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Abstract. Let G be a connected noncompact semisimple Lie group. For
each v′, v, g ∈ G , we prove that

lim
t→∞

[a(v′gtv)]1/t = s−1 · b(g),

where a(g) denotes the a-component in the Iwasawa decomposition of g = kan
and b(g) ∈ A+ denotes the unique element that conjugate to the hyperbolic
component h in the complete multiplicative Jordan decomposition of g = ehu .
The element s in the Weyl group of (G, A) is determined by yv ∈ G (not
unique in general) in such a way that yv ∈ N−msMAN , where yhy−1 = b(g)
and G = ∪s∈W N−msMAN is the Bruhat decomposition of G .
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1. Introduction

Given X ∈ GLn(C), the well-known QR decomposition asserts that X = QR,
where Q is unitary and R is upper triangular with positive diagonal entries. The
decomposition is unique. Let a(X) := diag R . Recently it was shown in [2] that
given A, B ∈ GLn(C), limt→∞[a(AX tB)]1/t exists and the limit is related to the
eigenvalue moduli of X . More precisely,

Theorem 1.1. [2] Let A, B, X ∈ GLn(C). Let X = Y −1JY be the Jordan
decomposition of X , where J is the Jordan form of X , diag J = diag (λ1, . . . , λn)
satisfying |λ1| ≥ · · · ≥ |λn|. Then

lim
t→∞

[a(AX tB)]1/t = diag (|λω(1)|, . . . , |λω(n)|),

where the permutation ω is uniquely determined by the LωU decomposition of
Y B = LωU , such that L is lower triangular and U is unit upper triangular.

The LωU decomposition is known as Gelfand-Naimark decomposition [1, p.434].
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The above asymptotic result relates three decompositions, namely, QR de-
composition of X , Jordan decomposition of X , and Gelfand-Naimark decompo-
sition of Y B . Indeed the matrix Y (not unique in general) can be viewed from
the standpoint of complete multiplicative Jordan decomposition (CMJD) of X [1].
Write J = D + B where D := diag J is diagonal and B is the nilpotent part in
the Jordan form J . Then

X = Y −1JY = Y −1[D(1 + D−1B)]Y,

where 1 + D−1B is unipotent. Decompose the diagonal

D = diag (eiθ1|λ1|, . . . , eiθn|λn|) = EH,

where
E := diag (eiθ1 , . . . , eiθn), H := diag (|λ1|, . . . , |λn|).

Now we have the CMJD
X = ehu,

where
e = Y −1EY, h = Y −1HY, u = Y −1(1 + D−1B)Y.

Notice that the diagonalizable e has eigenvalue moduli 1, and the diagonalizable
h has positive eigenvalues and u is unipotent. They commute with each other and
such decomposition is unique. Now Y is an element which via conjugation turns
h into a positive diagonal matrix with nonincreasing diagonal entries.

Our goal is to extend Theorem 1.1 in the context of connected noncompact
semisimple Lie group G . The three decompositions have their counterparts,
namely Iwasawa decomposition, complete multiplicative Jordan decomposition
(CMJD) and Bruhat decomposition. Motivated by Theorem 1.1, for any given
v′, v, g ∈ G , we study the sequence {[a(v′gtv)]1/t}t∈N in which the a-component
of a nonsingular matrix would be played by the a-component a(g) of g , where
g = kan with respect to the Iwasawa decomposition G = KAN . The eigenvalue
moduli |λ| in nonincreasing order is replaced by the element b(g) ∈ A+ that is
conjugate to the hyperbolic element h in the CMJD of g . Here A+ := exp a+

in which a+ is a (closed) fundamental chamber. Finally the permutation ω
would be provided by the Weyl group element s in the Bruhat decomposition
of yv ∈ N−msMAN such that yhy−1 = b(g).

