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Abstract. The X-ray transform on a compact symmetric space M is here
inverted by means of an explicit inversion formula. The proof uses the conjugacy
of the minimal closed geodesics in M and of the maximally curved totally
geodesic spheres in M , proved in [3].
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1. Introduction

In his paper [1] Funk showed, using tools from a geometric paper by Minkowski,
that an even function f on the sphere S2 is explicitly determined by its integrals
f̂(ξ) over the great circles ξ on the sphere. The evenness condition is clearly

necessary since f̂ ≡ 0 if f is odd.

The negative aspect of the result would suggest that Funk’s theorem might
not extend to geodesic integrals on a compact symmetric space since the concept
of an even function is not present. However we shall see that in restated form the
theorem generalizes to compact symmetric spaces.

Let S+ denote the top half x3 > 0 of S2 and f ∈ C∞c (S+). Then g(x) =
1
2
(f(x) + f(−x)) is even and f̂ = ĝ . The inversion formula for g (Corollary 2.1)

thus gives an inversion formula for f on S+ . In this form we extend Funk’s
injectivity result to compact symmetric spaces, even with an explicit inversion
formula. See Corollary 3.3.

Let M = U/K be an irreducible compact simply connected symmetric
space, U being a compact semisimple Lie group. For this space we shall use
results from our paper [3]; see also [4], VII, §11, whose notation we follow. Let
u = k + p∗ be the eigenspace decomposition for the involution of the Lie algebra u

of U . If the metric on M is given by the negative of the Killing form B of u , the
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maximal sectional curvature on M equals ‖δ̄‖2 where δ̄ is the highest restricted
root. We normalize the metric such that this maximal curvature is 1. We shall
then use the following result from [3]. Here m(δ̄) denotes the multiplicity of δ̄ .

Theorem 1.1.

(i) The shortest closed geodesics in M have length 2π and they are permuted
transitively by U .

(ii) M has totally geodesic spheres of curvature 1. Their maximum dimension
is 1 + m(δ̄). All such spheres S1+m(δ̄) are conjugate under U .

We need some further results for the geometry of M . Fix a maximal abelian
subspace a∗ ⊂ p∗ . Let

pδ = {X ∈ p∗ : (ad H)2X = δ(H)2X for H ∈ a∗}

fix A(δ̄) ∈ a∗ such that

B(H, A(δ̄)) = πiδ(H) H ∈ a∗ ,

and let aδ denote the line RA(δ̄) (notation of [4], VII, §11). If Exp denotes the
map from p∗ to U/K given by Exp X = (exp X)K we have from [4], p. 343 that
the set

Mδ = Exp (aδ + pδ)

is a sphere, totally geodesic in M , of dimension 1 + m(δ) and curvature 1. The
point Exp A(δ̄) is the point on Mδ antipodal to the point o = eK . Let S ⊂ K be
the subgroup fixing both o and Exp A(δ̄). From [4], p. 343 we have the following
result.

Proposition 1.2. The restriction of Ad U(S) to the tangent space (Mδ)0 con-
tains SO((Mδ)0).

Definition. Let x ∈ M . The midpoint locus Ax associated to x is the set
of midpoints m(γ) of all the closed minimal geodesics γ starting at x . Let
e1(γ), e2(γ) denote the midpoints of the arcs of γ which join x and m(γ). Let Ex

denote the set of these e(γ). We call Ex the equator associated to x .

Theorem 1.3. A0 and E0 are K -orbits and A0 is a totally geodesic subman-
ifold of M . Also

A0 = K/S .

Proof. A0 is a K -orbit because of Theorem 1.1. For a similar statement for E0

we must verify that the two midpoints e(γ) on the same minimal γ are conjugate
under K . This is obvious if we take Proposition 1.2 into account. For the rest see
[4], VII, §11.
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Definition. The Funk transform for M = U/K is the map f → f̂ where

f̂(ξ) =

∫
ξ

dm(x) , (1.1)

ξ being a closed geodesic in M of minimal length and dm the arc element.

Because of Theorem 1.1 we have a pair of homogeneous spaces:

M = U/K , Ξ = {minimal geodesics} = U/H

where H is the stabilizer of a specific minimal geodesic ξ in M . We then have
the corresponding dual transform ϕ → ϕ̌ where

ϕ̌(gK) =

∫
K

ϕ(gk · ξ) dk . (1.2)

Notation: In a metric space Br(p) denotes the open ball with center p and
radius r . Sr(p) denotes the corresponding sphere.

