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Abstract. In this _paper we study an approximation of tensor product of
irreducible integrable sl representations by infinite fusion products. This gives
an approximation of the corresponding coset theories. As an application we
represent characters of spaces of these theories as limits of certain restricted
Kostka polynomials. This leads to the bosonic (which is known) and fermionic

o~

(which is new) formulas for the sl branching functions.
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Introduction

Let g be a semisimple Lie algebra, g be the corresponding affine algebra,
g=9g®C[t,t ') ®CK @ Cd,

where K is a central element and [d, 7;] = —iz;. Weset g’ = [g,8] = g®Clt,t 7|
CK. Let Ly,, Ly, be two integrable irreducible g-modules. Then one has the
decomposition of the tensor product

L/\l ® L/\2 = @Cfl,)\z ® L;U'
n

into the direct sum of integrable irreducible representations of g’ (see [13]). Here
C’f\‘L », are spaces of highest weight vectors of the weight u in the tensor product
Ly, ® Ly,. Therefore C’fh)q are naturally graded by the operator d. This gives
the character (branching function)

Ane(@) =Tr ey . (1)

Note that the GKO construction (see [11]) endows spaces CY, ,, with the structure
of the representation of the Virasoro algebra Vir. This also gives a grading which
differs from (1) by certain constant.

There exist different formulas for ¢, ) (q). For the case g = sl, the bosonic
(alternating sign) formula was obtained in [1, 14, 15] using the representation
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theory of Virasoro algebra (Feigin-Fuchs construction [8]). Another approach is
based on the connection of the branching functions with configuration sums of
RSOS model (see [3], [17], [18]). This also gives different types formulas, in
particular the fermionic formula for g = sly. One of the important points in
this approach is a construction of some finitization (approximation) of branching
functions. The same method is used in [19], where for the type A affine Kac-Moody
algebra the finitization of some branching functions is constructed by means of the
combinatorics of crystal bases. This allows to obtain cj ,,(g) as certain limits
of restricted Kostka polynomials. In our paper we construct the representation
theoretical approximation of the spaces C’fl,/\z for g = sl;. We give some details
below.

Let L;;, 0 <14 < k be irreducible integrable level k representations with
highest weight ¢ with respect to h ® 1 € 5/[\2 (h is a standard generator of the

Cartan subalgebra of sly). Then one has the isomorphism of 5/[\2/ modules

k1+k2
_ j
Liy gy ® Liy g, = @ Cilin @ Ljky ks
7=0

Our main tool is a construction of the filtration
L(0) — L(1) = L(2) — ... = Lj; j; ® Liy (2)

of the tensor product, where L(p) are certain integrable representations of ;[\2
Namely, let v, € Ly g, wn € Liyk,, n,m € Z be sets of extremal vectors (the

orbits of the highest weight vectors with respect to the action of the @ Weyl
group). Then obviously

Li1,k1 @ Li27k2 = U U(ﬁ/[\g) : (Un & wm),

n,meZ

where U (g[;) is the universal enveloping algebra. In addition it is easy to find
n(p),m(p), p > 0 such that for L(p) = U(sly) - (Un(p) ® Wy (p)) the following holds:

L(0) — L(1) — L(2) — ... = Lj; g, @ Ly y- (3)

This procedure reduces the decomposition of the right hand side of (3) to the
decomposition of L(p) into the direct sum of irreducible representations. This can
be done using the results from [5, 7].

We recall that in [5] the spaces U (g[\g) (v, ®wy,) were identified with infinite
fusion products (the inductive limits of finite-dimensional fusion products, see
[10]). The infinite fusion products were decomposed in [7] and the corresponding g-
multiplicities of irreducible representations were expressed in terms of the restricted
Kostka polynomials. Therefore from (2) we obtain that branching functions are
equal to the appropriate limits of restricted Kostka polynomials.