2. CMJD, Iwasawa decomposition, Bruhat decomposition

Let G be a connected noncompact semisimple Lie group having g as its Lie algebra.
Let g = k + p be a fixed Cartan decomposition. Let K ⊂ G be the connected
subgroup with Lie algebra k . Then K is closed and Ad G(K) is compact [1, p.252-
253]. Let a ⊂ p be a maximal abelian subspace. Fix a closed Weyl chamber a+ in
a so that the positive roots and thus the simple roots are fixed. Set A+ := exp a+ .
Let Σ be the set of restricted roots.

Following the terminology in [4, p.419], an element h ∈ G is called hyper-
bolic if h = exp(X) where X ∈ g is real semisimple, that is, ad X ∈ End (g) is
diagonalizable over R . An element u ∈ G is called unipotent if u = exp(N) where
N ∈ g is nilpotent, that is, ad N ∈ End (g) is nilpotent. An element e ∈ G is
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elliptic if Ad (e) ∈ Aut (g) is diagonalizable over C with eigenvalues of modulus 1.
The complete multiplicative Jordan decomposition (CMJD) [4, Proposition 2.1]
for G asserts that each g ∈ G can be uniquely written as

g = ehu,

where e is elliptic, h is hyperbolic and u is unipotent and the three elements e ,
h , u commute. We write g = e(g)h(g)u(g).

A hyperbolic h ∈ G is conjugate to a unique element b(h) ∈ A+ [4,
Proposition 2.4]. Denote

b(g) := b(h(g)).

The group A := exp a is simply connected [3, p.317] and abelian so that the map
a → A defined by exp is a diffeomorphism [3, p.63]. Thus log a ∈ a is well defined
for any a ∈ A . Let M = ZK(A) = ZK(a) and M ′ = NK(A) = NK(a). The group
W = M ′/M is the Weyl group . It acts on A by conjugation, and on a via the
adjoint action. In particular exp is a W -map. Let n :=

∑
α>0 gα be the sum of

all positive root spaces. Set N := exp n . Similarly let n− :=
∑

α<0 gα and set
N− := exp n− . Let G = KAN be the corresponding Iwasawa decomposition of G
[3, p.317]. If g ∈ G , we write

g = kan,

where k ∈ K , a ∈ A , n ∈ N are uniquely defined. For G = SLn(C), the Iwasawa
decomposition is just the QR decomposition if we choose AN as the group of
upper triangular matrices with positive diagonal elements.

For s ∈ W , denote by ms ∈ M ′ a representative such that s = msM . The
Bruhat decomposition of G asserts that

G = ∪s∈W N−msMAN

is a disjoint union. So for each g ∈ G , there is a unique s ∈ W such that
g ∈ N−msMAN .

3. Asymptotic behavior of the Iwasawa component

Let G be a connected noncompact semisimple Lie group with Iwasawa decompo-
sition G = KAN . Let a(g) be the a-component of g ∈ G with respect to the
Iwasawa decomposition

g = k(g)a(g)n(g).

Given v′, v, g ∈ G , we now prove the following main theorem concerning the
asymptotic behavior of the sequence {[a(v′gtv)]1/t}t∈N . It turns out the limit
limt→∞{[a(v′gtv)]1/t} exists and is independent of v′ . We will make some remarks
in the next section.

Theorem 3.1. Let v′, v, g ∈ G. Let g = ehu be the complete multiplicative
Jordan decomposition of g . Let h = y−1b(g)y for some y ∈ G, and yv ∈
N−msMAN in the Bruhat decomposition. Then

lim
t→∞

[a(v′gtv)]1/t = s−1 · b(g) = m−1
s b(g)ms, (1)

where the limit is independent of v′ and the choice of y . If b(g) is regular, that
is, b(g) is in the interior of A+ , then s is uniquely determined by g and v .
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Proof. We may assume that G has trivial center since everything is indepen-
dent of the center. We will make use of Theorem 1.1 by considering AdG which
can be viewed as a matrix group by choosing an appropriate orthonormal basis of
g with respect to the inner product Bθ(X, Y ) = −B(X, θY ), where B(·, ·) is the
Killing form on g and θ ∈ Aut (g) is the Cartan involution θ(X + Y ) = X − Y ,
X ∈ k , Y ∈ p with respect to the Cartan decomposition g = k⊕ p .

