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Abstract. Let G be a connected semisimple linear algebraic group defined
over an algebraically closed field k and P ( G a reduced parabolic subgroup
that does not contain any simple factor of G . Let ρ : P −→ H be a homomor-
phism, where H is a connected reductive linear algebraic group defined over k ,
with the property that the image ρ(P ) is not contained in any proper parabolic
subgroup of H . We prove that the principal H –bundle G ×P H over G/P
constructed using ρ is stable with respect to any polarization on G/P . When
the characteristic of k is positive, the principal H –bundle G×P H is shown to
be strongly stable with respect to any polarization on G/P .
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1. Introduction

Let k be an algebraically closed field. Take any connected semisimple linear
algebraic group G defined over k . Let P ⊂ G be a (reduced) parabolic subgroup
such that the image of P in any simple quotient of G is a proper subgroup. In
other words, P does not contain any simple factor of P . The subgroup P being
parabolic the quotient G/P is a smooth projective variety.

Let H be a connected reductive linear algebraic group defined over the field
k . Let

ρ : P −→ H

be an irreducible homomorphism. This means that the image ρ(P ) is not contained
in any proper parabolic subgroup of H . Associated to ρ , we have a principal
H –bundle over G/P which can be constructed as follows: Let G ×P H be the
quotient of G×H for the twisted diagonal action of P whose orbit through any
point (g0 , h0) ∈ G×H consists of all (g0g

−1 , ρ(g)h0), g ∈ P . The composition
of the projection G×H −→ G with the quotient map G −→ G/P descends to
a projection from G×P H to G/P . This descended projection defines a principal
H –bundle over G/P . Let EH denote this principal H –bundle over G/P .

We recall that when the characteristic of k is positive, a principal bundle
over a smooth polarized projective variety X defined over k , with a reductive
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group as the structure group, is called strongly stable if all the iterated pullbacks
of it by the Frobenius morphism of X are stable principal bundles; the details of
the definition are given in Section 2. (we assume that a polarization on G/P has
been fixed in order to be able to define stable bundles). For our convenience, when
the characteristic of k is zero, by a strongly stable principal H –bundle over G/P
we will simply mean a stable principal H –bundle over G/P .

The following theorem is the main result proved here (see Theorem 3.4):

Theorem 1.1. The above principal H –bundle EH over G/P is strongly stable
with respect to any polarization on G/P .

We note that Theorem 1.1 was proved in [7], [11] under the assumption
that H = GL(n, k) with char(k) = 0. In [2], Theorem 1.1 was proved under the
assumption that k = C using differential geometric methods.

2. Semistability of homogeneous principal bundles

Let k be an algebraically closed field of arbitrary characteristic. Henceforth,
the characteristic of k will be denoted by p . Let G be a connected semisimple
linear algebraic group defined over the field k . We fix a reduced proper parabolic
subgroup

P ( G

without any simple factor. This is equivalent to the condition that the image of
P in each simple quotient of G is a proper parabolic subgroup.

Fix a very ample line bundle

ζ ∈ Pic(G/P ) (1)

over G/P . Such a line bundle is also called a polarization on G/P . It is known
that any ample line bundle over G/P is very ample.

Definition 2.1. For a torsionfree coherent sheaf V over G/P , define the degree
of V to be the degree of the restriction of V to the general complete intersection
curve in G/P obtained by intersecting hyperplanes in G/P from the complete
linear system |ζ| . The degree of V will be denoted by degree(V ).

If V is a vector bundle defined over a nonempty Zariski open dense subset
U ⊆ G/P such that the complement (G/P ) \ U is of codimension at least
two, then the direct image ι∗V is a torsionfree coherent sheaf on G/P , where
ι : U −→ G/P is the inclusion map. For such a vector bundle V , define

degree(V ) := degree(ι∗V ) . (2)

A torsionfree coherent sheaf E over G/P is called stable (respectively, semi-
stable) if

degree(E ′)

rank(E ′)
<

degree(E)

rank(E)

(respectively, degree(E′)
rank(E′)

≤ degree(E)
rank(E)

) for every coherent subsheaf E ′ ⊂ E with

0 < rank(E ′) < rank(E).
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If p > 0, where p is the characteristic of the base field k , then

F : G/P −→ G/P (3)

will be the Frobenius morphism of the variety G/P . For notational convenience,
when p = 0, by F we will denote the identity morphism of G/P .

For any n ≥ 1, let

F n :=

n-times︷ ︸︸ ︷
F ◦ · · · ◦ F : G/P −→ G/P

be the n–fold composition of the self–map F . By F 0 we will denote the identity
map of G/P .

A vector bundle E over G/P is called strongly stable (respectively, strongly
semistable) if for each integer n ≥ 0, the pullback (F n)∗E is a stable (respectively,
semistable) vector bundle, where F n is defined above.

Since F 0 is the identity map of G/P , a strongly stable (respectively,
strongly semistable) vector bundle is stable (respectively, semistable). We note
that in the case where p = 0, a strongly stable (respectively, strongly semistable)
vector bundle is simply a stable (respectively, semistable) vector bundle.