This Kostka polynomial approximation gives two different formulas for
branching functions. From one hand we can use the alternating sum formula,
which expresses the restricted Kostka polynomials in terms of the unrestricted
Kostka polynomials (see [19, 9]). The latter are related to the characters of the
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representations of ;[\2 Namely, certain limits of unrestricted Kostka polynomials
can be expressed as a difference of two sly string functions. This leads to the
following formula

cgl,iQ

(4) = 72 x

2 : —(k14+k2+2)p%—(j+1)p 2(k1tko+2)ptj—iz 2(k1+ka+2)p+jtiz+2
q (Cthil,k1 Cthil,kl )’

PEZL
where L (q) = {v € Lix : (h®@1)v=av} and v (i1,iy,j) is some constant. We
show that this bosonic formula can be rewritten in a form of [1, 14, 15].

Another possibility is to use the fermionic formula for the restricted Kostka
polynomials (see [19, 9]). In the appropriate limit this approach gives the following
type formula:

(q) = q’m(il,iQJ) %

11,02

qus—i-us |:CS +Vv+ S:|
S
4 4
D T ACS EETPEE) S e Cowe MU

i€{1, k1 Fho P\ (k1)

where B and C' are some (ky + ks — 1) X (k1 + ko — 1) matrices and u, v are some
vectors. The following notations are used: for two vectors n,m € Z% we set

k

Lﬂ - ﬂ L?::ZL B ﬂ (m2) |((ZZZ)q_' o) (k)g! =T]1 - d).

i=1 i=1 a q i=1

Our paper is organized in the following way.

In Section 1 we recall the main definitions and properties of the represen-
tations of 5A[2 and of the fusion products.

Section 2 is devoted to the description of the Kostka polynomial approach
to the computation of the branching functions. This gives bosonic (Section 3) and
fermionic (Section 4) formulas for sl branching functions.

Acknowledgments. This work was partially supported by the RFBR
grant 06-01-00037 and LSS 4401.2006.2.

1. Preliminaries

In this section we fix our notations and collect the main properties of fusion
products (see [10, 4, 5, 6]).

Let Vi,...,V, be cyclic representations of the Lie algebra g with cyclic
vectors vy, ...,v,. Fix Z = (2,...,2,) € C" with 2; # z; for i # j. The fusion
product Vi(z1)*...%V,(z,) is the adjoint graded g ® C[t] module with respect to
the filtration F, on the tensor product Vi(z1) ® -+ ® V,,(2,):

F,, = span{g,g)---g,gi)(vl @ @) ke k, <m, g € g} (5)

Here g, = g @ t* and Vj(2;) is the evaluation representation of g ® C[t], which is
isomorphic to V; as vector space and the action is defined via the map goC[t] — g,
gt —zlg, g€ g.
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The most important property of fusion product is its independence on Z
in some special cases. We will deal with the case g = sl5.
Let A= (ay,...,a,). Denote by

Mo =Tg *...%T,, (6)

the fusion product of finite-dimensional irreducible representations of sl, (dim7; =
j+1). Let vy be the highest weight vector of (6) which is the image of the tensor
product of highest weight vectors of m,,. We set

M
i

(Tay * oo % Tay ) = span{(xgll) . ) vain + . iy =m, 2 € sy}

Let h be the standard generator of the Cartan subalgebra of sl,. For sly-module
M we denote M® ={w € M : hw = aw} and set

oo
chy(mg, * ... %7, )" = Z q" dim (7, % ... % Ta, )* N (Tay * oo % T )im)-
m=0

We will need the following generalization of the standard embedding m, . —
To@mp. Let A= (a3 <...<a,), B=(b <...<by,), m <n. Then we have
an embedding

Tay % oo ¥ Mg % Mgy by ¥ oo ¥ Ty, — Mo @ Mp, (7)
Ualwnanfmyanfmqtl‘i‘bl7~-~uan+bm = U4 ® UB-
Let us discuss one class of submodules of fusion products (see [6]). Let

A= (a3 <...<ay,). Then for any 1 <1i < n there exists sly ® C[t]-module S;(A)
such that the following sequence is exact:

