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Abstract. Let G be a connected noncompact semisimple Lie group. For
each v',v,g € G, we prove that

Jim [a(v'g )]/ = 57" b(g),

where a(g) denotes the a-component in the Iwasawa decomposition of g = kan
and b(g) € Ay denotes the unique element that conjugate to the hyperbolic
component h in the complete multiplicative Jordan decomposition of g = ehu.
The element s in the Weyl group of (G, A) is determined by yv € G (not
unique in general) in such a way that yv € N~m ;M AN, where yhy~! = b(g)
and G = Ugew N~ msM AN is the Bruhat decomposition of G.

Mathematics Subject Index 2000: Primary 22E46; Secondary 22E30

Keywords and phrases: Iwasawa decomposition, complete multiplicative Jordan
decomposition, Bruhat decomposition, a-component

1. Introduction

Given X € GL,(C), the well-known QR decomposition asserts that X = QR,
where () is unitary and R is upper triangular with positive diagonal entries. The
decomposition is unique. Let a(X) := diag R. Recently it was shown in [2] that
given A, B € GL,(C), lim;_...[a(AX*B)]"/! exists and the limit is related to the
eigenvalue moduli of X. More precisely,

Theorem 1.1.  [2] Let A,B,X € GL,(C). Let X = Y 'JY be the Jordan
decomposition of X, where J is the Jordan form of X, diagJ = diag (Ay,..., \n)
satisfying |Ai| > -+ > |\,|. Then

lim [a(AXtB)]l/t = diag(|)\w(1)|, ey |)\w(n)|),

t—o0

where the permutation w is uniquely determined by the LwU decomposition of
Y B = LwU, such that L is lower triangular and U s unit upper triangular.

The LwU decomposition is known as Gelfand-Naimark decomposition [1, p.434].
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The above asymptotic result relates three decompositions, namely, QR de-
composition of X, Jordan decomposition of X, and Gelfand-Naimark decompo-
sition of Y B. Indeed the matrix Y (not unique in general) can be viewed from
the standpoint of complete multiplicative Jordan decomposition (CMJD) of X [1].
Write J = D + B where D := diagJ is diagonal and B is the nilpotent part in
the Jordan form J. Then

X=Y'JY =Y'[D(1+ D 'B)Y,
where 1+ D~!'B is unipotent. Decompose the diagonal
D = diag (| M\, ..., e |\,|) = EH,

where A ‘
E :=diag (¢, ... €), H :=diag (|\], ..., |[A\a))-

Now we have the CMJD
X = ehu,

where
e=Y'EY, h=Y'HY, uw=Y '(1+ D 'B)Y.

Notice that the diagonalizable e has eigenvalue moduli 1, and the diagonalizable
h has positive eigenvalues and w is unipotent. They commute with each other and
such decomposition is unique. Now Y is an element which via conjugation turns
h into a positive diagonal matrix with nonincreasing diagonal entries.

Our goal is to extend Theorem 1.1 in the context of connected noncompact
semisimple Lie group G. The three decompositions have their counterparts,
namely Iwasawa decomposition, complete multiplicative Jordan decomposition
(CMJD) and Bruhat decomposition. Motivated by Theorem 1.1, for any given
v, v,9 € G, we study the sequence {[a(v'g'v)]'/*}ien in which the a-component
of a nonsingular matrix would be played by the a-component a(g) of g, where
g = kan with respect to the Iwasawa decomposition G = KAN. The eigenvalue
moduli |A| in nonincreasing order is replaced by the element b(g) € Ay that is
conjugate to the hyperbolic element h in the CMJD of ¢g. Here A, := expa,
in which a; is a (closed) fundamental chamber. Finally the permutation w
would be provided by the Weyl group element s in the Bruhat decomposition
of yv € N~m,M AN such that yhy™ = b(g).

2. CMJD, Iwasawa decomposition, Bruhat decomposition

Let G be a connected noncompact semisimple Lie group having g as its Lie algebra.
Let g = ¢+ p be a fixed Cartan decomposition. Let K C G be the connected
subgroup with Lie algebra €. Then K is closed and Ad ¢(K) is compact [1, p.252-
253]. Let a C p be a maximal abelian subspace. Fix a closed Weyl chamber a, in
a so that the positive roots and thus the simple roots are fixed. Set A, :=expa,.
Let X be the set of restricted roots.