It is known that [1, p.261] there is an orthonormal basis of g ,

X = {Xi : i = 1, . . . , d}, d := dim g, (2)

compatible with the (restricted) root space decomposition of g [3, p.313]

g = g0 ⊕
⊕
α∈Σ

gα

such that Xi ∈ gα and Xj ∈ gβ with i < j implies α ≥ β (by the lexicographic
order L over the coordinates induced by pre-ordering the simple roots). Moreover,
since g0 = a ⊕ m is an orthogonal sum [3, p.313], we can select X in a way that
a is spanned by some {Xi, Xi+1, · · · , Xi+dima−1} ⊆ X . With respect to X , we
view the elements in GL(g) as matrices. The matrices Ad (K), Ad (A), Ad (N),
and Ad (N−) are orthogonal, positive diagonal, real unit upper triangular, and
real unit lower triangular, respectively [3, p.317]. Because Ad : G → Aut (g)
is a representation of G , we may view the elements Ad g ∈ SL(g) ⊂ GL(g) as
nonsingular matrices. Thus we have the following Iwasawa decomposition for Ad g ,
that is, QR decomposition: Ad g = Ad k Ad a Adn . Therefore,

a(Ad (g)) = Ad (a(g)), (3)

for all g ∈ G , where a(Ad (g)) is the diagonal part of the matrix R in the QR
decomposition Ad g = QR . By (3)

Ad [a(v′gtv)]1/t = [a((Ad v′)(Ad g)t(Ad v))]1/t, t ∈ N. (4)

Since the center of G is trivial, to prove (1) it suffices to show

lim
t→∞

[a((Ad v′)(Ad g)t(Ad v))]1/t = Ad (s−1 · b(g)), (5)

where s ∈ W is uniquely determined by the Bruhat decomposition of

yv = n−msman ∈ N−msMAN.

Since Ad (s−1 · b(g)) = Ad (m−1
s b(g)ms), (5) is equivalent to the following

lim
t→∞

[a((Ad v′)(Ad g)t(Ad v))]1/t = (Adms)
−1Ad (b(g))(Adms). (6)

In order to establish (6), we need several lemmas. For each H ∈ a+ , ad H =
diag (h1, · · · , hd) is a diagonal matrix. The diagonal entries may not be in nonin-
creasing order so it is not readily to apply Theorem 1.1. The next two lemmas are
obvious.
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Lemma 3.2. Let H ∈ a+ and write ad H = diag (h1, · · · , hd). If hi > hj for
certain i > j , then the (i, j) entry of each element of ad n− is always zero, where
n− =

∑
α<0 gα .

Index the elements in Σ ∪ {0} in nonincreasing order as α1 > · · · > α k+1
2

(= 0) > · · · > αk according to the lexicographic order L , and let ni = dim gαi
,

then we get a partition η of d

η := (n1, n2, · · · , nk). (7)

The partition η is symmetric (nt = nk+1−t for 1 ≤ t ≤ k ) since θ(gα) = g−α [3,
p.313]. This implies the following lemma.

Lemma 3.3. For H ∈ a and a ∈ A, ad H and Ad a are block diagonal
matrices. More precisely,

ad H = diag (α1(H)In1 , . . . , αk(H)Ink
) (8)

Ad a = diag (eα1(log a)In1 , · · · , eαk(log a)Ink
). (9)

Let ei ∈ Rd be the standard vector taking 1 at the i-th position and 0 elsewhere.
For a permutation ω of d letters we associated the permutation matrix Pω :=
[eω(1) eω(2) · · · eω(d)]. Then P−1

ω (xij)Pω = (xω(i)ω(j)), and in particular

P−1
ω diag (h1, . . . , hd)Pω = diag (hω(1), . . . , hω(d)). (10)

We also view Pω as an element of GL(g) with respect to the basis X . From now
on, let H := log b(g) ∈ a+ and write

ad H := diag (h1, · · · , hd) = diag (α1(H)In1 , · · · , αk(H)Ink
).

