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Abstract. We present a method which efficiently generates Lie group in-
variants in the classical invariant theory of polynomials and its extensions to
vector spaces of inhomogeneous polynomials under the actions of the general
affine group and pseudo-Euclidean subgroups. Our derivation of the invariants
uses the classical Cartan method of moving frames and requires no assumption
on the degree of the polynomial or the number of variables. Consequently, we
are able to express the invariants in a compact indicial notation. We employ
our results to solve the equivalence and canonical forms problems for the vector
space of inhomogeneous cubic polynomials in two real variables under the action
of the Euclidean group. We show that the space partitions into twelve distinct
classes of canonical forms, each admitting a system of invariants which globally
separates its associated orbits.
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1. Introduction

A motivational quote from Gian-Carlo Rota’s book Indiscrete Thoughts beautifully
encapsulates the essence of this paper:

“It is a task for the present generation to recreate the lost life of
invariant theory. Whether this task will be accomplished by rereading
and reinterpreting the classics or whether it will be reinvented, as some
physicists are now doing, will be one of the dramas of the coming years
which which will be watched with interest. . . ” [18, pg 222]

The quintessential problem of invariant theory is the determination of a
complete set of invariant functions for a given group action. Precisely speaking,
if G is a transformation group acting on a space X , one requires functions
I : X → F , where F is a field, satisfying

I(g · x) = I(x)

ISSN 0949–5932 / $2.50 c© Heldermann Verlag



732 Horwood

for all g ∈ G . This central problem is intimately linked to the problems of
equivalence and canonical forms. For the former, one asks if a group element
g ∈ G exists such that g · x = y , given x, y ∈ X . Evidently, this notion
defines an equivalence relation on X . Thus, the canonical form problem seeks
a “suitable” or “simple” representative in each equivalence class. In the setting of
classical invariant theory (CIT) (see Olver [16] for more details), the space X is
typically a vector space of homogeneous polynomials of some fixed degree m in
n variables, usually over C or R . The group G is commonly the general linear
group GL(n, F ) or a subgroup thereof. In this paper, we shall present an algorithm
which streamlines the generation of invariants in CIT and its extensions to vector
spaces of inhomogeneous polynomials under the action of the general affine group
and some of its subgroups.

The mathematical foundations of invariant theory can be cast into the
frameworks of Klein and Cartan geometry. Klein’s synthesis of geometry, as
introduced in his famous Erlangen Program [12, 13], stipulates how the essential
properties of a given geometry (e.g. Euclidean, affine, projective, etc.) can be
represented by the transformation group which preserves these properties. In the
Cartan approach to differential geometry, the philosophies due to Klein together
with the concepts of a Riemannian manifold and a metric tensor are fused into a
single theory [19]. Invariant theory can thus be rightfully placed into the theory
initiated by Cartan. We shall elaborate on Cartan geometries and its applicability
to CIT in Section 2.

The primary goal in the study of a particular group action over a space is a
proof of a Hilbert finiteness theorem or “first fundamental theorem” (FFT). Such
an FFT establishes that the space admits a finite Hilbert basis, i.e. a finite basis of
invariants with the property that any other invariant is a polynomial function of
the basis elements. In the setting of CIT, FFT proofs are well known for spaces of
homogeneous polynomials under the action of the general linear, orthogonal and
symplectic groups (see [7, ch 4] for a modern treatment). Methods for generating
invariants and Hilbert bases are also widely known, some of which include the use
of “transvection” and the so-called Ω-process, symbolic methods and infinitesimal
methods [7, 16, 22]. These approaches are all highly sensitive to the underlying
dimension of the vector space of polynomials. The latter method in particular
involves solving linear partial differential equations arising from the associated
Lie algebra action. Forming a suitable polynomial ansatz for the invariants, one
obtains a (sparse) system of linear equations for the undetermined coefficients
[22, theorem 4.5.2]. Although this method is straightforward to implement in any
computer algebra system, it inherently suffers from the “curse of dimensionality”.

In contrast to the dimensionally dependent methods for generating invari-
ants, the method we present in this paper reveals that the invariants can be ex-
pressed in a tantalizingly simple form. Our method can be realized as a general-
ization of the transvection process (see for example, [16, ch 5]). We shall see that
the invariants can be expressed using a compact tensorial or indicial notation, ir-
respective of the degree of the polynomial or the number of variables. Our results
will equally apply to vector spaces of inhomogeneous polynomials under the action
of the affine group and the pseudo-Euclidean subgroups. To the knowledge of the
author, the inhomogeneous case has yet to be fully treated in the literature. In
fact, our result is so simple and compact that the task of computing invariants is
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now likely to be perceived as a triviality. Quoting Rota again,

“Not only is every mathematical problem solved, but eventually every
mathematical problem is proved trivial. The quest for ultimate triviality
is characteristic of the mathematical enterprise.” [18, pg 93]

The main results concerning the generation of invariants are stated in The-
orems 4.2 and 4.3 and Corollary 4.4, the proofs of which are a direct consequence
of the representation of the group on the underlying space of polynomials derived
in Section 3. For simplicity, we have restricted our attention to the real number
field throughout the paper; our results easily generalize to the complex case. The
proof of these theorems uses a “hybrid” version of the classical Cartan method of
moving frames [4, 5] in conjunction with the recursive construction of the moving
frame recently introduced by Kogan [14].

Once a set of fundamental (functionally independent) group invariants is
found, one can employ these invariants to classify the orbits of the associated
space. This procedure is often challenging to fully implement because invariants
are largely generated by local methods. Indeed, the moving frame method requires
a choice of cross-section, however the resulting moving frame map is generally
not globally defined. Thus, the resulting invariants need not separate the orbits
globally. This lack of discriminating power in the invariants is also apparent
as orbits generally do not all have the same dimension. One way to fix these
deficiencies in the group action is to extend the space on which it acts, for example,
by prolonging the group action to copies of the original space, thus leading to the
concept of joint invariants [2]. Another possible type of prolongation (and one
that is emphasized in this paper) leads to covariants. In the context of CIT,
covariants are similar to invariants but may also have explicit dependence on the
coordinates of the polynomial. In this paper, we shall see that covariants and their
transvectants are extremely useful in providing a global classification of the orbits
of the original unprolonged space.