0— Si(A) = g, *...xm,, —

Ty % oo Mg,y % Ta,—1 % Moy, 41 % Tayp % ... ¥ Mg, — 0 (8)
For example, for i =1
S1(A) = Tayay * Tay * ... * Tq,, .
We will also need the case : =n — 1. In this case
Sp1(A) = T % kT, @ Ty —ay - 9)

Therefore one has an exact sequence

0— g, * ... % Ty, » @ Mgp—a, y — Tay *...% Mg, —

Tay % o kT, 5 % Ta, -1 % T, 41 — 0 (10)

We now fix our notations about g@ Let

sl = sl ® C[t,t ] & CK & Cd,



FEIGIN 149

where K is a central element and [d,z;] = —iz;, where for x € sl we put
r; =2t Let e, h, f be standard basis of sl,. Consider nilpotent subalgebras

n, =shb®t 'Ct '@ Cf, n_ =sl, ®tC[t] ® Ce.

We denote by L;;, 0 < [ < k integrable irreducible ;[\Q—module with highest
weight vector v, such that

hovi e = lug, Kuge = ko, dvg =0, novg, =0, Ulng) - v, = Lig,

where U(ny) is the universal enveloping algebra. Representations L;j; are bi-
graded by operators d and hy. We set

Ly = @ L) @{v dv = sv, hgv = aw}.

«,SEZ «,SEZ

This determines the character chy.L; =), ez 7 “dim(L; )¢ For any graded
subspace V — L;; we set

ch,V = Z ¢°dim{v : dv = sv}.

s>0

We now recall the Sugawara construction for the representation of the Vi-
rasoro algebra in the space of the level k 5[2 module. Namely, following operators
form the Virasoro algebra:

1

1
Ln A~ cemJn—m mEn—m _hmhn—m 5 Z7
2(k+2)2 em frn—m + fme +3 n e

mEeZ

where : : is the normal ordering sign,

Iiyj> ? Z jv
Y Y;iZi, .7 > 7;7
%(xiyj + yja:i).

The central charge is equal to c(k) = k3_4]-€2 We denote by A the conformal
weight of the highest weight vector v, € L, i.e. Lovy = Dppvrg.

We consider the decomposition of the tensor product

k1+k2
Lihkl ® Liz,kz = @ Czl io ® LJ,kH-kw

where C’,fl i, 18 the space of highest weight vectors of the weight j in the tensor

product L;, j, ® Li, r,. Then by the GKO construction (see [11]) the space Cfl i
is a representation of the Virasoro algebra

L,=LY @Id+1d® L? — L{%9)
where LS),LS),L%dmg) are the Sugawara operators acting on L;, r,, Li,x, and
Li, 1, ® Li, , respectively. We put

¢ . (q) = ch,C) . = Trq™|cw

11,22 11,12 A, )\2
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Remark 1.1.  Note that the degree operator d € g acts on Ci,)\z and Ly =
d+ A2'1,/?1 + Ai27k2 - A]}kl-‘rkz .
For the k-tuple m = (mq,...,my) € Z’;O we set

Vin = T sk T = kL R T kL ok T KLk T
———— —_—
mi mp
We also use the notation m = (1" ... k™).

Consider the decomposition of V4, into the direct sum of irreducible repre-
sentations of sly ® 1 — sly ® C[t]:

Vin = @Wl & f?z,m;

>0

where I?l,m — Vmn is a space of highest weight vectors of weight [. We note that
each [N(l,m inherits a grading from V;,. It is proved in [7] that Chq.f(l’m = [N(lym(q),
where I?l,m(q) is unrestricted Kostka polynomial. These polynomials are related
to ones from [9] by

Kim(q) = "™ K m(q™"),
where

h(m) = (mAm — p(m))/4, A= (4,;) =min(i,j), (11)
p(m) = #{a: my+...+my is odd }.
We note that h(m) can be defined as follows:
h(m) = max{s: (7] *...x7"); # 0}.
Thus the "reversed” character of the fusion product is given by
ch, V& = ¢"™ch, V2,