Following the terminology in [4, p.419], an element h € G is called hyper-
bolic if h = exp(X) where X € g is real semisimple, that is, ad X € End (g) is
diagonalizable over R. An element u € G is called unipotent if u = exp(IN) where
N € g is nilpotent, that is, ad N € End (g) is nilpotent. An element e € G is
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elliptic if Ad (e) € Aut (g) is diagonalizable over C with eigenvalues of modulus 1.
The complete multiplicative Jordan decomposition (CMJD) [4, Proposition 2.1]
for GG asserts that each g € G can be uniquely written as

g = ehu,

where e is elliptic, A is hyperbolic and u is unipotent and the three elements e,
h, u commute. We write g = e(g)h(g)u(g).
A hyperbolic h € G is conjugate to a unique element b(h) € A, [4,
Proposition 2.4]. Denote
b(g) := b(h(g)).

The group A := expa is simply connected [3, p.317] and abelian so that the map
a — A defined by exp is a diffeomorphism [3, p.63]. Thus loga € a is well defined
for any a € A. Let M = Zk(A) = Zk(a) and M’ = Ng(A) = Nk(a). The group
W = M'/M is the Weyl group . It acts on A by conjugation, and on a via the
adjoint action. In particular exp is a W-map. Let n:= ) _ g, be the sum of
all positive root spaces. Set N := expn. Similarly let n_ := > g, and set
N~ :=expn_. Let G = KAN be the corresponding Iwasawa decomposition of G
[3, p.317]. If g € G, we write
g = kan,

where k € K, a € A, n € N are uniquely defined. For G = SL,,(C), the Iwasawa
decomposition is just the QR decomposition if we choose AN as the group of
upper triangular matrices with positive diagonal elements.

For s € W, denote by m, € M’ a representative such that s = m M. The
Bruhat decomposition of G asserts that

G = Usew N"m ;M AN

is a disjoint union. So for each ¢ € G, there is a unique s € W such that
g€ N~ m,MAN.

3. Asymptotic behavior of the Iwasawa component

Let G be a connected noncompact semisimple Lie group with Iwasawa decompo-
sition G = KAN. Let a(g) be the a-component of g € G with respect to the
Iwasawa decomposition
9 = k(g)alg)n(g).

Given v',v,g € G, we now prove the following main theorem concerning the
asymptotic behavior of the sequence {[a(v'g'v)]'/*}en. It turns out the limit
limy o {[a(v'g*v)]*/} exists and is independent of v'. We will make some remarks
in the next section.

Theorem 3.1.  Let v',v,g € G. Let g = ehu be the complete multiplicative
Jordan decomposition of g. Let h = y~'b(g)y for some y € G, and yv €
N-m M AN in the Bruhat decomposition. Then

lim [a(v'g"0)]""" = 57" blg) = m"b(g)ms, (1)

where the limit is independent of v and the choice of y. If b(g) is reqular, that
is, b(g) is in the interior of Ay, then s is uniquely determined by g and v.
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Proof. @ We may assume that G has trivial center since everything is indepen-
dent of the center. We will make use of Theorem 1.1 by considering Ad G which
can be viewed as a matrix group by choosing an appropriate orthonormal basis of
g with respect to the inner product By(X,Y) = —B(X,0Y), where B(,-) is the
Killing form on g and 6 € Aut (g) is the Cartan involution (X +Y) =X —-Y,
X e€t, Y €p with respect to the Cartan decomposition g =€ @ p.

It is known that [1, p.261] there is an orthonormal basis of g,

X={X;:i1=1,...,d}, d := dim g, (2)

compatible with the (restricted) root space decomposition of g [3, p.313]

gzgo@@ga

aEeX

such that X; € g, and X; € gg with ¢ < j implies a > 3 (by the lexicographic
order L over the coordinates induced by pre-ordering the simple roots). Moreover,
since gy = a @ m is an orthogonal sum [3, p.313], we can select X in a way that
a is spanned by some {X;, X;i1, -, Xitdima—1} € X. With respect to X', we
view the elements in GL(g) as matrices. The matrices Ad (K), Ad(A), Ad(N),
and Ad (N~) are orthogonal, positive diagonal, real unit upper triangular, and
real unit lower triangular, respectively [3, p.317]. Because Ad : G — Aut(g)
is a representation of G, we may view the elements Adg € SL(g) C GL(g) as
nonsingular matrices. Thus we have the following Iwasawa decomposition for Ad g,
that is, QR decomposition: Adg = Adk Ada Adn. Therefore,

a(Ad (g)) = Ad (a(g)), (3)

for all ¢ € G, where a(Ad (g)) is the diagonal part of the matrix R in the QR
decomposition Adg = QR. By (3)

