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Simplified Proofs for the Pro-Lie Group Theorem
and the One-Parameter Subgroup Lifting Lemma
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Abstract. This note is devoted to the theory of projective limits of finite-
dimensional Lie groups, as developed in the recent monograph [Hofmann,
K.H., and S. A. Morris, “The Lie Theory of Connected Pro-Lie Groups,”
EMS Publ. House, 2007]. We replace the original, highly non-trivial proof
of the One-Parameter Subgroup Lifting Lemma given in the monograph by
a shorter and more elementary argument. Furthermore, we shorten (and
correct) the proof of the so-called Pro-Lie Group Theorem, which asserts
that pro-Lie groups and projective limits of Lie groups coincide.
Mathematics Subject Index 2000: 22A05, 22E20, 22E65.

Keywords and phrases: Pro-Lie group, approximation by Lie groups, projec-
tive limit, one-parameter subgroup lifting.

By a famous theorem of Yamabe [13], every identity neighbourhood of a connected
(or almost connected) locally compact group G contains a closed normal subgroup
N such that G/N is a Lie group, and thus is a so-called pro-Lie group. Therefore
locally compact pro-Lie groups form a large class of locally compact groups, which
has been studied by many authors (see, e.g., [10], [11], [12] as well as [8] and the
references therein). Although a small number of papers broached on the topic of
non-locally compact pro-Lie groups (like [5] and [4]), a profound structure theory
of such groups was only begun recently in [6] and then fully worked out in the
monograph [7]. The novel results accomplished in [7] make it clear that the study
of general pro-Lie groups is fruitful also for the theory of locally compact groups.

We recall from [7]: For G a Hausdorff topological group, N'(G) denotes the
set of all closed normal subgroups N of G such that G/N is a (finite-dimensional)
Lie group. If G is complete and NV (G) is a filter basis which converges to 1, then G
is called a pro-Lie group. It is easy to see that every pro-Lie group is, in particular,
a projective limit of Lie groups. Various results which are known in the locally
compact case become much more complicated to prove for non-locally compact
pro-Lie groups. For example, it is not too hard to see that every locally compact
group which is a projective limit of Lie groups is a pro-Lie group (see [3] for an
elementary argument; the appeal to the solution of Hilbert’s fifth problem in the
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earlier proof in [8] is unnecessary). Also, it has been known for a long time [9] that
one-parameter subgroups can be lifted over quotient morphisms ¢: G — H between
locally compact groups, i.e., for each continuous homomorphism X:R — H there
exists a continuous homomorphism Y:R — G such that X = ¢oY . The original
proofs for analogues of the preceding two results for general pro-Lie groups as
given in [6] and [7] (called the “Pro-Lie Group Theorem” and “One-Parameter
Subgroup Lifting Lemma” there) were quite long and complicated. Later, A.A.
George Michael gave a short alternative proof of the Pro-Lie Group Theorem,
which however was not self-contained but depended on a non-elementary result
from outside, the Gleason—Palais Theorem [2, Theorem 7.2]:

If G is a locally arcwise connected topological group in which the compact
metrizable subsets are of bounded dimension, then G is a Lie group.

The goal of this note is to record two short and simple arguments, which
together with some 10 pages of external reading! provide essentially self-contained
proofs for both the Pro-Lie Group Theorem and the One-Parameter Subgroup
Lifting Lemma (up to well-known facts). In this way, the proof of the latter shrinks
from over 3 pages to 8 lines, and the proof of the former by 6 pages. Moreover,
the author noticed that the proof of the Pro-Lie Group Theorem in [7] (and [6])
depends on an incorrect assertion,? making it all the more important to have a
correct self-contained proof available.

It should be stressed that the new proofs do not replace the approach
from [7]. To the contrary, results concerning the identity components of projective
limits of Lie groups provided in [7, Lemmas 3.20-3.24] (based on a pivotal fact [7,
Lemma 3.18] on weakly complete topological vector spaces) form the foundation of
our proof of the Pro-Lie Group Theorem. And also our proof of the One-Parameter
Subgroup Lifting Lemma is not based on novel techniques, but mainly on a new
combination of arguments from [7] (where the bulk of the work is done).