In Section 5, we employ the theory of this paper to solve the equivalence and
canonical forms problems for the space of inhomogeneous cubic polynomials in two
variables, under the action of the Euclidean group of rigid motions on the plane.
Moreover, we shall demonstrate that there exist sets of invariants which separate
the orbits of the vector space globally. The analogous problem for homogeneous
cubics in three variables under the action of GL(3, C) is treated in [15], however
we are unaware of any classification schemes for inhomogeneous spaces of cubic
polynomials and thus believe our results to be new.

The results of this paper extend to the invariant theory of Killing tensors
(ITKT) (see [9] and the relevant references therein), which have wide applicability
to separation of variable theory and integrability of finite-dimensional Hamiltonian
systems. An article to this effect is currently in preparation [8]. The origin of the
idea to write invariants in a compact indicial notation actually stems from ITKT.
The first time such a notation was employed in ITKT was in the derivation of
fundamental isometry group invariants for the vector space of valence three Killing
tensors defined on the Euclidean plane [10] (see also [9]). The example of Section 5,
in particular, will provide further insight into the problem of classifying the orbits
of the aforementioned vector space of Killing tensors and shall prove useful for
analyzing the associated cubic first integrals of motion in the momenta.
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2. Mathematical foundations

The classical invariant theory of polynomials can be realized as an extension of
Cartan’s geometry. Recall that the traditional Cartan approach to differential
geometry [6, 11] is based on the following key elements. Let G be a Lie group acting
transitively on a homogeneous space M , identified as the left coset space G/H ,
where H is a closed subgroup of G . In the Cartan philosophy, one is interested
in the geometric properties of submanifolds N of M which are invariant under
G . The study of these intrinsic properties of N is established in the study of the
principal fibre H -bundle

π : G → G/H 'M,

together with a map F : N → M , describing the position of the submanifold in
the homogeneous space. Finally, a map f : N → G , called a lift, is defined so that
the following diagram commutes:

G
π // G/H 'M

N
f

eeKKKKKKKKKKK
F

OO
(1)

Cartan realized that in many cases the group G may be identified as a set of frames
(or orthonormal bases) of M . Consequently, associated to the submanifold N is a
“natural” set of frames or, equivalently, a “cross-section” of the fibration π over N .
In such cases, the Mauer-Cartan forms of G , when restricted to this natural frame,
become a complete set of invariants for N in M . The map f is thus the “moving
frame map” which, given any point p ∈ N , yields the group action which maps
the frame at the point p to to its natural or “canonical” frame. The invariants
are thus the coordinates of these “canonical forms”. The following lemma due to
Cartan (and restated and proved in [6]) gives necessary and sufficient conditions
on the existence of a moving frame map.

Lemma 2.1. Let G be a Lie group with Lie algebra g and let ω denote the
g-valued left-invariant Maurer-Cartan forms on G. Suppose ϕ is a g-valued one-
form on a connected (or simply connected) manifold N . Then there exists a C∞ -
map f : N → G with f ∗ω = ϕ iff dϕ = ϕ ∧ ϕ. Moreover, the resulting map is
unique up to left translation.

Thus, the Mauer-Cartan form ω in Lemma 2.1 is what carries the information
“upstairs” about G . When a map f exists, we have at the same time “downstairs”
on N a form ϕ (e.g. a frame of vectors) which is connected by the same structure
constants as those of the Lie algebra of G . The lift or moving frame map f pulls
back ω to ϕ .

The use of the modern language of fibre bundles, invariant sections and
homogeneous spaces to describe the framework of classical invariant theory has
been developed by Fels and Olver [3]. In what follows, we shall use this language
of Cartan geometry to extend the diagram (1) to spaces of polynomials defined
on a real n-dimensional manifold M . Our framework is analogous to that used
in the extension of Cartan geometry to the invariant theory of Killing tensors,
first introduced by Adlam, McLenaghan and Smirnov in [1]. In order to proceed,
it is necessary first to precisely define a polynomial function on a manifold M ,
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independent of the choice of coordinates. To achieve such a definition, we shall
henceforth restrict our attention to the case when M is the n-fold product space
R× · · · × R defined by the set of n-tuples (x1, . . . , xn).

Definition 2.2. A function f : M→ R defined on an n-dimensional manifold
M = R × · · · × R is a homogeneous polynomial of degree m iff for a given set of
coordinates xi , there exist constants ci1···im such that

f(p) =
n∑

i1,...,im=1

ci1···imxi1 · · ·xim , (2)

for all p ∈M .

Here and in what follows, we will use the summation convention: any
repeated upper and lower index implies summation over that index from 1 to
n . Thus, (2) can be written compactly as

f(p) = ci1···imxi1 · · ·xim . (3)

The use of the notation xi to denote the i-th coordinate name (rather than xi )
is standard in tensor analysis because the xi transform like the components of
a contravariant tensor under a change of coordinates. We also note that one
may assume without loss of generality that the m-index object ci1···im in (3) is
completely symmetric in all its indices, i.e. ci1···im = c(i1···im) .

It is obvious that Definition 2.2 is independent of the choice of coordinates.
Indeed, if x̃i is another set of coordinates, then xi = Ai

jx̃
j for some Ai

j ∈ GL(n).
This coordinate transformation preserves (3).

Let Pm(M)|x denote the set of homogeneous polynomials of degree m de-
fined on M with respect to the coordinates x = (x1, . . . , xn). It is straightforward
to extend Definition 2.2 to Pm(M)|x , the set of inhomogeneous polynomials of
degree at most m . Both Pm(M)|x and Pm(M)|x define real vector spaces with
the following dimensions:

dimPm(M)|x =

(
n + m− 1

m

)
, dimPm(M)|x =

m + 1

n

(
n + m

m + 1

)
. (4)

The philosophy of Cartan provides a natural framework to study spaces of
inhomogeneous polynomials. The formulation begins by considering a Lie group
G which acts transitively on M and a closed subgroup H of G . Thus, as in the
standard model of Cartan geometry, we have the principal fibre H -bundle

π1 : G → G/H 'M.

In analogy to the definitions of the tangent space T (M)|x at x ∈ M and the
tangent bundle T (M), we can define Pm(M) to be the bundle of inhomogeneous
polynomials of degree m on M viz

Pm(M) =
{
(x, Q) | x ∈M, Q ∈ Pm(M)|x

}
.