Lemma 3.4. Let ω ∈ Sd be the unique permutation that has the smallest
number of transpositions in its factorization into products of (1, 2), (2, 3), . . . ,
(d− 1, d), such that the diagonal entries of

P−1
ω (ad H)Pω = diag (hω(1), · · · , hω(d)) (11)

are in nonincreasing order. Then ω satisfies the following properties:

(1) If hω(i) = hω(j) for ω(i) > ω(j), then i > j . Here hω(j) and hω(i) are the
ω(j)-th and the ω(i)-th diagonal entry of ad H respectively; which will be
mapped to the j -th and the i-th diagonal entry of P−1

ω (ad H)Pω respectively.

(2) Pω acts as an identity on g0 ⊇ a ⊇ a+ .

(3) There is a permutation γ ∈ Sk such that for η = (n1, n2, · · · , nk)

P−1
ω diag (x1In1 , · · · , xkInk

)Pω = diag (xγ(1)Inγ(1)
, · · · , xγ(k)Inγ(k)

)

for the free variables x1, · · · , xk . If we partition the rows of Pω by η , and
partition the columns of Pω by γ(η) := (nγ(1), · · · , nγ(k)), then the (i, γ−1(i))
block of Pω is Ini

for i = 1, · · · , k , and the other blocks of Pω are zero blocks.
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Proof. Let ω ∈ Sd denote the unique permutation acting on the sequence
{(−h1, 1), (−h2, 2), · · · , (−hd, d)} in the way that the resulting sequence is increas-
ing in lexicographic order:{

(−hω(1), ω(1)) < (−hω(2), ω(2)) < · · · < (−hω(d), ω(d))
}

.

Then ω is the permutation that has the smallest number of transpositions in its
factorization, such that the diagonal entries of P−1

ω (ad H)Pω are in nonincreasing
order. Moreover, statement (1) is true by the construction of ω .

If hj = hj+1 , then by the construction of ω and statement (1), it is
impossible to have t ∈ {1, · · · , k} such that ω(t) is a number between ω(j) and
ω(j + 1). So ω(j + 1) = ω(j) + 1. This implies that Pω is a block permutation
matrix and statement (3) follows.

The matrix ad H is anti-symmetric about the anti-diagonal. So Pω is
symmetric about the anti-diagonal by (11). Then Pω acts as an identity on g0

by statement (3). This proves statement (2).

For each X ∈ n− , write ad X =
(
xij

)
which is strictly lower triangular.

Lemma 3.5. Let ω be determined by b(g) as in Lemma 3.4. Then for all
X ∈ n− ,

P−1
ω (ad X)Pω =

(
xω(i)ω(j)

)
remains strictly lower triangular.

Proof. Clearly the diagonal entries of P−1
ω (ad X)Pω are 0. The (i, j) entry of

P−1
ω (ad X)Pω is xω(i)ω(j) . Suppose on the contrary, xω(i)ω(j) 6= 0 for some i < j .

Then ω(i) > ω(j) since ad X is strictly lower triangular. Also hω(i) ≥ hω(j) by
Lemma 3.4 (1). But hω(i) = hω(j) contradicts Lemma 3.4 (2) since ω(i) > ω(j)
and i < j . On the other hand, if hω(i) > hω(j) , then it contradicts Lemma 3.2
since ω(i) > ω(j) but the (ω(i), ω(j)) entry of ad X is xω(i)ω(j) 6= 0. This proves
that P−1

ω (ad X)Pω is strictly lower triangular for every X ∈ n− .

Let us now prove (6). Taking exponential it follows that

P−1
ω (Ad b(g))Pω (12)

is a positive diagonal matrix with nonincreasing diagonal entries by Lemma 3.4,
and if n− ∈ N− , then P−1

ω (Adn−)Pω is unit lower triangular by Lemma 3.5. Now

Ad g = (Ad e)(Adh)(Adu), (13)

Adh = (Ad y)−1(Ad b(g))(Ad y)

