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Abstract. We study holonomy algebras generated by an algebraic el-
ement of the Clifford algebra, or equivalently, the holonomy algebras of
certain spin connections in flat space. We provide series of examples in
arbitrary dimensions and establish general properties of the holonomy alge-
bras under some mild conditions on the generating element.
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1. Introduction

Let (Mn, g) be a Riemannian spin manifold, with spinor bundle to be denoted by
/S . For any differential form T on M , not necessarily of pure degree, one can form
the linear connection ∇T on /S by setting

∇T
Xψ = ∇Xψ + (X T )ψ

whenever ψ belongs to Γ(/S) and X is in TM . Here ∇ is the connection induced
by the Levi-Civita connection on the spinor bundle /S . This can be thought of as
the spin analogue of a connection with non-trivial torsion on the tangent bundle
of M . A special case is when T is actually a 3-form in which case ∇T is the
induced spin connection of a connection with torsion on TM . In low dimensions,
ranging from 6 to 8, parallel spinors w.r.t to a connection with 3-form torsion are
nowadays rather well understood in terms of geometric structures on the tangent
bundle to the manifold [4, 11] and extensive effort toward their classification has
been made [9, 6, 8]. This has been also studied in connection with the so-called
Strominger’s type II string equations [14, 2]. Another special case, which no longer
reflects the presence of a particular connection at the level of the tangent bundle of
M , is when T consists of forms of degree 3 and 4, the latter being termed fluxes
in physics literature (see [7] and references therein). In all the above mentioned
cases one of the issues to understand is under which conditions ∇T admits parallel
spinors, therefore one looks, more generally, at the holonomy representation of ∇T .
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This is because of the well-known fact [3] that a spinor is parallel if and only if it
is fixed by the holonomy representation at a point.

In this paper we shall study the holonomy of the connection ∇T in the
flat case, when moreover T is assumed to have constant coefficients. This is the
simplest geometric case one could think of but already raises some interesting and
quite difficult algebraic questions. We set

Definition 1.1. Let (V n, 〈·, ·〉) be an Euclidean vector space and let Cln(V ) be
its Clifford algebra. Then:

(i) the fix algebra of T in Cln(V ) is the Lie sub-algebra g∗T of Cln(V ) generated
by {X T : X ∈ V }.

(ii) the holonomy algebra of some T in Cln(V ) is given as h∗T = [g∗T , g
∗
T ].

This is motivated by the observation [1] that in the flat case the holonomy
algebra of the spin connection ∇T equals h∗T . When g∗T is perfect, that is g∗T =
[g∗T , g

∗
T ] , the two algebras above coincide and in this respect the fix algebra g∗T

appears to be a very useful intermediary object for establishing structure results,
although it seems to lack of further geometric content. For 3-forms complete
structure results concerning the fix and holonomy algebras have been obtained in
[1].

Our paper is organised as follows. In section 2 we review a number of
elementary facts concerning Clifford algebras and their representations, with accent
put on the different phenomena appearing in some arithmetic series of dimensions.
In section 3 we start our study of holonomy algebras by determining - under
some mild assumptions on the generating element - the model algebra those
are contained in. We also establish a number of useful general properties, like
semisimplicity. Further on, we investigate the space of the so-called fixed spinors
which, for some T in Cln(V ), is defined as

ZT = {ψ ∈ /S : (X T )ψ = 0 for all X in V } (1)

where /S is an irreducible Cln(V ) module. We provide first order information
about these spaces and also discuss some simple examples. The section ends with
giving a necessary condition for certain holonomy algebras to be perfect, namely

Theorem 1.1. Let T in Cl0n ∩ Cl+n , where n ≡ 0 (mod 4) satisfy T t = T . If
ZT = {0} then g∗T is a semisimple Lie algebra, in particular it is perfect.

Section 4 describes situations where the holonomy algebras can be directly
computed and provides series of useful, in hindsight, examples. Elements of the
Clifford algebra which are being looked at are unipotent and squares of spinors,
which actually give idempotents. In the latter situation, the dimension (mod 8)
of the underlying vector space appears to lead to very different results. More
precisely

Theorem 1.2. Let V be an Euclidean vector space with volume form ν and let
T belong to Cln(V ). Then:



Bernhardt and Nagy 359

(i) if n ≡ 0 (mod 4) and T in Cl0n ∩ Cl+n is unipotent, that is T 2 = 1 + ν
and T t = T , then its holonomy algebra is isomorphic to so(n, 1) and g∗T is
perfect.

(ii) if T is the square of a positive spinor when n ≡ 0 (mod 8), then the fix
algebra of T is perfect and its holonomy algebra is isomorphic to so(n, 1).

(iii) if T is the square of a spinor when n ≡ 7 (mod 8), then g∗T is abelian, in
particular the holonomy algebra vanishes.

This essentially exploits specific features of the powerful squaring construc-
tion for spinors [13, 5]. Note that the perfectness of the fix algebra in (i) of Theorem
1.2 follows directly from Theorem 1.1 whereas in the case of (ii) it does not. This
is based on the facts that unipotent elements cannot fix non-zero spinors while
squares of spinors admit non-trivial fixed spinors, which are proved in section 3
(Theorem 4.1) and section 4 (Theorems 4.2 and 4.3) of this paper.

2. Preliminaries

This section is mainly intended to recall a number of facts concerning Clifford
algebras and spinors, which we shall constantly use in what follows. A thorough
account of all these notions can be found in [13].

2.1. Clifford algebras.

Let V be an n-dimensional vector space over R equipped with a positive
definite (or Euclidean) scalar product, to be denoted by 〈·, ·〉 . We shall denote by
Cln(V ) the Clifford algebra associated with (V, 〈·, ·〉), and if there is no ambiguity
on the vector space used we shall simply write Cln for Cln(V ). There is a canonical
isomorphism of vector spaces between the space Λ∗(V ) of forms in V and the
Clifford algebra Cln(V ). Then Cln(V ) can be given the structure of an algebra,
with multiplication denoted by ,, · “ : Cln(V ) → Cln(V ) which satisfies

e · ϕ = e ∧ ϕ− e ϕ, ϕ · e = (−1)k(e ∧ ϕ+ e ϕ) (2)

whenever e belongs to Λ1(V ) and ϕ is in Λk(V ), although this notation will no
longer be used in what follows. Here and henceforth we will identify 1-forms and
vectors via the given scalar product 〈·, ·〉 . Let L : Cln(V ) → Cln(V ) be defined
by

L(ϕ) =
n∑

i=1

ei ϕ ei, (3)

whenever ϕ ∈ Cln(V ) and for some orthonormal basis {ei} , 1 ≤ i ≤ p in V .
Then the eigenspaces of L are the canonical images of Λk(V ):

L|Λk = (−1)k(2k − n)1Λk . (4)

Any Clifford algebra comes with two involutions, the first being the trans-
position map ( )t : Cln(V ) → Cln(V ) defined by

(e1 e2 ... ek−1 ek)
t = ek ek−1 ... e2 e1, (5)
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for some orthonormal frame {ei, 1 ≤ i ≤ n} . Note however that the transpose is
frame independent and therefore extends to an anti-automorphism of Cln(V ), i.e.