The structure of Pm(M) induces two additional fibrations. Firstly, we have the
natural structure of a vector bundle

π2 : Pm(M) →M
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in which the fibres are isomorphic to the vector space Rd , d = dimPm(M)|x .
Secondly,

π3 : Pm(M) → Pm(M)/G

is the principal fibre G-bundle corresponding to the orbit space Pm(M)/G . Fi-
nally, we can define a map f : Pm(M)/G → G so that the following diagram
commutes:

G
π1 // G/H 'M

Pm(M)/G

f

OO

Pm(M)π3

oo

π2

OO
(5)

The basic equivalence problem can be formulated as follows. Two polyno-
mials Q1, Q2 ∈ Pm(M) are said to be equivalent iff there exists a group element
g ∈ G such that g · Q1 = Q2 . Note that the transitive action G � M induces a
corresponding non-transitive action G � Pm(M). Thus, solving the equivalence
problem amounts to studying the orbit space Pm(M)/G . The choice of a function
f lifting the non-transitive action G � Pm(M) to G is equivalent to choosing
a cross-section through the orbits or fixing the frame. Explicitly, the composi-
tion γ = f ◦ π3 : Pm(M) → G is the moving frame map corresponding to the
the cross-section prescribed by a chosen f . The (local) invariants of the group
action G � Pm(M) are the coordinates of the canonical forms obtained as the
intersection of the orbits with the cross-section.

Example 2.3. The affine group Aff(n), a semi-direct product of GL(n) and
the group of translations on Rn , acts transitively on the manifold Rn and non-
transitively on Pm(Rn). Thus, in diagram (5), G = Aff(n), H = GL(n) and
M = Rn .

Example 2.4. The pseudo-Euclidean group E(n− s, s) is the isometry group
of the n-dimensional flat manifold En−s,s admitting a metric tensor with s minus
signs in its signature. Note that E(n− s, s) = O(n− s, s) n Rn , where O(n− s, s)
is the associated group of pseudo-orthogonal rotations. In particular, for s = 0,
E(n) ≡ E(n, 0) is the group of rigid motions (rotations and translations) acting
in Euclidean space En ≡ En,0 . If s = 1, En−1,1 is an n-dimensional Minkowski
space and O(n−1, 1) is the familiar Lorentz group. In the context of diagram (5),
G = E(n− s, s), H = O(n− s, s) and M = En−s,s .

Remark 2.5. The diagram (5) naturally extends to the study of covariants and
joint invariants of Pm(M). Indeed, such studies can be realized in the context of
Cartan geometry by replacing the space Pm(M) in (5) with one of the extended
spaces Pm(M)×M or Pm(M)× · · ·×Pm(M). In what follows, we shall use the
terms covariants of Pm(M) and invariants of the extended space Pm(M) ×M
interchangeably.

The action of the general linear group on the bundle Pm(Rn) of homoge-
neous polynomials of degree m in n variables, the main object of study in classical
invariant theory, can also be understood from the viewpoint of Cartan’s geometry.
As is well known, the action GL(n + 1) � Pm(Rn+1) is equivalent to the action of
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the group of projective (Möbius) transformations, PGL(n), on Pm(RPn). In this
framework, the diagram (5) becomes the following:

PGL(n)
π1 // PGL(n)/Z(GL(n)) ' RPn

Pm(RPn)/PGL(n)

f

OO

Pm(RPn) ' Pm(Rn+1)π3

oo

π2

OO
(6)

In what follows, we shall study diagram (5) in the context of Examples 2.3
and 2.4 and diagram (6) in the traditional setting of classical invariant theory. Our
primary goal will be to generate sets of fundamental invariants and covariants of
these spaces by proposing a suitable cross-section in the orbit space, irrespective of
degree, dimension and signature. Before we can begin the ensuing calculations, we
will require an explicit form of the representation of the group G on the underlying
space of polynomials. The derivation of these representations is the topic of the
next section.

3. Group representations

Let V be a vector space of polynomials (or one of the extended spaces discussed
in Remark 2.5) defined on the n-fold product manifold M = R × · · · × R . The
dimension d of V can be computed using (4) and hence the general element of
V can be represented by d arbitrary parameters c1, . . . , cd , with respect to some
system of coordinates. Each element g of the associated Lie group G acting on
V induces, by the push forward map, a non-singular linear transformation ρ(g) of
V , where the map

ρ : G → GL(V )

defines a representation of G on V . Once the form of the general polynomial Q of
V is available with respect to some system of coordinates on M , the explicit form
of the transformation ρ(g)Q (written more conveniently as g ·Q) may be written
in terms of the parameters c1, . . . , cd . Equipped with these transformation rules,
one can begin the search for group invariants. The precise definition of a group
invariant of Pm(Rn), for example, is as follows.

Definition 3.1. A smooth function I : Pm(Rn) → R is said to be an Aff(n)-
invariant of Pm(Rn) iff it satisfies the condition

I(g ·Q) = I(Q), (7)

for all Q ∈ Pm(Rn) and for all g ∈ Aff(n).

We now derive the explicit form of the representation of Aff(n) on Pm(Rn).
The general polynomial Q ∈ Pm(Rn) is of the form

Q =
m∑

k=0

(
m

k

)
ck
i1···ikx

i1 · · ·xik , (8)

with respect to a given system of coordinates xi ; the k -index objects ck
i1···ik , for

k = 0, . . . ,m , are completely symmetric. The use of the underlined index k is
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to remind the reader that it is simply a label and not an index to be summed
over (the repeated indices i1, . . . , ik in (8) are subject to the usual summation
convention and are summed from 1 to n). The transformation from the given set
of coordinates xi to another set x̃i is given by

xi = Ai
jx̃

j + δi, (9)

where Ai
j ∈ GL(n) and δi ∈ Rn . The action Aff(n) � Rn given by (9) induces a

corresponding action Aff(n) � Pm(Rn). It follows from (8) and (9) together with
the symmetry of the coefficients ck

i1···ik and elementary combinatorial considera-
tions that

c̃k
i1···ik =

m∑
j=k

(
m− k

j − k

)
c
j

`1···`j
A`1

i1 · · ·A`k
ikδ

`k+1 · · · δ`j , (10)

for k = 0, . . . ,m . Therefore, by (7), an Aff(n)-invariant of Pm(Rn) is any function
I satisfying

I(c0, c1
i1
, . . . , cm

i1···im) = I(c̃0, c̃1
i1
, . . . , c̃m

i1···im), (11)

for all Ai
j ∈ GL(n) and δi ∈ Rn , while an Aff(n)-covariant is any function C

satisfying
C(c0, c1

i1
, . . . , cm

i1···im , xi) = C(c̃0, c̃1
i1
, . . . , c̃m

i1···im , x̃i), (12)

for all Ai
j ∈ GL(n) and δi, xi ∈ Rn .

