On the Principal Bundles over a Flag Manifold, II

Hassan Azad and Indranil Biswas

Communicated by E. B. Vinberg

Abstract. Let G be a connected semisimple linear algebraic group defined over an algebraically closed field k and $P \subsetneq G$ a reduced parabolic subgroup that does not contain any simple factor of G. Let $\rho: P \longrightarrow H$ be a homomorphism, where H is a connected reductive linear algebraic group defined over k, with the property that the image $\rho(P)$ is not contained in any proper parabolic subgroup of H. We prove that the principal H-bundle $G \times^P H$ over G/Pconstructed using ρ is stable with respect to any polarization on G/P. When the characteristic of k is positive, the principal H-bundle $G \times^P H$ is shown to be strongly stable with respect to any polarization on G/P.

Mathematics Subject Classification 2000: 14M15, 14F05.

Keywords and phrases: Homogeneous space, principal bundle, Frobenius, stability.

1. Introduction

Let k be an algebraically closed field. Take any connected semisimple linear algebraic group G defined over k. Let $P \subset G$ be a (reduced) parabolic subgroup such that the image of P in any simple quotient of G is a proper subgroup. In other words, P does not contain any simple factor of P. The subgroup P being parabolic the quotient G/P is a smooth projective variety.

Let H be a connected reductive linear algebraic group defined over the field k. Let

$$\rho: P \longrightarrow H$$

be an irreducible homomorphism. This means that the image $\rho(P)$ is not contained in any proper parabolic subgroup of H. Associated to ρ , we have a principal H-bundle over G/P which can be constructed as follows: Let $G \times^P H$ be the quotient of $G \times H$ for the twisted diagonal action of P whose orbit through any point $(g_0, h_0) \in G \times H$ consists of all $(g_0g^{-1}, \rho(g)h_0), g \in P$. The composition of the projection $G \times H \longrightarrow G$ with the quotient map $G \longrightarrow G/P$ descends to a projection from $G \times^P H$ to G/P. This descended projection defines a principal H-bundle over G/P. Let E_H denote this principal H-bundle over G/P.

We recall that when the characteristic of k is positive, a principal bundle over a smooth polarized projective variety X defined over k, with a reductive

ISSN 0949–5932 / \$2.50 © Heldermann Verlag

group as the structure group, is called strongly stable if all the iterated pullbacks of it by the Frobenius morphism of X are stable principal bundles; the details of the definition are given in Section 2. (we assume that a polarization on G/P has been fixed in order to be able to define stable bundles). For our convenience, when the characteristic of k is zero, by a strongly stable principal H-bundle over G/Pwe will simply mean a stable principal H-bundle over G/P.

The following theorem is the main result proved here (see Theorem 3.4):

Theorem 1.1. The above principal H-bundle E_H over G/P is strongly stable with respect to any polarization on G/P.

We note that Theorem 1.1 was proved in [7], [11] under the assumption that $H = \operatorname{GL}(n,k)$ with $\operatorname{char}(k) = 0$. In [2], Theorem 1.1 was proved under the assumption that $k = \mathbb{C}$ using differential geometric methods.

2. Semistability of homogeneous principal bundles

Let k be an algebraically closed field of arbitrary characteristic. Henceforth, the characteristic of k will be denoted by p. Let G be a connected semisimple linear algebraic group defined over the field k. We fix a reduced proper parabolic subgroup

 $P \subseteq G$

without any simple factor. This is equivalent to the condition that the image of P in each simple quotient of G is a proper parabolic subgroup.

Fix a very ample line bundle

$$\zeta \in \operatorname{Pic}(G/P) \tag{1}$$

over G/P. Such a line bundle is also called a *polarization* on G/P. It is known that any ample line bundle over G/P is very ample.

Definition 2.1. For a torsionfree coherent sheaf V over G/P, define the degree of V to be the degree of the restriction of V to the general complete intersection curve in G/P obtained by intersecting hyperplanes in G/P from the complete linear system $|\zeta|$. The degree of V will be denoted by degree(V).

If V is a vector bundle defined over a nonempty Zariski open dense subset $U \subseteq G/P$ such that the complement $(G/P) \setminus U$ is of codimension at least two, then the direct image ι_*V is a torsionfree coherent sheaf on G/P, where $\iota: U \longrightarrow G/P$ is the inclusion map. For such a vector bundle V, define

$$\operatorname{degree}(V) := \operatorname{degree}(\iota_* V).$$

$$(2)$$

A torsionfree coherent sheaf E over G/P is called *stable* (respectively, *semi-stable*) if

$$\frac{\operatorname{degree}(E')}{\operatorname{rank}(E')} < \frac{\operatorname{degree}(E)}{\operatorname{rank}(E)}$$

(respectively, $\frac{\text{degree}(E')}{\text{rank}(E')} \leq \frac{\text{degree}(E)}{\text{rank}(E)}$) for every coherent subsheaf $E' \subset E$ with 0 < rank(E') < rank(E).

If p > 0, where p is the characteristic of the base field k, then

$$F: G/P \longrightarrow G/P \tag{3}$$

will be the Frobenius morphism of the variety G/P. For notational convenience, when p = 0, by F we will denote the identity morphism of G/P.

For any $n \ge 1$, let

$$F^n := \overbrace{F \circ \cdots \circ F}^{n \text{-times}} : G/P \longrightarrow G/P$$

be the *n*-fold composition of the self-map F. By F^0 we will denote the identity map of G/P.

A vector bundle E over G/P is called *strongly stable* (respectively, *strongly semistable*) if for each integer $n \ge 0$, the pullback $(F^n)^*E$ is a stable (respectively, semistable) vector bundle, where F^n is defined above.

Since F^0 is the identity map of G/P, a strongly stable (respectively, strongly semistable) vector bundle is stable (respectively, semistable). We note that in the case where p = 0, a strongly stable (respectively, strongly semistable) vector bundle is simply a stable (respectively, semistable) vector bundle.

Let H be a connected reductive linear algebraic group defined over the field k. Let Q be a proper parabolic subgroup of H, and let λ be a character of Q which is trivial on the connected component of the center of H containing the identity element. Such a character λ is called *strictly anti-dominant* if the associated line bundle $L_{\lambda} = G \times^{P} k$ over G/P is ample.