Let H be a connected reductive linear algebraic group defined over the
field k . Let Q be a proper parabolic subgroup of H , and let λ be a character
of Q which is trivial on the connected component of the center of H containing
the identity element. Such a character λ is called strictly anti–dominant if the
associated line bundle Lλ = G×P k over G/P is ample.

A principal H –bundle EH over G/P is called stable (respectively, semi-
stable) if for every triple of the form (Q , EQ , λ), where

• Q ( H is a reduced parabolic subgroup, and EQ ⊂ EH is a reduction of
structure group of EH to Q over some Zariski open dense subset U ⊂ G/P
such that the codimension of the complement (G/P )\U is at least two, and

• λ is some strictly anti–dominant character of Q ,

the inequality

degree(EQ(λ)) > 0

(respectively, degree(EQ(λ)) ≥ 0) holds, where EQ(λ) is the line bundle over U
associated to the principal Q–bundle EQ for the character λ of Q .

In order to decide whether a given principal H –bundle EH is semistable
(respectively, stable), it suffices to verify the above inequality (respectively, strict
inequality) only for those Q which are proper maximal parabolic subgroups of H .
More precisely, EH is semistable (respectively, stable) if and only if for every pair
(Q , σ), where

• Q ⊂ H is a proper maximal parabolic subgroup, and

• σ : U −→ EH/Q is a reduction of structure group of EH to Q over
some Zariski open dense subset U ⊂ G/P such that the codimension of the
complement (G/P ) \ U is at least two,
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the inequality
degree(σ∗Trel) > 0 (4)

(respectively, degree(σ∗Trel) ≥ 0) holds, where Trel is the relative tangent bundle
over EH/Q for the projection EH/Q −→ G/P . (See [9, page 129, Definition 1.1]
and [9, page 131, Lemma 2.1].)

Remark 2.2. We note a couple of points regarding the above definitions.

1. The definition of degree of a torsionfree coherent sheaf on G/P depends on
the choice of the polarization ζ in Eqn. (1); see Definition 2.1 and Eqn. (2).
Therefore, it is more accurate to call “stable (respectively, semistable) with
respect to ζ ” instead of calling simply “stable (respectively, semistable)”.
However, since in all the existing literature the imprecise notation is system-
atically used, we will stick to it.

2. Let EGLn be a principal GLn(k)–bundle over G/P . Let EV be the vec-
tor bundle over G/P of rank n associated to EGLn for the standard action
of GLn(k) on k⊕n . The associated vector bundle EV is stable (respec-
tively, semistable) if and only if the principal GLn(k)–bundle EGLn is stable
(respectively, semistable). To see this first note that the proper maximal
parabolic subgroups of GLn(k) are parametrized by the proper nonzero lin-
ear subspaces of k⊕n . Giving a reduction of structure group EQ of EGLn to
a proper maximal parabolic subgroup Q ⊂ GLn(k) is equivalent to giving
a subbundle W of EV whose rank coincides with the dimension of the sub-
space of k⊕n which Q preserves. The pullback σ∗Trel in Eqn. (4) coincides
with the tensor product W ∗ ⊗

(EV /W ). Therefore, we have

degree(σ∗Trel) = degree(EV /W ) · rank(W )− degree(W ) · rank(EV /W ) .

Using this equality it follows immediately that the principal GLn(k)–bundle
EGLn is stable (respectively, semistable) if and only if the associated vector
bundle EV is stable (respectively, semistable).

A principal H –bundle EH over G/P is called strongly stable (respectively,
strongly semistable) if for each integer n ≥ 0, the iterated n–fold pullback
(F n)∗EH is a stable (respectively, semistable) principal H –bundle, where the map
F , as before, is the Frobenius morphism in Eqn. (3) when p > 0, and it is the
identity morphism of G/P when p = 0. Also, as before, F 0 is the identity map
of G/P .

Let EH be a principal H –bundle over G/P . A reduction of structure group

EQ ⊂ EH

to some parabolic subgroup Q ⊂ H is called admissible if for each character λ
of Q trivial on the center of H , the associated line bundle EQ(λ) = EQ

λk over
G/P satisfies the following condition:

degree(EQ(λ)) = 0 (5)

[10, page 307, Definition 3.3] (see [3, page 3998–3999] for some explanations of the
notion of admissible reduction).
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A principal H –bundle EH over G/P is called polystable if either EH is
stable, or there is a proper parabolic subgroup Q and a reduction of structure
group EL(Q) ⊂ EH to a Levi subgroup L(Q) of Q over G/P such that

• the principal L(Q)–bundle EL(Q) is stable, and

• the reduction of structure group of EH to Q obtained by extending the
structure group of EL(Q) using the inclusion of L(Q) in Q is admissible.

A principal H –bundle EH is called strongly polystable if for each integer
n ≥ 0, the iterated n–fold pullback (F n)∗EH is polystable.