We proceed with a limit construction of fusion products. It is proved in [5]
that there exists an embedding of sly ® C[t]-modules:

‘/(mlr":mk) - ‘/v(m17""mk71)mk+2) '

This allows to define an injective limit

Lm,k - ]\}LH;O ‘/(ml,...,mk_l,mk—i-QN)- (12)

—

It turns out that Ly, ; has the natural structure of level k& sl; module. For example,
Ly = limy_ oo m; * ;2. In general representations Ly, are reducible. Consider
the decomposition

k
Lm,k = @ C(l,m & Ll,ku
1=0
where Cpm < L is the space of the highest weight vectors of the weight [. Note
that Cjm are naturally graded by the operator d. We set ch,C}m = Tr qd|cl,m. It
is shown in [7] that

ch,Crm = K (q), (13)

where K l(lfl)l(q) is the restricted Kostka polynomials. These K. l(i)l(q) are related to
K® () from [9] by

l,m

R0

l,m

(Q) _ qh(m)Kl(k) <q71)'

, M
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2. Kostka polynomials approximation

In this section we obtain the Kostka polynomials approximation of the characters
of the sly coset models, using the injective limits of fusion products. Our main
idea is to construct an injective sequence of sly subrepresentations W;, i > 1
(ie. W; — Wyy1) inside L;, g, ® Ly, x, such that each of W; is isomorphic to
some Ly, +k, (M depends on ¢) and a limit (a union) of all W; coincides with
Lil,kz ® Liz,kz :

Let v, € Li, ,, n € Z be the set of extremal vectors. This means that the
weight of v, is equal to the weight of the highest weight vector v;;, shifted by the
n-th power of the translation operator 7' from the Weyl group W of EE . Recall
that W contains a lattice Z and T is one of its generators. We fix T by the
condition hgv, = 73 — 2k;n. We also denote the set of extremal vectors of L, x,
by w,, how, = 15 — 2kon.

Lemma 2.1. Let n > m./Ihen
a) U(slz) - (vn @ win) = U(sly) - (Uns1 @ wi);
b) limn_,oo U(E[g) . (Un X wm) = Lil,k’l (29 L,‘%]@.
Proof.  We note that (e, 1)" " (ey,)"v, is proportional to v, ; and also
eswy, = 0 if i > 2m. Therefore (eg, 1) " (e,)" (v, ® w,,) is proportional to
Up—1 @ Wy, . SO a) is proved.
To prove b) we show that

U(s/g) sspan{v, @ Wy, 1 n>m} = L g, @ Liy,. (14)

In fact, e;w,, =0 for ¢ > 2m and so the space
(C[e2m+17 €am+42; - - ] ' Un) & Wiy,

is a subspace of the left hand side of (14). Therefore the same is true for L;, j, @ Wy, ,
because

Lil,kl = nh—{go C[QZm—&-l, €2m+2, - - ] “Up,.
Now b) follows. .

Lemma 2.1 provides us with an injective sequence of g[; subrepresentations
which converges to the whole tensor product of two integrable modules. In the
next Lemma we show that all these subrepresentations are of the type (12).

Lemma 2.2. Let n>m > 0. Then
Ul(sh) - (v ® wy) = lim 7, wZEz(”_m)_l) Ty iy % Ty (15)
Proof. = We note that
Usly @ C[t]) - v, 2 my o m", Ulsly @ C[t]) - wpy = m, # ™

Therefore, because of (7),

Usly @ Clt]) - (vn, @ W) >~ 7y, * WZEz("_m)_I)  Thypin * Tty

We now obtain our lemma from

Ul(sly) - (vn ® W) ~ lim U(sly @ C[t]) - (Vs ® Wpnss)-
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In the rest of this section we combine together Lemma 2.1, Lemma 2.2
and formula (13) to obtain the Kostka polynomials approximation of the coset
characters. We introduce special notation for the right hand side of (15). Denote
by m(N) a (ki + k2)-tuple such that