(ϕ1 ϕ2)
t = ϕt

2 ϕ
t
1 (6)

for all ϕ1, ϕ2 in Cln(V ). The second involution α : Cln(V ) → Cln(V ) results
from extending −1V to an automorphism of the algebra Cln(V ), in the sense that

α(ϕ1 ϕ2) = α(ϕ1)α(ϕ2),

where ϕ1, ϕ2 are in Cln(V ). The multiplication in Cln is then subject, in accor-
dance with (2), to

α(ϕ)X = X ∧ ϕ+X ϕ
α(ϕ)X −Xϕ = 2X ϕ

(7)

whenever X belongs to V and ϕ is in Cln . These relations will be constantly
used in subsequent calculations. Since α is an involution it can also be used to
obtain a splitting

Cln(V ) = Cl0n(V )⊕ Cl1n(V )

into the ±-eigenspaces of α . Note this corresponds to the splitting of Λ∗(V ) into
even and respectively odd degree forms. The vector space Cln(V ) inherits from
V a scalar product, still to be denoted by 〈·, ·〉 and having the property that

〈ϕϕ1, ϕ2〉 = 〈ϕ1, α(ϕt)ϕ2〉
〈ϕ1ϕ, ϕ2〉 = 〈ϕ1, ϕ2α(ϕt)〉 (8)

whenever ϕ, ϕ1, ϕ2 belong to Cln(V ). Note that the scalar product constructed
on Cln(V ) corresponds, via the canonical isomorphism, to the scalar product on
Λ∗(V ) induced by that on V .

Let us assume now that V is oriented by ν in Λn(V ) such that for an
orthonormal oriented frame {ek, 1 ≤ k ≤ n} this is given as ν = e1 . . . en . Then
it is easy to check that

ν2 = (−1)
n(n+1)

2 , νt = (−1)
n(n−1)

2 ν. (9)

Now the Hodge star operator ∗ : Λk(V ) → Λn−k(V ) is defined by ω1 ∧ ∗ω2 =
〈ω1, ω2〉ν , for all ω1, ω2 in Λ∗(V ) and relates to Clifford multiplication with ν by

∗ϕ = (−1)
k
2
(k+1)ϕν = (−1)

k
2
(2n−k+1)νϕ, (10)

for ϕ in Λk(V ) ⊂ Cln(V ). Moreover, we have

ϕν = ν ϕ, for all ϕ in Cl0n,
ϕ ν = (−1)n+1ν ϕ, for all ϕ in Cl1n.

(11)

In particular, when n ≡ 1 (mod 2), the volume element ν belongs to the center
of the Clifford algebra Cln .

If n ≡ 0, 3 (mod 4) then ν2 = 1 whence the Hodge star operator, realised
as in (10), provides a decomposition of the Clifford algebra into self-dual and
anti-self-dual elements:

Cln(V ) = Cl+n (V )⊕ Cl−n (V ), (12)
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where νϕ = ±ϕ whenever ϕ belongs to Cl±n (V ).

We end this section by recalling two more facts, to be used later on in
this paper. If γk belong to Λ2(V ) for k = 1, 2 with associated skew-symmetric
endomorphisms Fk , that is γk = 〈Fk·, ·〉 for k = 1, 2, we have

[γ1, γ2] = 2 〈[F1, F2]·, ·〉. (13)

This is because the map λ∗ : spin(n) → so(n), given by λ∗(γ) = 2F for all
γ ∈ Λ2(V ) with associated skew endomorphism F , is a Lie algebra isomorphism
[13, Chap. I, Prop. 6.2].

Let V̂ = V ⊕ R where R is spanned by some non-zero vector e . For
any non-zero ε in R we equip V̂ with the (possibly Lorentzian) scalar product
gε = g + εe ⊗ e , where g denotes the scalar product on V . Consider now the
vector space Λ2V ⊕ V equipped with the Lie bracket defined by

[γ1, γ2]ε = 〈[F1, F2]·, ·〉 = 1
2
[γ1, γ2]

[γ, v]ε = v γ, if γ is in Λ2(V ) and v in V
[v, w]ε = εv ∧ w, for v, w in V.

(14)

Then the Lie algebra (Λ2V ⊕ V, [·, ·]ε) is isomorphic to so(V̂ , gε), in particular
to so(n + 1) if ε = 1 and to so(n, 1) for ε = −1. These follow by elementary
considerations using essentially the block structure of an endomorphism of V̂ w.r.t.
the splitting V̂ = V ⊕ R (see e.g. [10, page 238ff]).

2.2. The space of spinors.

We need to recall some elementary facts about spinors. Let /S be an
irreducible Cln(V )-module. We shall call elements of /S spinors and denote by
µ : Cln(V ) → End(/S) the Clifford multiplication acting on /S . On /S we have a
scalar product 〈·, ·〉 which has the following property

〈ϕψ1, ψ2〉 = 〈ψ1, α(ϕt)ψ2〉, (15)

for all ϕ in Cln and ψ1, ψ2 in /S . Recalling that

α(ϕt) = (−1)
k
2
(k+1) ϕ, ϕ ∈ Λk(V ) ⊂ Cln(V ). (16)

it follows that the Clifford multiplication operator µϕ : /S → /S , with an element ϕ
of Λk(V ), is symmetric when k ≡ 0, 3 (mod 4) and skew-symmetric when k ≡ 1, 2
(mod 4). Now when n ≡ 0, 3 (mod 4) the volume form ν squares to 1.
If n ≡ 0 (mod 4) this allows splitting the irreducible, real Clifford module /S as
/S = /S+⊕/S− , where ν acts as ±1 on /S± . Note that /S± are not Cln modules
although they have the same dimension.

Peculiar to the case when n ≡ 3 (mod 4) is the fact that any irreducible,
real Clifford module /S has either νψ = −ψ for all ψ in /S or νψ = ψ for all ψ
in /S . Both possibilities can occur and produce different Cln -representations. As
a convention, in what follows we shall always work with the latter representation.
Let us also mention that when n ≡ 3 (mod 4) we have that νϕ = ϕν for all ϕ
in Cln and that α interchanges Cl+n and Cl−n , that is realises an isomorphism
α : Cl+n → Cl−n . For it will be used constantly in what follows we also recall the
following stability Lemma.
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Lemma 2.1. Let /S be any real Clifford module. Then the following stability
conditions hold:

(i) when n ≡ 0 (mod 4),

ϕ/S± ⊆ /S±, for all ϕ ∈ Cl0n(V ) ∩ Cl±n (V )
ϕ/S± = {0}, for all ϕ ∈ Cl0n(V ) ∩ Cl∓n (V ) or Cl1n(V ) ∩ Cl±n (V )
ϕ/S± ⊆ /S∓, for all ϕ ∈ Cl1n(V ) ∩ Cl∓n (V ),

(ii) while for n ≡ 3 (mod 4) we have Cl+n /S ⊆ /S, Cl−n /S = 0, provided that
µν = 1/S .