The quotient map G −→ G/P defines a principal P –bundle over the
projective variety G/P . This tautological principal P –bundle over G/P will be
denoted by EP . The unipotent radical of P will be denoted by Ru(P ). The
quotient group

L(P ) := P/Ru(P ) ,

which is called the Levi quotient of P , is a connected reductive linear algebraic
group defined over k . Let

q : P −→ L(P ) (6)

be the quotient map. Let

EL(P ) := EP (L(P )) = (G× L(P ))/P (7)

be the principal L(P )–bundle over G/P obtained by extending the structure group
of the principal P –bundle EP using the homomorphism q in Eqn. (6). In the
construction of the quotient in Eqn. (7), the action of any point z ∈ P sends any
point (g , h) ∈ G× L(P ) to (gz , q(z−1)h) ∈ G× L(P ).

Proposition 2.3. The tautological principal L(P )–bundle EL(P ) over G/P
constructed in Eqn. (7) is strongly semistable with respect to any polarization
on G/P .

Proof. The Lie algebra of L(P ) will be denoted by l(p). Let ad(EL(P )) be the
adjoint bundle for the principal L(P )–bundle EL(P ) . Therefore, ad(EL(P )) is the
vector bundle over G/P associated to EL(P ) for the adjoint action of L(P ) on
l(p).

When the characteristic p of the field k is positive, let

FL : L(P ) −→ L(P )

be the Frobenius morphism of the group L(P ). When p = 0, by FL we will
denote the identity map of L(P ). For any integer n ≥ 1, let

F n
L :=

n-times︷ ︸︸ ︷
FL ◦ · · · ◦ FL) : L(P ) −→ L(P ) (8)

be the n–fold composition of the self–map FL . By F 0
L we will denote the identity

map of L(P ).

For notational convenience, the L(P )–module l(p) defined by the adjoint
action will be denoted by V .
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For any integer n ≥ 0, let Vn denote the L(P )–module given by the
composition homomorphism

L(P )
F n

L−→ L(P ) −→ Aut(V ) ,

where F n
L is defined in Eqn. (8), while the above homomorphism L(P ) → Aut(V )

is the adjoint action. The vector bundle over G/P associated to the principal
L(P )–bundle EL(P ) for the L(P )–module Vn will be denoted by EL(P )(Vn).

To prove that a principal G′–bundle EG′ is semistable, where G′ is any con-
nected reductive linear algebraic group over k , it suffices to show that its adjoint
vector bundle ad(EG′) is semistable. Indeed, given any reduction of structure
group EP ′ ⊂ EG′ violating the semistability condition for EG′ , the subbundle
ad(EP ′) ⊂ ad(EG′) violates the semistability condition for ad(EG′). Conse-
quently, to prove that the principal L(P )–bundle EL(P ) is strongly semistable,
it suffices to show that the adjoint vector bundle ad(EL(P )) is strongly semistable.

Consider the Frobenius morphism F in Eqn. (3). The pulled back vector
bundle (F n)∗ad(EL(P )) is identified with the vector bundle EL(P )(Vn). Conse-
quently, to prove the proposition it is enough to show that the above defined
associated vector bundle EL(P )(Vn) is semistable for all n .

Let
0 = W 0

n ⊂ W 1
n ⊂ · · · ⊂ W in−1

n ⊂ W in
n = Vn (9)

be a filtration of the L(P )-module Vn such that each successive quotient W j
n/W j−1

n ,
j ∈ [1 , in] , is an irreducible L(P )–module. Let EL(P )(W

j
n), j ∈ [0 , in] , be the

vector bundle over G/P associated to the principal L(P )–bundle EL(P ) for the
L(P )–module W j

n . Similarly, let EL(P )(W
j
n/W j−1

n ), j ∈ [1 , in] , denote the vector
bundle associated to EL(P ) for the L(P )–module W j

n/W j−1
n . The filtration in

Eqn. (9) gives a filtration of subbundles

0 = EL(P )(W
0
n) ⊂ EL(P )(W

1
n) ⊂ · · · ⊂ EL(P )(W

in−1
n ) ⊂ EL(P )(W

in
n ), (10)

where EL(P )(W
in
n ) = (F n)∗ad(EL(P )). We note that for each j ∈ [1 , in] , the

quotient bundle EL(P )(W
j
n)/EL(P )(W

j−1
n ) is canonically identified with

EL(P )(W
j
n/W j−1

n ).

Take any j ∈ [1 , in] . We will show that the vector bundle EL(P )(W
j
n/W j−1

n )
is semistable. To prove this, assume that EL(P )(W

j
n/W j−1

n ) is not semistable. Let

E j
n ⊂ EL(P )(W

j
n/W j−1

n ) (11)

be the maximal semistable subsheaf of EL(P )(W
j
n/W j−1

n ). In other words, E j
n is

the first term in the Harder–Narasimhan filtration of EL(P )(W
j
n/W j−1

n ). See [6,
page 16, Theorem 1.3.4] for Harder–Narasimhan filtration.