A principal *H*-bundle E_H over G/P is called *stable* (respectively, *semi-stable*) if for every triple of the form (Q, E_Q, λ) , where

- $Q \subsetneq H$ is a reduced parabolic subgroup, and $E_Q \subset E_H$ is a reduction of structure group of E_H to Q over some Zariski open dense subset $U \subset G/P$ such that the codimension of the complement $(G/P) \setminus U$ is at least two, and
- λ is some strictly anti-dominant character of Q,

the inequality

$$\operatorname{degree}(E_Q(\lambda)) > 0$$

(respectively, degree $(E_Q(\lambda)) \geq 0$) holds, where $E_Q(\lambda)$ is the line bundle over U associated to the principal Q-bundle E_Q for the character λ of Q.

In order to decide whether a given principal H-bundle E_H is semistable (respectively, stable), it suffices to verify the above inequality (respectively, strict inequality) only for those Q which are proper maximal parabolic subgroups of H. More precisely, E_H is semistable (respectively, stable) if and only if for every pair (Q, σ) , where

- $Q \subset H$ is a proper maximal parabolic subgroup, and
- $\sigma : U \longrightarrow E_H/Q$ is a reduction of structure group of E_H to Q over some Zariski open dense subset $U \subset G/P$ such that the codimension of the complement $(G/P) \setminus U$ is at least two,

the inequality

$$\operatorname{degree}(\sigma^* T_{\operatorname{rel}}) > 0 \tag{4}$$

(respectively, degree($\sigma^*T_{\rm rel}$) ≥ 0) holds, where $T_{\rm rel}$ is the relative tangent bundle over E_H/Q for the projection $E_H/Q \longrightarrow G/P$. (See [9, page 129, Definition 1.1] and [9, page 131, Lemma 2.1].)

Remark 2.2. We note a couple of points regarding the above definitions.

- 1. The definition of degree of a torsionfree coherent sheaf on G/P depends on the choice of the polarization ζ in Eqn. (1); see Definition 2.1 and Eqn. (2). Therefore, it is more accurate to call "stable (respectively, semistable) with respect to ζ " instead of calling simply "stable (respectively, semistable)". However, since in all the existing literature the imprecise notation is systematically used, we will stick to it.
- 2. Let E_{GL_n} be a principal $\mathrm{GL}_n(k)$ -bundle over G/P. Let E_V be the vector bundle over G/P of rank n associated to E_{GL_n} for the standard action of $\mathrm{GL}_n(k)$ on $k^{\oplus n}$. The associated vector bundle E_V is stable (respectively, semistable) if and only if the principal $\mathrm{GL}_n(k)$ -bundle E_{GL_n} is stable (respectively, semistable). To see this first note that the proper maximal parabolic subgroups of $\mathrm{GL}_n(k)$ are parametrized by the proper nonzero linear subspaces of $k^{\oplus n}$. Giving a reduction of structure group E_Q of E_{GL_n} to a proper maximal parabolic subgroup $Q \subset \mathrm{GL}_n(k)$ is equivalent to giving a subbundle W of E_V whose rank coincides with the dimension of the subspace of $k^{\oplus n}$ which Q preserves. The pullback $\sigma^* T_{\mathrm{rel}}$ in Eqn. (4) coincides with the tensor product $W^* \bigotimes (E_V/W)$. Therefore, we have

$$\operatorname{degree}(\sigma^* T_{\operatorname{rel}}) = \operatorname{degree}(E_V/W) \cdot \operatorname{rank}(W) - \operatorname{degree}(W) \cdot \operatorname{rank}(E_V/W).$$

Using this equality it follows immediately that the principal $\operatorname{GL}_n(k)$ -bundle E_{GL_n} is stable (respectively, semistable) if and only if the associated vector bundle E_V is stable (respectively, semistable).

A principal H-bundle E_H over G/P is called *strongly stable* (respectively, strongly semistable) if for each integer $n \ge 0$, the iterated n-fold pullback $(F^n)^*E_H$ is a stable (respectively, semistable) principal H-bundle, where the map F, as before, is the Frobenius morphism in Eqn. (3) when p > 0, and it is the identity morphism of G/P when p = 0. Also, as before, F^0 is the identity map of G/P.

Let E_H be a principal *H*-bundle over G/P. A reduction of structure group

$$E_Q \subset E_H$$

to some parabolic subgroup $Q \subset H$ is called *admissible* if for each character λ of Q trivial on the center of H, the associated line bundle $E_Q(\lambda) = E_Q^{\lambda} k$ over G/P satisfies the following condition:

$$\operatorname{degree}(E_Q(\lambda)) = 0 \tag{5}$$

[10, page 307, Definition 3.3] (see [3, page 3998–3999] for some explanations of the notion of admissible reduction).

A principal H-bundle E_H over G/P is called *polystable* if either E_H is stable, or there is a proper parabolic subgroup Q and a reduction of structure group $E_{L(Q)} \subset E_H$ to a Levi subgroup L(Q) of Q over G/P such that

- the principal L(Q)-bundle $E_{L(Q)}$ is stable, and
- the reduction of structure group of E_H to Q obtained by extending the structure group of $E_{L(Q)}$ using the inclusion of L(Q) in Q is admissible.

A principal *H*-bundle E_H is called *strongly polystable* if for each integer $n \ge 0$, the iterated *n*-fold pullback $(F^n)^* E_H$ is polystable.

The quotient map $G \longrightarrow G/P$ defines a principal P-bundle over the projective variety G/P. This tautological principal P-bundle over G/P will be denoted by E_P . The unipotent radical of P will be denoted by $R_u(P)$. The quotient group

$$L(P) := P/R_u(P)$$

which is called the *Levi quotient* of P, is a connected reductive linear algebraic group defined over k. Let

$$q: P \longrightarrow L(P) \tag{6}$$

be the quotient map. Let

$$E_{L(P)} := E_P(L(P)) = (G \times L(P))/P \tag{7}$$

be the principal L(P)-bundle over G/P obtained by extending the structure group of the principal P-bundle E_P using the homomorphism q in Eqn. (6). In the construction of the quotient in Eqn. (7), the action of any point $z \in P$ sends any point $(g,h) \in G \times L(P)$ to $(gz,q(z^{-1})h) \in G \times L(P)$.