Remark 3.2. Equation (10) specializes to the action E(n− s, s) � Pm(En−s,s)
whenever Ai

j ∈ O(n − s, s); the general polynomial Q ∈ Pm(En−s,s) is given
by (8) where the xi are pseudo-Cartesian coordinates of En−s,s . For spaces of
homogeneous polynomials, the analysis is even simpler. The general polynomial
Q ∈ Pm(Rn) is of the form

Q = ci1···imxi1 · · ·xim , (13)

where ci1···im = c(i1···im) . The action GL(n) � Pm(Rn)× Rn is

xi = Ai
jx̃

j, c̃i1···im = cj1···jmAj1
i1 · · ·Ajm

im . (14)

Notice that the coefficients ci1···im in (14) transform like the components of a
covariant tensor of valence m . This simple yet crucial observation will be of key
importance in the theory of Section 4.

Example 3.3. In anticipation of the calculations in Section 5, let us specialize
the results of this section to P3(E2) using a more transparent notation. The
general cubic Q ∈ P3(E2) is of the form

Q = aijkx
ixjxk + 3bijx

ixj + 3cix
i + e, (15)

where aijk = a(ijk) and bij = b(ij) . By (10), the action E(2) � P3(E2) is

ãijk = a`mnA
`
iA

m
jA

n
k,

b̃ij = bk`A
k
iA

`
j + ak`mAk

iA
`
jδ

m,

c̃i = cjA
j
i + 2bjkA

j
iδ

k + ajk`A
j
iδ

kδ`,

ẽ = e + 3ciδ
i + 3bijδ

iδj + aijkδ
iδjδk,

(16)

where Ai
j ∈ O(2) and δi ∈ R2 .
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4. Computation of invariants

In this section, we show that covariants of vector spaces of polynomials, both
homogeneous and inhomogeneous alike, are formed by computing various contrac-
tions of the partial derivatives of the polynomial Q . Following the proofs of these
results, we examine the orbit structure and argue that the invariants of the action
E(n) � Pm(En)×En globally separate the orbits of the respective extended space,
thereby demonstrating that the constructed covariants have the desired “discrim-
inating power”. Finally, we propose an alternate cross-section through the orbits
which generate pure invariants of the action E(n− s, s) � Pm(En−s,s).

Before stating and proving the main results, we need to introduce some
further notation and one additional definition. It is convenient to adopt a compact
notation for the partial derivatives of a polynomial (or any function) Q . To this
effect, let

Qi1···ik =
∂kQ

∂xi1 · · · ∂xik
. (17)

In the construction of polynomial Aff(n)- or GL(n)-invariants, the functions are
generally only invariant up to a determinantal factor. This leads to a modification
of equations (11) and (12) and the definition of a weighted invariant.

Definition 4.1. An Aff(n)-invariant of weight k of Pm(Rn) is any function
I : Pm(Rn) → R satisfying

I(c0, c1
i1
, . . . , cm

i1···im) = |A|k I(c̃0, c̃1
i1
, . . . , c̃m

i1···im), (18)

where |A| = det(Ai
j). Similarly, a GL(n)-invariant of weight k of Pm(Rn) is any

function I : Pm(Rn) → R satisfying

I(ci1···im) = |A|k I(c̃i1···im). (19)

Weighted covariants are defined analogously.

Theorem 4.2. Let Q ∈ Pm(Rn). Any scalar formed from contractions of Q,
its partial derivatives Qi1 , . . . , Qi1···im and k completely antisymmetric permuta-
tion symbols εi1···in is a GL(n)-covariant of weight k of Pm(Rn).

Proof. The group action GL(n) � Pm(Rn) × Rn is given by Equation (14);
the coefficients ci1···im of the polynomial Q transform like the components of a
covariant tensor of valence m . Notice that the same can be said for the partial
derivatives Qi1···im , since the two are related by a factor of m! . By repeated
differentiation of (13), it follows that the partial derivatives Qi1···ik transform
like the components of covariant tensors of valence k , for k = 1, . . . ,m . This
claim is also easily understood by realizing that the partial derivative operator
∂i = ∂/∂xi transforms like a tensor: ∂̃i = Aj

i∂j , by the chain rule. By definition
(see for example [23]), the permutation symbol εi1···in is a completely antisymmetric
contravariant tensor density of unit weight defined by

εi1···in = ε[i1···in],
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such that in any coordinate system

ε̃12···n = 1.

This definition is consistent with the tensor transformation rule and the definition
of the determinant of an n× n matrix, for

ε̃12···n = |A|(A−1)1
j1 · · · (A−1)n

jnεj1···jn = |A| · |A−1| = 1.

Therefore, the tensor product of any number of Q , Qi1 , . . . , Qi1···im and k
permutation symbols εi1···in is a tensor density of weight k . Thus, any contraction
yielding a scalar from this tensor product is necessarily a weighted invariant of the
extended space, i.e. a GL(n)-covariant of weight k of Pm(Rn).

Theorem 4.3. Let Q ∈ Pm(Rn). Any scalar formed from contractions of Q,
its partial derivatives Qi1 , . . . , Qi1···im and k completely antisymmetric permuta-
tion symbols εi1···in is an Aff(n)-covariant of weight k of Pm(Rn).

Proof. We shall employ a “hybrid” version of the moving frame method [4,
5]. When applying the classical method to the full group Aff(n) = GL(n) n
Rn , one often encounters very complicated algebraic expressions in which it is
not always clear how to compute a ‘simple’ moving frame map. To alleviate
these computational obstructions, Kogan [14] formulates a recursive version of
the moving frame method by taking advantage of any special topology the group
might exhibit. We remark that this method was first applied to the study of Killing
tensors in [20] and provides insight into how to treat the analogous problem in CIT.
In our case, Kogan’s method involves two steps. Firstly, we consider the subgroup
of translations. The transformation rules become trivial and a convenient choice of
cross-section through the orbits can be made leading to a set of covariants for the
subgroup of translations. Secondly, we use the covariants obtained in the first step
as new coordinates, applying the action of the second subgroup (i.e. GL(n)) to
obtain their respective transformation rules. Finally, one can compute covariants
from the action of the second subgroup; these covariants are covariants of the full
group. We now provide explicit details of this construction.

