mw)dv(w) is the invariant measure with

respect to the group of automorphisms of Ω. Here dv is the Lebesgue measure
defined on Cn.

The weighted Bergman space Ap
ν(TΩ) is the closed subspace of Lp

ν(TΩ)
consisting of holomorphic functions. In order to have a non-trivial subspace, we
take ν = (ν1, ν2, ν3) ∈ R3 such that ν1 > 1, ν2 >

1
2

and ν3 >
1
2
.

The orthogonal projection of the Hilbert space L2
ν(TΩ) onto its closed

subspace A2
ν(TΩ) is the weighted Bergman projection Pν . It is well known that

Pν is defined by the integral

Pνf(z) =

∫
TΩ

Bν(z, w)f(w)Qν−τ (=mw)dv(w)

where

Bν(z, w) = dνQ
−ν−τ

(
z − w

i

)
is the weighted Bergman kernel, that is the reproducing kernel on A2

ν(TΩ).

The Lp -boundedness of Bergman projections on tube domains over cones
have been studied by many authors these last years. In [1], D. Békollé and A.
Bonami considered the forward light cone; they obtained some sufficient conditions
using Schur’s Lemma. They have proved that this condition is necessary and
sufficient for the positive Bergman operator; that is the Bergman projector with
positive Bergman kernel. This result has been improved in [3]. There are values
of p for which the Bergman projection is bounded whenever the positive Bergman
operator is unbounded.

In the Lecture Notes [2] of the Workshop ”PDE, Classical Analysis and
Applications” held in Yaoundé in December 2001, the authors generalized to the
case of general symmetric cones the results of [3]. Moreover, D. Debertol in his
thesis [6] obtained the sufficient conditions above with general weighted measures.

On the other hand, A. Temgoua in his thesis [12] gave sufficient conditions
in the case of Siegel domains of type II, symmetric or not; he applied Schur’s
Lemma to the positive Bergman operator.

It is important for us to mention that all these sufficient conditions are far
from being necessary when the rank of the cone is greater than 1.
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The aim of our work is the generalization of D. Debertol’s result in the set-
ting that A. Temgoua has considered, that is, tubular domains over homogeneous
cones.

The purpose of this paper is to make sure that all results known in the case
of tubular domains over general symmetric cones are also valid if the homogeneous
cone considered is not necessarily self-dual. This justifies the fact that we focus our
attention in the particular case of Vinberg’s cone which is the simplest example
of a non self-dual homogeneous cone. In a joint work with B. Trojan, the second
author is looking for the generalization of results announced here in the case of
general homogeneous cones. This cannot be done without the use of deep tools of
algebra, this is why we have first considered this typical example, where everything
can be written directly.

In order to present our results, let us consider the positive Bergman operator

P+
ν f(z) =

∫
TΩ

|Bν(z, w)|f(w)Qν−τ (=mw)dv(w).

We have the following:

Theorem 1.1. The operator P+
ν is bounded on Lp

ν(TΩ) if and only if ν1+1
ν1

<
p < ν1 + 1. Hence Pν is bounded for this range of p.

As we mentioned above, the “if” part of this Theorem has been proved by
A. Temgoua [12] and we prove here that the “only if” part is also valid. For the
case of tube domains over symmetric cones, authors of [2] established that there
are values of p for which Pν is bounded, but P+

ν is unbounded. We extend this
result to the tube domain over Vinberg’s cone. We have the following theorem
which is the main result of this paper.

Theorem 1.2. The Bergman projector Pν extends to a bounded operator on
Lp

ν(TΩ) for ν1+2
ν1+1

< p < ν1 + 2.

We describe the main ideas in the proof of this result. We must take
advantage of the oscillations of the Bergman kernel. Hence, we are induced to
use the Fourier transform in the x variables and consequently to focus on L2 -
norms in these variables. For this reason, we introduce mixed norm spaces. For
1 ≤ p, q ≤ ∞, let Lp,q

ν (TΩ) = Lq(Ω, Qν−τ (y)dy;Lp(V, dx)) be the space of functions
f on TΩ such that

‖f‖Lp,q
ν (TΩ) :=

(∫
Ω

(∫
V

|f(x+ iy)|pdx
) q

p

Qν−τ (y)dy

) 1
q

is finite (with obvious modification if p, q = ∞). As before, we call Ap,q
ν (TΩ) the

closed subspace of Lp,q
ν (TΩ) consisting of holomorphic functions.

For p = 2, we obtain that Pν is bounded on L2,q
ν (TΩ) if and only if

2ν1+2
2ν1+1

< q < 2ν1 + 2. We observe that, as in the case of symmetric cones, we
have this necessary and sufficient condition for the Bergman projection. Then
Theorem 1.2 follows by interpolation with Theorem 1.1.

This paper is divided in 7 sections, the first one is the introduction above.
In the second section, we give an isometry between the open convex homogeneous
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cone and its dual. The third section describes a solvable group that acts simply
transitively on the Vinberg’s cone and gives its Whitney decomposition. In section
4, we compute some important integrals. Section 5 deals with Bergman spaces and
the last two sections state the proofs of results announced in the first section.

2. An isometry between an open convex homogeneous cone and its
dual

In this section, we describe the main tool that we use to obtain our result; we show
that there is an isometry between an open convex homogeneous cone and its dual.
We begin by recalling some definitions.

2.1. Preliminary definitions.

A subset C of Rn is said to be a convex cone if for x, y ∈ C and λ, µ > 0
we have λx ∈ C and λx+ µy ∈ C.

We define its dual cone by

C∗ = {ξ ∈ Rn : (ξ|x) > 0, ∀x ∈ C \ {0}}.

Let C be an open cone. We say that C is self-dual if C = C∗. The cone C
is said to be a proper cone if C ∩ (−C) = {0}.

The cone C is said to be homogeneous if the group G(C) = {g ∈ Gl(Rn) :
gC = C} acts transtively on it i.e for x, y ∈ C there is an element g ∈ G(C) such
that y = gx.

A homogeneous cone that is self-dual is said to be a symmetric cone. Let
us remark that G(C∗) = (G(C))∗ and C∗∗ = C.

2.2. The Riemannian structure of a proper open convex cone. Let C be
a proper open convex cone. We denote by ϕ (resp. ϕ∗ ) the characteristic function
of the cone C (resp. C∗ ); then for x ∈ C and ξ ∈ C∗,

ϕ(x) =

∫
C∗
e−(x|ξ)dξ and ϕ∗(ξ) =

∫
C

e−(ξ|x)dx.

From a change of variables (see also [13], Chapter I, formula (2)), we have

∀g ∈ G(C), ϕ(gx) = |Det g|−1ϕ(x) and ϕ∗(g
∗ξ) = |Det g|−1ϕ∗(ξ).

We have then the following

Lemma 2.1. Let C be a proper open convex cone. The measure m (resp. m∗ )
defined on C (resp. C∗ ) by

dm(x) = ϕ(x)dx (resp. dm∗(ξ) = ϕ∗(ξ)dξ)

is invariant under the action of the group G(C) (resp. G(C∗)).

The gradient of a differentiable function f at the point x ∈ Rn is defined
by

(∇f(x)|u) = Duf(x) =
d

dt
f(x+ tu)

∣∣∣∣
t=0
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for all u ∈ Rn.

For x ∈ C we define x∗ ∈ C∗ by

x∗ = −∇ logϕ(x).

Similarly, for ξ ∈ C∗ we define

ξ∗ = −∇ logϕ∗(ξ).

Since the function logϕ is strictly convex (cf. Proposition I.3.3 of [7]), the
symmetric bilinear form on Rn

Gx(u, v) = DuDv logϕ(x) (resp. G∗
ξ(u, v) = DuDv logϕ∗(ξ))

where u, v ∈ Rn defines on C (resp. C∗ ) a structure of Riemannian manifold.
The corresponding Riemannian distances are given by

d(x, y) = inf
γ

{∫ 1

0

√
Gγ(t)(γ̇(t), γ̇(t))dt

}
and

d∗(ξ, η) = inf
γ∗

{∫ 1

0

√
G∗

γ∗(t)(γ̇
∗(t), γ̇∗(t))dt

}
where the infimum is taken on the smooth path γ : [0, 1] → C (resp. γ∗ : [0, 1] →
C∗ ) such that γ(0) = x, γ(1) = y (resp. γ∗(0) = ξ, γ∗(1) = η ).

Lemma 2.2. The Riemannian distances d and d∗ are invariant under the
action of G(C) and G(C∗) respectively i.e

∀x, y ∈ C, ∀g ∈ G(C), d(gx, gy) = d(x, y)

and

∀ξ, η ∈ C∗, ∀g ∈ G(C), d∗(g
∗ξ, g∗η) = d∗(ξ, η).

Proof. For the proof see [7], pages 15-16.

Proposition 2.3. Let C be a homogeneous cone. For x ∈ C and g ∈ G(C),
we have the following:

(gx)∗ = g∗−1x∗;

ϕ(x)ϕ∗(x
∗) is constant;

(x∗)∗ = x.