Proposition 2.3. The tautological principal L(P)-bundle $E_{L(P)}$ over G/P constructed in Eqn. (7) is strongly semistable with respect to any polarization on G/P.

Proof. The Lie algebra of L(P) will be denoted by $\mathfrak{l}(\mathfrak{p})$. Let $\mathrm{ad}(E_{L(P)})$ be the adjoint bundle for the principal L(P)-bundle $E_{L(P)}$. Therefore, $\mathrm{ad}(E_{L(P)})$ is the vector bundle over G/P associated to $E_{L(P)}$ for the adjoint action of L(P) on $\mathfrak{l}(\mathfrak{p})$.

When the characteristic p of the field k is positive, let

$$F_L : L(P) \longrightarrow L(P)$$

be the Frobenius morphism of the group L(P). When p = 0, by F_L we will denote the identity map of L(P). For any integer $n \ge 1$, let

$$F_L^n := \overbrace{F_L \circ \cdots \circ F_L}^{n-\text{times}} : L(P) \longrightarrow L(P)$$
(8)

be the *n*-fold composition of the self-map F_L . By F_L^0 we will denote the identity map of L(P).

For notational convenience, the L(P)-module $\mathfrak{l}(\mathfrak{p})$ defined by the adjoint action will be denoted by V.

For any integer $n \geq 0$, let V_n denote the L(P)-module given by the composition homomorphism

$$L(P) \xrightarrow{F_L^n} L(P) \longrightarrow \operatorname{Aut}(V),$$

where F_L^n is defined in Eqn. (8), while the above homomorphism $L(P) \to \operatorname{Aut}(V)$ is the adjoint action. The vector bundle over G/P associated to the principal L(P)-bundle $E_{L(P)}$ for the L(P)-module V_n will be denoted by $E_{L(P)}(V_n)$.

To prove that a principal G'-bundle $E_{G'}$ is semistable, where G' is any connected reductive linear algebraic group over k, it suffices to show that its adjoint vector bundle $\operatorname{ad}(E_{G'})$ is semistable. Indeed, given any reduction of structure group $E_{P'} \subset E_{G'}$ violating the semistability condition for $E_{G'}$, the subbundle $\operatorname{ad}(E_{P'}) \subset \operatorname{ad}(E_{G'})$ violates the semistability condition for $\operatorname{ad}(E_{G'})$. Consequently, to prove that the principal L(P)-bundle $E_{L(P)}$ is strongly semistable, it suffices to show that the adjoint vector bundle $\operatorname{ad}(E_{L(P)})$ is strongly semistable.

Consider the Frobenius morphism F in Eqn. (3). The pulled back vector bundle $(F^n)^* \operatorname{ad}(E_{L(P)})$ is identified with the vector bundle $E_{L(P)}(V_n)$. Consequently, to prove the proposition it is enough to show that the above defined associated vector bundle $E_{L(P)}(V_n)$ is semistable for all n.

Let

$$0 = W_n^0 \subset W_n^1 \subset \cdots \subset W_n^{i_n - 1} \subset W_n^{i_n} = V_n$$
(9)

be a filtration of the L(P)-module V_n such that each successive quotient W_n^j/W_n^{j-1} , $j \in [1, i_n]$, is an irreducible L(P)-module. Let $E_{L(P)}(W_n^j)$, $j \in [0, i_n]$, be the vector bundle over G/P associated to the principal L(P)-bundle $E_{L(P)}$ for the L(P)-module W_n^j . Similarly, let $E_{L(P)}(W_n^j/W_n^{j-1})$, $j \in [1, i_n]$, denote the vector bundle associated to $E_{L(P)}$ for the L(P)-module W_n^j/W_n^{j-1} . The filtration in Eqn. (9) gives a filtration of subbundles

$$0 = E_{L(P)}(W_n^0) \subset E_{L(P)}(W_n^1) \subset \dots \subset E_{L(P)}(W_n^{i_n-1}) \subset E_{L(P)}(W_n^{i_n}),$$
(10)

where $E_{L(P)}(W_n^{i_n}) = (F^n)^* \operatorname{ad}(E_{L(P)})$. We note that for each $j \in [1, i_n]$, the quotient bundle $E_{L(P)}(W_n^j)/E_{L(P)}(W_n^{j-1})$ is canonically identified with

 $E_{L(P)}(W_n^j/W_n^{j-1}).$

Take any $j \in [1, i_n]$. We will show that the vector bundle $E_{L(P)}(W_n^j/W_n^{j-1})$ is semistable. To prove this, assume that $E_{L(P)}(W_n^j/W_n^{j-1})$ is not semistable. Let

$$\mathcal{E}_n^j \subset E_{L(P)}(W_n^j/W_n^{j-1}) \tag{11}$$

be the maximal semistable subsheaf of $E_{L(P)}(W_n^j/W_n^{j-1})$. In other words, \mathcal{E}_n^j is the first term in the Harder–Narasimhan filtration of $E_{L(P)}(W_n^j/W_n^{j-1})$. See [6, page 16, Theorem 1.3.4] for Harder–Narasimhan filtration.

The group G acts on G/P as left translations. The left-translation action of G on itself is a lift of this action of G on G/P to the principal P-bundle E_P which commutes with the principal bundle structure. In other words, the left action of G on E_P and the right action of P on E_P commute. The left-action of G on E_P induces a left-action of G on the principal L(P)-bundle $E_{L(P)}$ which commutes with the right-action of L(P) on $E_{L(P)}$. This left-action of G on $E_{L(P)}$ induces a left-action on any bundle associated to $E_{L(P)}$. In particular, the group G acts on the associated vector bundle $E_{L(P)}(W_n^j/W_n^{j-1})$ over G/P that lifts the left-translation action of G on G/P. Since the group G is connected, it preserves any polarization on G/P (the ample line bundles on G/P form a discrete set). Therefore, from the uniqueness of the Harder–Narasimhan filtration it follows that the action of G on $E_{L(P)}(W_n^j/W_n^{j-1})$ preserves the subsheaf \mathcal{E}_n^j in Eqn. (11).