Ad [a(v'g')] " = [a((Ad V) (Ad ) (Ad )Y, teN, @)
Since the center of G is trivial, to prove (1) it suffices to show

lim [a((Ad o')(Ad g)"(Ad )] /* = Ad (s~ - b(g)), (5)

t—o0

where s € W is uniquely determined by the Bruhat decomposition of
yv =n"msman € N-m ;MAN.
Since Ad (s -b(g)) = Ad (m;'b(g)m,), (5) is equivalent to the following

tlim [a((Adv')(Ad g)'(Adv))]Yt = (Adm,)"*Ad (b(g))(Ad my). (6)
In order to establish (6), we need several lemmas. For each H € a,, ad H =
diag (hy,- -, hq) is a diagonal matrix. The diagonal entries may not be in nonin-
creasing order so it is not readily to apply Theorem 1.1. The next two lemmas are
obvious.
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Lemma 3.2.  Let H € a; and write ad H = diag (hy,--- ,hq). If hy > h; for
certain i > j, then the (i,7) entry of each element of adn™ is always zero, where
n = Za<0 s P

Index the elements in ¥ U {0} in nonincreasing order as oy > - > kst

(=0) > -+ > a; according to the lexicographic order £, and let n; = dimg,,,
then we get a partition 7 of d

n = (ny,ng, -, ng). (7)
The partition n is symmetric (n; = ngrq—¢ for 1 <t < k) since 6(g,) = 9_o [3,
p.313]. This implies the following lemma.

Lemma 3.3. For H € a and a € A, adH and Ada are block diagonal
matrices. More precisely,

adH = diag(oy(H)l,,...,c(H)I,,) (8)
Ada = diag(eal(loga)[nlj__'760%(10%“)]7%)‘ (9)

Let e; € R? be the standard vector taking 1 at the i-th position and 0 elsewhere.
For a permutation w of d letters we associated the permutation matrix P, :=
lew(1) €w(@) *** €w(a)- Then P (zi5) Py = (Tw(iyw()), and in particular

P ldiag (h, . .., ha) Py = diag (huqy, - - - s hu(a))- (10)

We also view P, as an element of GL(g) with respect to the basis X'. From now
on, let H :=logb(g) € a, and write

ad H := diag (hy, -+ , hq) = diag (o (H) I, -+, o (H) 1)

Lemma 3.4. Let w € Sy be the unique permutation that has the smallest
number of transpositions in its factorization into products of (1,2), (2,3),..
(d—1,d), such that the diagonal entries of

*

Pw_l(ad H)Pw = diag (hw(1)7 cee hw(d)) (11)
are in nonincreasing order. Then w satisfies the following properties:

(1) If ho@y = hoyy for w(i) > w(j), then i > j. Here hyy and hyu are the
w(j)-th and the w(i)-th diagonal entry of ad H respectively; which will be
mapped to the j-th and the i-th diagonal entry of P;'(ad H)P,, respectively.

(2) P, acts as an identity on gy D a D ay .
(3) There is a permutation vy € Sy such that for n = (ny,ng, -+ ,ng)
Py ldiag (w11, -+ @ply, )Py = diag (24 o) 5 Ty Tn)

for the free variables xv,--- ,x). If we partition the rows of P, by n, and
partition the columns of P, by v(n) := (ny1), -+, Ny)), then the (i,77(1))
block of P, is I,, fori=1,--- k, and the other blocks of P, are zero blocks.
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Proof. Let w € S; denote the unique permutation acting on the sequence
{(=h1,1),(=h2,2), -+ ,(—hg,d)} in the way that the resulting sequence is increas-
ing in lexicographic order:

Then w is the permutation that has the smallest number of transpositions in its
factorization, such that the diagonal entries of P;!(ad H)P, are in nonincreasing
order. Moreover, statement (1) is true by the construction of w.