Specializing the full group action Aff(n) � Pm(Rn) × Rn given by Equa-
tions (9) and (10) to the subgroup of translations (i.e. A = 1n ) yields

x̃i = xi − δi, c̃k
i1···ik =

m−k∑
j=0

(
m− k

j

)
c
j+k

i1···ik`1···`j
δ`1 · · · δ`j , (20)

for k = 0, . . . ,m . The cross-section we choose through the orbits is extremely
simple: x̃i = 0, for i = 1, . . . , n . The resulting globally defined moving frame
map is just δi = xi . Substituting this map back into (20) yields the translational
covariants

c̃k
i1···ik =

m−k∑
j=0

(
m− k

j

)
c
j+k

i1···ik`1···`j
x`1 · · ·x`j ,

for k = 0, . . . ,m . Up to a constant, these covariants are nothing more than the
partial derivatives of Q ∈ Pm(Rn). Indeed,

Qi1···ik =
m!

(m− k)!
c̃k
i1···ik .
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Therefore, {Q, Qi1 , . . . , Qi1···im} constitute a set of fundamental translational co-
variants of Pm(Rn). Thus, any partial derivative of any order of Q is a transla-
tional covariant and any partial derivative of any order of a translational covariant
is also a translational covariant. We now apply the second step of the recursive
moving frame method using the partial derivatives of Q as coordinates. However,
no additional effort is required to implement this step. As in the proof of The-
orem 4.2, we simply observe that Q and its partial derivatives all transform like
tensors under the action of the subgroup GL(n) and thus the conclusion of this
theorem holds.

Corollary 4.4. Let Q ∈ Pm(En−s,s). Any scalar formed from contractions of
Q, its partial derivatives Qi1 , . . . , Qi1···im , the inverse metric tensor gij and the
tensor product εi1···inεj1···jn is an E(n− s, s)-covariant of Pm(En−s,s).

Proof. By the tensor transformation rules, the components of the contravariant
metric tensor transform according to

g̃ij = gk`(A−1)i
k(A

−1)j
` = gij,

since Ai
j ∈ O(n− s, s). Note that in the case s = 0, the invariance of the metric

tensor is a consequence of the identity AAt = 1n , for any orthogonal matrix A .
Further, since |A| = ±1 for any pseudo-orthogonal matrix, it follows that

ε̃i1···in = |A|(A−1)i1
j1 · · · (A−1)in

jnεj1···jn = ±εi1···in ,

and hence the tensor product εi1···inεj1···jn is strictly invariant. The result now
follows from the proof of Theorem 4.3 upon interchanging Aff(n) ↔ E(n − s, s)
and GL(n) ↔ O(n− s, s).

Using Theorems 4.2 and 4.3 and Corollary 4.4, one can immediately con-
struct sets of functionally independent group covariants in which the number of
covariants in the set is equal to the dimension of the space minus the dimension
of the orbits [16, theorem 8.17]. We demonstrate this construction in Section 5,
by computing a set of fundamental E(2)-covariants of P3(E2). One can also use
the results of this section to construct sets of polynomially independent covariants,
also known as Hilbert bases. In this paper, we shall not pursue the problem of
whether such bases are finite. The proof of such a first fundamental theorem or
finiteness theorem is well known for the homogeneous case (see for example [7, 16])
and can probably be extended to the inhomogeneous vector spaces of polynomials
treated in this paper.

In many applications, such as the P3(E2) example treated in the next sec-
tion, a complete Hilbert basis is often unnecessary and instead a functionally
independent set of invariants or covariants is sufficient. The question of whether a
set of functionally independent group invariants distinguishes between the orbits
of the vector space is a fundamental problem. At best, invariants only distin-
guish locally between the orbits because they are essentially derived using local
methods (such as the moving frame method) and orbits need not have the same
dimension. However, for the special case of E(n)-invariants of the extended space
Pm(En)×En , one can compute a set of invariants using Corollary 4.4 which glob-
ally separate the orbits. Referring to the proof of Theorem 4.3, we first note that



742 Horwood

all orbits of the extended space Pm(En)× En under the subgroup of translations
have maximal dimension n ; this is straightforward to verify by analyzing the in-
finitesimal generators of the subgroup. We emphasize that if we only consider the
unprolonged space Pm(En), then an orbit under the subgroup of translations need
not have dimension n . Thus prolongation of the space (i.e. computing covariants of
Pm(En) rather than pure invariants) is the key! Further, the cross-section x̃i = 0
intersects the orbits transversally. Therefore, the subgroup of translations acts
regularly on the entire extended space with n-dimensional orbits. The standard
theory of moving frames (as treated in [16, ch 8], for example) is thus applicable.
Our cross-section defines a global moving frame map and yields m+1

n

(
n+m
m+1

)
func-

tionally independent translational invariants, which are simply the polynomial Q
and its partial derivatives Qi1 , . . . , Qi1···im . We now apply the action of the second
subgroup O(n), using these translational invariants as new coordinates. Clearly,
they all transform like tensors, thus we can easily construct a set of fundamental
O(n)-invariants (and hence E(n)-invariants of the full extended space) upon form-
ing appropriate contractions of the partial derivatives, as stated in Corollary 4.4.
A result of Hilbert, restated in Onishchik and Vinberg [17], asserts the following:

“The orbits of a compact linear group acting in a real vector space are
separated by the fundamental (polynomial) invariants.”

Therefore, due to the compactness of O(n), this result guarantees that our set of
fundamental invariants constructed in the manner described separates or discrim-
inates between the orbits globally.

Remark 4.5. The existence of a global cross-section in the construction of the
translational covariants is a direct consequence of the topology of the extended
space Pm(En−s,s) × En−s,s . We recall from fibre bundle theory that a principal
bundle is trivial if and only if it admits a global cross-section [21]. Indeed, in our
case, we have the fibration

π : Pm(En−s,s)× En−s,s → Pm(En−s,s)× En−s,s/G,

where G is the subgroup of translations. Clearly, G is identifiable with En−s,s .
Therefore, each fibre of this principal bundle is the group itself, isomorphic to
En−s,s . The simplicity of the cross-section and the global moving frame map is
thus an artifact of the triviality of this principal bundle.