The group G acts on G/P as left translations. The left–translation action
of G on itself is a lift of this action of G on G/P to the principal P –bundle
EP which commutes with the principal bundle structure. In other words, the left
action of G on EP and the right action of P on EP commute. The left–action of
G on EP induces a left–action of G on the principal L(P )–bundle EL(P ) which
commutes with the right–action of L(P ) on EL(P ) . This left–action of G on EL(P )
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induces a left–action on any bundle associated to EL(P ) . In particular, the group
G acts on the associated vector bundle EL(P )(W

j
n/W j−1

n ) over G/P that lifts the
left–translation action of G on G/P . Since the group G is connected, it preserves
any polarization on G/P (the ample line bundles on G/P form a discrete set).
Therefore, from the uniqueness of the Harder–Narasimhan filtration it follows that
the action of G on EL(P )(W

j
n/W j−1

n ) preserves the subsheaf E j
n in Eqn. (11).

Since the left–translation action of G on G/P is transitive, the fact that
the action of G on EL(P )(W

j
n/W j−1

n ) preserves the subsheaf E j
n implies that E j

n is
in fact a subbundle of EL(P )(W

j
n/W j−1

n ).

Let e ∈ G be the identity element. For the action of G on G/P , the
isotropy subgroup of the point eP ∈ G/P is P itself. In other words, the fiber
(EP )eP of EP over the point eP is identified with P . We note that the fiber
EL(P )(W

j
n/W j−1

n )eP of EL(P )(W
j
n/W j−1

n ) over the point eP ∈ G/P is identified
with the vector space underlying the L(P )–module W j

n/W j−1
n . The identification

W j
n/W j−1

n
∼−→ EL(P )(W

j
n/W j−1

n )eP (12)

is obtained by sending any v ∈ W j
n/W j−1

n to the image in EL(P )(W
j
n/W j−1

n )eP of
the element (e , v) ∈ G×W j

n/W j−1
n . (There is a natural projection from EP = G

to EL(P ) given by the quotient map in Eqn. (6), and also the associated vector
bundle EL(P )(W

j
n/W j−1

n ) is a quotient of EL(P ) ×W j
n/W j−1

n ; combining these we
have a projection from G×W j

n/W j−1
n to EL(P ) ×W j

n/W j−1
n .)

The fact that the action of G on EL(P )(W
j
n/W j−1

n ) preserves the subbundle
E j

n implies that the subspace

(E j
n)eP ⊂ EL(P )(W

j
n/W j−1

n )eP = W j
n/W j−1

n

is preserved by the action on W j
n/W j−1

n of the isotropy subgroup P of eP ; the
group P acts on W j

n/W j−1
n through the quotient map q in Eqn. (6). Since

W j
n/W j−1

n is an irreducible L(P )–module, we conclude that

(E j
n)eP = W j

n/W j−1
n ;

note that if E j
n)eP = 0, then the maximal semistable subsheaf of EL(P )(W

j
n/W j−1

n )
is zero implying that EL(P )(W

j
n/W j−1

n ) = 0.

If (E j
n)eP = W j

n/W j−1
n , the subbundle E j

n actually coincides with

EL(P )(W
j
n/W j−1

n ).

Therefore, we conclude that the vector bundle EL(P )(W
j
n/W j−1

n ) is semistable.

We will now show that the line bundle

det EL(P )(W
j
n/W j−1

n ) =

top∧
EL(P )(W

j
n/W j−1

n )

over G/P is trivializable.

To prove this first observe that the line bundle det EL(P )(W
j
n/W j−1

n ) is asso-
ciated to the principal L(P )–bundle EL(P ) for the one–dimensional L(P )–module∧top(W j

n/W j−1
n ). Let Z(L(P )) denote the reduced center of L(P ). Since L(P ) is

a reductive group, the quotient L(P )/Z(L(P )) is a semisimple group. The restric-
tion to Z(L(P )) of the adjoint action of L(P ) on its own Lie algebra l(p) clearly
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coincides with the trivial action. Hence the adjoint action of L(P ) on l(p) factors
through the semisimple quotient L(P )/Z(L(P )). Consequently, the module ac-
tion of L(P ) on

∧top(W j
n/W j−1

n ) factors through L(P )/Z(L(P )). In other words,
the action of L(P ) on

∧top(W j
n/W j−1

n ) is given by a character of L(P )/Z(L(P )).
The group L(P )/Z(L(P )) being semisimple does not admit any nontrivial char-
acters. Hence we conclude that

∧top(W j
n/W j−1

n ) is a trivial L(P )–module. This
immediately implies that the associated line bundle det EL(P )(W

j
n/W j−1

n ) is trivial.

Since det EL(P )(W
j
n/W j−1

n ) is a trivial line bundle, we have

degree(det EL(P )(W
j
n/W j−1

n )) = 0

with respect to any polarization on G/P . Therefore, the filtration of subbundles
of

(F n)∗ad(EL(P )) = EL(P )(Vn)

in Eqn. (10) has the property that each successive quotient is semistable of degree
zero. This immediately implies that the vector bundle EL(P )(Vn) is semistable. It
was noted earlier that the proposition follows once we have shown that EL(P )(Vn)
is semistable for all n . Hence the proof of the proposition is complete.