The proof, which is left to the reader, follows from the above properties
of Clifford multiplication with ν . We end this section by recalling two more well
known facts, with proofs given for the sake of completeness.

Lemma 2.2. If ζ in Cln satisfies [ζ,Λ2(V )] = 0 then ζ is a linear combination
of 1 and ν .

Proof. Since ζXY = XY ζ for all X, Y in V it follows that Y (XζX)Y =
|X|2|Y |2ζ and further, after a double tracing L2ζ = n2ζ . The eigenvalues of L2

being (2p−n)2 it follows that the only degrees present in ζ are 0 and n . Therefore
ζ is a linear combination of 1 and ν .

Lemma 2.3. Let /S be any real, Cln -module where n ≡ 0, 3 (mod 4). Then:

(i) Tr(µϕ) = dimR/S 〈ϕ, 1〉, if n ≡ 0 (mod 4),

(ii) Tr(µϕ) = dimR/S 〈ϕ, 1 + ν〉, if n ≡ 3 (mod 4), where /S is the irreducible
Cln -module with µν = 1/S .

Proof. Let now t : Cln → R be given as t(ϕ) = Tr(µϕ) for all ϕ in Cln . Since
this is linear, it can be written as t = 〈·, T 〉 for some T in Cln . We now pick some
orthonormal basis {ei : 1 ≤ i ≤ n} in V and write eij = ei∧ej for all 1 ≤ i, j ≤ n .
Because µeij , i 6= j, is an isometry of /S , we get from the independence of the trace
of some orthonormal basis in Cln and (15) that t(eijϕeij) = −t(ϕ), for all ϕ in
Cln . Using (8) this results in having eijTeij = −T or further [T, eij] = 0 for all
1 ≤ i 6= j ≤ n , where we have used that (eij)2 = −1. Hence [T,Λ2] = 0, leading
by Lemma 2.2 to T = λ1 + λ2ν for some λ1, λ2 in R which can be computed as
λ1 = Tr(µ1) = dimR/S and λ2 = Tr(µν).
To prove (i) we use that Tr(µν) = dimR/S

+ − dimR/S
− = 0 for n ≡ 0 (mod 4)

whereas (ii) follows from Tr(µν) = dimR/S , a consequence of µν = 1/S .
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3. Structure results

3.1. The general setup.

In this section our aim is mainly to locate some classes of holonomy algebras inside
the Clifford algebra and derive a number of general properties they must satisfy.
Let A be the subset of Cln given by

A = {ϕ ∈ Cln : ϕt = −ϕ}.

This is meant to be the model algebra for most classes of holonomy algebras we
will be looking at, in a sense to be made precise below.

Lemma 3.1. The following hold :

(i) A is a Lie sub-algebra of (Cln, [·, ·]).

(ii) The symmetric bilinear form β(ϕ1, ϕ2) = 〈ϕ1, α(ϕ2)〉 is non-degenerate on
A and invariant, that is

β([ϕ1, ϕ2], ϕ3) = −β([ϕ1, ϕ3], ϕ2)

whenever ϕk, 1 ≤ k ≤ 3 belong to A.

Proof. (i) Follows immediately from anti-symmetrising that (ϕ1ϕ2)
t = ϕt

2ϕ
t
1 =

ϕ2ϕ1 whenever ϕ1, ϕ2 belong to A .
(ii) at first, β is symmetric since α is an isometric involution of Cln . Next, the
non-degeneracy of β follows from A being preserved by the involution α . Now

β([ϕ1, ϕ2], ϕ3) = 〈[ϕ1, ϕ2], α(ϕ3)〉 = 〈ϕ1ϕ2 − ϕ2ϕ1, α(ϕ3)〉
= 〈ϕ2, α(ϕt

1)α(ϕ3)− α(ϕ3)α(ϕt
1)〉

= −〈ϕ2, α([ϕ1, ϕ3])〉 = −β(ϕ2, [ϕ1, ϕ3]).

This is what we had to show.

Since A is stable under α , it inherits from Cln a bi-grading A = A0 ⊕ A1

into its even respectively its odd degree components, where we have set Ai :=
A ∩ Cli for i = 0, 1. The usual rules [A0, A0] ⊆ A0, [A0, A1] ⊆ A1, [A1, A1] ⊆ A0

apply, in particular A0 is a Lie sub-algebra of A . We can obtain now first order
information about some of the holonomy algebras, by assuming the generating
element to be well related to the standard decompositions of Cln .

Proposition 3.1. Let T belong to Cl0n and satisfy T t = T . Then:

(i) g∗T is a Lie sub-algebra of A.

(ii) α(g∗T ) = g∗T .
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Proof. (i) follows eventually after checking that the generating set {X T :
X ∈ V } is contained in A as

(X T )t = −X T t = −X T

for all X in V . To prove (ii) we notice that α(X T ) = −X T for all X in V , in
other words α preserves the generating set. Since α is a Lie algebra automorphism
preserving A , the result follows.

Therefore, for any T in Cl0n such that T t = T , the Lie algebra g∗T splits as

g∗T = g∗,0T ⊕ g∗,1T ,

where the obvious notation applies. Getting closer to the specific features of the
algebras g∗T requires some Lie algebra background we shall now briefly outline.
For our setup the most convenient is to start from

Definition 3.1. Let g be a real Lie algebra. It is called quadratic if it admits
a symmetric bilinear form β which is non-degenerate and satisfies

β([ϕ1, ϕ2], ϕ3) = −β([ϕ1, ϕ3], ϕ2)

for all ϕ1, ϕ2, ϕ3 in g.

This essentially ensures that any non-degenerate ideal i of g has trivial
extension, that is there exists an ideal i⊥ such that g = i⊕ i⊥ , where i⊥ denotes
the orthogonal complement of i w.r.t the non-degenerate form β . Note that any
semisimple Lie algebra is quadratic when the bilinear form β is set to the Killing
form.

Proposition 3.2. Let g be a real Lie algebra. If g is quadratic then [g, g] = g

if and only if it has trivial center. Here the center Z(g) of g is given as Z(g) =
{ζ ∈ g : [ζ, g] = 0}.

Proof. That [g, g] = g implies the vanishing of the center is an easy exercise.
If Z(g) = {0} , the invariance and non-degeneracy of β ensure that the ideal [g, g]
is non-degenerate and the considerations above apply.