If hj = hji1, then by the construction of w and statement (1), it is
impossible to have t € {1,--- ,k} such that w(t) is a number between w(j) and
w(j+1). Sow(j+1) =w(j)+ 1. This implies that P, is a block permutation
matrix and statement (3) follows.

The matrix ad H is anti-symmetric about the anti-diagonal. So P, is
symmetric about the anti-diagonal by (11). Then P, acts as an identity on g,
by statement (3). This proves statement (2). ]

For each X € n™, write ad X = (3%) which is strictly lower triangular.

Lemma 3.5.  Let w be determined by b(g) as in Lemma 3.4. Then for all
X en,
Py (ad X) Py = (Tu(iw)

remains strictly lower triangular.

Proof.  Clearly the diagonal entries of P, !(ad X)P, are 0. The (i, ) entry of
Py ad X)P, iS Zu(ijw()- Suppose on the contrary, ;) # 0 for some i < j.
Then w(i) > w(j) since ad X is strictly lower triangular. Also Ay > he() by
Lemma 3.4 (1). But hyy) = he() contradicts Lemma 3.4 (2) since w(i) > w(j)
and ¢ < j. On the other hand, if h,;) > hy), then it contradicts Lemma 3.2
since w(z) > w(j) but the (w(i),w(y)) entry of ad X is ,()w() # 0. This proves
that P;!(ad X)P, is strictly lower triangular for every X € n™. [

Let us now prove (6). Taking exponential it follows that
P, (Adb(g)) P, (12)

is a positive diagonal matrix with nonincreasing diagonal entries by Lemma 3.4,
and if n~ € N~ , then P;!(Adn~)P, is unit lower triangular by Lemma 3.5. Now

Adg = (Ade)(Adh)(Adu), (13)
Adh = (Ady)~'(Adb(g))(Ady)
= (Ady)'R,[P; ' (Adb(g) PP, (Ady), (14)

where y € G such that yhy™' = b(g). Then
Py (Ady)(Adh)(Ady)~' P, = P, (Adb(g)) P

whose diagonal entries are the eigenvalue moduli of Ad (g), in nonincreasing order.
In order to apply Theorem 1.1 to Ad (g) we need to examine the Gelfand-Naimark
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decomposition of the matrix P;'(Ady)(Adwv). Indeed it is sufficient to consider
the Gelfand-Naimark decomposition of the matrix P, 'Ad (m,m) since

P;'Ad (yv) = P;Y(Adn™)(Ad (mem))(Ad (an))
= L(P;*Ad (msm))(Ad (an)) (15)

w

where L := P;'(Adn™)P, is unit lower triangular and yv = n~mgyman.

Let us examine the matrix P;'Ad (msym). On one hand, for each m’ € M’,
Adm’ permutes the root spaces of the same dimensions [1, p.406] and Adm’ €
Ad K is an orthogonal matrix. Since mym € M’,

Ad (mgm) = P, D, (16)

for some block permutation matrix P, and some block diagonal matrix D in
which each diagonal block is an orthogonal matrix, all are in accordance with the
partition 7. On the other hand, P;' = PT is a block permutation matrix with
respect to the row partition v(n) = (nya1), - ,ny%) ) and the column partition
n=(ny,---,ng). Let

D = LpQpUp

be the Gelfand-Naimark decomposition of D, where Lp, Qp, and Up are block
diagonal; Lp is unit lower triangular, €)p is a permutation matrix, and Up is
upper triangular; all are in accordance with the partition n. Then

P;'Ad (mgsm) = P;'P,LpQpUp = L'P; P,QpUp

where L' := P;'P,LpP,;'P, is unit lower triangular and is block diagonal ac-
cording to the row and column partition v(n) = (n,a), -+ ,nyx) (since PR,
is a block permutation according to the row partition 7 and the column partition
v(n)). By (15), P;'(Ady)(Adv) has the Gelfand-Naimark decomposition