As before, let H be a connected reductive linear algebraic group defined
over the field k . Let

ρ : P −→ H (13)

be a homomorphism such that the image ρ(P ) is not contained in any proper
parabolic subgroup of H . We note that such homomorphisms are called irreducible.
The condition that the homomorphism ρ in Eqn. (13) is irreducible yields that

ρ(Ru(P )) = e , (14)

where Ru(P ) ⊂ P is the unipotent radical, or in other words, ρ factors through
the Levi quotient L(P ) := P/Ru(P ). Indeed, if the image ρ(Ru(P )) is nontrivial,
then the normalizer, in H , of the nontrivial unipotent subgroup ρ(Ru(P )) is

contained in some proper parabolic subgroup P̃ ⊂ H (see [5, page 185, § 30.3]).

Therefore, Ru(P ) being a normal subgroup of P , we have ρ(P ) ⊂ P̃ . This
contradicts the condition that the homomorphism ρ is irreducible. Hence we
conclude that ρ factors through the Levi quotient P/Ru(P ).

Let
EH := G×P H (15)

be the principal H –bundle over G/P obtained by extending the principal P –
bundle EP using the irreducible homomorphism ρ in Eqn. (13). Therefore, EH is
the quotient of G×H by the twisted diagonal action of P . The twisted diagonal
action of any z ∈ P sends any (g , h) ∈ G×H to (gz−1 , ρ(z)h).

Lemma 2.4. The principal H –bundle EH over G/P defined in Eqn. (15) is
strongly semistable with respect to any polarization on G/P .

Proof. We noted earlier that the irreducible homomorphism ρ factors through
the Levi quotient P/Ru(P ) (see Eqn. (14)). Let

ρ̃ : L(P ) := P/Ru(P ) −→ H (16)
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be the homomorphism that gives ρ . Since the principal H –bundle EH is the
extension of structure group of EP using the homomorphism ρ , it follows imme-
diately that EH is identified with the principal H –bundle over G/P obtained
by extending the structure group of the principal L(P )–bundle EL(P ) using the
homomorphism ρ̃ in Eqn. (16).

Let
Z0 ⊂ L(P ) (17)

be the reduced connected component of the center of L(P ) containing the identity
element. Since L(P ) is reductive, the group Z0 is a torus, i.e., a product of copies
of Gm . Let

Z0(H) ⊂ H

be the reduced connected component of the center of H containing the identity
element.

We will show that the homomorphism ρ̃ in Eqn. (16) sends the subgroup
Z0 into Z0(H).

To prove this, assume that

ρ̃(Z0) 6⊂ Z0(H) . (18)

Since Z0 is a torus, from Eqn. (18) it follows that the image ρ̃(Z0) is a subtorus
of H of positive dimension. The group H being reductive, the centralizer of any
subtorus of H not contained in Z0(H) is a Levi subgroup of some proper parabolic
subgroup of H (see [4, page 26, Proposition 1.22]). Therefore, the centralizer of

ρ̃(Z0) in H is contained in a Levi subgroup of some proper parabolic subgroup P̂
of H . Since Z0 lies in the center of L(P ), it follows immediately that ρ̃(L(P )) is

contained in a proper parabolic subgroup P̂ of H . In particular, we have

image(ρ) = image(ρ̃) ⊂ P̂ .

But this contradicts the fact that the homomorphism ρ is irreducible. Therefore,
we conclude that

ρ̃(Z0) ⊂ Z0(H) . (19)

Fix any polarization on G/P . From Proposition 2.3 we know that the
principal L(P )–bundle EL(P ) is strongly semistable. Hence using Eqn. (19) it
follows that the principal H –bundle obtained by extending the structure group
of the principal L(P )–bundle EL(P ) by the homomorphism ρ̃ is also strongly
semistable (see [8, page 285, Theorem 3.18] and [8, page 288, Theorem 3.23]). We
noted earlier that this principal H –bundle obtained by extending the structure
group of EL(P ) is identified with EH . This completes the proof of the lemma.

3. Stability of homogeneous principal bundles

We continue with the notation of the previous section.

Proposition 3.1. The principal H –bundle EH over G/P , defined in Eqn.
(15), is strongly polystable with respect to any polarization on G/P .
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Proof. Fix any polarization on G/P . From Lemma 2.4 we know that EH is
strongly semistable.

To prove the proposition it suffices to show that the principal H –bundle
EH over G/P is polystable. To see this, we recall that EH is strongly polystable
if (F n)∗EH is polystable for all n ≥ 0 (see the definition in Section 2.). If we
know that EH is polystable, to prove that (F n)∗EH is polystable, replace ρ by
the composition homomorphism

L(P )
F n

L−→ L(P )
ρ̃−→ H , (20)

where ρ̃ is the homomorphism in Eqn. (16). The composition homomorphism
L(P ) −→ H in Eqn. (20) will be denoted by ρn . The condition that ρ is ir-
reducible implies that ρn is also irreducible. On the other hand, the pullback
(F n)∗EH is identified with the principal H –bundle over G/P obtained by extend-
ing the structure group of the principal P –bundle EP using the homomorphism
ρn ◦ q , where q is the projection in Eqn. (6). Therefore, to prove the proposition
it is enough to show that EH is polystable.