2. Inversion on Sn

We consider now the sphere

X = Sn = O(n + 1)/O(n) ,

where L = O(n) is the isotropy group of o = (0, . . . , 0, 1) and the space

Ξ = {totally geodesic Sk ⊂ Sn}

for k fixed, 1 ≤ k ≤ n− 1. We write

Ξ = O(n + 1)/Hp ,

where Hp is the stability group of a k -sphere ξp ⊂ X which has distance p from

o . In addition to the Funk transform f → f̂

f̂(ξ) =

∫
ξ

f(x) dm(x) ξ ∈ Ξ (2.3)

we consider also the dual transform,

ϕ̌p(gL) =

∫
L

ϕ(g` · ξp) d` , (2.4)

the average of ϕ over the set of Sk at distance p from g · o . We write ϕ̌ for ϕ̌0 .

In [2] we inverted the transform f → f̂ by the formula

f = Pk(∆)
(
(f̂)∨

)
(2.5)

for k even, Pk(∆) being an explicit polynomial in the Laplacian ∆ of degree k/2.
In the paper [16] this is augmented by the case k = n−1, k odd, and the transform

f → f̂ inverted by an integral which is then suitably regularized.
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In [6] I published the inversion formula (2.6) below for f → f̂ , valid for all
k and n ; in comparison with (2.5) it seemed so unwieldy that I did not publish it
in [2]; at that time the case k = 1 (the X-ray transform) had not gained the later
prominence. Unexpectedly, the formula simplifies considerably for k = 1 and this
version is the basis for the extension below to the compact space M = U/K . One

more inversion of f → f̂ on Sn with k arbitrary was given by Rubin [15].

From Theorem 3.2 in [6] we have the following inversion formula for (2.3).
For f ∈ C∞(Sn) even

f(x) =
c

2

[(
d

d(u2)

)k ∫ u

0

(f̂)∨cos−1 v(x)vk(u2 − v2)
k
2
−1 dv

]
u=1

(2.6)

where

c =
2k+1

(k − 1)!Ωk+1

,

and Ωk+1 is the area of the unit sphere in Rk+1 .

Remark 2.1. Let (M rf)(x) denote the average of f over a sphere in X with
center x and radius r . The proof of (2.6) in [6] used the fact that the function
y → (Md(x,y)f)(x) on ξp is even, d denoting distance and d(x, ξp) = p . Indeed, if
g = O(n + 1) is such that g · o = x then it was shown that

(Md(x,y)f)(x) =

∫
L

f(g`g−1 · y) d` ,

which is indeed even in y because of the linearity of g`g−1 .

For the case k = 1 we can derive a better version even without the evenness
assumption. Note though that because of the integration over Ex formula (2.7) is
not an exact inversion. The proof resembles that of Theorem 4.3 in [8].

Corollary 2.2. The X-ray transform on Sn is inverted by the formula

1
2
(f(x) + f(−x)) =

∫
Ex

f(ω) dω − 1

2π

∫ π
2

0

d

dp
(f̂)∨p (x)

dp

sin p
(2.7)

for every f ∈ C∞(Sn). Here dω is the normalized measure on the equator Ex .

Proof. Replacing f by 1
2
(f(x)+ f(−x)) has no effect on f̂ so with F̂ (cos p) =

(f̂)∨p (x) we have for the right hand side of (2.6)

1

2π

{
d

du

∫ u

0

(u2 − v2)−
1
2 vF̂ (v) dv

}
u=1

= − 1

2π

{
d

du

∫ u

0

d

dv
(u2 − v2)

1
2 F̂ (v) dv

}
u=1

,



Helgason 311

which by integration by parts becomes

− 1

2π

{
d

du

[
−uF̂ (0)−

∫ u

0

(u2 − v2)
1
2

d

dv
F̂ (v) dv

]}
u=1

=
1

2π
F̂ (0) +

1

2π

∫ 1

0

(1− v2)−
1
2

d

dv
F̂ (v) dv

=
1

2π
(f̂)∨π

2
(x)− 1

2π

∫ π
2

0

d

dp
(f̂)∨p (x)

dp

sin p
.