To close this section, we address the problem of how group invariants of the
prolonged space Pm(M)×M can be used to distinguish between the orbits of the
unprolonged space Pm(M). In some cases, certain polynomial combinations of
covariants produce pure invariants, i.e. covariants independent of the coordinates
xi . These combinations are often easy to spot if one is attempting to distinguish
between two different orbits in which their representatives take on a particularly
simple form. Another technique, motivated from the “transvection” process, is
to apply certain invariant differential operators to a covariant C . For example,
suppose C is an E(n − s, s)-covariant of Pm(En−s,s). If C is linear in xi , then
gijCiCj , the “length” squared of its gradient, is a pure invariant. If C is quadratic in
xi , then its Laplacian (or more generally its d’Alembertian in the pseudo-Euclidean
case s 6= 0), given by gijCij , is a pure invariant. Finally, one can abandon the



Horwood 743

use of covariants altogether and instead compute invariants of the unprolonged
space from the group action (10) by choosing an alternate cross-section through
the orbits. Working in E(n− s, s) and proceeding as in the proof of Theorem 4.2,
we use the recursive moving frame method and consider the restriction of the group
action to the subgroup of translations given by (20). At the top level, we have

c̃m
i1···im = cm

i1···im , c̃
m−1
i1···im−1

= c
m−1
i1···im−1

+ cm
i1···im−1jδ

j.

One choice of cross-section is

gi1j1 · · · gim−1jm−1 c̃
m−1
i1···im−1

c̃m
j1···jm−1k = 0, (21)

for k = 1, . . . , n . The resulting normalization equations for δi are of the form
αk`δ

` = βk , where

αk` = gi1j1 · · · gim−1jm−1cm
i1···im−1kc

m
j1···jm−1`,

βk = −gi1j1 · · · gim−1jm−1c
m−1
i1···im−1

cm
j1···jm−1k.

The n×n matrix whose components are αk` is generally invertible, thus a (local)
moving frame map exists. A set of translational invariants can be constructed from
the remaining transformation rules in (20) and full E(n − s, s)-invariants can be
obtained be taking appropriate contractions. We stress that this construction is
only local; the invariants constructed using the cross-section (21) only distinguish
between those orbits satisfying det(αk`) 6= 0.

5. Classification of inhomogeneous cubic polynomials in two variables

We now use the theory developed in this paper to give an invariant characterization
of the orbits of P3(E2), the bundle of inhomogeneous cubic polynomials in two
variables, under the action of the Euclidean group E(2). Our choice to work in
the subgroup E(2), rather than the full affine group as is standard in CIT, is
motivated from the invariant theory of Killing tensors, as one treats analogous
problems exclusively in the isometry group. Further, our choice of group leads to
a wider variety of equivalence classes of polynomials and hence a more challenging
classification problem and more thorough test of our method.

The general cubic Q ∈ P3(E2) is given by equation (15), expressed in
terms of ten independent parameters aijk , bij , ci and e , where aijk = a(ijk) and
bij = b(ij) . The dimension of the extended space P3(E2) × E2 is twelve and
generic orbits have dimension three, thus we expect 12 − 3 = 9 fundamental
E(2)-covariants. By Corollary 4.4, nine such covariants are

C1 = QijkQijk, C2 = εikεj`Qm
ijQmk`,

C3 = εi`εjmεkpεnuεqvεrwQijkQ`mnQpqrQuvw,

C4 = εikεj`QijQk`, C5 = εikεj`QiQjQ
mn

kQmn`, C6 = QijQij,

C7 = εikεj`QiQjQ
m

kQm`, C8 = QiQi, C9 = Q.

(22)

In (22) and in what follows, we raise and lower all indices with the metric, e.g.
Qij = gikgj`Qk` . We remind the reader that we are using (17) and employing the
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Table 1: Canonical forms for P3(E2)

A1 a1x
3 + 3a2xy(x + y) + a3y

3 + b(x2 + y2) + c1x + c2y + e,

a1 > 0, a3 > 0, a2(a1 − 2a2 + a3) 6= 0

A2 a1x
3 + 3a2xy(x + y) + a3y

3 + bxy + c1x + c2y + e,

a1 > 0, a3 > 0, a2(a1 − 2a2 + a3) = 0

A3 ax3 + (b1x + b2y)y + cx + e, a > 0, b1 > 0, b2 6= 0

A4 ax3 + bxy + cy + e, a > 0, b > 0

A5 ax3 + c1x + c2y, a > 0, c2 > 0

A6 ax3 + cx + e, a > 0

B1 b1x
2 + b2y

2 + e

B2 bx2 + cy, c > 0

B3 bx2 + e

C cx, c > 0

E e

Z 0

summation convention in the construction of these covariants. For example,

C6 = QijQij =
2∑

i=1

2∑
j=1

∂2Q

∂xi ∂xj
· ∂2Q

∂xi ∂xj
.

We remark that Equations (22) are also covariants for P3(E1,1) under the action
of E(1, 1); the only difference is that indices are raised and lowered with the
Minkowski metric, gij = diag(−1, 1). In both the Euclidean and Minkowski
cases, it is straightforward to verify that the nine covariants (22) are functionally
independent.

The first step in classifying the orbit space P3(E2)/E(2) is to find a suit-
able representative, or canonical form, on each orbit. In the language of Cartan
geometry, we are implicitly choosing a cross-section through the orbits which leads
to a moving frame map sending any element on the orbit to its canonical form.
The construction of the moving frame map is rather elementary. We use the group
freedom, specified by a rotation (and possibly a reflection) and translation on the
Euclidean plane, to eliminate as many parameters of the cubic as possible. Once
the group freedom has been exhausted, the resulting cubic defines a canonical
form.

Proposition 5.1. Any cubic in P3(E2) is equivalent to one of the twelve classes
of canonical forms listed in Table 1.

Proof. The derivation of the canonical forms uses the action E(2) � P3(E2)
specified by Equations (16) in terms of the parameters aijk , bij , ci and e of P3(E2),
the rotation Ai

j and the translation δi . As the ensuing calculations require only
elementary algebra, we shall only give a brief outline of the details.
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Suppose Q ∈ P3(E2) and C1 6= 0 (i.e. aijk 6= 0). Parametrizing the rotation
Ai

j by

Ai
j =

(
cos θ − sin θ
sin θ cos θ

)
ij

,

it follows that one can fix θ so that the coefficients of the x2y and xy2 terms of
Q are equal. Indeed, if

Q = a111x
3 + 3a112x

2y + 3a122xy2 + a222y
3 + · · · ,

then the condition ã112 = ã122 yields a cubic equation for tan θ with a leading
coefficient of a112 + a122 . Thus, a real solution for tan θ exists (if a112 = −a122 ,
we can take θ = π

2
). Without loss of generality,

Q = a1x
3 + 3a2xy(x + y) + a3y

3 + 3bijx
ixj + 3cix

i + e.