P;H(Ady)(Adv) = (LL')(P; ' PQp)(UpAd (an)), (17)

where P;'P,Qp is the desired permutation matrix when Theorem 1.1 is applied.
By Lemma 3.3 P, '(Adb(g))P, is block diagonal in which each diagonal block is
a scalar multiple of an identity matrix, all are in accordance with the partition 7.
So P;'(Adb(g))P, commutes with Lp, Qp, Up and D. Taking (12), (13), (14)

and (17) into account,

lim [a((Ad ') (Ad g)!(Ad )]
— (P,'P,) '[P, (Adb(g)) P)(P; P2p)
P (Adbo)) oy
D' (Adblg)) Ps
— (Ad(m.m))”(Ad <>><Ad<msm>> by (17)
— (Admy)*Ad (b(g)) (Adm,). (18)

So we prove (6) and thus (1).

The Weyl group element s in (1) is uniquely determined by ¢ and v
provided that b(g) € A, is regular, that is, b(g) is in the interior of A,. If
yh(g)y™' = b(g) = y'h(g)y’", then z := 'y~ € Zg(b) where b := b(g). Write
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b = e where X € af the interior of ay. So Ad@X = 2p-1 = X Since
Ad z(X) is real semisimple, Ad z(X) = X . By [3, Lemma 7.22] Adp and Adk fix
X, where z = kp is the Cartan decomposition of z. Hence p, k € Z5(b). Thus, if
p=2¢e¥, Y €p, then Ad(b)Y =Y so that ad X(Y) = 0 since X is regular. By
[3, Lemma 6.50], Y € a so that p € A. We also have k € M since exp : ¢t — K
is surjective (K is compact connected as we assumed that G has trivial center).
Now z € MA and ¢ = zy. If yov = n"myman € N m,;MAN is the Bruhat
decomposition of yv, then y'v = zn~myman = (zn~z"Y)m,(m;zms)man. But
ms normalizes M A and M A normalizes N~ so that zn=271 € N7, m;'zm, €
MA. So s € W is uniquely determined. u

Corollary 3.6.  Let g = ehu be the complete multiplicative Jordan decomposi-
tion of g € G. Let h = y~'b(g)y for some y € G, and y € N"m,MAN in the
Bruhat decomposition. Then

lim [a(g")]Y* = 571 - bg) = m_ " b(g)ms,

where the limit is independent of the choice of y. If b(g) is reqular, that is, b(g)
is in the interior of A, , then s is uniquely determined.

Proof. It follows immediately from Theorem 3.1 by setting v,v’ to be the
identity element. [ ]

Corollary 3.7. Given b € A, and v € G, if y;'by1 = yy'bya, y1v €
N=mg, MAN and yv € N"mg, MAN, then s;'-b=s;"-b.

Proof.  Apply Corollary 3.6 on g = y; 'by; = 5 "bys. ]

By Corollary 3.6 the map L : G — A where L(g) = lim,_.o[a(g")]""
is well defined. It is easy to see that L is not continuous. For example, g =
ykdyk’l, where d := diag(dy,...,d,) with dy > dy > d3 > --- > d, > 0,
yp = I,/k +w € GL,(R) where w is the transposition (1,2). So L(gx) = d
for all £ € N but L(limy_. gx) = diag (dy, dy,ds, ..., d,). By appropriate scaling,
L is not continuous for SL,(R).

The next result asserts that the images under L of the orbits Og(g) =
{vgv™ v € G} and Ok(g) :={vgv™ :v € K} of g € G are equal to W b(g).

Corollary 3.8.  Let g = ehu be the complete multiplicative Jordan decomposi-
tion of g € G. Let h = y~'b(q)y for some y € G, and y € N"m,MAN in the
Bruhat decomposition. Then

L(Ok(g)) = L(Og(g)) = Wb(g),

where W b(g) is the orbit of b(g) under the action of the Weyl group W .
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Proof.  Clearly L(Ok(g)) C L(Og(g)) € Wb(g) because b(vgv~t) = b(g) for
all v € G. It suffices to show that W b(g) C L(Ok(g)).

Given ¢ € G we denote by s(¢) := s € W such that £ € N"-m,MAN.
Notice that (vgv™!)™ = vg™v~! for v € G so that from Theorem 3.1

L(vgv™) = lim [a(vg'v™)]"" = [s(yo™")] 7" - b(g)-
Since G = G~! = NAK, one has G = §(G) = N~ AK, where 0 : G — G is the
Cartan involution of G. So y =n~ak where n~ € N~, a € A and k € K. Thus

s(yK) = s(n"aK) = s(aK) D s(aM’).