Assume that the principal H –bundle EH is not polystable.

Since EH is semistable but not polystable, it has a unique socle

EQ ⊂ EH . (21)

We recall that the socle is defined as follows:

• Q ( H is maximal among all the proper parabolic subgroups such that EH

admits an admissible reduction of structure group

E ′
Q ⊂ EH

for which the associated principal L(Q′)–bundle EL(Q′) = E ′
Q(L(Q′)) is

polystable, where L(Q′) is the Levi quotient of Q′ (the L(Q′)–bundle EL(Q′)

is the extension of structure group of E ′
Q using the quotient map Q −→

L(Q′)), and

• EQ in Eqn. (21) is a reduction of structure group of EH to Q such that
the associated principal L(Q)–bundle is polystable, where L(Q) is the Levi
quotient of Q .

The pair (Q , EQ) is unique in the following sense: for any other pair (Q1 , EQ1)
satisfying the above conditions, there is some g ∈ H such that

• Q1 = g−1Qg , and

• EQ1 = EQg .

(See [6, page 23, Lemma 1.5.5], [1, page 218].) The definition of an admissible
reduction is recalled in Eqn. (5).

Let Ad(EH) be the group–scheme over G/P associated to the principal
H –bundle EH for the adjoint action of H on itself. Therefore, Ad(EH) is the
quotient of EH ×H by the action of H defined by h ◦ (z , h′) = (zh−1 , hh′h−1),
where z ∈ EH , and h , h′ ∈ H . The group–scheme Ad(EH) is also called the
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adjoint bundle of EH . Let Ad(EQ) be the group–scheme over G/P associated
to the principal Q–bundle EQ in Eqn. (21) for the adjoint action of Q on itself.
We note that using the inclusion of Q in H , the adjoint bundle Ad(EQ) is a
subgroup–scheme of Ad(EH).

The above uniqueness condition of the pair (Q , EQ) implies that the sub-
group–scheme

Ad(EQ) ⊂ Ad(EH) (22)

is independent of the choice of the maximal pair (Q , EQ).

The left–translation action of G on G × H descends to a lift action of G
on EH . This descended action of G on EH is a lift of the left–translation action
of G on G/P which commutes with the principal bundle structure. As before,
commuting with the principal bundle structure means that the left action of G on
EH commutes with the right action of H on EH .

The action of G on EH induces an action of G on the adjoint bundle
Ad(EH). From the uniqueness of the subgroup–scheme Ad(EQ) in Eqn. (22) it
follows immediately that the action of G on Ad(EH) leaves the subgroup–scheme
Ad(EQ) invariant.

As in the proof of Proposition 2.3, let e ∈ G be the identity element. The
fiber (EH)eP of EH over eP is identified with H by sending any h ∈ H to the
image of (e , h) ∈ G×H in EH (recall that EH is a quotient of G×H ). The fiber
Ad(EH)eP of the adjoint bundle Ad(EH) over the point eP ∈ G/P is identified
with H by sending any

(z , h) ∈ (EH)eP ×H = H ×H

to zhz−1 ∈ H . Let Q′ be the proper parabolic subgroup of H given by the image
of the inclusion

Ad(EQ)eP ⊂ Ad(EH)eP = H

in Eqn. (22). From the earlier observation that the action of G on Ad(EH) leaves
the subgroup–scheme Ad(EQ) invariant it follows immediately that the adjoint
action of P on H through the homomorphism ρ leaves the subgroup Q′ ⊂ H
invariant.

Since Q′ is a parabolic subgroup of H , the normalizer of Q′ in H coincides
with Q′ [5, page 143, Corollary B]. Consequently, we have

ρ(P ) ⊂ Q′ .

Since Q′ is a proper parabolic subgroup of H , this contradicts the assumption on
the homomorphism ρ that it is irreducible. Therefore, we conclude that EH is
polystable. This completes the proof of the proposition.

We will need the following proposition to prove that EH is strongly stable.

Proposition 3.2. Let V be a finite dimensional left L(P )–module on which the
action of the subgroup Z0 in Eqn. (17) is trivial. Let EV be the vector bundle over
G/P associated to the tautological principal L(P )–bundle EL(P ) for the L(P )–
module V . Assume that the vector bundle EV is globally generated (i.e., generated
by its global sections).



680 Azad and Biswas

1. The vector bundle EV is trivializable.

2. If the L(P )–module V is irreducible, then V is a trivial L(P )–module of
dimension one.

Proof. Let r be the dimension of V . Fix a point x0 ∈ G/P . Fix r sections

s1 , · · · , sr ∈ H0(G/P, EV ) (23)

such that the fiber (EV )x0 of EV at x0 is spanned by {si(x0)}r
i=1 . Therefore, there

is a Zariski open dense subset
U0 ⊂ G/P

containing x0 such that the restriction EV |U0 of EV to U0 is generated by
{si|U0}r

i=1 .