= (Ad y)−1Pω[P−1
ω (Ad b(g))Pω]P−1

ω (Ad y), (14)

where y ∈ G such that yhy−1 = b(g). Then

P−1
ω (Ad y)(Adh)(Ad y)−1Pω = P−1

ω (Ad b(g))Pω

whose diagonal entries are the eigenvalue moduli of Ad (g), in nonincreasing order.
In order to apply Theorem 1.1 to Ad (g) we need to examine the Gelfand-Naimark
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decomposition of the matrix P−1
ω (Ad y)(Ad v). Indeed it is sufficient to consider

the Gelfand-Naimark decomposition of the matrix P−1
ω Ad (msm) since

P−1
ω Ad (yv) = P−1

ω (Adn−)(Ad (msm))(Ad (an))

= L(P−1
ω Ad (msm))(Ad (an)) (15)

where L := P−1
ω (Adn−)Pω is unit lower triangular and yv = n−msman .

Let us examine the matrix P−1
ω Ad (msm). On one hand, for each m′ ∈ M ′ ,

Adm′ permutes the root spaces of the same dimensions [1, p.406] and Adm′ ∈
AdK is an orthogonal matrix. Since msm ∈ M ′ ,

Ad (msm) = PσD, (16)

for some block permutation matrix Pσ and some block diagonal matrix D in
which each diagonal block is an orthogonal matrix, all are in accordance with the
partition η . On the other hand, P−1

ω = P T
ω is a block permutation matrix with

respect to the row partition γ(η) = (nγ(1), · · · , nγ(k)) and the column partition
η = (n1, · · · , nk). Let

D = LDΩDUD

be the Gelfand-Naimark decomposition of D , where LD , ΩD , and UD are block
diagonal; LD is unit lower triangular, ΩD is a permutation matrix, and UD is
upper triangular; all are in accordance with the partition η . Then

P−1
ω Ad (msm) = P−1

ω PσLDΩDUD = L′P−1
ω PσΩDUD

where L′ := P−1
ω PσLDP−1

σ Pω is unit lower triangular and is block diagonal ac-
cording to the row and column partition γ(η) = (nγ(1), · · · , nγ(k)) (since P−1

σ Pω

is a block permutation according to the row partition η and the column partition
γ(η)). By (15), P−1

ω (Ad y)(Ad v) has the Gelfand-Naimark decomposition

P−1
ω (Ad y)(Ad v) = (LL′)(P−1

ω PσΩD)(UDAd (an)), (17)

where P−1
ω PσΩD is the desired permutation matrix when Theorem 1.1 is applied.

By Lemma 3.3 P−1
σ (Ad b(g))Pσ is block diagonal in which each diagonal block is

a scalar multiple of an identity matrix, all are in accordance with the partition η .
So P−1

σ (Ad b(g))Pσ commutes with LD , ΩD , UD and D . Taking (12), (13), (14)
and (17) into account,

lim
t→∞

[a((Ad v′)(Ad g)t(Ad v))]1/t

= (P−1
ω PσΩD)−1[P−1

ω (Ad b(g))Pω](P−1
ω PσΩD)

= Ω−1
D P−1

σ (Ad b(g))PσΩD

= D−1P−1
σ (Ad b(g))PσD

= (Ad (msm))−1(Ad b(g))(Ad (msm)) by (17)

= (Adms)
−1Ad (b(g))(Adms). (18)

So we prove (6) and thus (1).

The Weyl group element s in (1) is uniquely determined by g and v
provided that b(g) ∈ A+ is regular, that is, b(g) is in the interior of A+ . If
yh(g)y−1 = b(g) = y′h(g)y′−1 , then z := y′y−1 ∈ ZG(b) where b := b(g). Write
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b = eX where X ∈ a0
+ the interior of a+ . So eAd (z)X = zbz−1 = eX . Since

Ad z(X) is real semisimple, Ad z(X) = X . By [3, Lemma 7.22] Ad p and Ad k fix
X , where z = kp is the Cartan decomposition of z . Hence p, k ∈ ZG(b). Thus, if
p = eY , Y ∈ p , then Ad (b)Y = Y so that ad X(Y ) = 0 since X is regular. By
[3, Lemma 6.50], Y ∈ a so that p ∈ A . We also have k ∈ M since exp : k → K
is surjective (K is compact connected as we assumed that G has trivial center).
Now z ∈ MA and y′ = zy . If yv = n−msman ∈ N−msMAN is the Bruhat
decomposition of yv , then y′v = zn−msman = (zn−z−1)ms(m

−1
s zms)man . But

ms normalizes MA and MA normalizes N− so that zn−z−1 ∈ N− , m−1
s zms ∈

MA . So s ∈ W is uniquely determined.