Proof. See [13], Chapter 1, Section 4.
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The first equality of the Proposition 2.3 shows that whenever the cone C
is homogeneous, so is its dual C∗.

For x ∈ C and ξ ∈ C∗ , we denote by A(x) and A∗(ξ) the selfadjoint
endomorphisms defined on Rn by

(A(x)u|v) = Gx(u, v) and (A∗(ξ)u|v) = G∗
ξ(u, v)

where u, v ∈ TxC ∼= Rn. By the G(C)-invariance of Gx (resp. the G(C∗)-
invariance of G∗

ξ ), one has

A(gx) = g∗−1A(x)g−1 and A∗(g
∗ξ) = g−1A∗(ξ)g

∗−1 (1)

for all g ∈ G(C). Moreover, the following equalities hold

x∗ = A(x)x and (x|x∗) = n

for all x ∈ C.
We have the following result which is the most important of this section.

Theorem 2.4. Let C be an open convex homogeneous cone. The map σ : x 7→
x∗ between the Riemannian manifolds C and C∗ is an isometry; that is

d∗(x
∗, y∗) = d(x, y).

Proof. It suffices to establish that

G∗
σ(x)(Duσ(x), Dvσ(x)) = Gx(u, v),

for all u, v ∈ TxC ∼= Rn. The map σ∗ : ξ 7→ ξ∗ defined from C∗ to C is the inverse
of the bijection σ : x 7→ x∗ defined from C to C∗ since C∗∗ = C . Moreover, for
all ξ ∈ C∗ , one has (cf. [7], page 17)

Duσ∗(ξ) = −A∗(ξ)u.

We deduce that for all x ∈ C ,

u = Du(σ∗ ◦ σ)(x) = DDuσ(x)σ∗(σ(x))

= −A∗(σ(x))Duσ(x) = −A∗(x
∗)(−A(x)u) = A∗(x

∗)A(x)u;

thus
A∗(x

∗)A(x) = IdRn

where IdRn denotes the identity map defined on Rn. Hence,

G∗
σ(x)(Duσ(x), Dvσ(x)) = G∗

σ(x)(−A(x)u,−A(x)v)

= G∗
x∗(A(x)u,A(x)v)

= (A∗(x
∗)A(x)u|A(x)v)

= (u|A(x)v) = (A(x)u|v)
= Gx(u, v).
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Remark 2.5. It is important to mention that the map σ∗ : ξ 7→ ξ∗ is not
necessarily equal to the inverse of σ : x 7→ x∗ for a non-homogeneous cone. (For
instance, see [10] for a counterexample where the cone is even proper). On the
other hand, according to Lemma 8.3 of [5], in a general proper open convex cone,
one can define a metric on the dual cone as a second derivative of a smooth function
so that σ is an isometry.

3. Geometric properties of the Vinberg’s cone

It is well known that the Vinberg’s cone is homogeneous (cf. [13]). In this section,
we give a description of a solvable group that acts simply transitively on the cone
Ω. For x ∈ V, we define

pr1(x) =

(
x1 x4

x4 x2

)
, pr2(x) =

(
x1 x5

x5 x3

)
.

If

gi =

(
α γi

0 δi

)
, αδi 6= 0, i = 1, 2

then one defines an element g of Gl(V ) by

pri(gx) = g
′

ipri(x)gi, i = 1, 2 (2)

where g
′
i denote the transpose of gi. Let us remark that when x ∈ Ω, then pr1(x)

and pr2(x) belong to the cone of 2× 2 positive definite symmetric matrices. The
endomorphism g is then well-defined by (2) and we have

gx =

 α2x1 αγ1x1 + αδ1x4 αγ2x1 + αδ2x5

αγ1x1 + αδ1x4 γ2
1x1 + δ2

1x2 + 2δ1γ1x4 0
αγ2x1 + αδ2x5 0 γ2

2x1 + δ2
2x3 + 2δ2γ2x5

 .

We denote by e the identity matrix of V. The following identities are consequences
of the same properties in the case of 2 × 2 positive definite symmetric matrices
(see for instance [3], section 2):

Q1(gx) = α2Q1(x) = Q1(ge)Q1(x) (3)

Q2(gx) = δ2
1Q2(x) = Q2(ge)Q2(x) (4)

Q3(gx) = δ2
2Q3(x) = Q3(ge)Q3(x) (5)

where e is the identity matrix of V. It follows that g ∈ G(Ω) and

Qτ (gx) = |Det g|Qτ (x) (6)

since

Det g = α4δ3
1δ

3
2 = Qτ (ge). (7)
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3.1. Description of a solvable group that acts simply transitively on Ω.

Let us now consider the solvable subgroup H of G(Ω) consisting of elements
h defined as in (2) by

hi =

(
α γi

0 δi

)
, α > 0, δi > 0, i = 1, 2.

For all y ∈ Ω, the equation y = he with h ∈ H has a unique solution h(y) defined
as follows

h1(y) =


√
y1

y4√
y1

0
√
y2 − y4

2

y1

 and h2(y) =


√
y1

y5√
y1

0
√
y3 − y5

2

y1

 . (8)

This shows that the group H acts simply transitively on the cone Ω. Therefore
we have this identification Ω ≡ He.

For all x ∈ Ω, ξ ∈ Ω∗ and g ∈ G, (gx|ξ) = (x|g∗ξ) where the adjoint
endomorphism g∗ : V → V is defined by

g∗ξ =

 α2ξ1+γ
2
1ξ2+γ

2
2ξ3+2αγ1ξ4+2αγ2ξ5 γ1δ1ξ2+αδ1ξ4 γ2δ2ξ3+αδ2ξ5

γ1δ1ξ2 + αδ1ξ4 δ2
1ξ2 0

γ2δ2ξ3 + αδ2ξ5 0 δ2
2ξ3

 .

Let ξ ∈ Ω∗. If we put

π1(ξ) =


√
ξ1 − ξ2

4

ξ2
− ξ2

5

ξ3

ξ4√
ξ2

0
√
ξ2

 , π2(ξ) =


√
ξ1 − ξ2

4

ξ2
− ξ2

5

ξ3

ξ5√
ξ3

0
√
ξ3

 ; (9)

then π(ξ) is the unique element of H that satisfies

ξ = π(ξ)∗e.

This gives the identification Ω∗ ≡ H∗e.

3.2. Invariant measures on Ω and Ω∗ . Let y ∈ Ω and ξ ∈ Ω∗. From (6),
the measure

dm(y) = Q−τ (y)dy (resp. dm∗(ξ) = (Q∗)−τ (ξ)dξ)

is G(Ω)-invariant on Ω (resp. G(Ω∗)-invariant on Ω∗ ).

The element e∗ is given by

e∗ =


2 0 0

0 3
2

0

0 0 3
2

 .

We have
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Q∗
1(e

∗)Q1(e) = 2, Q∗
2(e

∗)Q2(e) =
3

2
, Q∗

3(e
∗)Q3(e

∗) =
3

2
. (10)

It follows by homogeneity that if α = (α1, α2, α3) ∈ R3 then

Qα(x)(Q∗)α(x∗) = 2α1−α2−α3 3α2+α3 (11)

for all x ∈ Ω.

3.3. Some comments about the metrics.

We have established in the second section that the map σ : x 7→ x∗ is an
isometry from Ω to Ω∗ with the metrics

Gx(u, v) = DuDv logϕ(x) and G∗
ξ(u, v) = DuDv logϕ∗(ξ)

where u, v ∈ V.
Now, we want to show that if we change our invariant metrics, this result

can be false. Given a G(Ω)-invariant metric H and a G(Ω∗)-invariant metric H∗ ,
they realise an isometry between Ω and Ω∗ if and only if

H∗
e∗(A(e)u,A(e)v) = He(u, v).

According to the identifications Ω = He and Ω∗ = H∗e, we consider the following
metrics on Ω and Ω∗ defined as in [2]: for x ∈ Ω, ξ ∈ Ω∗, we put

Gx(u, v) = (h−1u|h−1v)

and
G∗ξ (u, v) = (g∗−1u|g∗−1v)

where x = he, ξ = g∗e with u, v ∈ V and h, g ∈ H. We have the following
proposition:

Proposition 3.1. i) The metric Gx (resp. G∗ξ ) is an H -invariant metric (resp.
H∗ -invariant metric).

ii)The metric Gx (resp. G∗ξ ) is different from the H -invariant metric Gx

(resp. H∗ -invariant metric G∗
ξ ) defined by the characteristic function of the cone

Ω (resp. Ω∗ ).

iii) We have
G∗e∗(A(e)u,A(e)v) 6= Ge(u, v).

Proof. i) Let u, v ∈ V and g ∈ G, we want to show that

Ggx(gu, gv) = Gx(u, v).