Let OG/P be the trivial line bundle over G/P . Let

φ : O⊕r
G/P −→ EV (24)

be the homomorphism defined by

(z ; c1 , · · · , cr) 7−→
r∑

i=1

ci · si(z) ,

where z ∈ G/P , ci ∈ k , and si are the sections in Eqn. (23).

Consider the one–dimensional L(P )–module det V :=
∧r V . Since the

subgroup Z0 acts trivially on V , the action of L(P ) on det V factors through
the quotient group L(P )/Z0 . In other words, det V is given by a character of
L(P )/Z0 . The group L(P )/Z0 . is semisimple because L(P ) is reductive. Hence
L(P )/Z0 does not admit any nontrivial characters. Therefore, det V is a trivial
L(P )–module. Consequently, the line bundle

EL(P )(det V ) = det EV =
∧r

EV

associated to the principal L(P )–bundle EL(P ) for the L(P )–module det V is
trivializable.

Let
det φ : OG/P =

∧r
O⊕r

G/P −→
∧r

EV
∼= OG/P

be the homomorphism of line bundles obtained from φ constructed in Eqn. (24).
The above homomorphism

det φ : OG/P −→ OG/P

is nonzero because it is an isomorphism over the nonempty open subset U0 . This
immediately implies that det φ is an isomorphism. From this it follows that φ is
an isomorphism over G/P . In particular, the vector bundle EV is trivializable.
This proves the first statement in the proposition.

Let
V̂ := (G/P )×H0(G/P, EV )
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be the trivial vector bundle over G/P with fiber H0(G/P, EV ). Since EV is
trivializable, the evaluation of global sections

σ : V̂ −→ EV (25)

is an isomorphism of vector bundles. The left–action of G on EL(P ) induces an
action of G on the associated vector bundle EV (see the proof of Proposition 2.3
for the action of G on EL(P ) ). This action of G on EV induces an action of G on
H0(G/P, EV ).

Consider the isomorphism of vector spaces

σ(eP ) : H0(G/P, EV ) = V̂eP −→ (EV )eP = V , (26)

where σ is the isomorphism in Eqn. (25) and eP ∈ G/P is the point given by the
identity element of G ; the isomorphism of V with (EV )eP is constructed as in Eqn.
(12). This isomorphism σ(eP ) in Eqn. (26) clearly commutes with the actions
of P (the action of P on H0(G/P, EV ) is the restriction of the action of G on
H0(G/P, EV ) constructed above, and P acts on V through the homomorphism
q in Eqn. (6)).

In particular, the action of P on V extends to an action of G on V . We
recall that P is a parabolic subgroup of G that does not contain any simple factor
of G . Therefore, the restriction to P of any irreducible representation of G of
dimension at least two is reducible.

Consequently, if V is an irreducible L(P )–module, then V is of dimension
one. Since Z0 acts trivially on V , and L(P )/Z0 does not admit any nontrivial
characters, we conclude that V is a trivial L(P )–module of dimension one provided
V is irreducible. This completes the proof of the proposition.

Proposition 3.2 can be strengthened, as shown by the following lemma.

Lemma 3.3. Let V be a finite dimensional left L(P )–module on which the
action of the subgroup Z0 in Eqn. (17) is trivial. If the associated vector bundle
EV = EL(P ) ×L(P ) V (see Proposition 3.2) is globally generated, then the L(P )–
module V is trivializable.

Proof. Let
0 = V0 ⊂ V1 ⊂ · · · ⊂ Vm−1 ⊂ Vm = V (27)

be a filtration of the L(P )–module V such that each successive quotient Vi+1/Vi ,
i ∈ [0 , m− 1], is an irreducible L(P )–module. For each i ∈ [0 , m] , let EL(P )(Vi)
be the vector bundle over G/P associated to the principal L(P )–bundle EL(P ) for
the L(P )–module Vi . Similarly, for each i ∈ [1 , m] , let EL(P )(Vi/Vi−1) be the
vector bundle over G/P associated to EL(P ) for Vi/Vi−1 .

Assume that the associated vector bundle EV is globally generated.

Since EL(P )(Vm) is globally generated, its quotient EL(P )(Vm/Vm−1) is also
globally generated. From the second part of Proposition 3.2 we know that the
L(P )–module Vm/Vm−1 is trivializable. As a consequence, the vector bundle
EL(P )(Vm/Vm−1) is trivializable.

Since both the vector bundles EL(P )(Vm) and EL(P )(Vm/Vm−1) are triv-
ializable, it can be shown that the vector bundle EL(P )(Vm−1) is also trivial-
izable. Indeed, the vector bundle EL(P )(Vm) being trivializable, the quotient
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bundle EL(P )(Vm/Vm−1) is given by a map from G/P to the Grassmannian
Gr(r, r′), where r := rank(EL(P )(Vm)) and r′ := rank(EL(P )(Vm)/Vm−1). Since
EL(P )(Vm/Vm−1) is trivializable, the pullback of the tautological quotient bundle
on Gr(r, r′) to G/P is trivializable. On the other hand, the r′–th exterior power
of the tautological quotient bundle on Gr(r, r′) is an ample line bundle. Therefore,
the above map from G/P to Gr(r, r′) must be constant. This immediately implies
that the vector bundle EL(P )(Vm−1) is trivializable. In particular, EL(P )(Vm−1) is
globally generated.