By a reflection, we may assume that a1, a3 > 0. We now apply a translation. If
C2 = a2(a1− 2a2 + a3) 6= 0, we can set b12 = 0 and b11 = b22 yielding case (A1). If
C2 = 0, then either (i) a2 = 0 or (ii) a3 = 2a2−a1 . For case (i), if a1a3 6= 0, we can
set b11 = b22 = 0 giving case (A2), otherwise a3 = 0, without loss of generality,
and

Q = ax3 + 3bijx
ixj + 3cix

i + e.

In this case, if b22 6= 0, we can eliminate b11 and c2 leading to case (A3). If b22 = 0
and b12 6= 0, we can eliminate b11 and c1 yielding case (A4). If both b12 and b22

vanish and c2 6= 0, then a translation exists which sends b11 = 0 and e = 0 and
hence case (A5). Finally, if b12 , b22 and c2 are all zero (i.e. Q depends only on
x), then we can eliminate the quadratic term yielding case (A6). For case (ii), if
a1 6= a2 , then a translation exists giving case (A2), as in case (i). If a1 = a2 , then
Q = a1(x + y)3 + · · · and thus reduces to one of (A3), (A4), (A5) or (A6) by a
rotation with θ = π

4
.

Suppose that aijk = 0 and bij 6= 0. Then Q is an inhomogeneous quadratic
in two variables and, as is well known, a rotation can always be found which
transforms away the mixed xy term. By a further translation, one can always
reduce the quadratic to one of the cases (B1), (B2) or (B3). Finally, if both aijk

and bij identically vanish, then Q is at most linear and can always be reduced to
either case (C), (E) or (Z).

Having derived a set of canonical forms for P3(E2), the problem of invari-
antly distinguishing between the orbits involves two main steps. Firstly, a char-
acterization of each of the twelve classes of canonical forms in Table 1 is required.
The solution to this problem is addressed in Proposition 5.2 and summarized in
Table 2. Secondly, since each class of canonical forms itself depends generally on
several parameters and thus contains infinitely many inequivalent orbits, classifi-
cation schemes for each canonical form type are required. This step necessitates
finding a set of invariants serving as global coordinates for each of the twelve
classes. By definition, such invariant coordinates must enjoy the following prop-
erty: two cubics belonging to the same class are equivalent if and only if they have
the same invariants (coordinates). Computationally, this is a challenging step to
implement. Firstly, if one finds a set of potential invariants I1, . . . , Id for the
coordinates of a given canonical form class having d parameters c1, . . . , cd , one
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must show that the only solutions to the system of algebraic equations Ii = Ĩi ,
i = 1, . . . , d , define the same cubic up to equivalence. Provided the Ii are func-
tionally independent, they will always serve as local coordinates of the canonical
form. However, if one wishes to prove that the coordinates are global , then one
must solve the generally non-linear system of equations Ii = Ĩi for the param-
eters c̃i in terms of the ci . Resource intensive Gröbner basis type calculations
are usually required. Secondly, as discussed towards the end of Section 4, one
must actually determine suitable “pure” invariants from the fundamental covari-
ants. This procedure can be implemented in a number of different ways. For each
class of canonical forms, one can search for (polynomial) combinations of the co-
variants (22) which have no explicit dependence on the Cartesian coordinates x
and y . Alternatively, one can compute additional covariants using Corollary 4.4
having the aforementioned property. Such covariants would of course depend only
on the (functionally independent) fundamental covariants C1, . . . , C9 , but not nec-
essarily through a polynomial functions of these covariants. That being said, it is
convenient to define a series of covariants C10, . . . , C21 as follows:

C10 = Qi
i, C11 = Qi

ijQ
j, C12 = QiQ

ijQj, C13 = Qi
jQ

j
kQ

k
i,

C14 = Qi
ijQ

jkQk, C15 = Qi
ijQ

j
kQ

k
`Q

`, C16 = QijkQijQk`Q
`,

C17 = εikεj`QijmQmnQnQk`, C18 = εikεj`QimnQ
mnQjQk`,

C19 = εikεj`Qm
miQjnQ

n
kQ`, C20 = Qi

ijQ
jk`Qk`, C21 = εikεj`Qm

ijQ
n

nmQk`.

Moreover, we define nine auxiliary covariants written in terms of polynomials of
the Ci according to

A1 = C8 − 2 C9 C10, A2 = A1 C4 + 2 C7, A3 = 4 C6 − 3 C10
2 − 2 C11,

A4 = C6 C10 − 6 C1 C9 − 3A3 C10, A5 = C10
3 − 3 C10 C11 − C13 + 3 C14,

A6 = 6 C1 C4 C9 + 12 C6 C10 C11 + 12 C1 C12 − C4 C13 − 3 C4 C14

− 6 C6 C14 − 6 C11 C13 − 12 C11 C14,

A7 = C1 C4 + 2 C1 C6 − 2 C10 C20,

A8 = C4
2 + 8 (C15 − C16 − C17 + C18 + C19),

A9 = 6 C1 C9 C21 + 3 C6 C10 C20 − 3 C1 C5 + 6 C1 C15 + 6 C1 C19

− 3 C13 C20 − C13 C21 − 6 C14 C20 − 6 C14 C21.

The “right combinations” of covariants which lead to global coordinates become
increasingly complicated as the number of parameters in the canonical form grows.
For cases (A1) and (A2), the two most general classes of canonical forms, we
have found it easier to construct these coordinates using pure invariants derived
using the alternate cross-section proposed at the end of Section 4. The cross-
section (21) in our notation is ãijkb̃

jk = 0 which leads to the normalization
equations αijδ

j = −aijkb
jk where

αij = ak`
iajk`. (23)

Inverting the normalization equations using the definition of the matrix adjoint
yields the moving frame map

δ̂i = −εikεj`amn
ka`mnajpqb

pq, (24)
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Table 2: Invariant classification of P3(E2) and global coordinates of its canonical
forms