Real Lie algebras g satisfying [g, g] = g are called perfect and Proposition
3.2 provides a tool for checking this, to be used later on. In analogy with the
classical notion in the context of semisimple Lie algebras we have

Definition 3.2. Let (g, β) be a real quadratic Lie algebra. An endomorphism
α : g → g is a Cartan involution if and only if

(i) α is an involution, that is α2 = 1g ,

(ii) α is a Lie algebra automorphism,

(iii) the bilinear form β(·, α·) is symmetric and positive definite.
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As in the semisimple case, a quadratic Lie algebra (g, β) equipped with a
Cartan involution α admits a Cartan decomposition

g = g0 ⊕ g1

where g0 and g1 are the ±1-eigenspaces of α . That α is an automorphism of g

ensures the validity of the inclusions [g0, g0] ⊆ g0, [g0, g1] ⊆ g1 and [g1, g1] ⊆ g0 .
Moreover, from (iii) in the Definition 3.2 the bilinear form β is seen to be positive
definite on g0 , negative definite on g1 and subject to β(g0, g1) = 0.

We shall provide now a simple criterion for a quadratic Lie algebra to be
semisimple.

Proposition 3.3. Let (g, β) be a quadratic Lie algebra such that Z(g) = {0}.
If g admits a Cartan involution α : g → g then the Lie algebra g is semisimple.

To prove this we need first to establish

Lemma 3.2. Under the assumptions in Proposition 3.3, if i ⊆ g is an abelian
ideal such that α(i) = i then i = 0.

Proof. Since i is preserved by α we have the splitting i = i0 ⊕ i1 where
ip = i ∩ gp, p = 0, 1. Because i is an ideal, [i0, g] ⊆ i and further, using the
properties of the Cartan decomposition of g , [i0, g0] ⊆ i0 and [i0, g1] ⊆ i1 . That i is
abelian yields now [ip, iq] = {0} for all 0 ≤ p, q ≤ 1. Therefore the invariance of β
tells us that [i0, g0] is orthogonal (w.r.t. β ) to i0 hence we must have [i0, g0] = {0}
by using that β is positive definite on g0 . Similarly, one finds that [i0, g1] = {0}
and this leads to i0 = {0} when taking into account that g has trivial center. The
vanishing of i1 is proved in a completely analogous manner, thus details are left
to the reader.

Proof of Proposition 3.3:
Let us see first that g does not contain non-zero, abelian ideals. Indeed, if i is an
abelian ideal in g we have that α(i) is an abelian ideal as well, by using (i) and (ii)
in Definition 3.2. It follows that i∩α(i) is an abelian ideal in g , which is preserved
by α . ¿From Lemma 3.2 we get i ∩ α(i) = {0} hence [i, α(i)] ⊆ i ∩ α(i) vanishes
too. So i⊕α(i) is an abelian ideal preserved by α , which must then vanish, again
by Lemma 3.2. It follows that i = {0} .
It is now easy to see, by an induction argument on the commutator series and
using the absence of non-zero abelian ideals, that any solvable ideal of g must
vanish. Therefore g is semisimple and the proof is finished.

Lemma 3.3. Suppose that n ≡ 0 (mod 8). The following hold:

(i) A is a semisimple Lie algebra.

(ii) A is isomorphic to so(d, d) where d = 1
2
dimR/S and /S is the irreducible real

Cln module.

(iii) the adjoint representation of A0 on A1 is irreducible.
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Proof. (i) That A is quadratic follows directly from Lemma 3.1, (ii). Moreover
A has no center by Lemma 2.3 thus the claim follows from Proposition 3.3 when
taking into account that α is a Cartan involution of A .
(ii) Let us equip /S with the indefinite scalar product β̂ which leaves /S+ and /S−

orthogonal and equals ±〈·, ·〉 on /S± . In short, β̂(x, y) = 〈νx, y〉 for all x, y in /S .
If ϕ is in A it is easy to check that β̂(µϕx, y) + β̂(µϕy, x) = 0 for all x, y in /S ,

that is µϕ belongs to so(/S, β̂) ∼= so(d, d). But when n ≡ 0 (mod 8) the Clifford
multiplication gives a linear isomorphism µ : Cln → End(/S) which is also a Lie
algebra isomorphism and our claim follows.
(iii) from (ii) it follows that (A,α) ∼= (so(d, d), α) is an orthogonal symmetric
Lie algebra in the sense of [10, page 213], that is a semisimple Lie algebra with
equipped with a Cartan involution. Here the Cartan involution is given by α ,
and the corresponding Cartan decomposition is A = A0 ⊕ A1 . It follows that our
claim is equivalent with (so(d, d), α) being an irreducible orthogonal symmetric
Lie algebra as defined in [10, page 377]. The proof is finished by making use of
Table V of [10, page 518].

Similar results can be proved in the remaining series of dimensions but this
is somewhat beyond the scope of the present paper. In the same vein

Proposition 3.4. Let T in Cl0n with T t = T be such that Z(g∗T ) = {0}. Then
the Lie algebra g∗T is semisimple.

Proof. At first, g∗T is a quadratic Lie algebra when equipped with the restric-
tion of β to g∗T . Indeed, we need only see that the restriction of β to g∗T is
non-degenerate. But this follows easily from Proposition 3.1, (ii). By Proposition
3.1, (ii) we have that α preserves g∗T so the latter also admits a Cartan involution.
We conclude now by using Proposition 3.3.

Recall now that the adjoint representation of the Clifford algebra, Ad:
Cl×n → End(Cln), is given by Ad(ϕ)x = ϕxϕ−1 for all ϕ in Cl×n and for all
x in Cln . Here Cl×n denotes the group of invertible elements in Cln .

Lemma 3.4. Let T be in Cl0n . Then

g∗Ad(e)T = Ad(e)g∗T

for any unit vector e in V .

Proof. At first we notice that Ad(e)T = −eTe still belongs to Cl0n . We have

−2X (eTe) = X(eTe)− (eTe)X = −e(XT )e+ e(TX)e = 2e(X T )e

for all X in (e)⊥ . Similarly, e (eTe) = e(e T )e hence X (eTe) = e(FeX T )e
for all X in V , where Fe is the invertible endomorphism of V which equals −1
on (e)⊥ and 1 on (e). Therefore Ad(e) maps the generating set of g∗T onto that
of Ad(e)g∗T = eg∗T e . Since Ad(e) : Cln → Cln is a Lie algebra isomorphism it is
now easy to conclude.
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When n ≡ 0 (mod 4) the map Ad(e) where e is some unit vector in V ,
intertwines, say Cl+n ∩Cl0n and Cl−n ∩Cl0n , therefore from the Lemma above we see
that the fix algebra does not distinguish between the generating elements being in
Cl+n or Cl−n . Hence all results obtained for fix algebras generated by elements in
Cl+n extend automatically to generating elements in Cl−n . We end this section by
an example of forms when the holonomy algebras can be easily computed.

Proposition 3.5. Let (V n, 〈·, ·〉) be an Euclidean vector space oriented by ν in
Λn(V ). Then:

(i) g∗ν = so(n, 1) for n ≡ 0, 1 (mod 4),

(ii) g∗ν = so(n+ 1) for n ≡ 2, 3 (mod 4),

(iii) in both cases g∗νψ = 0 if and only if ψ = 0, for any ψ ∈ /S .