Vm(N) = 7Ti1 % ’7T1:52N_1) * 7Tk1+i2' (16)
For example, for i; = 75 = 0 we have

m(N) = (0,...,0,2N,0,...,0)
——
ki1—1
and for 7; =0 and iy = ko
m(N)=(0,...,0,2N —1,0,...,0,1).
——

ki—1

From the definition (12), formula (15) and Lemma 2.1 we obtain embeddings of
sly submodules of L;, , ® Li, 1,

Lm(l),k1+k2 — Lm(2),k1+k2 — ...

and
Li1,k1 ® Liz,k2 = J\}I_Igo Lm(N),k1+k2- (17)

Now (13) and (17) gives

Corollary 2.3.

; . AL . (ki tk
Cgm‘z(Q) = CIA””“JFAZQ”“? Bijki+hy Qi JR1Tk)

3. Bosonic formula

We use the alternating sign formula for the restricted Kostka polynomials in terms
of the unrestricted Kostka polynomials (see [19, 9])

.
Kjm(9) =
2, /s 2 -
Z gFPH ORI o m () — Z gt TP oy o m(q). (18)
p=0 p>0

Recall the notations from [7]

K" (q) = "™ K (¢7Y), Kim(q) = "™ Kim(g ™).

Lemma 3.1.

lm K miny(q) = chy LI 2 — ch, L4272, (19)

Nooo i1,k1 11,k1
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Proof. It is shown in [7] that K ;m(q) is a multiplicity of m; in V;,. Consider
embeddings

*2(N-1) *(2N-1) *2N
Ty * T, ® Ty > Ty * Ty, Ty tip > iy % Ty @ Ty, (20)

where the first embedding comes from (7) and the second from (9). We note that
(20) for N and N + 1 can be combined into the commutative diagram

*2(N—1 2N—-1 N
iy * 7rk1( ) @m;, —— m, * wk( )k Mpyiy, ——— N @ i,
2N+1 #2(N+1
TG, * 7Tk2N K m, > Tk 7rk( ) x My tig — Ty * 7Tk1( ) X T,

In view of L;j = limy_ m; * 72" we obtain

Kj,m(N) (Q) - CAl/lq(‘/m(N) & 77—12) - Ch (Vm(N & 71—22>]+2
cthIfl( ;V?) — cthIf(rﬁ;rQ — cho L2 — ch, LIT2 N — 0. (21)

Lemma is proved. [ ]

Now we need to know how ”fast” the left hand side of (19) converges to
the right hand side.

~ n2
Proposition 3.2.  ch,L}; — chy(m; * T = O(qN“JFE*%),

Proof. = We first consider the difference
ch o (T * WZQ(NH)) —¢ch (i x T
Recall (see (10)) that there exists an exact sequence

«2(N+1
0—>7ri*7r,’;2N—>7rz>k k( )—>7ri>k7rk,1*7r,’§2N*7rk+1—>O.

We also note that the sly ® C[t]-homomorphism

*2(N+1
ok k( )—>7ri*7rk_1*7r,’;2N*7rk+1

is determined by the condition that the highest weight vector (with respect to hg)
maps to the highest weight vector. Therefore

ch o (i % WZZ(NH )* — ch (i kT =

qh( L E2INADY_p (k_l)kQN(k+1))éIlq(7ri ¥ T g * ﬂ_;;ZN * 7Tk:+1)n- (22)

Using the formula h(m) = (mAm — p(m))/4 (see (11)) we obtain

R EPNFDY — h(it(k — DEPN (k4 1)) =
(N+1)(k(N+1)4+i)—(N+D(k(N+1)+i—-1)=N+1. (23)
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n

To evaluate &q(wi * Tp_q * 7T;:2N * Tpe1)" we use the following formula for the

character of the fusion product from [4]