Let us now re-state and prove the theorem and lemma in contention. No-
tation and terminology from [7] will be used without explanation.

Theorem 0.1. (The Pro-Lie Group Theorem) Every projective limit of Lie
groups 1s a pro-Lie group.

Proof. Let G be a projective limit of a projective system ((G;);e, (fik);j<k)
of Lie groups G, and morphisms fj,: Gy — G;. By [7, Proposition 3.27], G
will be a pro-Lie group if we can show that G/ker(f;) is a Lie group for each
limit map f;: G — G;. Let H; be the analytic subgroup of G, with Lie algebra
L(f;)(L(G)) (equipped with its Lie group topology). By [7, Lemmas 3.23 and
3.24], f; restricts and corestricts to a quotient morphism ¢;: Gy — H;. Given
g€ G, write I§:G — G, I§(h) := ghg™". Since ¢;0I7|q, = ]J(;J('g)ogbj, we see that

]gig)(Hj) C H; and ]gig)\Hj:Hj — H; is continuous. Hence Q); := f;(G) can be

Lemmas 3.17-3.24, Propositions 3.27 and 3.30, Lemma 3.31 and Lemmas 4.16-4.18 in [7].

ZParts (iii) and (iv) of the “Closed Subgroup Theorem” [7, Theorem 1.34] are false, as the
example G = R, H = Z, N' = {{0},v/2Z} shows. This invalidates the proof of [7, Lemma
3.29 (iii)]], which is used in [7] to prove the Pro-Lie Group Theorem.
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made a Lie group with H; as an open subgroup. Then the corestriction ¢;: G — @);
of f; to @ is a surjective homomorphism, which is open since so is fj|gé = ¢;.
If we can show that ¢; is continuous, then ¢; will be a quotient morphism and
thus G/ ker(f;) = Q; a Lie group. However, by [7, Lemma 3.21], there exists
some k € [ such that k£ > j and f;x((Gk)o) € H;. Also, it is shown in the proof
of [7, Lemma 3.24] that the map f:(Gr)o — Hj,  + fu(x) is continuous.

Since U := f;'((Gg)o) is a neighbourhood of 1 in G and qj]U:Tjkofk\é,G’“)O is
continuous, the homomorphism g; is continuous. [ ]

Theorem 0.2. (The One-Parameter Subgroup Lifting Lemma) Let G and H
be pro-Lie groups and f:G — H be a quotient morphism of topological groups.
Then every one-parameter subgroup X of H lifts to one of G, i.e., there exists a
one-parameter subgroup Y:R — G such that X = foY.

Proof.  We adapt an argument from [7, p.193]. By [7, Lemmas 4.16-4.18], we
may assume that H = R and have to show that f is a retraction. If f was
not a retraction, we would have L£(f)(L(G)) = {0} and thus f(Gg) = {1}, since
exps(L(G)) generates a dense subgroup of Gy (by Lemma 3.24 and the proof of
Lemma 3.22 in [7]), and foexps = expy o L(f) = 1. Hence f factors to a quotient
morphism G/Gy — R. Since G/Gy is proto-discrete by [7, Lemma 3.31], it would
follow that also its quotient R is proto-discrete (see [7, Proposition 3.30 (b)]) and
hence discrete (as R has no small subgroups). This is absurd. ]

We mention that the Pro-Lie Group Theorem has no analogue for projective
limits of Banach-Lie groups. In fact, consider a Fréchet space E which is not a
Banach space but admits a continuous norm ||| (e.g., £ = C*([0,1],R)). Then
E is a projective limit of Banach spaces. The ||.||-unit ball U is a 0-neighbourhood
in E which does not contain any non-trivial subgroup of E. If there existed a
quotient morphism ¢: E — G to a Banach-Lie group GG with kernel in U, then we
would have ker(¢) = {0}. Hence ¢ would be an isomorphism, entailing that the
Banach-Lie group G is abelian and simply connected and therefore isomorphic to
the additive group of a Banach space. Since E is not a Banach space, we have
reached a contradiction.
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