Proof. Let us first notice that the generating set {X ν : X ∈ V } is isomorphic
to V , since the volume form ν is non-degenerate. Keeping in mind that by (2) we
have X ν = −Xν and using (9), (11) this yields

[X ν, Y ν] = (−1)
1
2
(n+1)(n+2)[X, Y ] = 2(−1)

1
2
(n+1)(n+2)X ∧ Y

for all X, Y in V . Similarly we get for the triple commutators

[γ,X ν] = [X, γ]ν = 2FX ν

for all X in V , where γ = 〈F ·, ·〉 belongs to Λ2(V ). Let now ι : V ⊕Λ2V → g∗ν be
given by ι(X, γ) = 1

2
(X ν, γ). This is a linear isomorphism and moreover from the

commutators above we see, by making use of (14), that ι : (V ⊕ Λ2V, [·, ·]ε) → g∗ν
is a Lie algebra isomorphism, where ε = (−1)

1
2
(n+1)(n+2) .

The claims in (i) and (ii) now follow. (iii) follows easily from the invertibility of ν
in Cln , as defined in Def. 3.3.

3.2. The set of fixed spinors.

As it will appear below the holonomy algebra of some element T in Cln is
intimately related to the space of spinors fixed by T , which we recall to be defined
as

ZT = {ψ ∈ /S : (X T )ψ = 0, for all X ∈ V }. (17)

Notice that if (the non-zero) T is of degree 1 or 2 the set ZT is obviously reduced
to zero and moreover the latter holds for forms of degree 3 (see [1]). We now
gather a number of basic facts concerning the set ZT . If n ≡ 0 (mod 4) and T
belongs to Clin, i = 0, 1 we split ZT along the splitting /S = /S+ ⊕ /S− and get

ZT = Z+
T ⊕ Z−T

where the obvious notation applies.
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Lemma 3.5. Let T belong to Cl0n ∩ Cl+n where n ≡ 0 (mod 4). Then

(i)
Z+

T = {ψ ∈ /S+ : Tψ = 0}
Z−T = {ψ ∈ /S− : TV ψ = 0}

(ii) if n = 8, then Z−T = {0} provided T does not vanish.

Proof. (i) follows directly from the stability conditions.
(ii) If Z−T 6= {0} there exists a non-zero ψ in /S− with TV ψ = 0. Since ψ is not
zero, the linear map from V to /S+ given by v 7→ vψ for all v in V is injective.
It is surjective as well because in dimension 8 the space /S+ is eight dimensional.
Then V ψ = /S+ hence T/S+ = 0 which leads to T = 0, a contradiction.

A very simple observation, dealing with the case when the form T is of pure degree,
is

Lemma 3.6. Let T belong to Λk(V ), k 6= 0. Then:

(i) TZT = 0,

(ii) ZT = ZνT .

Proof. (i) If ψ belongs to ZT we have (X T )ψ = 0 for all X in V . Therefore
n∑

i=1
ei(ei T )ψ = 0 for some orthonormal frame {ei, 1 ≤ i ≤ n} leading to kTψ = 0

and the claim follows.
(ii) From (i) we get that ZT = {ψ ∈ /S : TV ψ = 0} for any pure degree form T
and the claim follows easily.

Definition 3.3. An element T of Cl0n∩Cl+n is invertible in Cln/(1, ν) if there
exists T−1 in Cl0n ∩ Cl+n with T−1T = TT−1 = 1 + ν . Here we have denoted by
(1, ν) the vector sub-space of Cln generated by 1 and ν .

Actually a necessary and sufficient condition for ZT to vanish is

Proposition 3.6. Let T belong to Cl0n ∩Cl+n , n ≡ 0 (mod 4). Then ZT = {0}
if and only if T is invertible in Cln/(1, ν).

Proof. If T is invertible Lemma 3.5 yields immediately the vanishing of Z±T
hence that of T .
For any ζ ∈ Cl0n ∩ Cl+n let Lζ : Cl+n ∩ Cl0n → Cl+n ∩ Cl0n be left multiplication
with ζ , which is obviously well-defined (see Lemma 2.1) and linear. Suppose now
that ZT = {0} . If ϕ is in the kernel of LT it follows that T (ϕ/S+) = 0 and
moreover, since ϕ/S+ ⊆ /S+ Lemma 3.5 tells us that ϕ/S+ ⊆ Z+

T ⊆ ZT hence
ϕ/S+ = 0. We recall now that µ is faithful when n ≡ 0 (mod 4), essentially
because Cln is a simple algebra in the considered dimensions [13, Chap. I,
Thm 5.6]. Therefore ϕ vanishes and it follows that LT is injective, hence an
isomorphism. Thus there exists a linear map L−1

T : Cl0n ∩ Cl+n → Cl0n ∩ Cl+n such
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that LT ◦ L−1
T = L−1

T ◦ LT = 1Cl0n∩Cl+n
. Setting T−1 = L−1

T (1 + ν) we get from

LT ◦ L−1
T = 1Cl0n∩Cl+n

that T−1 in Cl0n ∩ Cl+n satisfies TT−1 = 1 + ν . Now we

compose L−1
T ◦ LT = 1Cl0n∩Cl+n

at right with LT−1 and get that L−1
T = 1

2
LT−1 . It

follows that 1
2
LT−1 ◦LT = 1Cl0n∩Cl+n

which leads easily to T−1T = 1+ν when using

that 1Cl+n∩Cl0n
= 1

2
(1 + ν). So T is invertible in the sense of Definition 3.3 and the

proof is finished.

In the rest of this section we shall present examples of situations when the
set of fixed spinors can be seen directly to be trivial.

Proposition 3.7. Let γ in Λ2(V ) be a two-form such that T = γ ∧ γ 6= 0.
Then ZT = {0}.

Proof. Let F be the skew-symmetric endomorphism associated to γ via the
metric g , that is γ = 〈F ·, ·〉 . We have X (γ ∧ γ) = 2(X γ) ∧ γ = 2FX ∧ γ for
all X in V . Let now ψ be in ZT and let us set r = rank(F ). From

(X T )ψ = 2 (FX ∧ γ)ψ = 0

follows (X ∧ γ)ψ = 0 for all X in Im(F ). By Clifford contraction we get
immediately ∑

ei∈ Im(F )

ei(ei ∧ γ)ψ = −
∑

ei∈ Im(F )

(ei (ei ∧ γ))ψ = (2− r) γψ = 0,

which leads to γψ = 0 since having r = 2 would imply T = γ ∧ γ = 0, a
contradiction. Therefore

0 = Xγψ = (X ∧ γ −X γ)ψ

for all X in V and since (X ∧ γ)ψ = 0 for all X in Im(F ) we are lead to
(X γ)ψ = 0 for all X in Im(F ). It follows that ψ = 0 as γ 6= 0.

Proposition 3.8. For any T in Λk(Rn), n ≤ 7 the set ZT is trivial.

Proof. This is obvious when k = 1, 2 and when k = 3 it was proved in [1,
Thm. 4.2]. Now if k ≥ 4 we have ZT = ZνT and since νT has degree n− k ≤ 3
we conclude by the Lemma 3.6, (ii).