Chy (5™ 5w Y =

k—1
q*@ Z Zl 1Jl al |: :| |:mk l+]k l+1:| ) (24)
q

J1yeJk =0 =1 q
258 (i—u)=n

where 2ap = m; + ...+ my, and

7] = it = - o

j (gl (m = 7)gV P

In view of S5, (ji — oy) = n/2 we obtain

k
n° k+1
—l—E ]Z—Oél > _
=1

Therefore
by (s # g 2N s )" = O(g % 1), (25)

From (23) and (25) we obtain

Lk

ch o (T * WZQ(NH)) —ch o (T * 2Ny = O (NI R

)- (26)
Now using the limit construction

Lipy =7 — ... > m*m,~" — m*m,

we obtain our proposition. ]

Corollary 3.3.  Let | > 5.

~ (1—ig)? Ky
Kp () (q) — (chy L5 — chy LIF2H2) = O (g™ 1),
Proof. We recall that
*(2N—1) «(2N—1)

Kl,m(N)(Q) = ChQ(ﬂ-il * Ty * 7-‘-/€1+i2>l —ch <7T11 * T, * 7Tk1+1'2)l+2' (27)

Using (7) and (9) we obtain embeddings

*(2N—-2) *(2N—1)

*(2N)
Ty * T, ® iy < iy * Ty * Mgy pin — Ty ¥ Tp) @ Ty (28)

From Proposition (3.2) we have
gh(](”h * 7T1:52N) ® 7Ti2)l - ChQ(Lihkl ® 7Ti2)l =
i2
Z(Chq(m1 * WZ?N) ® mi,)' 2 — chy(Liy gy ® )12 1) =
s=0
k

(I—ig)?
O™ ), (29)
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because [ > iy. Therefore from (28) and (29) follows that

~ w(ON— (1—i9)®  ky
chy(mi, # N s ) — chy(Li gy @ ) = O(¢™N T ™ %), (30)

where the approximation L;, , ® m;, = limy_o T, * anN ® T, is used. Now our
corollary follows from (27) and

Chq(Lil,kl & 7Ti2>l — Chq(Li1,k1 X 7Ti2)l+2 = Cthl.ii2 — Cthl.+i2+2.

i1,k1 i1,k1

Theorem 3.4.
. (ki+ka)
A Kjmevy =
— 2 (i 2(k1+ka+2)p+j—i 2(k1+ko+2)p+j+iz+2
Zq (k1+ka+2)p (]+1)p(cthi1(’k11+ 2+2)pti—iz Cthil(7k11+ 2+2)p+j+iz+ ) (31)
PEZ

Proof.  We use the alternating sign formula

= k k _ 27 . ~
K](-,,;J(FNQ))(Q) _ Z q (k14+ka+2)p (Hl)pKz(k1+k2+2)p+j,m(zv)(q)—
p=>0

Z q—(k1+k2+2)p2+(j+1)

p>0

Kk thot2)p—j—2m(n)(4)- - (32)
Using Corollary (3.3) we rewrite this expression as

i1,k1

Z qf(k1+k2+2)p27(j+l)p (Cthz(k1+k2+2)p+j*i2 B

p=>0

ch, [ 2Rtk 2)ptitiat2 | O(qN+ i

(2(kq +ko+2)pti—in)? —k7
i1,k1 )) -

Z g +ho+2)p2+(j+1)p (Cthz(k1+kz+2)p—j—2—i2 _

i1,k1
p>0

T (2(ky +ho+2)p—j—2—i)? —k3

ch, L2k R 2t o (gN " ). (33)

i1,k1
We note that for p big enough we have
(2(k1 + k2 +2)p — j — 2 —in)* — K

(ki + ko +2p* + G+ 1p <

4k ’
. 2k +hko+2)p—j —2—i9)% —K?
(k?1+k2+2)]92—(j+1)p<((1 2 )p J 2) 1.
4k
Therefore we obtain
. =~ (k14k
Jim K0 (0) =
Z q—(k1+k2+2)p2—(j+1)p (chq lel(f211+k2+2)p+j—z‘2 — chy L?I(fc];1+k2+2)p+j+i2+2> _
p=>0
Z q—(k1+k2+2)p2+(j+1)p ( chq L?I(fclgll+kz+2)p—j—2—iz . chq L?I(f’jl+kz+2)p—j+z‘z> ‘ (3 4)

p>0
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We now rewrite the second sum replacing p by —p. This gives