The result is obvious by the definition of the metric.

ii) Since metrics Gx and Gx are H -invariant, it suffices to take x = e. We
have

Ge(u, v) = (A(e)u|v) 6= (u|v) = Ge(u, v)

since A(e) 6= IdV . In fact A(e)e = e∗ 6= e.
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iii) Since Ω∗ ≡ H∗e, we have e∗ = h∗e where h is defined by h1 = h2 =( √
2 0

0
√

3
2

)
according to (9). Since e∗ = A(e)e, we obtain

G∗e∗(A(e)u,A(e)v) = (h∗−1A(e)u|h∗−1A(e)v).

But h∗−1A(e) cannot be the identity because A(e) is not in G(Ω).

Remark 3.2. For the case of symmetric cones, x∗ = n
r
x−1 (Proposition III.4.3

of [7]) and we obtain that Gx = n
r
Gx. Thus, the map σ : C → C defined by

σ(x) = x∗ = n
r
x−1 is an isometry for the metric Gx. (See [2], Theorem 2.50).

For µ = (µ1, µ2, µ3) ∈ R3, all the following identities hold

Qµ(h(y)t) = Qµ(y)Qµ(t) (12)

Qµ(π(ξ)t) = (Q∗)µ(ξ)Qµ(t) (13)

(Q∗)µ(h(y)∗ξ) = Qµ(y)(Q∗)µ(ξ) (14)

(Q∗)µ(π(ξ)∗η) = (Q∗)µ(ξ)(Q∗)µ(η) (15)

for all y, t ∈ Ω and η, ξ ∈ Ω∗.

3.4. The Whitney decomposition of the Vinberg’s cone. In this section,
we will prove some lemmas and propositions which are useful in the sequel; the
most important of them is the Whitney decomposition of the cone Ω.

Lemma 3.3. Given λ > 0, there is a constant C = C(λ) > 0 such that:

i) if d(y, t) ≤ λ then 1
C
≤ Qj(y)

Qj(t)
≤ C for all j = 1, 2, 3 and x, y ∈ Ω;

ii) if d∗(ξ, η) ≤ λ then 1
C
≤ Q∗

j (ξ)

Q∗
j (η)

≤ C for all j = 1, 2, 3 and ξ, η ∈ Ω∗.

Proof. Since
Qj(gy)

Qj(gt)
=

Qj(y)

Qj(t)
(resp.

Q∗
j (g∗ξ)

Q∗
j (g∗η)

=
Q∗

j (ξ)

Q∗
j (η)

) for all g ∈ G(Ω) defined by

(2), it is sufficient to take t = e (resp. η = e). The conclusion then follows from
the continuity of the functions Qj (resp. Q∗

j ) and a compactness argument.

Let λ > 0, y ∈ Ω and d the G(Ω)-invariant distance defined in Ω. We
denote by

Bλ(y) = {t ∈ Ω : d(y, t) < λ}
the d-ball centered at the point y with the radius λ.

Lemma 3.4. Let 0 < λ < 1. Then

m(Bλ(y)) ∼ λ5 and m∗(Bλ(ξ)) ∼ λ5.

Proof. By the G(Ω)-invariance of the distance, we have for all g ∈ G(Ω),
Bλ(e) = gBλ(e), so m(Bλ(y)) = m(Bλ(e)) for all y ∈ Ω. It follows that

m(Bλ(e)) =

∫
Bλ(e)

dm(y) =

∫
Bλ(e)

Q−τ (y)dy ∼
∫

Bλ(e)

dy.

It is well known that the distance d is equivalent to the Euclidean distance on
compact subsets of V (cf. [11]); hence there is two positive constants c1 and c2
depending on Ω such that

{y ∈ Ω : |y − e| ≤ c1λ} ⊂ Bλ(e) ⊂ {y ∈ Ω : |y − e| ≤ c2λ}
and the result follows.
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We give now the Whitney decomposition of the cone Ω.

Lemma 3.5. Given 0 < λ < 1, there exists a sequence {yj}j of points of Ω
such that the following three properties hold:

i) the balls Bλ
2
(yj) are pairwise disjoint;

ii) the balls Bλ(yj) form a covering of Ω;

iii) there is an integer N = N(Ω) such that every y ∈ Ω belongs to at most
N balls Bλ(yj).

Proof. Take E = {yj} a maximal subset of Ω (under inclusion) among those
with the property that their elements are distant at least λ one from the other.
Clearly the balls Bλ

2
(yj) are pairwise disjoint. If the balls Bλ(yj) were not a

covering of Ω, this would contradict the maximality of E.

Let us prove iii). Let y ∈ Ω such that y ∈ ∩N
j=1Bλ(yj), then ∪N

j=1Bλ
2
(yj) ⊂

B 3λ
2
(y). Hence m(∪N

j=1Bλ
2
(yj)) ≤ m(B 3λ

2
(y)) = m(B 3λ

2
(e)) i.e

∑N
j=1m(Bλ

2
(yj)) ≤

m(B 3λ
2
(e)) i.e Nm(Bλ

2
(e)) ≤ m(B 3λ

2
(e)) and N is finite.

Remark 3.6. This lemma is also valid for the dual cone Ω∗.

Definition 3.7. Sequences {yj}j (resp. {ξj}j ) of points of Ω (resp. Ω∗ ) that
satisfy properties of Lemma 3.5 are called λ-lattices of Ω (resp. Ω∗.).

The family {Bλ(yj)}j (resp. {B∗
λ(ξj)}j ) is called a Whitney decomposition

of the cone Ω (resp. Ω∗ ).

Proposition 3.8. The sequence {yj}j is a λ-lattice of Ω if and only if {y∗j}j

is a λ-lattice in Ω∗. The sequence {y∗j}j is called the dual lattice of the λ-lattice
{yj}j.

Proof. The proof follows immediately from the definitions and Theorem 2.4.

Lemma 3.9. Let (y0, ξ0) ∈ Ω× Ω∗; then

|Bλ(y0)| = CλQ
τ (y0) and |B∗

λ(ξ0)| = Cλ(Q
∗)τ (ξ0). (16)

Proof. We know that y0 = h(y0)e with h(y0) ∈ H; if we use the change of
variables y = h(y0)t, dy = Qτ (y0)dt, and, since the distance d is G(Ω)-invariant,
d(y, y0) = d(h(y0)t, h(y0)e) = d(t, e). Hence,

|Bλ(y0)| = Qτ (y0)

∫
Bλ(e)

dy = CλQ
τ (y0).

The same argument holds for B∗
λ(ξ0).
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In the sequel, we will consider the following disjoint covering of the cone
Ω∗

E∗
1 = B∗

1 , E
∗
j = B∗

j \
j−1⋃
k=1

B∗
k, j = 2, . . . .

where B∗
j = B∗

λ(y
∗
j ). We have

|E∗
j | ∼ |B∗

j | ∼ (Q∗)τ (y∗j ).

Proposition 3.10. Let y ∈ Ω (resp. ξ ∈ Ω∗.) There is a constant γ =
γ(Ω, Ω∗) ≥ 1 such that

1

γ
<

(y|ξ)
(y|ξ0)

< γ

(
resp.

1

γ
<

(y|ξ)
(y0|ξ)

< γ

)
whenever ξ ∈ B∗

λ(ξ0) (resp. y ∈ Bλ(y0)).

Proof. Suppose first that ξ0 = e. The inner product (y, ξ) 7→ (y|ξ) is contin-
uous from Ω \ {0} × Ω∗ to R∗

+; thus, restricted to the compact set {t ∈ Ω : |t| =

1} × B∗
λ(e), this function of two variables is between two constants C1 > 0 and

C2 > 0. Replacing y by y
|y| in (y|ξ)

(y|e)
, we establish the proof for ξ0 = e.

For the general case, just write ξ0 = π(ξ0)
∗e with π(ξ0) ∈ H and notice

that
(y|ξ)
(y|ξ0)

=
(π(ξ0)y|π(ξ0)

∗−1ξ)

(π(ξ0)y|e)
.

Then one concludes using the first case.

Corollary 3.11. Let (y0, ξ0) ∈ Ω× Ω∗. There is a constant γ > 0 such that

5

γ
≤ (y|ξ) ≤ 5γ

for all (y, ξ) ∈ Bλ(y0)×B∗
λ(ξ0).

Proof. We recall that (y0|y∗0) = 5. Using Proposition 3.10, there are constants
c1 > 0 and c2 > 0 such that

1

c1
<

(y|ξ)
(y|y∗0)

< c1 and
1

c2
<

(y|y∗0)
(y0|y∗0)

< c2

whenever ξ ∈ B∗
λ(ξ0) and y ∈ Bλ(y0). The result follows from the fact that

(y|ξ)
(y0|y∗0)

=
(y|ξ)
(y|y∗0)

× (y|y∗0)
(y0|y∗0)

.

Take γ = c1c2.
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4. Some integral formulas

We recall that
TΩ = V + iΩ (resp. TΩ∗ = V + iΩ∗ ).