Since the left-translation action of G on G/P is transitive, the fact that the action of G on $E_{L(P)}(W_n^j/W_n^{j-1})$ preserves the subsheaf \mathcal{E}_n^j implies that \mathcal{E}_n^j is in fact a subbundle of $E_{L(P)}(W_n^j/W_n^{j-1})$.

Let $e \in G$ be the identity element. For the action of G on G/P, the isotropy subgroup of the point $eP \in G/P$ is P itself. In other words, the fiber $(E_P)_{eP}$ of E_P over the point eP is identified with P. We note that the fiber $E_{L(P)}(W_n^j/W_n^{j-1})_{eP}$ of $E_{L(P)}(W_n^j/W_n^{j-1})$ over the point $eP \in G/P$ is identified with the vector space underlying the L(P)-module W_n^j/W_n^{j-1} . The identification

$$W_n^j/W_n^{j-1} \xrightarrow{\sim} E_{L(P)}(W_n^j/W_n^{j-1})_{eP}$$
 (12)

is obtained by sending any $v \in W_n^j/W_n^{j-1}$ to the image in $E_{L(P)}(W_n^j/W_n^{j-1})_{eP}$ of the element $(e, v) \in G \times W_n^j/W_n^{j-1}$. (There is a natural projection from $E_P = G$ to $E_{L(P)}$ given by the quotient map in Eqn. (6), and also the associated vector bundle $E_{L(P)}(W_n^j/W_n^{j-1})$ is a quotient of $E_{L(P)} \times W_n^j/W_n^{j-1}$; combining these we have a projection from $G \times W_n^j/W_n^{j-1}$ to $E_{L(P)} \times W_n^j/W_n^{j-1}$.)

The fact that the action of G on $E_{L(P)}(W_n^j/W_n^{j-1})$ preserves the subbundle \mathcal{E}_n^j implies that the subspace

$$(\mathcal{E}_{n}^{j})_{eP} \subset E_{L(P)}(W_{n}^{j}/W_{n}^{j-1})_{eP} = W_{n}^{j}/W_{n}^{j-1}$$

is preserved by the action on W_n^j/W_n^{j-1} of the isotropy subgroup P of eP; the group P acts on W_n^j/W_n^{j-1} through the quotient map q in Eqn. (6). Since W_n^j/W_n^{j-1} is an irreducible L(P)-module, we conclude that

$$(\mathcal{E}_n^j)_{eP} = W_n^j / W_n^{j-1};$$

note that if $\mathcal{E}_n^j)_{eP} = 0$, then the maximal semistable subsheaf of $E_{L(P)}(W_n^j/W_n^{j-1})$ is zero implying that $E_{L(P)}(W_n^j/W_n^{j-1}) = 0$.

If $(\mathcal{E}_n^j)_{eP} = W_n^j/W_n^{j-1}$, the subbundle \mathcal{E}_n^j actually coincides with

$$E_{L(P)}(W_n^j/W_n^{j-1}).$$

Therefore, we conclude that the vector bundle $E_{L(P)}(W_n^j/W_n^{j-1})$ is semistable.

We will now show that the line bundle

$$\det E_{L(P)}(W_n^j/W_n^{j-1}) = \bigwedge^{\text{top}} E_{L(P)}(W_n^j/W_n^{j-1})$$

over G/P is trivializable.

To prove this first observe that the line bundle det $E_{L(P)}(W_n^j/W_n^{j-1})$ is associated to the principal L(P)-bundle $E_{L(P)}$ for the one-dimensional L(P)-module $\bigwedge^{\text{top}}(W_n^j/W_n^{j-1})$. Let Z(L(P)) denote the reduced center of L(P). Since L(P) is a reductive group, the quotient L(P)/Z(L(P)) is a semisimple group. The restriction to Z(L(P)) of the adjoint action of L(P) on its own Lie algebra $\mathfrak{l}(\mathfrak{p})$ clearly coincides with the trivial action. Hence the adjoint action of L(P) on $\mathfrak{l}(\mathfrak{p})$ factors through the semisimple quotient L(P)/Z(L(P)). Consequently, the module action of L(P) on $\bigwedge^{\operatorname{top}}(W_n^j/W_n^{j-1})$ factors through L(P)/Z(L(P)). In other words, the action of L(P) on $\bigwedge^{\operatorname{top}}(W_n^j/W_n^{j-1})$ is given by a character of L(P)/Z(L(P)). The group L(P)/Z(L(P)) being semisimple does not admit any nontrivial characters. Hence we conclude that $\bigwedge^{\operatorname{top}}(W_n^j/W_n^{j-1})$ is a trivial L(P)-module. This immediately implies that the associated line bundle det $E_{L(P)}(W_n^j/W_n^{j-1})$ is trivial.

Since det $E_{L(P)}(W_n^j/W_n^{j-1})$ is a trivial line bundle, we have

$$\operatorname{degree}(\operatorname{det} E_{L(P)}(W_n^j/W_n^{j-1})) = 0$$

with respect to any polarization on G/P. Therefore, the filtration of subbundles of

$$(F^n)^* \mathrm{ad}(E_{L(P)}) = E_{L(P)}(V_n)$$

in Eqn. (10) has the property that each successive quotient is semistable of degree zero. This immediately implies that the vector bundle $E_{L(P)}(V_n)$ is semistable. It was noted earlier that the proposition follows once we have shown that $E_{L(P)}(V_n)$ is semistable for all n. Hence the proof of the proposition is complete.

As before, let H be a connected reductive linear algebraic group defined over the field k. Let

$$\rho: P \longrightarrow H \tag{13}$$

be a homomorphism such that the image $\rho(P)$ is not contained in any proper parabolic subgroup of H. We note that such homomorphisms are called *irreducible*. The condition that the homomorphism ρ in Eqn. (13) is irreducible yields that

$$\rho(R_u(P)) = e, \qquad (14)$$

where $R_u(P) \subset P$ is the unipotent radical, or in other words, ρ factors through the Levi quotient $L(P) := P/R_u(P)$. Indeed, if the image $\rho(R_u(P))$ is nontrivial, then the normalizer, in H, of the nontrivial unipotent subgroup $\rho(R_u(P))$ is contained in some proper parabolic subgroup $\tilde{P} \subset H$ (see [5, page 185, § 30.3]). Therefore, $R_u(P)$ being a normal subgroup of P, we have $\rho(P) \subset \tilde{P}$. This contradicts the condition that the homomorphism ρ is irreducible. Hence we conclude that ρ factors through the Levi quotient $P/R_u(P)$.