_Zq—(k1+k2+2 —(+1)p (h 2Rtk 2)p =iz _ g L2(k1+k2+2>p+y+z2+2> (35)

11, k1 i1,k1
p<0

(because ch,L§, = ch,L; ). Our theorem is proved. [

Corollary 3.5. The right hand side of (31) coincides with
R R YA () (36)

11,82

We finish this section with the identification of our bosonic formula with
the known one (see [1],[14],[15]).

Let b be Cartan subalgebra of 5/[\2 and define elements (a, k, s) € h* by
(a,k,s)ho =1, (i,k,s)K =k, (a,k,s)d = s.
We consider a translation element ¢ from the Weyl group W of 5/[\2 defined by
t(a,k,s) = (a+ 2k, k,s+k+a).

Therefore we have an isomorphism of vector spaces L{, =~ Lf;f’“ and for the
corresponding characters we obtain

chy L7127 = ¢*och, LY. (37)
This gives
chy LW = AW 9eh, LY (38)
We now rewrite the right hand side of (31) using (38). Namely, let

where 0 < m < k;/2 is integer for even i; and half-integer for odd i;. Using (38)
and (39) we obtain

—(k1+ko+2)p2—(5+1)p h L (k1+ko+2)p+j—i2 _

q i1,k1
U= (p(k1+ha+2) (ka+2)+ (ko +2) (j+1)— (k1 +ka+2) (i2+1))
’L
q4k1 q’“l thl 2 2 2 J 1+k2 2 hLzlkl

Combining this with the similar formula for the second term in the right hand side
of (31) we obtain that up to a power of ¢ the branching function ¢ , (q) equals

11,12

to
Z - 4 Ch Lll kl
0<m<ky/2
< Z qﬁ(p(lm+k2+2)(k:2+2)+(k2+2)(j+1)—(k1+k2+2)(i2+1))_
PEZL
mj_iy(p)=Em (mod k1)
Z qé(p(kil+k‘2+2)+j+1)(p(k;2+2)+(i2+1)))
DPEL

Mjtis(p)=Etm  (mod k1)
where m,(p) = a/2+ (k1 +k2+2)p and m _runs over integers if 4; is even and over

half-integers if 4, is odd. Identifying ¢~ "= ch L ", With the ;[\2 string functions
we obtain the known bosonic formula.
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4. Fermionic formula

We now compute the limit limy_ [?ﬁ;ﬂf,i)(q) using the fermionic formula from

[7]:
J,m = S )

g/ ") Y g3 {A(m —28) —v+s (40)

k
s€Zs q

2s|=|m|—j

Where A = (A’L'J)?,j:l = (mln(l,])), vV = (Va)szl = (maX«)’a _ k +])), ‘m| —
SF L im,. For v € ZE, we put

2], -

Now let k = ki + ko, m = m(N) (see (16)). Then [m(N)| = iy + iy + 2k N and
for s from the right hand side of (40) we have |s| = kN + 252=2 This gives

k

(vi)g!
2 (8i)g!(vi = si)g!

ihtia—yg 1
= N+2127 S g, (41)
2hy ky 1<a<k;+ks
a#k;

We now rewrite the fermionic formula for [?j(li;?ﬁz))(q) using (41).

We start with the power (# — s)A(# —s). Note that

N (N -y
m(2 >Am(2 ):N2k1+Ni1+hZZ2.