We denote respectively by

H1 = {z = x+ iy ∈ C : y > 0} and H2 = {z = x+ iy ∈ C3 : y ∈ Λ3}

the upper half plane of C and the tube domain over the spherical cone Λ3 . For
z ∈ TΩ (resp. ζ ∈ TΩ∗ ), we write

Q1(z) = z1, Q2(z) = z2 −
z4

2

z1

, Q3(z) = z3 −
z5

2

z1

;

Q1
∗(ζ) = ζ1 −

ζ4
2

ζ2
− ζ5

2

ζ3
, Q2

∗(ζ) = ζ2, Q3
∗(ζ) = ζ3.

Proposition 4.1. For all z = x+ iy ∈ TΩ (resp. ζ = η + iξ ∈ TΩ∗ ), we have

<eQj

(z
i

)
> 0 (resp. <eQj

∗
(
ζ

i

)
> 0), j = 1, 2, 3.

Moreover, for all y ∈ Ω (resp. ξ ∈ Ω∗ ),∣∣∣∣Qj

(
x+ iy

i

)∣∣∣∣ ≥ Qj(y) (resp.

∣∣∣∣Qj
∗
(
η + iξ

i

)∣∣∣∣ ≥ Qj
∗(ξ)), j = 1, 2, 3.

Proof. Let z = x+iy ∈ TΩ . Then z1 = x1+iy1 ∈ H1, which allows to conclude
directly. In the same way, for k = 2, 3, one has (z1, zk, zk+2) ∈ H2, which allows
to conclude as in [3], Lemma 3.1.

Now let ζ = η+ iξ ∈ TΩ∗ . Assume first that ξ = e. Then, =mQ∗
j(ζ) = 1 >

0, j = 2, 3 and

=mQ∗
1(ζ) = 1 +

η2
4

η2
2 + 1

+
η2

5

η2
3 + 1

> 0.

So, for j = 1, 2, 3, we have Q∗
j(ζ) ∈ H1. More generally, if ξ ∈ Ω∗, then ξ = π(ξ)∗e;

for η = π(ξ)∗β with β ∈ V, we obtain =mQ∗
j(ζ) = Q∗

j(ξ) > 0, j = 2, 3 and

=mQ∗
1(ζ) = Q∗

1(ξ)

(
1 +

β2
4

β2
2 + 1

+
β2

5

β2
3 + 1

)
> 0.

This implies that for j = 1, 2, 3, Q∗
j(ζ) ∈ H1. It follows that

<eQ∗
j

(
ζ

i

)
= =mQ∗

j(ζ) > 0

and ∣∣∣∣Qj
∗
(
η + iξ

i

)∣∣∣∣ = |Q∗
j(η + iξ)| ≥ =mQj

∗(η + iξ) ≥ Q∗
j(ξ) j = 1, 2, 3.
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Notation

For ν = (ν1, ν2, ν3) and j=1,2,3, we shall denote by

Q
νj

j

(z
i

)
(z ∈ TΩ)

(resp.

(Q∗
j)

νj

(
ζ

i

)
(ζ ∈ TΩ∗ ))

the determination of the νj -th power that corresponds to the holomorphic deter-
mination of the logarithm of Q

νj

j ( z
i
) (resp.(Q∗

j)
νj( ζ

i
)) which is real and positive on

iΩ (resp. iΩ∗).

We recall that
τ = (2, 3/2, 3/2).

Lemma 4.2. Let ν = (ν1, ν2, ν3) ∈ R3 . The integral∫
Ω

e−(ξ|y)Qν−τ (y)dy (resp.

∫
Ω∗
e−(y|ξ)(Q∗)ν−τ (ξ)dξ )

is finite for all ξ ∈ Ω∗ (resp. y ∈ Ω) if and only if

ν1 > 0, ν2 >
1

2
, ν3 >

1

2
(resp. ν1 > 1, ν2 > 0, ν3 > 0 ).

For these values of ν and for all ζ = η + iξ ∈ TΩ∗ (resp. z = x+ iy ∈ TΩ ),∫
Ω

ei(ζ|y)Qν−τ (y)dy = πΓ(ν1)Γ(ν2 −
1

2
)Γ(ν3 −

1

2
)(Q∗)−ν

(
ζ

i

)
(17)

(resp. ∫
Ω∗
ei(z|ξ)(Q∗)ν−τ (ξ)dξ = πΓ(ν1 − 1)Γ(ν2)Γ(ν3)Q

−ν
(z
i

)
). (18)

Proof. To prove (17), by homogeneity, it suffices to compute the integral∫
Ω

e−(e|y)Qν−τ (y)dy.

For i = 1, 2, we put

(s)i =

(
s1 si+3

0 si+1

)
with s1 > 0, s2 > 0, s3 > 0. Let y ∈ Ω, we use this change of variable

pri(y) = (s)
′

i(s)i, i = 1, 2;

then

Q(y) = s2
1s

2
2s

2
3, dy = 23s3

1s2s3ds, (e|y) =
5∑

k=1

s2
k.
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We obtain∫
Ω

e−(e|y)Qν−τ (y)dy = 23π

(∫ +∞

0

e−s2
1s2ν1−1

1 ds1

) 3∏
j=2

(∫ +∞

0

e−s2
js

2νj−2
j dsj

)
;

the integrals on the right hand side are convergent if and only if ν1 > 0, ν2 >
1
2

and ν3 >
1
2
.

The proof of (18) follows directly from the properties of the Gamma function
of the cone. (See [9]).

Lemma 4.3. Let µ = (µ1, µ2, µ3) ∈ R3 and λ = (λ1, λ2, λ3) ∈ R3. For all
y ∈ Ω, the integral

Jµλ(y) =

∫
Ω

Qµ(y + v)Qλ(v)dv

is finite if and only if

λ1 > −2, λ2 > −1, λ3 > −1, µ1 + λ1 < −3, µ2 + λ2 < −3

2
, µ3 + λ3 < −3

2
.

In this case,
Jµλ(y) = MµλQ

µ+λ+τ (y).

Proof. One can observe that the convergence of the integral Jλµ(y) is estab-
lished for y = e; the rest follows by the identification Ω ≡ He and the fact that
Q(h(y)t) = Q(y)Q(t) where y = h(y)e, with h(y) ∈ H (here, Q ≡ Q(1,1,1) ). By
(18), we write

Qµ(e + v) = c(µ)

∫
Ω∗
e−(e+v|ξ)(Q∗)−µ−τ (ξ)dξ

if and only if µ1 < −1, µ2 < 0 and µ3 < 0. According to Fubini’s Theorem, (17)
and (18), we obtain

Jµλ(e) = c(µ)

∫
Ω∗
e−(e|ξ)(Q∗)−µ−τ (ξ)

(∫
Ω

e−(v|ξ)Qλ(v)dv

)
dξ

= c(µ)c′(λ)

∫
Ω∗
e−(e|ξ)(Q∗)−µ−λ−2τ (ξ)dξ := Mλµ < +∞

if and only if

λ1 > −2, λ2 > −1, λ3 > −1, µ1 + λ1 < −3, µ2 + λ2 < −3

2
, µ3 + λ3 < −3

2
.

Lemma 4.4. Let α = (α1, α2, α3) ∈ R3.

i) The integral

Jα(y) =

∫
V

∣∣∣∣Q−α

(
x+ iy

i

)∣∣∣∣ dx (y ∈ Ω) (19)
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converges if and only if α1 > 3, α2 >
3
2
, α3 >

3
2
. If this case,

Jα(y) = mαQ
−α+τ (y).

ii) The function

F (z) = Q−α

(
z + it

i

)
(z ∈ TΩ)

with t ∈ Ω, belongs to Ap,q
ν (TΩ) if and only if

α1 > max

{
3

p
,
ν1 + 1

q
+

2

p

}
, αj >

νj

q
+

3

2p
, j = 2, 3.

Proof. For fixed y ∈ Ω, interpret (19) as the L2 -norm in dx of Q
−α
2

(
x+iy

i

)
.

By (18) and Plancherel’s formula, the integral in (19) is finite if and only if the
integral ∫

Ω∗
e−2(y|ξ)(Q∗)α−2τ (ξ)dξ

is finite. This proves (i).

The rest follows by Lemma 4.3.

Lemma 4.5. Let α = (α1, α2, α3) ∈ R3 and 0 < λ < 1
4
. There is a constant

Cα such that for all y ∈ Ω, |y| < λ,∫
{x∈V :|x|<1}

∣∣∣∣Q−α

(
x+ iy

i

)∣∣∣∣ dx ≥ CαQ
−α+τ (y).

Proof. We set x = h(y)x′ where h(y) is given by (8), and we use the fact that
dx = Qτ (y)dx′ . Then∫

{x∈V : |x|<1}

∣∣∣∣Q−α

(
x+ iy

i

)∣∣∣∣ dx=Q−α+τ (y)

∫
{x′∈V : |h(y)x′|<1}

∣∣∣∣Q−α

(
x′ + ie

i

)∣∣∣∣ dx′
≥ CαrQ

−α+τ (y) with

Cα =

∫
{x′∈V : |x′|<1}

∣∣∣∣Q−α

(
x′ + ie

i

)∣∣∣∣ dx′.
In fact, by our assumption, |y| < 1

4
; this implies that ‖h(y)‖ < 1. It follows that

set {x′ ∈ V : |h(y)x′| < 1} contains the set {x′ ∈ V : |x′| < 1}.