Let

$$E_H := G \times^P H \tag{15}$$

be the principal H-bundle over G/P obtained by extending the principal Pbundle E_P using the irreducible homomorphism ρ in Eqn. (13). Therefore, E_H is the quotient of $G \times H$ by the twisted diagonal action of P. The twisted diagonal action of any $z \in P$ sends any $(g, h) \in G \times H$ to $(gz^{-1}, \rho(z)h)$.

Lemma 2.4. The principal H-bundle E_H over G/P defined in Eqn. (15) is strongly semistable with respect to any polarization on G/P.

Proof. We noted earlier that the irreducible homomorphism ρ factors through the Levi quotient $P/R_u(P)$ (see Eqn. (14)). Let

$$\widetilde{\rho} : L(P) := P/R_u(P) \longrightarrow H \tag{16}$$

be the homomorphism that gives ρ . Since the principal H-bundle E_H is the extension of structure group of E_P using the homomorphism ρ , it follows immediately that E_H is identified with the principal H-bundle over G/P obtained by extending the structure group of the principal L(P)-bundle $E_{L(P)}$ using the homomorphism $\tilde{\rho}$ in Eqn. (16).

Let

$$Z_0 \subset L(P) \tag{17}$$

be the reduced connected component of the center of L(P) containing the identity element. Since L(P) is reductive, the group Z_0 is a torus, i.e., a product of copies of \mathbb{G}_m . Let

 $Z_0(H) \subset H$

be the reduced connected component of the center of H containing the identity element.

We will show that the homomorphism $\tilde{\rho}$ in Eqn. (16) sends the subgroup Z_0 into $Z_0(H)$.

To prove this, assume that

$$\widetilde{\rho}(Z_0) \not\subset Z_0(H) \,. \tag{18}$$

Since Z_0 is a torus, from Eqn. (18) it follows that the image $\tilde{\rho}(Z_0)$ is a subtorus of H of positive dimension. The group H being reductive, the centralizer of any subtorus of H not contained in $Z_0(H)$ is a Levi subgroup of some proper parabolic subgroup of H (see [4, page 26, Proposition 1.22]). Therefore, the centralizer of $\tilde{\rho}(Z_0)$ in H is contained in a Levi subgroup of some proper parabolic subgroup \hat{P} of H. Since Z_0 lies in the center of L(P), it follows immediately that $\tilde{\rho}(L(P))$ is contained in a proper parabolic subgroup \hat{P} of H. In particular, we have

$$\operatorname{image}(\rho) = \operatorname{image}(\widetilde{\rho}) \subset \widehat{P}.$$

But this contradicts the fact that the homomorphism ρ is irreducible. Therefore, we conclude that

$$\widetilde{\rho}(Z_0) \subset Z_0(H) \,. \tag{19}$$

Fix any polarization on G/P. From Proposition 2.3 we know that the principal L(P)-bundle $E_{L(P)}$ is strongly semistable. Hence using Eqn. (19) it follows that the principal H-bundle obtained by extending the structure group of the principal L(P)-bundle $E_{L(P)}$ by the homomorphism $\tilde{\rho}$ is also strongly semistable (see [8, page 285, Theorem 3.18] and [8, page 288, Theorem 3.23]). We noted earlier that this principal H-bundle obtained by extending the structure group of $E_{L(P)}$ is identified with E_H . This completes the proof of the lemma.

3. Stability of homogeneous principal bundles

We continue with the notation of the previous section.

Proposition 3.1. The principal H-bundle E_H over G/P, defined in Eqn. (15), is strongly polystable with respect to any polarization on G/P.

Proof. Fix any polarization on G/P. From Lemma 2.4 we know that E_H is strongly semistable.

To prove the proposition it suffices to show that the principal H-bundle E_H over G/P is polystable. To see this, we recall that E_H is strongly polystable if $(F^n)^*E_H$ is polystable for all $n \ge 0$ (see the definition in Section 2.). If we know that E_H is polystable, to prove that $(F^n)^*E_H$ is polystable, replace ρ by the composition homomorphism

$$L(P) \xrightarrow{F_L^n} L(P) \xrightarrow{\widetilde{\rho}} H,$$
 (20)

where $\tilde{\rho}$ is the homomorphism in Eqn. (16). The composition homomorphism $L(P) \longrightarrow H$ in Eqn. (20) will be denoted by ρ_n . The condition that ρ is irreducible implies that ρ_n is also irreducible. On the other hand, the pullback $(F^n)^*E_H$ is identified with the principal H-bundle over G/P obtained by extending the structure group of the principal P-bundle E_P using the homomorphism $\rho_n \circ q$, where q is the projection in Eqn. (6). Therefore, to prove the proposition it is enough to show that E_H is polystable.

Assume that the principal H-bundle E_H is not polystable. Since E_H is semistable but not polystable, it has a unique socle

$$E_Q \subset E_H. \tag{21}$$

We recall that the socle is defined as follows:

• $Q \subsetneq H$ is maximal among all the proper parabolic subgroups such that E_H admits an admissible reduction of structure group

$$E'_O \subset E_H$$

for which the associated principal L(Q')-bundle $E_{L(Q')} = E'_Q(L(Q'))$ is polystable, where L(Q') is the Levi quotient of Q' (the L(Q')-bundle $E_{L(Q')}$ is the extension of structure group of E'_Q using the quotient map $Q \longrightarrow L(Q')$), and

• E_Q in Eqn. (21) is a reduction of structure group of E_H to Q such that the associated principal L(Q)-bundle is polystable, where L(Q) is the Levi quotient of Q.

The pair (Q, E_Q) is unique in the following sense: for any other pair (Q_1, E_{Q_1}) satisfying the above conditions, there is some $g \in H$ such that

- $Q_1 = g^{-1}Qg$, and
- $E_{Q_1} = E_Q g$.