Corollary 3.6. Let g = ehu be the complete multiplicative Jordan decomposi-
tion of g ∈ G. Let h = y−1b(g)y for some y ∈ G, and y ∈ N−msMAN in the
Bruhat decomposition. Then

lim
t→∞

[a(gt)]1/t = s−1 · b(g) = m−1
s b(g)ms,

where the limit is independent of the choice of y . If b(g) is regular, that is, b(g)
is in the interior of A+ , then s is uniquely determined.

Proof. It follows immediately from Theorem 3.1 by setting v, v′ to be the
identity element.

Corollary 3.7. Given b ∈ A+ and v ∈ G, if y−1
1 by1 = y−1

2 by2 , y1v ∈
N−ms1MAN and y2v ∈ N−ms2MAN , then s−1

1 · b = s−1
2 · b.

Proof. Apply Corollary 3.6 on g = y−1
1 by1 = y−1

2 by2 .

By Corollary 3.6 the map L : G → A where L(g) := limt→∞[a(gt)]1/t

is well defined. It is easy to see that L is not continuous. For example, gk =
ykdy−1

k , where d := diag (d1, . . . , dn) with d1 > d2 ≥ d3 ≥ · · · ≥ dn > 0,
yk := In/k + ω ∈ GLn(R) where ω is the transposition (1, 2). So L(gk) = d
for all k ∈ N but L(limk→∞ gk) = diag (d2, d1, d3, . . . , dn). By appropriate scaling,
L is not continuous for SLn(R).

The next result asserts that the images under L of the orbits OG(g) :=
{vgv−1 : v ∈ G} and OK(g) := {vgv−1 : v ∈ K} of g ∈ G are equal to W b(g).

Corollary 3.8. Let g = ehu be the complete multiplicative Jordan decomposi-
tion of g ∈ G. Let h = y−1b(g)y for some y ∈ G, and y ∈ N−msMAN in the
Bruhat decomposition. Then

L(OK(g)) = L(OG(g)) = W b(g),

where W b(g) is the orbit of b(g) under the action of the Weyl group W .
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Proof. Clearly L(OK(g)) ⊂ L(OG(g)) ⊂ W b(g) because b(vgv−1) = b(g) for
all v ∈ G . It suffices to show that W b(g) ⊂ L(OK(g)).

Given ` ∈ G we denote by s(`) := s ∈ W such that ` ∈ N−msMAN .
Notice that (vgv−1)m = vgmv−1 for v ∈ G so that from Theorem 3.1

L(vgv−1) = lim
t→∞

[a(vgtv−1)]1/t = [s(yv−1)]−1 · b(g).

Since G = G−1 = NAK , one has G = θ(G) = N−AK , where θ : G → G is the
Cartan involution of G . So y = n−ak where n− ∈ N− , a ∈ A and k ∈ K . Thus

s(yK) = s(n−aK) = s(aK) ⊃ s(aM ′).

Since M ′ ⊂ K normalizes A , for each ms , there exists a′ ∈ A such that msa
′ =

ams ∈ aM ′ . So s(ams) = s for all s ∈ W . Hence s(yK) = W and thus
W b(g) ⊂ L(OK(g)).

4. Some remarks

Remark 4.1. We now take a closer look of (1):

1. Rewrite [a(v′gtv)]1/t = [a(v′v(v−1gv)t)]1/t . The CMJD of v−1gv is v−1gv =
(v−1ev)(v−1hv)(v−1uv) so that h(v−1gv) = v−1h(g)v . Thus b(v−1gv) = b(g).
Moreover h(g) = y−1b(g)y amounts to h(v−1gv) = v−1y−1b(g)yv . So the
validity of (1) is reduced to the special case that v is the identity:

lim
t→∞

[a(v′gt)]1/t = s−1 · b(g) = m−1
s b(g)ms, (19)

where y ∈ G such that h(g) = y−1b(g)y and y ∈ N−msMAN .