The characteristic function of Ω and Ω∗. We deduce from (18) and
(17) that

ϕ(x) =

∫
Ω∗
e−(x|ξ)dξ =

∫
Ω∗
e−(x|ξ)(Q∗)τ−τ (ξ)dξ =

π2

4
Q−τ (x) (20)

and

ϕ∗(ξ) =

∫
Ω

e−(ξ|y)dy =

∫
Ω

e−(ξ|y)Qτ−τ (y)dy = π(Q∗)−τ (ξ). (21)
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5. The Bergman spaces

Here, we recall some basic facts about Bergman spaces. All these results are
basically the same as those obtained in the paper [3]. The reader can look at
this paper to have more details of proofs omitted here. For ν = (ν1, ν2, ν3) ∈
R3 such that ν1 > 1, ν2 > 1/2 and ν3 > 1/2, we shall denote L2

(ν)(Ω
∗) =

L2(Ω∗, (Q∗)ν(ξ)dξ) and we define by

Lg(z) = (2π)−
5
2

∫
Ω∗
ei(z|ξ)g(ξ)dξ

the Laplace transform of a locally integrable function g. We have this Paley-Wiener
type theorem

Theorem 5.1. Let ν = (ν1, ν2, ν3) ∈ R3 with ν1 > 1, νj > 1/2, j = 2, 3.
A function F belongs to A2

ν(TΩ) if and only if F = Lg , with g ∈ L2
(−ν)(Ω

∗).
Moreover

‖F‖2
A2

ν(TΩ) = eν‖g‖2
L2

(−ν)
(Ω∗) (22)

where

eν = π2−|ν|+|τ |Γ(ν1 + 2)Γ(ν2 − 1/2)Γ(ν3 − 1/2).

Proof. Cf. [7], Proposition IX.3.3.

We denote by 〈, 〉ν the Hermitian form induced by the A2
ν(TΩ)-norm. It

follows that for F ∈ A2
ν(TΩ), since the Bergman kernel is a reproducing kernel of

A2
ν(TΩ), by polarization of (22),

F (w) = 〈F,Bν(·, w)〉ν = eν〈g, gw〉L2
(−ν)

(Ω∗) =

∫
Ω∗
g(ξ)eνgw(ξ)(Q∗)−ν(ξ)dξ.

Since F = Lg, one has

gw(ξ) = (2π)−
5
2 e−1

ν e−i(w|ξ)(Q∗)ν(ξ).

Hence, by (18),

Bν(z, w) = (2π)−
5
2Lgw(z) = dνQ

−ν−τ

(
z − w

i

)
.

The operator

Pνf(z) =

∫
TΩ)

Bν(z, w)f(w)Qν−τ (=mw)dv(w)

is the identity of A2
ν(TΩ); it provides the orthogonal projection of L2

ν(TΩ) onto
A2

ν(TΩ) i.e it is the Bergman projection.
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Lemma 5.2. Let F ∈ Ap,q
ν (TΩ). The following assertions hold:

i) There is a constant C = C(p, q, ν) > 0 such that for all z = x+ iy ∈ TΩ,

|F (x+ iy)| ≤ CQ− ν
q
− τ

2p (y)‖F‖Ap,q
ν (TΩ). (23)

ii) There is a constant C = C(p, q, ν) > 0 such that for all y ∈ Ω,

‖F (·+ iy)‖p ≤ CQ− ν
q (y)‖F‖Ap,q

ν (TΩ). (24)

iii) There is a constant C = C(p, q, ν) > 0 such that for all y ∈ Ω and all
s > p,

‖F (·+ iy)‖s ≤ CQ− ν
q
− τ

2 (
1
p
− 1

s)(y)‖F‖Ap,q
ν (TΩ). (25)

Proof. The proof is the same as in [3], Lemma 4.2.

Corollary 5.3. The Bergman space Ap,q
ν (TΩ) is a Banach space.

Proof. Taking s = ∞ in Lemma 5.2, we see that convergence in Ap,q
ν (TΩ)

implies convergence over compact subsets of TΩ. So Ap,q
ν (TΩ) is a closed subspace

of Lp,q
ν (TΩ). This one is known to be a Banach space.

Remark 5.4. Let α = (α1, α2, α3) ∈ R3 such that α1 > 1, αj > 0, j = 2, 3;
for all (x, y, t) ∈ V × Ω× Ω,∣∣∣∣Q−α

(
x+ iy

i

)∣∣∣∣ ≤ Q−α(y) (26)

Q−α(y + t) < Q−α(y). (27)

The inequality (26) is a direct application of Proposition 4.1 and inequality
(27) follows from Lemma 4.2.

Corollary 5.5. Let ν = (ν1, ν2, ν3) ∈ R3 such that ν1 > 1, νj > 1/2, j = 2, 3
and F ∈ Ap,q

ν (TΩ);

i) for every t ∈ Ω, the function Ft(z) = F (z + it) belongs to the Hardy
space Hs(TΩ) for s ≥ p;

ii) for y, t ∈ Ω

‖F (·+ i(y + t))‖s ≤ ‖F (·+ iy)‖s;

iii) for α = (α1, α2, α3) ∈ R3 such that α1 > 1, αj > 0, j = 2, 3 and
ε > 0, let

Fε,α(z) = F (z + iεe)Q−α

(
εz + ie

i

)
.

Then Fε,α ∈ Ap,q
ν (TΩ) and we have

lim
ε→0

‖F − Fε,α‖Ap,q
ν (TΩ) = 0.

Proof. The proof is the same as in Corollary 4.4 of [3].
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Corollary 5.6. Let ν = (ν1, ν2, ν3) ∈ R3 and µ = (µ1, µ2, µ3) ∈ R3 such that
ν1 > 1, µ1 > 1 and νj > 1/2, µj > 1/2, j = 2, 3. The subspace Ap,q

ν (TΩ)∩As,r
µ (TΩ)

of the Bergman spaces Ap,q
ν (TΩ) and As,r

µ (TΩ) is dense in each of them.

Proof. The proof is the same as in Corollary 4.5 of [3].

6. Proof of Theorem 1.1

In order to prove Theorem 1.1, we will state that the Lp,q
ν (TΩ)-boundedness of the

operator P+
ν is related to the Lq(Ω, Qν−τ (y)dy)-boundedness of a positive integral

operator on the cone Ω.

6.1. Positive integral operator on the cone Ω. Consider the positive inte-
gral operator S defined on Ω by

Sg(y) =

∫
Ω

Q−ν(y + v)g(v)Qν−τ (v)dv. (28)

It is easy to verify that S is a self-adjoint operator. We put

qν = ν1 + 1.

Theorem 6.1. Let ν = (ν1, ν2, ν3) ∈ R3 such that ν1 > 1, ν2 > 1/2, ν3 > 1/2.
The operator S is bounded on Lq(Ω, Qν−τ (v)dv) if and only if q′ν < q < qν .

Proof. The sufficiency.

We will use Schur’s Lemma (See [8]). The kernel of the operator S relative
to the measure Qν−τ (v)dv is given by

N(y, v) = Q−ν(y + v)

and it is positive. By Schur’s Lemma, it is sufficient to find a positive and
measurable function ϕ defined on Ω such that∫

Ω

N(y, v)ϕ(v)q′Qν−τ (v)dv ≤ Cϕ(y)q′ (29)

and ∫
Ω

N(y, v)ϕ(y)qQν−τ (y)dy ≤ Cϕ(v)q. (30)

We take as test functions ϕ(v) = Qγ(v) where γ = (γ1, γ2, γ3) ∈ R3 has to
be determined. An application of Lemma 4.3 gives that (29) holds whenever

−ν1

q′
< γ1 <

−1

q′
and

1/2− νj

q′
< γj < 0, j = 2, 3

and (30) holds when

−ν1

q
< γ1 <

−1

q
and

1/2− νj

q
< γj < 0, j = 2, 3.
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Assume q < 2 < q′ then
1/2−νj

q
<

1/2−νj

q′
, j = 1, 2, 3. In this case the

inequalities (29) and (30) are simultaneously satisfied if the following conditions
hold

γj ∈
]
1/2− νj

q
, 0

[
, j = 2, 3 (31)

and

γ1 ∈
]
−ν1

q′
,
−1

q′

[⋂]
−ν1

q
,
−1

q

[
. (32)

The interval in (31) is non-empty since νj > 1/2, for j = 2, 3 and the intersection
in (32) is not empty if −ν1

q′
< −1

q
, i.e if q > ν1+1

ν1
= q′ν .

The case q′ < 2 < q is obtained accordingly since the operator is self-
adjoint; we obtain the dual condition q′ > q′ν i.e q < qν .

The necessity.