(See [6, page 23, Lemma 1.5.5], [1, page 218].) The definition of an admissible reduction is recalled in Eqn. (5).

Let $\operatorname{Ad}(E_H)$ be the group-scheme over G/P associated to the principal H-bundle E_H for the adjoint action of H on itself. Therefore, $\operatorname{Ad}(E_H)$ is the quotient of $E_H \times H$ by the action of H defined by $h \circ (z, h') = (zh^{-1}, hh'h^{-1})$, where $z \in E_H$, and $h, h' \in H$. The group-scheme $\operatorname{Ad}(E_H)$ is also called the

adjoint bundle of E_H . Let $\operatorname{Ad}(E_Q)$ be the group-scheme over G/P associated to the principal Q-bundle E_Q in Eqn. (21) for the adjoint action of Q on itself. We note that using the inclusion of Q in H, the adjoint bundle $\operatorname{Ad}(E_Q)$ is a subgroup-scheme of $\operatorname{Ad}(E_H)$.

The above uniqueness condition of the pair (Q, E_Q) implies that the subgroup–scheme

$$\operatorname{Ad}(E_Q) \subset \operatorname{Ad}(E_H)$$
 (22)

is independent of the choice of the maximal pair (Q, E_Q) .

The left-translation action of G on $G \times H$ descends to a lift action of G on E_H . This descended action of G on E_H is a lift of the left-translation action of G on G/P which commutes with the principal bundle structure. As before, commuting with the principal bundle structure means that the left action of G on E_H commutes with the right action of H on E_H .

The action of G on E_H induces an action of G on the adjoint bundle $\operatorname{Ad}(E_H)$. From the uniqueness of the subgroup-scheme $\operatorname{Ad}(E_Q)$ in Eqn. (22) it follows immediately that the action of G on $\operatorname{Ad}(E_H)$ leaves the subgroup-scheme $\operatorname{Ad}(E_Q)$ invariant.

As in the proof of Proposition 2.3, let $e \in G$ be the identity element. The fiber $(E_H)_{eP}$ of E_H over eP is identified with H by sending any $h \in H$ to the image of $(e, h) \in G \times H$ in E_H (recall that E_H is a quotient of $G \times H$). The fiber $\operatorname{Ad}(E_H)_{eP}$ of the adjoint bundle $\operatorname{Ad}(E_H)$ over the point $eP \in G/P$ is identified with H by sending any

$$(z,h) \in (E_H)_{eP} \times H = H \times H$$

to $zhz^{-1} \in H$. Let Q' be the proper parabolic subgroup of H given by the image of the inclusion

$$\operatorname{Ad}(E_Q)_{eP} \subset \operatorname{Ad}(E_H)_{eP} = H$$

in Eqn. (22). From the earlier observation that the action of G on $\operatorname{Ad}(E_H)$ leaves the subgroup–scheme $\operatorname{Ad}(E_Q)$ invariant it follows immediately that the adjoint action of P on H through the homomorphism ρ leaves the subgroup $Q' \subset H$ invariant.

Since Q' is a parabolic subgroup of H, the normalizer of Q' in H coincides with Q' [5, page 143, Corollary B]. Consequently, we have

$$\rho(P) \subset Q'.$$

Since Q' is a proper parabolic subgroup of H, this contradicts the assumption on the homomorphism ρ that it is irreducible. Therefore, we conclude that E_H is polystable. This completes the proof of the proposition.

We will need the following proposition to prove that E_H is strongly stable.

Proposition 3.2. Let V be a finite dimensional left L(P)-module on which the action of the subgroup Z_0 in Eqn. (17) is trivial. Let E_V be the vector bundle over G/P associated to the tautological principal L(P)-bundle $E_{L(P)}$ for the L(P)-module V. Assume that the vector bundle E_V is globally generated (i.e., generated by its global sections).

- 1. The vector bundle E_V is trivializable.
- 2. If the L(P)-module V is irreducible, then V is a trivial L(P)-module of dimension one.

Proof. Let r be the dimension of V. Fix a point $x_0 \in G/P$. Fix r sections

$$s_1, \cdots, s_r \in H^0(G/P, E_V) \tag{23}$$

such that the fiber $(E_V)_{x_0}$ of E_V at x_0 is spanned by $\{s_i(x_0)\}_{i=1}^r$. Therefore, there is a Zariski open dense subset

$$U_0 \subset G/P$$

containing x_0 such that the restriction $E_V|_{U_0}$ of E_V to U_0 is generated by $\{s_i|_{U_0}\}_{i=1}^r$.

Let $\mathcal{O}_{G/P}$ be the trivial line bundle over G/P. Let

$$\phi : \mathcal{O}_{G/P}^{\oplus r} \longrightarrow E_V \tag{24}$$

be the homomorphism defined by

$$(z; c_1, \cdots, c_r) \longmapsto \sum_{i=1}^r c_i \cdot s_i(z),$$

where $z \in G/P$, $c_i \in k$, and s_i are the sections in Eqn. (23).

Consider the one-dimensional L(P)-module det $V := \bigwedge^r V$. Since the subgroup Z_0 acts trivially on V, the action of L(P) on det V factors through the quotient group $L(P)/Z_0$. In other words, det V is given by a character of $L(P)/Z_0$. The group $L(P)/Z_0$. is semisimple because L(P) is reductive. Hence $L(P)/Z_0$ does not admit any nontrivial characters. Therefore, det V is a trivial L(P)-module. Consequently, the line bundle

$$E_{L(P)}(\det V) = \det E_V = \bigwedge^r E_V$$

associated to the principal L(P)-bundle $E_{L(P)}$ for the L(P)-module det V is trivializable.

Let

$$\det \phi \, : \, \mathcal{O}_{G/P} \, = \, \bigwedge^r \mathcal{O}_{G/P}^{\oplus r} \longrightarrow \, \bigwedge^r E_V \, \cong \, \mathcal{O}_{G/P}$$

be the homomorphism of line bundles obtained from ϕ constructed in Eqn. (24). The above homomorphism

$$\det \phi \, : \, \mathcal{O}_{G/P} \longrightarrow \, \mathcal{O}_{G/P}$$

is nonzero because it is an isomorphism over the nonempty open subset U_0 . This immediately implies that det ϕ is an isomorphism. From this it follows that ϕ is an isomorphism over G/P. In particular, the vector bundle E_V is trivializable. This proves the first statement in the proposition.