The first term is an average of the integrals of f over geodesics at distance π/2
from x which thus lie in Ex . It represents a rotation–invariant functional on Ex

hence a constant multiple of the integral over Ex . Taking f ≡ 1 the constant is 1
and the formula is proved.

Corollary 2.3. Suppose f ∈ C∞(Sn) has support in the ball B = {x ∈ Sn :
d(o, x) < π

4
}. Then

f(x) = − 1

π

∫ π
2

0

d

dp

(
(f̂)∨p (x)

) dp

sin p
, x ∈ B . (2.8)

In fact if x ∈ B then f(−x) = 0. If x ∈ B any y ∈ Ex then d(o, y) ≥
d(x, y)− d(o, x) ≥ π

2
− π

4
so f(y) = 0.

3. The case of a compact symmetric space

Let M = U/K be as in the Introduction. We shall now combine Theorem 1.1
and Corollary 2.2 to study the Funk transform (1.1). Note that this is the X-ray
transform restricted to minimal geodesics.

Given f ∈ C∞(M) we consider its restriction f |Mδ to the sphere Mδ . For
0 ≤ p ≤ π

2
we fix a geodesic ξp ⊂ Mδ at distance p from o . Let f* denote the

Funk transform (f |Mδ )̂ and ϕ∗
p the dual transform (2.4). Note that ϕ∗

p is (for
given p) independent of the choice of ξp . Then (2.7) implies

1
2

(
f(o) + f(Exp A(δ̄))

)
=

∫
E′

0

f(ω) dω − 1

2π

∫ π
2

0

d

dp
(f*)∗p(o)

dp

sin p
, (3.9)

where E ′
0 is the equator in Mδ associated to o . By Proposition 1.2, E ′

0 =
S · Exp (1

2
A(δ̄)). We now apply (3.9) to the function

f \(x) =

∫
K

f(k · x) dk .

Since A0 = K · Exp A(δ̄) the left hand side becomes

1
2

(
f(o) +

∫
A0

f(ω) dω
)

,

where dω stands for average. The first term on the right becomes∫
K·E′

0

f(k · ω) dk dω =

∫
K

f
(
k · Exp 1

2
A(δ̄)

)
dk =

∫
E0

f(ω) dω ,
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where E0 = K · Exp 1
2
A(δ̄) which is contained in Sπ

2
(o). For the second term on

the right note that by the transitivity of the group S (Prop. 1.2)(
(f \)∗

)∗
p
(o) =

∫
S

(f \)∗(s · ξp) ds =

∫
S

(f \)̂(s · ξp) ds

=

∫
K

∫
S

f̂(ks · ξp) ds dk =

∫
K

f̂(k · ξp) dk = (f̂)∨p (o) ,

where ϕ̌p is the dual transform (1.2) for ξ = ξp . Thus we have

1
2

(
f(o) +

∫
A0

f(ω) dω
)

=

∫
E0

f(ω) dω − 1

2π

∫ π
2

0

d

dp

(
(f̂)∨p (o)

) dp

sin p
.

The set Ξp = {k · ξp : k ∈ K} constitutes the set of all minimal geodesics each
lying in some totally geodesic sphere S1+m(δ) through o having distance p from o .
Let ω0

p denote the normalized K -invariant measure on this set. Thus

(f̂)∨p (o) =

∫
Ξp

f̂(ξ) dω0
p(ξ) .

Let Ξp(x) be defined similarly for the point x ∈ M and let ωp denote the
corresponding measure. Choose g ∈ U such that g · o = x . Then Ax = gA0 ,
Ex = gE0 and g · Ξp = Ξp(x). Then we obtain the following result.

Theorem 3.1. Let f ∈ C∞(M). Then

1
2

(
f(x) +

∫
Ax

f(ω) dω

)
=

∫
Ex

f(ω) dω − 1

2π

∫ π
2

0

d

dp

(∫
Ξp(x)

f̂(ξ) dωp(ξ)

)
dp

sin p
.

Restricting the support of f we obtain the following result.

Corollary 3.2. Let f ∈ C∞c (Bπ
2
(o)). Then for x ∈ Bπ

2
(o)

f(x) = 2

∫
Ex

f(ω) dω − 1

π

∫ π
2

0

d

dp

(∫
Ξp(x)

f̂(ξ) dωp(ξ)

)
dp

sin p
.

For a full inversion formula we restrict the support of f further.