Class Classification Coordinates

A1 C1 6= 0, C2 6= 0 I1, I2, I3, I4, I5, I7, I8

A2 C1 6= 0, C2 = 0, C3 6= 0 I5, I6, I7, I8, I9, I10

A3 C1 6= 0, C2 = 0, C3 = 0, |∇C4|2 6= 0 C1, C21, A7, A8, A9

A4 C1 6= 0, C2 = 0, C3 = 0, |∇C4|2 = 0, C4 6= 0 C1, C4, A5, A6

A5 C1 6= 0, C2 = 0, C3 = 0, C4 = 0, C5 6= 0 C1, C5, A3

A6 C1 6= 0, C2 = 0, C3 = 0, C4 = 0, C5 = 0 C1, A3, A4

B1 C1 = 0, C6 6= 0, ∇2C7 6= 0 C4, C10, A2

B2 C1 = 0, C6 6= 0, ∇2C7 = 0, C7 6= 0 C7, C10

B3 C1 = 0, C6 6= 0, C7 = 0 C10, A1

C C1 = 0, C6 = 0, C8 6= 0 C8

E C1 = 0, C6 = 0, C8 = 0, C9 6= 0 C9

Z C1 = 0, C6 = 0, C8 = 0, C9 = 0

where δ̂i ≡ |α| δi and |α| ≡ det(αij). Substituting (24) back into the group action
(16), we obtain the following translational invariants in addition to aijk :

βij ≡ |α| b̃ij = |α| bij + aijkδ̂
k,

γi ≡ |α|2 c̃i = |α|2 ci + 2 |α| bij δ̂
j + aijkδ̂

j δ̂k,

η ≡ |α|3 ẽ = |α|3 e + 3 |α|2ciδ̂
i + 3 |α| bij δ̂

iδ̂j + aijkδ̂
iδ̂j δ̂k.

(25)

Therefore, any scalar formed from contractions of aijk , βij , γi and η , the inverse
metric gij and the tensor εijεk` is an E(2)-invariant of P3(E2). The following
invariants are used in the construction of global coordinates for cases (A1) and
(A2):

I1 = aijkaijk, I2 = εikεj`am
ijamk`,

I3 = εi`εjmεkpεnuεqvεrwaijka`mnapqrauvw,

I4 = βi
i, I5 = ai

ijγ
j, I6 = βijβij, I7 = η,

I8 = ai
ijβ

jkγk, I9 = γiγi, I10 = βijγiγj.

(26)

Proposition 5.2. An invariant characterization of each of the twelve classes
of canonical forms for P3(E2) is listed in the second column of Table 2.

Proof. It is straightforward to evaluate the covariants listed in the second
column of Table 2 showing that they characterize their respective canonical form.
Clearly C1 vanishes if and only if all cubic terms vanish. Thus, if C1 6= 0, we
necessarily have one of (A1), . . . , (A6). For (A1), C2 = a2(a1 − 2a2 + a3) 6= 0,
while C2 = 0 for (A2), . . . , (A6). For (A2), C3 = −2592a1

2a3
2 6= 0 if a2 = 0,

otherwise C3 = −2592(a1− a2)
2((a1− a2)

2 + 4a2
2) 6= 0 if a3 = 2a2− a1 . It follows

that C3 = 0 for (A3), . . . , (A4). For (A3), |∇C4|2 = gij(∂iC4)(∂jC4) = 576a2b2
2 6= 0
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(b2 6= 0 for (A3) otherwise it reduces to a special case of (A4)), while |∇C4|2 = 0
for (A4), (A5) and (A6). For (A4), C4 = −2b2 6= 0 and C4 = 0 for (A5) and (A6).
Finally, C5 vanishes identically for (A6), while for (A5), C5 = 36a2c2

2 6= 0.

Suppose now that C1 = 0 and C6 6= 0; we necessarily have one of (B1), (B2)
or (B3). For (B1), ∇2C7 = gij∂i∂jC7 = 64b1

2b2
2 6= 0, while ∇2C7 = 0 for (B2) and

(B3). It follows that C7 = 0 for (B3) and C7 = 4b2c2 6= 0 for (B2).

It remains to distinguish between classes (C), (E) and (Z). For these classes,
C1 = C6 = 0. For (C), C8 = c2 6= 0, while C8 = 0 for (E) and (Z). Finally, C9 = e
for (E) and (Z), thereby separating these two classes.

Proposition 5.3. The quantities listed in the third column of Table 2 are pure
invariants and globally separate the orbits in their respective canonical form class.

Proof. The coordinates listed for classes (A1) and (A2) are given by Equa-
tions (26) and are, by definition, pure E(2)-invariants of P3(E2). For the ten
other classes of canonical forms, we evaluate the invariant coordinates listed in
Table 2 and show that they contain no explicit dependence on the Cartesian coor-
dinates x and y . Working from the bottom up, it follows that C9 = e for case (E)
and C8 = c2 for case (C). For cases (B3), (B2) and (B1), (C10,A1) = (2b,−4be),
(C7, C10) = (4b2c2, 2b) and (C4, C10,A2) = (8b1b2, 2(b1 + b2),−32eb1b2(b1 + b2)),
respectively. For cases (A6), (A5), (A4) and (A3),

(C1,A3,A4) = (36a2,−12ac,−216a2e),

(C1, C5,A3) = (36a2, 36a2c2
2,−12ac1),

(C1, C4,A5,A6) =
(
36a2,−2b2, 18abc,−36ab2(bc + 12ae)

)
,

(C1, C21,A7,A8,A9) =
(
36a2, 72a2b2, 72a2(b1

2 + 4b2
2), 4b1

4 − 192ab2
2c,

−144a2b2[36a(b2c− 3ae) + b2(3b1
2 + 4b2

2)]
)
,

respectively. Finally, as discussed in the paragraph following the proof of Proposi-
tion 5.1, we can verify that the invariant coordinates in each of the twelve classes
define a system of global coordinates. In most cases, these calculations can be
readily done by hand. For example, for case (A4), we solve the system of equa-
tions

36a2 = 36ã2, −2b2 = −2b̃2, 18abc = 18ãb̃c̃,

−36ab2(bc + 12ae) = −36ãb̃2(b̃c̃ + 12ãẽ),

for ã, b̃, c̃, ẽ in terms of a, b, c, e . The system admits four solutions given by

ã = ±a, b̃ = b, c̃ = ±c, ẽ = e or ã = ±a, b̃ = −b, c̃ = ∓c, ẽ = e.

Clearly, all solutions define the same cubic up to a reflection. Therefore, the
invariants (C1, C4,A5,A6) define global coordinates for the (A4) class of canonical
forms and hence globally separate the orbits. The other canonical form classes are
treated similarly.
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