Since EL(P )(Vm−1) is globally generated, from the second part of Proposi-
tion 3.2 we know that that the L(P )–module Vm−1/Vm−2 is trivializable. Now
replacing V by Vm−1 and using induction we conclude that the L(P )–module
Vi/Vi−1 is trivializable for all i ∈ [1 , m] .

Consider the homomorphism L(P ) −→ GL(V ) given by the action of L(P )
on V . Since the L(P )–module Vi/Vi−1 is trivializable for all i ∈ [1 , m] , the image
of this homomorphism lies in the unipotent subgroup of GL(V ) associated to the
filtration in Eqn. (27). But there are no nonconstant homomorphisms from a
reductive group to a unipotent group. Thus V is a trivial L(P )–module. This
completes the proof of the lemma.

Theorem 3.4. The principal H –bundle EH over G/P , defined in Eqn. (15),
is strongly stable with respect to any polarization on G/P .

Proof. As in the proof of Proposition 3.4, replacing ρ by the composition
homomorphism in Eqn. (20) we conclude that it is enough to show that EH is
stable.

The Lie algebra of H will be denoted by h . Let

z(h) ⊂ h

be the center. Let ad(EH) be the vector bundle over G/P associated to the
principal H –bundle EH for the adjoint action of H on h . Therefore, ad(EH) is
the adjoint vector bundle for EH . Since the adjoint action of H on h fixes z(h)
pointwise, the trivial vector bundle over G/P with fiber z(h) is a subbundle of
ad(EH). Therefore, we have an inclusion

z(h) ↪→ H0(G/P, ad(EH)) . (28)

From Proposition 3.1 we know that EH is polystable. Therefore, to prove
that EH is stable it suffices to show that the homomorphism in Eqn. (28) is
surjective. A proof of it can be found in the proof of Proposition 2.3 in [2, page
572].

Let

E ⊂ ad(EH) (29)

be the coherent subsheaf generated by its global sections. The action of G on
ad(EH) induced by the action of G on EH clearly preserves the subsheaf E in
Eqn. (29) (see the proof of Proposition 3.1 for the action of G on EH ). Since the
left–translation action of G on G/P is transitive, and the action of G on ad(EH)
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is a lift of the left–translation action of G on G/P , the subsheaf in Eqn. (29) is
actually a subbundle.

Let
V = EeP ⊂ ad(EH)eP = h (30)

be the submodule of P –module h obtained by restricting the homomorphism in
Eqn. (29) to the point eP ∈ G/P . We note that the isomorphism of h with the
fiber ad(EH)eP is constructed as in Eqn. (12), the group P acts on h through ρ ,
and P acts on V through q in Eqn. (6). From Eqn. (19) it follows immediately
that the subgroup Z0 acts trivially on h . Therefore, the action of Z0 on the
L(P )–module V in Eqn. (30) is trivial.

The vector bundle E in Eqn. (29) is clearly globally generated. Hence from
Lemma 3.3 we conclude that the L(P )–module V in Eqn. (30) is trivial.

We will show that for any element in the complement

w ∈ h \ z(h) , (31)

the reduced isotropy subgroup of H associated to w for the adjoint action of H
on h is contained in some proper parabolic subgroup. For that, let

w = ws + wn (32)

be the Jordan decomposition of w , where ws is semisimple and wn is nilpotent; see
[5, page 99, Theorem 15.3] for Jordan decomposition. From the uniqueness of the
Jordan decomposition it follows immediately that the reduced isotropy subgroup
associated to w for the adjoint action of H is the reduced intersection of the
isotropy subgroups associated to ws and wn . The centralizer of ws in H coincides
with the centralizer of the torus in H generated by ws . Therefore, using [4, page
26, Proposition 1.22] we conclude that if

ws ∈ h \ z(h) ,

then the centralizer of ws in H is contained in some proper parabolic subgroup of
H .

If ws ∈ z(h), then wn in Eqn. (32) must be nonzero. If wn 6= 0, from [5,
page 185, § 30.3] we know that the centralizer of wn is contained in some proper
parabolic subgroup of H . Therefore, the reduced centralizer in H of the element
w in Eqn. (31) is contained in some proper parabolic subgroup of H .

Since the homomorphism ρ̃ in Eqn. (16) is irreducible, from the above
observation we conclude that any trivial submodule of the L(P )–module h is
contained in the center z(h). In particular, the trivial L(P )–submodule V in
Eqn. (30) is contained in z(h). This immediately implies that the homomorphism
in Eqn. (28) is surjective. This completes the proof of the theorem.
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