Therefore

(M—S>A<M—S) :N2k1+Nz‘1+ilj:i2+

2 2
Z min(co, 3)sass—
1<a,B<k1+k2
C'{vﬁ?ékl

Z So(min(a,iy) + (2N — 1) min(«, k1) + min(a, ki + 42))+
a#k;

kisj, + 2 Z min(a, k1)sqsk, — (i1 + 2Nky)sg,.  (42)
a#k;

Using (41) we rewrite the last line as

L
(—ir — 2Nk +2 3 mina, ky)so) (N + 2279 LS ) (43)
a#ky a#k
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Combining together (42) and (43) we obtain

(2514

1
Z 5053 {min(a,ﬁ) ? —(af — min(a, k1) — min(G, k1)) | +
Bk !
i1 +io—J+ k1+
ki

Z Sa [— min(a, i) — min(a, ky + i2) + min(a, k)
a#k;

aj—z'g}_{_il—i-lé (i1+i2—j)2_i1(’i1+i2—j)
k1 4 4k, 2k, '

We now rewrite the binomial coefficient

[(A(m(N) —28))a — Va + Sa

SOt
using (41). Let o # k. Then

(AM(N) —28))o — Vo + Sa =
min(«, 1) + (2N — 1) min(«, k1) + min(a, ky + iz)—

-2 Z min(a, 3)sg — 2min(a, k1) sk, — Vo + S =

W+l —J+k
ky

QZsﬁ( min (o 5)+M)—ya+sa. (46)

B#k1 h

) + min(a, ]{31 + 22)+

min(a, i) — min(a, kp)(

We note that the result is independent on N. Now let o = k1. Then

(A(m(N) = 28))5, — vi, =

i+ (2N = Dk + k=2 ) min(ky, 8)sg — 2kisp, — vy, =
B#k1

J—io— Uy, +2 Z sg(B — min(ky, ). (47)
B#k1

Therefore

(A(m(N> - 2S>>k1 — Uk, + Sky

5k1

q
1+ O(qH‘S’fl )

(j - 7;2 — Vi + 22575/61 Sﬁ(ﬁ - mln(kl’ﬂ)))q' .

(48)



FEIGIN 159
Note that
N N
k1+k2 k1+k2 2
m(N)
WSS (g ]
a=1 B=k1+ko—a+1 B
ki+ko 2 k1+ko 2
m(N m(N
st | > (¥_s> Y (<T>_s> ] _
B=k1+1 B B=k1 B
Sk, T+ (Sk1+1 T Skyky, — 1/2)2 + (5k1 + o Skytks — N>2 (49)

The expression in the last line is greater than or equal to N/3 (because if s, < N/3

and Sp, 41+ -+ Sk 4k, —1/2 < N/3 then (sg,+. ..+ 8k 15, —N)* >
8)A(2 —s) {A(m — 2s) ] _
q

1
(J—i2— v + 22,37&1@1 sg(8 — min(k, 5))),!

m __

5 kl_ykl +Sk1

q(

Sk

Using p(m(N)) = 4; + i we obtain the following theorem

Theorem 4.1.

_ Gytio—j)(ig—i1—j) ~

N/3). Therefore

+0(¢N?). (50)

: (k1tk2)
N " jm(N) =
qus+us CS tv+s
> —
2o () 2+ 23 500 — min(k )1
iE{l ,,,,, kl—‘rkg}\{kl}
where

aff — min(a, k1) — min(G, k) a
k1

u, = —min(q, ;) — min(q, ky + i2)+

Ba,ﬁ = min(a7 ﬁ) +

9

(51)

ITliIl(Od7 k‘l)(ll —+ iQ — j + k’1> + Oé(j — 22)

Ky
min(a, k)3
ka

Cop = — 2min(a, 8),

i+t — 7+ k
ky

vV, = min(q, i) — min(q, kq)

_|_

Y

min(a, ky + i2) — max(0,« — k1 — ko + ).

C'Zl 112

Corollary 4.2. The branching function
right hand side of (51) and

(q) equals to th

. ) . (i1 +ig—5) (g —%1 —j)
qulvkl—"_AlkaQ_AqulJka—i_ 4k

e product of the
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