Since M’ C K normalizes A, for each m,, there exists a’ € A such that m.a' =
ams € aM'. So s(ams) = s for all s € W. Hence s(yK) = W and thus
Wb(g) € L(Ok(9))- m

4. Some remarks

Remark 4.1.  We now take a closer look of (1):

1. Rewrite [a(v'g'v)]t = [a(v'v(v™'gv)")]*/t. The CMJID of v~'gv is v"'gv =
(v7lev) (v ho) (v tuw) so that h(vtgv) = v th(g)v. Thus b(v~'gv) = b(g).
Moreover h(g) = y~'b(g)y amounts to h(v~'gv) = vy~ 'b(g)yv. So the
validity of (1) is reduced to the special case that v is the identity:

lim [a(v'g")]V" = 571 b(g) = m;"b(g)ms, (19)

t—o0

where y € G such that h(g) = y~'b(g)y and y € N-m,MAN.

2. We now explain why the element v' plays no role in (1), or equivalently,
in (19). As before we may assume the center of G is trivial and so K
is compact. Let ¢' = ksa;n; be the Iwasawa decomposition of ¢, where
ki€ K, a; € A, ny, € N, and let v = k1ad'ks be the Cartan decomposition
of v/, where ki,ky € K, a' € A, . Then

a(vlgt) = a(kid'kokiayny) = a(d’kokyay).
Let a'koky = K'apn', k' € K (a; € A, n’ € N) be the Iwasawa decomposition

of d'koky € d'K. So a(v'g") = a(Kajn’a;) = a(ajn'a;). Now a(ajn'a;) =
a(aya;n) = ajay for some n € N since A normalizes N. Thus

o' = (a) e = (a})"[alg")]"".
Since the set a(a’K) is compact (also see Kostant’s theorem [4, Theorem

4.1]), lim;_ o (a})*/? is the identity. So lim; . [a(v'g")]Vt = lim,_[a(g")]"*.
In other words, Corollary 3.6 and Theorem 3.1 are the same in essence.
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3. When G = SL,(C), the uniqueness of s~'-b(g) in Theorem 3.1 is explained
in [2] apart from Corollary 3.6. Recall that yv € N~m;M AN . Notice that
in (17) P;'P,Qp is the desired permutation matrix in the Gelfand-Naimark
decomposition of P;'Ad (yv) and from (18)

(PS PoS2p) [P, (Adb(g)) PP, Prp) = (Adm,) " Ad (b(g))(Ad my)

which is independent of the choice of Ady by [2, Remark 2.3]. As before
we may assume that G has trivial center. So s7!'-b(g) = m;'b(g) m, is
independent of the choice of y.

Remark 4.2.  Iwasawa decomposition may be expressed in the form G = NAK
in which we write g = n'a’k’ = kan, g € G, n,n’ € N, a,d’ € A and k, K € K.
Since g7! = n~'a”'k™!, by the uniqueness of Iwasawa decomposition a'(g) =
[a(g™")]7! so that

lim o' (v/g"0)] ¢ = Jim [o(v™} (g )]

t—o0
= (lim fa(o™ (g ) YY)
Now the CMJD ¢g = ehu and yhy ' = b(g) imply ¢! = e 'h™lu™! and
yh~ly™t = (b(g))"' € AL' respectively. So b(g7!) = my(
(b(g))~' € A, , where ¢ € W is the longest element [1, p.406] which maps A,
to A7'. By Theorem 1

lim [o/(v'g0)] " = [s7" - €+ (b(g)) 117" = (s710) - blg),
where myyv'~t € N"m,MAN .
The situation for the two variants G = KNA and G = ANK is identical
to KAN and NAK, respectively, since A normalizes N (in general G = AKN
and G = NKA are not true).

Remark 4.3.  See [6] for an asymptotic result relating CMJD and the Cartan
decomposition of g € G":

lim ay(g™)"™ = b(g),

where ay(g) denotes the unique element in ay € A, such that ¢ = kja, ks,
]{31, ky € K.
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