Corollary 3.3. Let f ∈ C∞c (Bπ
4
(o)). Then

f(x) = − 1

π

∫ π
2

0

d

dp

(∫
Ξp(x)

f̂(ξ) dωp(ξ)

)
dp

sin p
, x ∈ Bπ

4
(o) .

For Corollary 3.2 we must show that

Ax ∩Bπ
2
(o) = Ø if x ∈ Bπ

2
(o) . (3.10)

If g · o = x we have Ax = g · A0 and

d(o, gk · Exp A(δ̄)) = d(g−1 · o , k · Exp A(δ̄))

≥ d(o, k · Exp A(δ̄))− d(o, g−1 · o)
≥ π − π

2
=

π

2
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so (3.10) follows. For Cor. 3.3 we must show

Bπ
4
(o) ∩ Ex = Ø if x ∈ Bπ

4
(o) .

Better still we show that

Bπ
4
(o) ∩ Sπ

2
(x) = Ø if x ∈ Bπ

4
(o) . (3.11)

But if z ∈ Sπ
2
(x) then

d(o, z) ≥ d(x, z)− d(o, x) ≥ π

2
− π

4
=

π

4

proving (3.11).

Using Theorem 1.1 we can derive the following support theorem for the
rank one case.

Theorem 3.4. Assume M has rank one. Let 0 < δ < π
2
. Suppose f ∈

C∞(Bπ
2
(o)) satisfies

(i) f̂(ξ) = 0 for d(o, ξ) > δ .

(ii) For each m > 0

f(x) cos d(o, x)−m is bounded.

Then
f(x) = 0 for d(o, x) > δ . (3.12)

Proof. Consider the restriction f |Mδ . Because of (ii) f |Mδ can be extended
to a symmetric function on Mδ so by the support theorem for the sphere ([12],
[10] or [7]. I, § 3) (3.12) holds for x ∈ Mδ . Since the rank is one the spheres kMδ ,
(k ∈ K) fill up M so (3.12) holds for x ∈ M .

4. The non-compact case

Here we consider the case of an irreducible symmetric space X = G/K of the non-
compact type where G is simple, connected with finite center and K a maximal
compact subgroup. As proved in [5] the X-ray transform is here injective. In his
elegant paper [14] Rouvière proved an explicit inversion formula by a reduction to
the hyperbolic plane. In my paper [9] another inversion formula is given which,
however, requires rank X > 1.

In this section we present a third formula suggested by our method for the
compact case. The proof is much simpler than in the compact case since there is
no midpoint locus and no equator. Again we normalize the metric on X such that
the maximal negative curvature is −1. A geodesic in X which lies in a totally
geodesic hyperbolic space of curvature −1 will be called a flexed geodesic. From
the duality for symmetric spaces ([4], Ch. V, §2) we know that the tangent spaces
to G/K and U/K at o correspond under multiplication by i . This commutes
with the action of K . Lie triple systems are mapped into Lie triple systems by
this correspondence and sectional curvatures are turned into their negatives. Thus
we have the following analog to Theorem 1.1.
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Theorem 4.1.

(i) X has hyperbolic totally geodesic submanifolds of curvature −1. Their
maximum dimension is 1 + m(δ̄) and those H1+m(δ̄) are all conjugate under
G.

(ii) The flexed geodesics in X are permuted transitively by G.

We consider now the hyperbolic analog of Mδ , namely Xδ of curvature −1,
dimension 1 + m(δ̄), passing through o = eK . We have then the following analog
of Corollary 2.2 proved in [8], for Hn of all dimensions,

f(x) = − 1

π

∫ ∞

0

d

dp

(
(f̂)∨p (x)

) dp

sinh p
, x ∈ Xδ . (4.13)

For each p ≥ 0 let Ξp(x) denote the set of all flexed geodesics ξ in X , each lying
in a totally geodesic H1+m(δ̄) passing through x with d(x, ξ) = p . Let ωp denote
the normalized measure on Ξp invariant under the isotropy group of x . The proof
of Theorem 3.4 then yields the following result.

Theorem 4.2. Let f ∈ C∞c (X). Then

f(x) = − 1

π

∫ ∞

0

d

dp

(∫
Ξp(x)

f̂(ξ) dωp(ξ)

)
dp

sinh p
. (4.14)

Remark 4.3. As kindly pointed out by Rouvière, (4.14) agrees with his formula
in Theorem 1 in [14] which more generally holds for each root of (g, a).
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