Let

$$\widehat{V} := (G/P) \times H^0(G/P, E_V)$$

be the trivial vector bundle over G/P with fiber $H^0(G/P, E_V)$. Since E_V is trivializable, the evaluation of global sections

$$\sigma: \widehat{V} \longrightarrow E_V \tag{25}$$

is an isomorphism of vector bundles. The left-action of G on $E_{L(P)}$ induces an action of G on the associated vector bundle E_V (see the proof of Proposition 2.3 for the action of G on $E_{L(P)}$). This action of G on E_V induces an action of G on $H^0(G/P, E_V)$.

Consider the isomorphism of vector spaces

$$\sigma(eP) : H^0(G/P, E_V) = \widehat{V}_{eP} \longrightarrow (E_V)_{eP} = V, \qquad (26)$$

where σ is the isomorphism in Eqn. (25) and $eP \in G/P$ is the point given by the identity element of G; the isomorphism of V with $(E_V)_{eP}$ is constructed as in Eqn. (12). This isomorphism $\sigma(eP)$ in Eqn. (26) clearly commutes with the actions of P (the action of P on $H^0(G/P, E_V)$ is the restriction of the action of G on $H^0(G/P, E_V)$ constructed above, and P acts on V through the homomorphism q in Eqn. (6)).

In particular, the action of P on V extends to an action of G on V. We recall that P is a parabolic subgroup of G that does not contain any simple factor of G. Therefore, the restriction to P of any irreducible representation of G of dimension at least two is reducible.

Consequently, if V is an irreducible L(P)-module, then V is of dimension one. Since Z_0 acts trivially on V, and $L(P)/Z_0$ does not admit any nontrivial characters, we conclude that V is a trivial L(P)-module of dimension one provided V is irreducible. This completes the proof of the proposition.

Proposition 3.2 can be strengthened, as shown by the following lemma.

Lemma 3.3. Let V be a finite dimensional left L(P)-module on which the action of the subgroup Z_0 in Eqn. (17) is trivial. If the associated vector bundle $E_V = E_{L(P)} \times^{L(P)} V$ (see Proposition 3.2) is globally generated, then the L(P)-module V is trivializable.

Proof. Let

 $0 = V_0 \subset V_1 \subset \cdots \subset V_{m-1} \subset V_m = V \tag{27}$

be a filtration of the L(P)-module V such that each successive quotient V_{i+1}/V_i , $i \in [0, m-1]$, is an irreducible L(P)-module. For each $i \in [0, m]$, let $E_{L(P)}(V_i)$ be the vector bundle over G/P associated to the principal L(P)-bundle $E_{L(P)}$ for the L(P)-module V_i . Similarly, for each $i \in [1, m]$, let $E_{L(P)}(V_i/V_{i-1})$ be the vector bundle over G/P associated to $E_{L(P)}$ for V_i/V_{i-1} .

Assume that the associated vector bundle E_V is globally generated.

Since $E_{L(P)}(V_m)$ is globally generated, its quotient $E_{L(P)}(V_m/V_{m-1})$ is also globally generated. From the second part of Proposition 3.2 we know that the L(P)-module V_m/V_{m-1} is trivializable. As a consequence, the vector bundle $E_{L(P)}(V_m/V_{m-1})$ is trivializable.

Since both the vector bundles $E_{L(P)}(V_m)$ and $E_{L(P)}(V_m/V_{m-1})$ are trivializable, it can be shown that the vector bundle $E_{L(P)}(V_{m-1})$ is also trivializable. Indeed, the vector bundle $E_{L(P)}(V_m)$ being trivializable, the quotient bundle $E_{L(P)}(V_m/V_{m-1})$ is given by a map from G/P to the Grassmannian $\operatorname{Gr}(r,r')$, where $r := \operatorname{rank}(E_{L(P)}(V_m))$ and $r' := \operatorname{rank}(E_{L(P)}(V_m)/V_{m-1})$. Since $E_{L(P)}(V_m/V_{m-1})$ is trivializable, the pullback of the tautological quotient bundle on $\operatorname{Gr}(r,r')$ to G/P is trivializable. On the other hand, the r'-th exterior power of the tautological quotient bundle on $\operatorname{Gr}(r,r')$ is an ample line bundle. Therefore, the above map from G/P to $\operatorname{Gr}(r,r')$ must be constant. This immediately implies that the vector bundle $E_{L(P)}(V_{m-1})$ is trivializable. In particular, $E_{L(P)}(V_{m-1})$ is globally generated.

Since $E_{L(P)}(V_{m-1})$ is globally generated, from the second part of Proposition 3.2 we know that the L(P)-module V_{m-1}/V_{m-2} is trivializable. Now replacing V by V_{m-1} and using induction we conclude that the L(P)-module V_i/V_{i-1} is trivializable for all $i \in [1, m]$.

Consider the homomorphism $L(P) \longrightarrow \operatorname{GL}(V)$ given by the action of L(P)on V. Since the L(P)-module V_i/V_{i-1} is trivializable for all $i \in [1, m]$, the image of this homomorphism lies in the unipotent subgroup of $\operatorname{GL}(V)$ associated to the filtration in Eqn. (27). But there are no nonconstant homomorphisms from a reductive group to a unipotent group. Thus V is a trivial L(P)-module. This completes the proof of the lemma.

Theorem 3.4. The principal H-bundle E_H over G/P, defined in Eqn. (15), is strongly stable with respect to any polarization on G/P.

Proof. As in the proof of Proposition 3.4, replacing ρ by the composition homomorphism in Eqn. (20) we conclude that it is enough to show that E_H is stable.