If we take for g the characteristic function of the invariant ball Bδ(e), 0 <
δ < 1; from Lemma 3.3 we know that the functions v 7→ Q(v) is almost constant
on Bδ(e). Moreover, take δ so small that there are two positive constants c1 and
c2 such that {t ∈ V : |t − e| ≤ c1} ⊂ Bδ(e) ⊂ {t ∈ V : |t − e| ≤ c2}. For a fixed
y ∈ Ω, the function v ∈ Ω 7→ Q(y + v) is continuous on the compact subset {t ∈
Ω : |t− e| ≤ c2} of V contained in Ω; then there exists b ∈ {t ∈ Ω : |t− e| ≤ c2}
such that Q(y+ v) ≤ Q(y+ b) for all v ∈ {t ∈ Ω : |t−e| ≤ c2} ⊃ Bδ(e). It follows
that

‖Sg‖Lq(Ω,Qν−τ (v)dv) =

(∫
Ω

(∫
Bδ(e)

Q−ν(y + v)Qν−τ (v)dv

)q

Qν−τ (y)dy

) 1
q

≥ C

(∫
Ω

(∫
Bδ(e)

Q−ν(y + b)Qν−τ (e)dv

)q

Qν−τ (y)dy

) 1
q

≥ C

(∫
Ω

Q−νq(y + b)Qν−τ (y)dy

) 1
q
∫

Bδ(e)

dv

i.e

‖Sg‖Lq(Ω,Qν−τ (v)dv) ≥ Cbδ‖Q−ν(·+ b)‖Lq(Ω,Qν−τ (v)dv).

So if S is bounded on Lq(Ω, Qν−τ (v)dv), the function y 7→ Q−ν(y+ b) belongs to
Lq(Ω, Qν−τ (y)dy). Using Lemma 4.3, we get the necessary condition q > q′ν . The
dual condition q < qν follows from the self-adjointness of S.

6.2. Proof of Theorem 1.1.

We prove the following:

Theorem 6.2. Let 1 ≤ p ≤ +∞ and 1 ≤ q < +∞. The operator P+
ν is

bounded on Lp,q
ν (TΩ) if and only if q′ν < q < qν . Moreover, the weighted Bergman

projector Pν is bounded from Lp,q
ν (TΩ) to Ap,q

ν (TΩ) whenever q′ν < q < qν .
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Proof. The sufficiency

Let f ∈ Lp,q
ν (TΩ); we use this notation fy(x) = f(x+ iy). Then

P+
ν f(x+ iy) = bν

∫
Ω

(|Q−ν−τ
y+v | ∗ fv)(x)Q

ν−τ (v)dv;

by Minkowski’s inequality and the Young’s inequality, we obtain that(∫
V

|P+
ν f(x+ iy)|pdx

) 1
p

≤ bν

(∫
V

(∫
Ω

||Q−ν−τ
y+v | ∗ fv(x)|Qν−τ (v)dv

)p

dx

) 1
p

≤ bν

∫
Ω

(∫
V

||Q−ν−τ
y+v | ∗ fv(x)|pdx

) 1
p

Qν−τ (v)dv

≤ bν

∫
Ω

‖|Q−ν−τ
y+v | ∗ fv‖pQ

ν−τ (v)dv

≤ bν

∫
Ω

‖|Q−ν−τ
y+v |‖1‖fv‖pQ

ν−τ (v)dv.

Moreover, by Lemma 4.4,

‖|Q−ν−τ
y+v |‖1 = CQ−ν(y + v)

hence, (∫
V

|P+
ν f(x+ iy)|pdx

) 1
p

≤ CbνSg(y)

where S is the positive integral operator defined in (28) and g(v) = ‖fv‖p.
The function g belongs to Lq(Ω, Qν−τ (v)dv) since f ∈ Lp,q

ν (TΩ). It follows from
Theorem 6.1 that for q′ν < q < qν , one has

‖P+
ν f‖Lp,q

ν (TΩ)≤Cbν‖Sg‖Lq(Ω,Qν−τ (v)dv)≤Cbν‖g‖Lq(Ω,Qν−τ (v)dv)=C
′bν‖f‖Lp,q

ν (TΩ).

This finishes the proof of the sufficiency part.

The necessity

Conversely, we shall prove that P+
ν is not bounded on Lp,q

ν (TΩ) when q ≥ qν .

Let λ ∈ R such that 0 < λ < 1
4

and g the function defined on TΩ by
g(x + iy) = χ{|x|<1}(x)k(y) where k ∈ Lq(Ω, Qν−τ (v)dv) is positive with support
in {y ∈ Ω : |y| < λ

2
}. By Lemma 4.5, there is a constant C such that for all

v, y ∈ Ω which satify |v| < λ
2
, |y| < λ

2
,

P+
ν g(x+ iy) ≥ Cbν

∫
|v|< λ

2

Q−ν(y + v)k(v)Qν−τ (v)dv = CbνSk(y).

It follows from our hypothesis that∫
|y|< λ

2

(Sk(y))qQν−τ (y)dy = c

∫
|y|< λ

2

(∫
|x|<1

(Sk(y))pdx

) q
p

Qν−τ (y)dy

≤ c(Cbν)
−q

∫
|y|< λ

2

(∫
|x|<1

|P+
ν g(x+ iy)|pdx

) q
p

Qν−τ (y)dy

≤ c(Cbν)
−q‖P+

ν g‖
q
Lp,q

ν (TΩ)
≤ c′(Cbν)

−q‖g‖q
Lp,q

ν (TΩ)
.
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Let N ∈ N∗ . By applying the statement above to the Euclidean ball
B(O,N), we obtain

∫
|y|<N

(∫
|v|<N

Q(y + v)−νk(v)Qν−τ (v)dv

)q

Qν−τ (y)dy

≤ c(Cbν)
−q

∫
|y|<N

(k(y))qQν−τ (y)dy.

The continuous functions with compact support are dense in Lq(Ω, dz),
dz = Qν−τ (y)dy), so by letting N tend to infinity, we conclude by the Lebesgue
monotone convergence Theorem that∫

Ω

(Sk(y))qQν−τ (y)dy ≤ Cνq‖P+
ν g‖

q
Lp,q

ν (TΩ)
≤ C ′

νq

∫
Ω

(k(y))qQν−τ (y)dy.

Thus, if P+
ν is bounded on Lp,q

ν (TΩ) then S is bounded on Lq(Ω, Qν−τ (y)dy); we
deduce that, if S is not bounded on Lq(Ω, Qν−τ (y)dy), i.e if q ≥ qν , then P+

ν is
not bounded on Lp,q

ν (TΩ). This gives the necessary condition.

To obtain the result for the Bergman projector, it is sufficient to remark that
for all f ∈ Lp,q

ν (TΩ), one has ‖Pνf‖Lp,q
ν (TΩ) ≤ ‖P+

ν |f |‖Lp,q
ν (TΩ) ≤ Cνq‖|f |‖Lp,q

ν (TΩ) =
Cνq‖f‖Lp,q

ν (TΩ) whenever q′ν < q < qν .

7. Lp -estimates of the Bergman projector Pν .

In this section, we shall find values of p for which the Bergman projector Pν is
bounded whenever the operator P+

ν is not bounded. We will use the Paley-Wiener
Theorem (Theorem 5.1) to prove that the Laplace transform is an isomorphism
between A2,q

ν (TΩ) and the space bqν(Ω
∗). We conclude then by interpolation. The

results here are the same as in the paper [2] which deals with symmetric cones.
We will give only statements of the proofs that emphasize some differences.

We recall that Ω∗ =
⋃

j E
∗
j where the sets E∗

j are pairwise disjoint.

Definition 7.1. Let q ≥ 1, 0 < λ < 1 and {ξj} a λ-lattice in Ω∗. We
denote by bqν(Ω

∗) the space of all measurable functions g which are locally square
integrable and satisfy the estimate

‖g‖bq
ν(Ω∗) :=

∑
j

(Q∗)−ν(ξj)

(∫
E∗

j

|g(ξ)|2dξ

) q
2

 1
q

< +∞.

We say that a sequence {λj}j belongs to lqν if it satisfies∑
j

|λj|q(Q∗)−ν(ξj) < +∞.

Lemma 7.2. The space bqν(Ω
∗) is a Banach space.
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Proof. Just remark that bqν(Ω
∗) = lqν(L

2(E∗
j )).

Remark 7.3. Let {aj}j a positive sequence. Then(∑
j

aj

)δ

≤
∑

j

aδ
j if 0 < δ ≤ 1 (33)

and

∑
j

aδ
j ≤

(∑
j

aj

)δ

if δ ≥ 1. (34)

7.1. The boundedness of the Bergman projector Pν on L2,q
ν (TΩ) .

We shall show that the Laplace transform L is isomorphically bounded
from bqν(Ω

∗) onto A2,q
ν (TΩ).

The following proposition proves the statement for q = 2.

Proposition 7.4. There is a constant C = C(ν) > 1 such that for all F ∈
A2,2

ν (TΩ),

1

C

∑
j

(Q∗)−ν(ξj)

∫
E∗

j

|g(ξ)|2dξ ≤ ‖F‖2
A2,2

ν
≤ C

∑
j

(Q∗)−ν(ξj)

∫
E∗

j

|g(ξ)|2dξ;

where F = Lg with g ∈ L2
(−ν)(Ω

∗).