Therefore the first case of interest is that of dimension 8.

3.3. Perfect fix algebras.

In this section we shall examine situations when the fix algebra g∗T for some
T in Cln is perfect. We will see that this is not always the case since those can
be abelian by the examples in the next section. However we will show that it is
possible to give necessary conditions to that extent. Let us set first a preparatory
Lemma.

Lemma 3.7. If ζ1, ζ2 in Cln satisfy ζ1X = Xζ2 for all X in V then ζ1 and
ζ2 belong to (1, ν).
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Proof. It follows that −|X|2ζ1 = Xζ2X for all X in V and further

|X|2Y ζ2Y = |Y |2Xζ2X

for all X, Y in V . By left multiplication with some non-zero X we get (XY )ζ2Y =
−|Y |2ζ2X and now right multiplication with a non-zero Y yields (XY )ζ2 =
ζ2(XY ) for all X, Y in V . Now ζ2 is in (1, ν) by Lemma 2.2 and it is easy
to see this implies the claim for ζ1 as well.

Proposition 3.9. Suppose that n ≡ 0 (mod 4) and let T satisfy νT = Tν = T
and T t = T . If ZT = {0} then g∗T has trivial center.

Proof. If ζ in Z(g∗T ) we must clearly have

[ζ,XT − TX] = 0 (18)

for all X in V . Since XT − TX belongs to Cl1n for all X in V by applying α to
the equation above we get that [α(ζ), XT − TX] = 0 for all X in V , hence after
splitting ζ into its even resp. odd components it is enough to treat (18) when ζ
belongs to Cl0n resp. Cl1n .
Case I: ζ belongs to Cl0n .
Since ν(XT − TX) = −(XT + TX) for all X in V and νζ = ζν after left
multiplication of (18) with the volume form we get ζ(XT + TX) = (XT + TX)ζ
whenever X belongs to V . Taking linear combinations with (18) gives further

ζXT = XTζ
ζTX = TXζ

for all X in V . Since ZT = {0} we know that T must be invertible in Cln/(1, ν)
(see Proposition 3.6) hence using the second equation above we have

(T−1ζT )X = T−1TXζ = (1 + ν)Xζ = X(1− ν)ζ

for all X in V . But from Lemma 3.7, (ii) we get that (1 − ν)ζ belongs to (1, ν)
and hence vanishes since ((1 − ν)ζ)t = −(1 − ν)ζ as of ζ being an element of A
by Proposition 3.1,(i). From the vanishing of (1− ν)ζ it follows that T−1ζT = 0
and this leads after right multiplication with T−1 resp. left multiplication with T
to (1 + ν)ζ = 0. Thus ζ = 0 in this case.
Case II: ζ belongs to Cl1n .
We have as before ζ(XT−TX) = (XT−TX)ζ for all X in V . But ν(XT−TX) =
−(XT + TX) for all X in V because νT = T and since νζ = −ζν after left
multiplication with the volume form we obtain

ζ(XT + TX) = −(XT + TX)ζ

for all X in V . Taking linear combinations with the original equation gives now

(ζT )X = −X(Tζ)
ζXT = −TXζ
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for all X in V . Using Lemma 3.7, (ii) we then get that ζT and Tζ belong to (1, ν)
and therefore must vanish since they are elements of Cl1n . The invertibility of T
in Cln/(1, ν) leads then to (1 + ν)ζ = 0 whereas left multiplication by 1 + ν in
the second equation above gives TXζ = 0 for all X in V . Again the invertibility
of T implies that (1 + ν)Xζ = X(1 − ν)ζ = 0 for all X in V and we conclude
that (1− ν)ζ = 0 hence ζ = 0 and the proof is finished.

Summarising, after making use of the fact that (g∗T , β) is a quadratic Lie
algebra and of Propositions 3.2 and 3.9, we obtain

Theorem 3.1. Let T belong to Cl0n ∩ Cl+n where n ≡ 0 (mod 4) and satisfy
T t = T . If moreover ZT = {0}, the algebra g∗T is perfect, that is

g∗T = [g∗T , g
∗
T ].

The proof of Theorem 1.1 follows while making use of the fact that, under
the above conditions on T , the fix algebra g∗T is semisimple when its center vanishes
by Proposition 3.4.

4. Holonomy algebras from distinguished Clifford algebra elements

4.1. Unipotent elements.

In this section we shall compute directly the fix and holonomy algebras of a
unipotent element T of Cl+n , n ≡ 0 (mod 4) as introduced below.

Definition 4.1. Let T belong to Cl+n where n ≡ 0 (mod 4). It is called
unipotent if it satisfies T t = T and T 2 = 1 + ν .

In particular any unipotent element T belongs to Cl0n . We need first to
state and prove the following preliminary result, to be used later on as well.

Lemma 4.1. Let T belong to Cl+n ∩ Cl0n where n ≡ 0 (mod 4). Then:

4[X T, Y T ] = −T [X,Y ]T + Y T 2X −XT 2Y

whenever X, Y belong to V .

Proof. Follows directly from the stability relations of Lemma 2.1 under the
form TXT = 0 for all X in V . Details are left to the reader.

Theorem 4.1. Let T be a unipotent element of Cl+n where n ≡ 0 (mod 4).
Then:

(i) ZT = {0}

(ii) the fix algebra of T is perfect

(iii) the holonomy algebra of T is isomorphic to so(n, 1).



372 Bernhardt and Nagy

Proof. (i) Since any unipotent element T of Cl+n is clearly invertible in
Cln/(1, ν) Proposition 3.6 implies that ZT = {0} .
(ii) follows from (i) and Theorem 3.1.
(iii) For notational convenience let ET = {X T : X ∈ V } be the generating
set of g∗T . It is isomorphic to V under the map ι1 : V → ET , ι

1(X) = X T .
Here only the injectivity of ι1 has to be proved, and indeed, if ι1(X) = 0 it
follows that XT = TX and further 0 = TXT = T 2X leading to the vanishing of
X . Now by Lemma 4.1 combined with the unipotency of T the space [ET , ET ]
equals {TγT + (1 − ν)γ : γ ∈ Λ2(V )} . This is isomorphic to Λ2(V ) under
ι2 : Λ2(V ) → [ET , ET ], ι2(γ) = TγT + (1 − ν)γ . Indeed, if ι2(γ) = 0 we find
that TγT + (1 − ν)γ = 0 but then both summands vanish as the first is in Cl+n
and the second in Cl−n . Hence γ = 0 and so ι2 is injective. Note also that Lemma
4.1 yields equally the commutator identity

2[ι1X, ι1Y ] = −ι2(X ∧ Y )

for all X, Y in V . Now

[Tγ1T + (1− ν)γ1, Tγ2T + (1− ν)γ2] = [Tγ1T, Tγ2T ] + [(1− ν)γ1, (1− ν)γ2]
+ [(1− ν)γ1, Tγ2T ] + [Tγ1T, (1− ν)γ2]
= [Tγ1T, Tγ2T ] + [(1− ν)γ1, (1− ν)γ2]

for all γ1, γ2 in Λ2(V ) after using that T belongs to Cl+n . Obviously

[(1− ν)γ1, (1− ν)γ2] = (1− ν)2[γ1, γ2] = 2(1− ν)[γ1, γ2]

and moreover the unipotency of T leads easily to

[Tγ1T, Tγ2T ] = (1 + ν)T [γ1, γ2]T = 2T [γ1, γ2]T.