The Lie algebra of H will be denoted by \mathfrak{h} . Let

$$\mathfrak{z}(\mathfrak{h}) \subset \mathfrak{h}$$

be the center. Let $\operatorname{ad}(E_H)$ be the vector bundle over G/P associated to the principal H-bundle E_H for the adjoint action of H on \mathfrak{h} . Therefore, $\operatorname{ad}(E_H)$ is the adjoint vector bundle for E_H . Since the adjoint action of H on \mathfrak{h} fixes $\mathfrak{z}(\mathfrak{h})$ pointwise, the trivial vector bundle over G/P with fiber $\mathfrak{z}(\mathfrak{h})$ is a subbundle of $\operatorname{ad}(E_H)$. Therefore, we have an inclusion

$$\mathfrak{z}(\mathfrak{h}) \hookrightarrow H^0(G/P, \mathrm{ad}(E_H)).$$
 (28)

From Proposition 3.1 we know that E_H is polystable. Therefore, to prove that E_H is stable it suffices to show that the homomorphism in Eqn. (28) is surjective. A proof of it can be found in the proof of Proposition 2.3 in [2, page 572].

Let

$$\mathcal{E} \subset \operatorname{ad}(E_H) \tag{29}$$

be the coherent subsheaf generated by its global sections. The action of G on $\operatorname{ad}(E_H)$ induced by the action of G on E_H clearly preserves the subsheaf \mathcal{E} in Eqn. (29) (see the proof of Proposition 3.1 for the action of G on E_H). Since the left-translation action of G on G/P is transitive, and the action of G on $\operatorname{ad}(E_H)$

is a lift of the left-translation action of G on G/P, the subsheaf in Eqn. (29) is actually a subbundle.

Let

$$V = \mathcal{E}_{eP} \subset \operatorname{ad}(E_H)_{eP} = \mathfrak{h}$$
(30)

be the submodule of P-module \mathfrak{h} obtained by restricting the homomorphism in Eqn. (29) to the point $eP \in G/P$. We note that the isomorphism of \mathfrak{h} with the fiber $\operatorname{ad}(E_H)_{eP}$ is constructed as in Eqn. (12), the group P acts on \mathfrak{h} through ρ , and P acts on V through q in Eqn. (6). From Eqn. (19) it follows immediately that the subgroup Z_0 acts trivially on \mathfrak{h} . Therefore, the action of Z_0 on the L(P)-module V in Eqn. (30) is trivial.

The vector bundle \mathcal{E} in Eqn. (29) is clearly globally generated. Hence from Lemma 3.3 we conclude that the L(P)-module V in Eqn. (30) is trivial.

We will show that for any element in the complement

$$w \in \mathfrak{h} \setminus \mathfrak{z}(\mathfrak{h}), \tag{31}$$

the reduced isotropy subgroup of H associated to w for the adjoint action of H on \mathfrak{h} is contained in some proper parabolic subgroup. For that, let

$$w = w_s + w_n \tag{32}$$

be the Jordan decomposition of w, where w_s is semisimple and w_n is nilpotent; see [5, page 99, Theorem 15.3] for Jordan decomposition. From the uniqueness of the Jordan decomposition it follows immediately that the reduced isotropy subgroup associated to w for the adjoint action of H is the reduced intersection of the isotropy subgroups associated to w_s and w_n . The centralizer of w_s in H coincides with the centralizer of the torus in H generated by w_s . Therefore, using [4, page 26, Proposition 1.22] we conclude that if

$$w_s \in \mathfrak{h} \setminus \mathfrak{z}(\mathfrak{h}),$$

then the centralizer of w_s in H is contained in some proper parabolic subgroup of H.

If $w_s \in \mathfrak{z}(\mathfrak{h})$, then w_n in Eqn. (32) must be nonzero. If $w_n \neq 0$, from [5, page 185, § 30.3] we know that the centralizer of w_n is contained in some proper parabolic subgroup of H. Therefore, the reduced centralizer in H of the element w in Eqn. (31) is contained in some proper parabolic subgroup of H.

Since the homomorphism $\tilde{\rho}$ in Eqn. (16) is irreducible, from the above observation we conclude that any trivial submodule of the L(P)-module \mathfrak{h} is contained in the center $\mathfrak{z}(\mathfrak{h})$. In particular, the trivial L(P)-submodule V in Eqn. (30) is contained in $\mathfrak{z}(\mathfrak{h})$. This immediately implies that the homomorphism in Eqn. (28) is surjective. This completes the proof of the theorem.

References

[1] Anchouche, B., and I. Biswas, *Einstein-Hermitian connections on poly*stable principal bundles over a compact Kähler manifold, Amer. Jour. Math. **123** (2001), 207–228.

[2]Azad, H., and I. Biswas, On the principal bundles over a flag manifold, J. of Lie Theory 14 (2004), 569–581. [3]Biswas, I., and S. Subramanian, Flat holomorphic connections on principal bundles over a projective manifold, Trans. Amer. Math. Soc. 356 (2004), 3995-4018. Digne, F., and J. Michel, "Representations of Finite Groups of Lie Type," [4]London Mathematical Society Student Texts 21, Cambridge University Press, Cambridge, 1991.

- Humphreys, J. E., "Linear Algebraic Groups," Graduate Texts in Mathe- $\left[5\right]$ matics 21, Springer-Verlag, New York, Heidelberg, Berlin, 1987.
- Huybrechts, D., and M. Lehn, "The Geometry of Moduli Spaces of [6]Sheaves," Aspects of Mathematics E31, Friedr. Vieweg & Sohn, Braunschweig, 1997.
- [7]Ramanan, S., Holomorphic vector bundles on homogeneous spaces, Topology 5 (1966), 159–177.
- [8] Ramanan, S., and A. Ramanathan, Some remarks on the instability flag, Tôhoku Math. J. **36** (1984), 269–291.
- [9] Ramanathan, A., Stable principal bundles on a compact Riemann surface, Math. Ann. **213** (1975), 129–152.
- [10]—, Moduli for principal bundles over algebraic curves: I, Proc. Ind. Acad. Sci. (Math. Sci.) **106** (1996), 301–328.
- Umemura, H., On a theorem of Ramanan, Nagoya Math. Jour. 69 (1978), [11] 131 - 138.

Hassan Azad Department of Mathematics Laĥore University of Management Sciences, Lahore Pakistan hassanaz@kfupm.edu.sa

Indranil Biswas School of Mathematics Tata Institute of Fundamental Re-search, Homi Bhabha Road Bombay 400005 India indranil@math.tifr.res.in

Received April 16, 2007 and in final form July 11, 2007