Proof. According to Theorem 5.1, F ∈ A2,2
ν (TΩ) if and only if F = Lg with

g ∈ L2
(−ν)(Ω

∗). By Lemma 3.3,

‖F‖2
A2,2

ν
= eν

∑
j

∫
E∗

j

|g(ξ)|2(Q∗)−ν(ξ)dξ ≤ e′ν
∑

j

(Q∗)−ν(ξj)

∫
E∗

j

|g(ξ)|2dξ.

Conversely, by Lemma 3.3 and (iii) of Lemma 3.5,

∑
j

(Q∗)−ν(ξj)

∫
E∗

j

|g(ξ)|2dξ ≤ cν

∫
Ω∗
|g(ξ)|2

(∑
j

χB∗
j
(ξ)

)
(Q∗)−ν(ξ)dξ

≤ cνNe
−1
ν ‖F‖2

A2,2
ν
.

Lemma 7.5. Let q ≥ 1. There is a constant C = C(ν, τ, q) > 0 such that for
all g ∈ bqν(Ω∗) and all y ∈ Ω,∫

Ω∗
|g(ξ)|e−(y|ξ)dξ ≤ C‖g‖bq

ν(Ω∗)Q
− ν

q
− τ

2 (y).

In particular, g is locally integrable on Ω∗.
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Proof. See Lemma 3.27 of [2].

Theorem 7.6. Let q ≥ 1. For all F ∈ A2,q
ν (TΩ), there is a unique function

g ∈ bqν(Ω∗) such that F = Lg and

‖g‖bq
ν(Ω∗) ≤ C‖F‖A2,q

ν (TΩ).

Proof. By density (see Corollary 5.6), take F ∈ A2,q
ν (TΩ)∩A2,2

ν (TΩ). By Paley-
Wiener Theorem (Theorem 5.1), there exists a function g ∈ L2

(−ν)(Ω
∗) such that

F (x+ iy) = Lg(x+ iy) = (2π)−
5
2

∫
Ω∗
g(ξ)ei(x+iy|ξ)dξ.

Let {yj}j be a λ-lattice of Ω and let {y∗j}j be the dual lattice of the λ-
lattice {yj}j. We saw that the map x 7→ x∗ is an isometry from Ω on Ω∗ (cf.
Theorem 2.4). Thus for y ∈ Bj = Bλ(yj), one has y∗ ∈ B∗

j = Bλ(y
∗
j ); moreover,

by Corollary 3.11, there is a constant γ such that 1
γ
≤ (y|ξ) ≤ γ whenever y ∈ Bj

and ξ ∈ B∗
j . Then, for y ∈ Bj, according to Corollary 3.11, we have∫
E∗

j

|g(ξ)|2dξ ≤ cγ

∫
Ω∗
|g(ξ)|2e−2(y|ξ)dξ = C ′

∫
V

|F (x+ iy)|2dx

by Plancherel’s formula. It follows from (16) that(∫
E∗

j

|g(ξ)|2dξ

) q
2

≤ c′qQ
−τ (yj)

∫
Bj

(∫
V

|F (x+ iy)|2dx
) q

2

dy.

If we denote by {ξj}j the dual λ-lattice of {yj}j, then by (11) and i) of

Lemma 3.3, (Q∗)−ν(ξj)
(∫

E∗
j
|g(ξ)|2dξ

) q
2

≤ cq(Q
∗)−ν(ξj)Q

−τ (yj)

∫
Bj

(∫
V

|F (x+ iy)|2dx
) q

2

dy

≤ cνqQ
ν−τ (yj)

∫
Bj

(∫
V

|F (x+ iy)|2dx
) q

2

dy

≤ c′νq

∫
Bj

(∫
V

|F (x+ iy)|2dx
) q

2

Qν−τ (y)dy;

hence

‖g‖bq
ν(Ω∗) ≤ Cν,q‖F‖A2,q

ν (TΩ). (35)

This finishes the proof.

We prove now the converse of the previous theorem.

Theorem 7.7. Assume 1 ≤ q < 2qν . Given g ∈ bqν(Ω
∗), then Lg ∈ A2,q

ν (TΩ)
and

‖Lg‖A2,q
ν (TΩ) ≤ C‖g‖bq

ν(Ω∗).
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Proof. Write F (x + iy) = Fy(x) = Lg(x + iy). For every y ∈ Ω, the function
x 7→ Fy(x) is the inverse Fourier transform of the function ξ 7→ ψy(ξ) = g(ξ)e−(y|ξ).
By Plancherel’s formula,

‖F‖q

A2,q
ν (TΩ)

=

∫
Ω

(∫
Ω∗
|g(ξ)|2e−2(y|ξ)dξ

) q
2

Qν−τ (y)dy.

By (ii) of Lemma 3.5 and Proposition 3.10, we deduce that

‖F‖q

A2,q
ν (TΩ)

≤
∫

Ω

(∑
j

e−2γ(y|ξj)

∫
E∗

j

|g(ξ)|2dξ

) q
2

Qν−τ (y)dy. (36)

First assume that 1 ≤ q ≤ 2. Since q
2
≤ 1, we deduce from the inequality

(33) and Lemma 4.2 that

‖F‖q

A2,q
ν (TΩ)

≤
∫

Ω

∑
j

e−qγ(y|ξj)

(∫
E∗

j

|g(ξ)|2dξ

) q
2

Qν−τ (y)dy

≤
∑

j

(∫
B∗

j

|g(ξ)|2dξ

) q
2 ∫

Ω

e−qγ(y|ξj)Qν−τ (y)dy ≤ Cνqγ‖g‖q
bq
ν(Ω∗)

.

Assume next that 2 ≤ q < 2qν . Let ρ = q
2

and α = (α1, α2, α3) ∈ R3. By
Hölder’s inequality,

∑
j

e−2γ(y|ξj)

(∫
E∗

j

|g(ξ)|2dξ

)
≤

(∑
j

e−2γ(y|ξj)

(∫
E∗

j

|g(ξ)|2dξ

)ρ

(Q∗)−αρ(ξj)

) 1
ρ

×

(∑
j

e−2γ(y|ξj)(Q∗)αρ′(ξj)

) 1
ρ′

.

From (36), it follows that

‖F‖q

A2,q
ν (TΩ)

≤
∫

Ω

[(∑
j

e−2γ(y|ξj)

(∫
E∗

j

|g(ξ)|2dξ

)ρ

(Q∗)−αρ(ξj)

)
(37)

×

(∑
j

e−2γ(y|ξj)(Q∗)αρ′(ξj)

) ρ
ρ′
Qν−τ (y)dy.

From (16), ii) of Lemma 3.3, Proposition 3.10 and iii) of Lemma 3.5 , we
have ∑

j

e−2γ(y|ξj)(Q∗)αρ′(ξj) ≤ c
∑

j

e−2γ(y|ξj)(Q∗)αρ′−τ (ξj)

∫
B∗

j

dξ

≤ CN

∫
Ω∗
e−2(y|ξ)(Q∗)αρ′−τ (ξ)dξ.
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We deduce from (18) that∑
j

e−2γ(y|ξj)(Q∗)αρ′(ξj) ≤ CαρQ
−αρ′(y)

whenever α1ρ
′ > 1, αjρ

′ > 0, j = 2, 3.

So for α1ρ
′ > 1, αjρ

′ > 0, j = 2, 3, from inequality (37) we obtain:

‖F‖q

A2,q
ν (TΩ)

≤Cαρ

∫
Ω

(∑
j

e−2γ(y|ξj)

(∫
E∗

j

|g(ξ)|2dξ

)ρ

(Q∗)−αρ(ξj)

)
Q−αρ+ν−τ (y)dy

≤ Cαρ

∑
j

(∫
E∗

j

|g(ξ)|2dξ

)ρ

(Q∗)−αρ(ξj)

∫
Ω

e−2γ(y|ξj)Q−αρ+ν−τ (y)dy.

Moreover, if −α1ρ+ ν1 > 0, −αjρ+ νj >
1
2
, by (17), we have∫

Ω

e−2γ(y|ξj)Q−αρ+ν−τ (y)dy = cανρ(Q
∗)αρ−ν(γξj);

it follows that,

‖F‖q

A2,q
ν (TΩ)

≤ Cανρ‖g‖q
bq
ν(Ω∗)

.

Therefore, the conclusion follows if we choose α1, α2, α3 such that

α1ρ
′ > 1, α2ρ

′ > 0, α3ρ
′ > 0

and

−α1ρ+ ν1 > 0, −α2ρ+ ν2 >
1

2
, −α3ρ+ ν3 >

1

2
.

The parameters α2 and α3 can be suitably chosen since 0 < αj <
νj−1/2

ρ
, j = 2, 3,

and α1 must lie in
]

1
ρ′
, ν1

ρ

[
which is a non-empty interval.

We have proved that the Laplace transform L maps bqν(Ω
∗) isomorphically

onto A2,q
ν (TΩ) whenever 1 ≤ q < 2qν .