Altogether this yields
2ι2[γ1, γ2] = [ι2(γ1), ι

2(γ2)]

for all γ1, γ2 in Λ2(V ), in other words 1
2
ι2 : Λ2(V ) → [ET , ET ] is a Lie algebra

isomorphism. Now, we compute

−2[TγT + (1− ν)γ,X T ] = [TγT + (1− ν)γ,XT − TX]
= [TγT,XT ] + [(1− ν)γ,XT ]

−[TγT, TX]− [(1− ν)γ, TX].

We now examine each term separately. We have

[TγT,XT ] = −XT 2γT = −X(1 + ν)γT = −2XγT

after using that TXT = 0. Similarly, [TγT, TX] = 2TγX and using furthermore
that T belongs to Cl+n we finally obtain

−2[TγT + (1− ν)γ,X T ] = −2XγT + 2γXT − 2TγX + 2TXγ.

This ends up by saying that [ι2(γ), ι1(X)] = 4 ι1(X γ) whenever γ belongs to
Λ2(V ) and X in V . We have showed that g∗T = ET + [ET , ET ] and moreover the
sum is direct since ET ⊆ Cl1n whilst [ET , ET ] ⊆ Cl0n . Also

1√
2
ι1 ⊕ 1

4
ι2 : V ⊕ Λ2(V ) → g∗T
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is a linear isomorphism. From the commutation rules between ι1 and ι2 proved
above it is easy to check, using (14), that 1√

2
ι1 ⊕ 1

4
ι2 is a Lie algebra isomorphism

between (V ⊕Λ2(V ), [·, ·]−1) and g∗T . The desired Lie algebra isomorphism between
g∗T and so(n, 1) then follows.

We have therefore proved the claim in (i) of Theorem 1.2.

Remark 4.1. Explicit examples of unipotent elements are easy to make. When
the dimension of our vector space V satisfies dimR V ≡ 0 (mod 4) we see that
1√
2
(1 + ν) is unipotent and therefore Theorem 4.1 recovers the computation of g∗ν

in (ii) of Proposition 3.5 when n ≡ 0 (mod 4). Moreover, if we take V1, V2 to
be Euclidean vector spaces of dimensions ≡ 0 (mod 4) oriented by volume forms
νk, k = 1, 2 then 1√

2
(ν1 + ν2) is an unipotent element of the direct product space

V1 × V2 .

4.2. Squares of spinors.

We shall first recall in what follows some facts about the squaring construc-
tion in two series of dimensions. To begin with, let (V n, 〈·, ·〉) be a Euclidean
vector space which furthermore is supposed to be oriented, with orientation given
by ν in Λn(V ). A peculiar property of the Clifford multiplication when n ≡ 8
(mod 8) is then to give an isomorphism (see [13, Chap. IV, Prop. 10.17]):

µ : Cln → HomR(/S, /S) (19)

where /S is the irreducible real Cln module. When n ≡ 7 (mod 8) this still holds
provided Cln is replaced by Cl+n . Let us now fix a spinor x ∈ /S+ (or in /S if n ≡ 7
(mod 8)), which we normalise to |x| = 1. Then the isomorphism (19) gives rise to
an element x⊗ x ∈ Cln (or Cl+n when n ≡ 7 (mod 8)) such that:

(x⊗ x)ψ = 〈ψ, x〉x (20)

for all ψ in /S . From the definition, Clifford multiplication with x⊗x is a symmetric
endomorphism of /S+ (or /S if n ≡ 7 (mod 8)), therefore (15) implies

α(x⊗ x)t = x⊗ x. (21)

The element x⊗ x is customarily called the square of the spinor x . Below we list
some of the properties of x⊗ x , of relevance for our study.

Lemma 4.2. Let x be a unit length spinor in /S+ if n ≡ 0 (mod 8) of in /S if
n ≡ 7 (mod 8). The following hold:

(i) The spinor square x⊗ x is an idempotent of Cln , that is (x⊗ x)2 = x⊗ x.

(ii) We have ν (x⊗ x) = (x⊗ x) ν = x⊗ x.

(iii) For all ϕ ∈ Cln we have

(x⊗ x)ϕ (x⊗ x) = κ 〈ϕ, x⊗ x〉 (x⊗ x),

where κ = 2
n
2 when n ≡ 0 (mod 8) and κ = 2

n+1
2 when n ≡ 7 (mod 8).
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Proof. (i) We use (20) for ψ = x which gives (x ⊗ x)x = x . Therefore left
multiplication of (20) with x⊗ x gives:

(x⊗ x)2 ψ = 〈ψ, x〉 (x⊗ x)x = 〈ψ, x〉x = (x⊗ x)ψ,

for all ψ in /S and the claim follows.
(ii) if n ≡ 7 (mod 8) this follows automatically from the definition of the spinor
square. When n ≡ 0 (mod 8), we use the definition (20) to obtain after recalling
that x ∈ /S+

ν (x⊗ x)ψ = 〈ψ, x〉 ν x = 〈ψ, x〉x = (x⊗ x)ψ,

for all ψ ∈ /S . Since x⊗x ∈ Cl0n and n ≡ 0 (mod 8), we further have [ν, x⊗x] = 0.
(iii) Let ϕ belong to Cln and n ≡ 0 (mod 8). Using again (20) we compute

(x⊗ x)ϕ (x⊗ x)ψ = 〈ψ, x〉 (x⊗ x)ϕx = 〈ψ, x〉〈ϕx, x〉x
= 〈ϕx, x〉(x⊗ x)ψ

for all ψ in /S hence (x⊗ x)ϕ(x⊗ x) = 〈ϕx, x〉x⊗ x for all ϕ in Cln . Recall now
that 〈1, x ⊗ x〉 = 2−

n
2 fact which follows essentially by taking traces and using

Lemma 2.3. Therefore

2−
n
2 〈ϕx, x〉 = 〈1, (x⊗ x)ϕ(x⊗ x)〉 = 〈α(x⊗ x)t · 1, ϕ(x⊗ x)〉

= 〈x⊗ x, ϕ(x⊗ x)〉 = 〈(x⊗ x)α(x⊗ x)t, ϕ〉
= 〈(x⊗ x)2, ϕ〉 = 〈x⊗ x, ϕ〉

and the claim follows. For n ≡ 7 (mod 8) this is proved analogously.