2. We now explain why the element v′ plays no role in (1), or equivalently,
in (19). As before we may assume the center of G is trivial and so K
is compact. Let gt = ktatnt be the Iwasawa decomposition of gt , where
kt ∈ K , at ∈ A , nt ∈ N , and let v′ = k1a

′k2 be the Cartan decomposition
of v′ , where k1, k2 ∈ K , a′ ∈ A+ . Then

a(v′gt) = a(k1a
′k2ktatnt) = a(a′k2ktat).

Let a′k2kt = k′a′tn
′ , k′ ∈ K (a′t ∈ A , n′ ∈ N ) be the Iwasawa decomposition

of a′k2kt ∈ a′K . So a(v′gt) = a(k′a′tn
′at) = a(a′tn

′at). Now a(a′tn
′at) =

a(a′tatn̂) = a′tat for some n̂ ∈ N since A normalizes N . Thus

[a(v′gt)]1/t = (a′t)
1/ta

1/t
t = (a′t)

1/t[a(gt)]1/t.

Since the set a(a′K) is compact (also see Kostant’s theorem [4, Theorem
4.1]), limt→∞(a′t)

1/t is the identity. So limt→∞[a(v′gt)]1/t = limt→∞[a(gt)]1/t .
In other words, Corollary 3.6 and Theorem 3.1 are the same in essence.
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3. When G = SLn(C), the uniqueness of s−1 · b(g) in Theorem 3.1 is explained
in [2] apart from Corollary 3.6. Recall that yv ∈ N−msMAN . Notice that
in (17) P−1

ω PσΩD is the desired permutation matrix in the Gelfand-Naimark
decomposition of P−1

ω Ad (yv) and from (18)

(P−1
ω PσΩD)−1[P−1

ω (Ad b(g))Pω](P−1
ω PσΩD) = (Adms)

−1Ad (b(g))(Adms)

which is independent of the choice of Ad y by [2, Remark 2.3]. As before
we may assume that G has trivial center. So s−1 · b(g) = m−1

s b(g) ms is
independent of the choice of y .

Remark 4.2. Iwasawa decomposition may be expressed in the form G = NAK
in which we write g = n′a′k′ = kan , g ∈ G , n, n′ ∈ N , a, a′ ∈ A and k, k′ ∈ K .
Since g−1 = n−1a−1k−1 , by the uniqueness of Iwasawa decomposition a′(g) =
[a(g−1)]−1 so that

lim
t→∞

[a′(v′gtv)]1/t = lim
t→∞

[a(v−1(g−1)tv′−1)]−1/t

= ( lim
t→∞

[a(v−1(g−1)tv′−1)]1/t)−1.

Now the CMJD g = ehu and yhy−1 = b(g) imply g−1 = e−1h−1u−1 and
yh−1y−1 = (b(g))−1 ∈ A−1

+ respectively. So b(g−1) = m`(b(g))−1m−1
` = ` ·

(b(g))−1 ∈ A+ , where ` ∈ W is the longest element [1, p.406] which maps A+

to A−1
+ . By Theorem 1

lim
t→∞

[a′(v′gtv)]1/t = [s−1 · ` · (b(g))−1]−1 = (s−1`) · b(g),

where m`yv′−1 ∈ N−msMAN .

The situation for the two variants G = KNA and G = ANK is identical
to KAN and NAK , respectively, since A normalizes N (in general G = AKN
and G = NKA are not true).

Remark 4.3. See [6] for an asymptotic result relating CMJD and the Cartan
decomposition of g ∈ G :

lim
m→∞

a+(gm)1/m = b(g),

where a+(g) denotes the unique element in a+ ∈ A+ such that g = k1a+k2 ,
k1, k2 ∈ K .
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