Lemma 7.8. For α = (α1, α2, α3) ∈ R3 and β ∈ R, the integral

Iαβ =

∫
Ω∗

(Q∗)α(ξ) (1 + | logQ∗
1(ξ)|)

β e−(ξ|e)dξ

is finite if and only if one of the following two conditions is satisfied:

i) α1 > −1 and αj > −3
2
, j = 2, 3;

ii) α1 = −1, αj > −3
2
, j = 2, 3 and β < −1.
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Proof. We use this change of variable: ξ = uu∗ where u =

 u1 u4 u5

0 u2 0
0 0 u3


with uj > 0, j = 1, 2, 3. We have dξ = 23u1u

2
2u

2
3du and Q∗(ξ) = u2

1u
2
2u

2
3. It follows

that

Iαβ = 4π

(∫ +∞

0

u2α1+1
1 (1 + | log u2

1|)βe−u2
1du1

)
×

3∏
j=2

(∫ +∞

0

u
2αj+2
j e−u2

jduj

)
= 4πJαKα

where

Jα =

∫ +∞

0

u2α1+1
1 (1 + | log u2

1|)βe−u2
1du1 and Kα =

3∏
j=2

(∫ +∞

0

u
2αj+2
j e−u2

jduj

)
.

We observe that Kα is finite if and only if αj > −3
2
, j = 2, 3 while Jα is finite if

and only if either α1 > −1 or both α1 = −1 and β < −1.

Theorem 7.9. For q ≥ 2ν1 + 2, there is a function g ∈ bqν(Ω
∗) such that Lg

does not belong to L2,q(TΩ).

Proof. Let q = 2ν1 + 2; we will find a positive function g on Ω∗ such that
‖g‖bq

ν(Ω∗) < +∞ but I(y) =
∫

Ω∗ |g(ξ)|2e−2(y|ξ)dξ = ∞ for all y ∈ Ω.

Take
g(ξ) = e−(ξ|e)(Q∗)α(ξ)(1 + | logQ∗

1(ξ)|)−
1
2

with α = (−1/2, α2, α3) such that αjq > νj − 3
4
q, j = 2, 3.

By Plancherel formula, we have the following

‖Lg‖L2,q
ν (TΩ) =

∫
Ω

I(y)
q
2Qν−τ (y)dy;

in particular, I(e) =
∫

Ω∗(Q
∗)2α(ξ) (1 + | logQ∗

1(ξ)|)
−1 e−2(ξ|e)dξ. According to Lem-

ma 7.8, this integral is not finite. This shows that Lg /∈ L2,q
ν (TΩ). Moreover, from

Lemma 3.3, Hölder inequality and (iii) of Lemma 3.5,

‖g‖q
bq
ν(Ω∗)

=
∑

j

(Q∗)−ν(ξj)

(∫
E∗

j

|g(ξ)|2dξ

) q
2

=
∑

j

(Q∗)−ν(ξj)

(∫
E∗

j

e−2(ξ|e)(Q∗)2α(ξ)(1 + | logQ∗
1(ξ)|)−1dξ

) q
2

≤ C
∑

j

(∫
E∗

j

e−2(ξ|e)(Q∗)2α− 2
q
ν+τ (ξ)(1 + | logQ∗

1(ξ)|)−1 dξ

(Q∗)τ (ξ)

) q
2

≤ Cq

∑
j

∫
E∗

j

e−q(ξ|e)(Q∗)(2α+τ) q
2
−ν(ξ)(1 + | logQ∗

1(ξ)|)−
q
2

dξ

(Q∗)τ (ξ)

≤ CqN

∫
Ω∗
e−q(ξ|e)(Q∗)(2α+τ) q

2
−ν−τ (ξ)(1 + | logQ∗

1(ξ)|)−
q
2dξ.
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According to Lemma 7.8, the last integral above is convergent; so the function
g ∈ bqν(Ω

∗) whenever its Laplace transform does not belong to L2,q
ν (TΩ) for q =

2ν1 + 2.

Let us now consider the operator R = L−1Pν . The operator R is surjective.
We will now show that the operator R is bounded from L2,q

ν (TΩ) to bqν(Ω
∗).

Let φ ∈ L2
ν(TΩ); by Paley-Wiener Theorem, F ∈ A2

ν(TΩ) if and only if
F = Lg with g ∈ L2

(−ν)(Ω
∗). The self-adjointness of Pν implies

〈Pνφ, F 〉A2
ν(TΩ) = 〈φ, F 〉L2

ν(TΩ) = 〈φ,Lg〉L2
ν(TΩ).

Now, by the Plancherel formula and Fubini’s Theorem

〈φ,Lg〉L2
ν(TΩ) =

∫
Ω

(∫
R5

φy(x)F−1(g(ξ)e−(y|ξ))(x)dx

)
Qν−τ (y)dy

=

∫
Ω

(∫
Ω∗
F(φy)(ξ)g(ξ)e

−(y|ξ)dξ

)
Qν−τ (y)dy

=

∫
Ω∗

{(
(Q∗)ν(ξ)

∫
Ω

F(φy)(ξ)e
−(y|ξ)Qν−τ (y)dy

)
(38)

g(ξ)(Q∗)−ν(ξ)dξ
}

where F is the Fourier transform. Therefore, for g ∈ L2
(−ν)(Ω

∗), equality (38) and

the polarization of isometry (22) in the Paley-Wiener Theorem imply that

〈φ,Lg〉L2
ν(TΩ) = 〈Pνφ, F 〉A2

ν(TΩ)

= eν〈L−1Pν , g〉L2
(−ν)

(Ω∗) = eν〈Rφ, g〉L2
(−ν)

(Ω∗). (39)

Comparing (38) and (39) then gives

Rφ(ξ) = e−1
ν (Q∗)ν(ξ)

(∫
Ω

Fφy(ξ)e
−(y|ξ)Qν−τ (y)dy

)
.

We shall need the following lemma.

Lemma 7.10. If q ≥ 2, then for all φ ∈ L2,q
ν (TΩ), Rφ ∈ bqν(Ω∗) and

‖Rφ‖bq
ν(Ω∗) ≤ C‖φ‖L2,q

ν (TΩ).

Proof. See Lemma 4.21 of [2].

Let

Qν = 2qν = 2ν1 + 2;

we can prove now the following result

Corollary 7.11. The Bergman projector Pν extends to a bounded operator
from L2,q

ν (TΩ) to A2,q
ν (TΩ) if and only if Q′

ν < q < Qν .
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Proof. Assume that 2 ≤ q < Qν . By Lemma 7.10, the operator R is bounded
from L2,q

ν (TΩ) to bqν(Ω
∗) and according to the Theorem 7.7, the Laplace transform

L is bounded from bqν(Ω
∗) to A2,q

ν (TΩ). We conclude that the Bergman projector
Pν = L ◦ R is bounded from L2,q

ν (TΩ) to A2,q
ν (TΩ). We obtain the other part by

self-adjointness of Pν . This proves the sufficiency.

The necessary condition follows from Theorem 7.9.

7.2. Proof of Theorem 1.2.

Theorem 7.12. The Bergman projector Pν extends to a bounded operator from
Lp,q

ν (TΩ) to Ap,q
ν (TΩ) if{

0 ≤ 1
p
≤ 1

2
1

qνp′
< 1

q
< 1− 1

qνp′
or

{ 1
2
≤ 1

p
≤ 1

1
qνp

< 1
q
< 1− 1

qνp
.

Proof. For a fixed ν = (ν1, ν2, ν3) ∈ R3 that satisfies ν1 > 1, ν2 > 1/2 and
ν3 > 1/2, let us consider the following picture

-

6

����������PPPPPPPPPP

����������PPPPPPPPPP

O

A

D

E

B

C

F

1
qν+1

1
2

qν

qν+1 1
1
p

1
Qν

1
q′ν

1
Q′

ν

1
qν

1
2

1
q

1

Picture.

By interpolation, Pν is bounded on Lp,q
ν (TΩ) for

(
1
p
, 1

q

)
in the interior of

the hexagon of vertices

A

(
0,

1

ν1 + 1

)
, D

(
1

2
,

1

2ν1 + 2

)
, E

(
1,

1

ν1 + 1

)
and their symmetric points with respect to

(
1
2
, 1

2

)
.

Theorem 1.2 is the particular case p = q of Theorem 7.12. As we remark,
our condition depends only on ν1. It is then important to say that, for the dual
cone Ω∗, we obtain

qν = 1 + min{2ν2, 2ν3};
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this result depends on ν2 and ν3 and is different from the one we obtained in this
paper. This shows that when the homogeneous cone is non-symmetric, there are
different indices when one considers the cone or its dual.
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[2] Békollé, D., A. Bonami, G. Garrigós, C. Nana, M. M. Peloso, and F. Ricci,
“Lecture Notes on Bergman Projectors in tube domains over cones: an
analytic and geometric viewpoint,” IMHOTEP J. Afr. Math. Pures Appl,
5, No 1, 2004.
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