Remark 4.2. For any unit length spinor in /S+ if n ≡ 0 (mod 8), or in /S if
n ≡ 7 (mod 8) one uses (21), (16) to see that its square x⊗ x has the form

x⊗ x =
n∑

k≡0,3 (mod 4)

(x⊗ x)k, (22)

where (x⊗x)k denotes the projection of x⊗x onto Λk(V ). Note that when n ≡ 0
(mod 8) the odd degrees are not present since then x⊗x is in Cl0n by Lemma 4.2,
(ii).

Based on the technical Lemma above we shall compute now the holonomy algebras
of the square of a spinor. Let us begin with the case of n ≡ 0 (mod 8).

Theorem 4.2. Let n ≡ 0 (mod 8) and x be a unit length spinor in /S+ and
x⊗ x be its square. Then:

(i) g∗x⊗x = h∗x⊗x
∼= so(n, 1),

(ii) Zx⊗x = {ψ ∈ /S+ : ψ ⊥ x} ⊕ {ψ ∈ /S− : ψ ⊥ V x}.
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Proof. (i) Let ET = {X (x⊗x) : X ∈ V } be the generating set of V , which is
easily seen to be isomorphic to V under the map ι1 : V → ET , ι

1(X) = X (x⊗x).
Further on, let us define ι2 : Λ2(V ) → Cln(V ) by ι2(γ) =

n∑
i=1

ei (x⊗ x) (ei γ) for

some orthonormal frame {ei, 1 ≤ i ≤ n} on V and some γ ∈ Λ2(V ). Let us show
now that ι2 is injective. Indeed, if γ in Λ2 satisfies ι2(γ) = 0 we get by right

multiplication with X(x⊗x), where X is in V , that
n∑

i=1
ei (x⊗x) (ei γ)X (x⊗x) =

0. Since (ei γ)X = (ei γ)∧X−γ(ei, X) for all 1 ≤ i ≤ n and (x⊗x)Λ2(x⊗x) = 0
from Lemma 4.2, (iii) this further yields (X γ)(x⊗x)2 = 0 for all X in V . Using
the idempotency of x ⊗ x , as of Lemma 4.2, (i) gives further (X γ)(x ⊗ x) = 0
for all X in V . It follows that γ = 0, proving the injectivity of ι2 .
Let now γ1 and γ2 belong to Λ2 with associated skew-symmetric endomorphisms
F1 and F2 . We compute

(ι2(γ1))(ι
2(γ2)) =

∑
i,j
ei(x⊗ x)(F1ei)ej(x⊗ x)F2ej=−∑

i,j
〈F1ei, ej〉ei(x⊗ x)F2ej

= −∑
i
ei(x⊗ x)F2F1ei

where we have used the expansion of the Clifford product in (2) together with
Lemma 4.2, (iii) under the form (x⊗ x)Λ2(x⊗ x) = 0, as well as the idempotency
of the spinor square x ⊗ x from (i) of the same Lemma. Skew-symmetrising the
above equation in γ1 and γ2 leads now to

2[ι2(γ1), ι
2(γ2)] = ι2[γ1, γ2]

by making use of [γ1, γ2] = 2〈[F1, F2]·, ·〉 , see (13). Now,

4 [X (x⊗ x), Y (x⊗ x)] = −X(x⊗ x)Y + Y (x⊗ x)X
−(x⊗ x)XY (x⊗ x) + (x⊗ x)XY (x⊗ x)

= −ι2(X ∧ Y ),

whenever X, Y belong to V . Here we have made once more extensive use of the
stability conditions and of Lemma 4.2, under the form (x⊗x)Λ2(x⊗x) = 0. Hence
the even commutators span so

(
n). The triple commutator is similarly computed:

[ι2(γ), X (x⊗ x)] = −1
2

n∑
i=1

(
ei(x⊗ x)FeiX(x⊗ x) + (x⊗ x)Xei(x⊗ x)Fei

−X(x⊗ x)ei(x⊗ x)Fei − ei(x⊗ x)Fei(x⊗ x)X
)

= FX (x⊗ x) = ι1(X γ),

where we have made use of Lemma 4.2. By inspecting the commutator relations
between ι1 and ι2 proved above and keeping in mind (14), it is easy to see that
2ι1 ⊕ ι2 : (V ⊕ Λ2V, [·, ·]−1) → g∗x⊗x is a Lie algebra isomorphism. Therefore g∗x⊗x

is isomorphic to so(n, 1). Since so(n, 1) is semisimple for n ≥ 2 [12, page 59],
hence perfect, it follows that h∗x⊗x is isomorphic with so(n, 1) as well.
(ii) Let ψ belong to Zx⊗x . Then by Lemma 3.5 this is equivalent with (x⊗x)ψ+ =
0 and (x ⊗ x)V ψ− = 0 and the claim follows now from the definition of x ⊗ x ,
where ψ± ∈ /S± are the components of ψ w.r.t the splitting /S = /S+ ⊕ /S− .

The proof of (ii) in Theorem 1.2 is now complete.
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Remark 4.3. Squares of spinors provide examples of unipotent elements other
than those coming from volume forms. Indeed, if x belongs to /S+ with |x| =
1 it is easy to see by making use of (21) and Lemma 4.2 (i) and (ii), that
2
√

2(x ⊗ x − 1
4
(1 + ν)) is a unipotent element in Cl+n . In spite of the absence of

fixed spinors in this case, fact which follows from Theorem 4.1, (i), the holonomy
algebra remains isomorphic to so(n, 1) by (iii) of Theorem 4.1.

When n ≡ 7 (mod 8) we get fix and holonomy algebras of quite different
nature than those seen before. In particular, those appear not to be perfect.

Theorem 4.3. Let n ≡ 7 (mod 8) and x belong to /S such that |x| = 1. Then:

(i) g∗x⊗x is abelian, isomorphic to V hence h∗x⊗x = {0},

(ii) Zx⊗x = (x)⊥ .

Proof. (i) For any X, Y in V we compute

4(X (x⊗ x))(Y (x⊗ x)) = (α(x⊗ x)X −Xx⊗ x)(α(x⊗ x)Y − Y x⊗ x)
= [α(x⊗ x)Xα(x⊗ x)]Y − α(x⊗ x)XY (x⊗ x)

−X(x⊗ x)α(x⊗ x)Y +X[(x⊗ x)Y (x⊗ x)].

But x ⊗ x belongs to Cl+n , hence α(x ⊗ x) is in Cl−n leading to the vanishing of
the second and third term above in view of the stability conditions in Lemma 2.1.
Now the first and the last terms vanish too by Lemma 4.2, (iii) and since x ⊗ x
does not contain degree 1 forms, therefore (X (x ⊗ x))(Y (x ⊗ x)) = 0 for
all X, Y in V . It follows that the fix algebra g∗x⊗x is abelian, in particular the
holonomy algebra satisfies h∗x⊗x = {0} . But x⊗x is non-degenerate, as it contains
a non-zero multiple of the volume form whence g∗x⊗x is isomorphic with V .
(ii) follows easily from the construction of x⊗ x .

We have therefore proved (iii) of Theorem 1.2 whose proof is now complete.
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