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Analyticity of Riemannian Exponential Maps on Diff(T)
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Abstract. We study the exponential maps induced by Sobolev type right-
invariant (weak) Riemannian metrics of order k ≥ 1 on the Lie group of smooth,
orientation preserving diffeomorphisms of the circle. We prove that each of them
defines an analytic Fréchet chart of the identity.
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1. Introduction

The aim of this paper is to contribute towards a development of Riemannian
geometry for infinite dimensional Lie groups which has attracted a lot of attention
since Arnold’s seminal paper [1] on hydrodynamics – see [2], [8], [11], [15], [16], [19].
As a case study we consider the Lie group D ≡ Diff(T) of orientation preserving
C∞ -diffeomorphisms of the circle T = R/Z . According to Milnor [18, §9], the
group D , endowed with the C∞ -Fréchet differential structure, is not analytic i.e.,
the mapping D × D → D , (ϕ, ψ) 7→ ϕ ◦ ψ−1 is not analytic. Nevertheless, it
turns out that for a family of right-invariant weak Riemannian metrics on D ,
the corresponding Riemannian exponential map defines an analytic chart of the
identity of D – see Theorem 1.3 below.

The Lie group D and its Lie algebra come up in hydrodynamics, playing the
role of a configuration space for Burgers equation and the Camassa-Holm equation
[16], [19] (see also [15]). The latter equation is a model for (one dimensional) wave
propagation in shallow water (cf. [12], and for a derivation based on physical
grounds [5]) that has several interesting features which have been intensively
studied in recent years.

For any given integer k ≥ 0, consider the scalar product 〈·, ·〉k : C∞(T) ×
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C∞(T) → R ,

〈u, v〉k :=
k∑

j=0

∫
T
∂j

xu ∂
j
xv dx.

It induces a Cω
F (i.e., Fréchet analytic) weak, right-invariant, Riemannian metric

ν(k) on D :

ν(k)
ϕ (ξ, η) := 〈(didRϕ)−1ξ, (didRϕ)−1η〉k, ∀ϕ ∈ D, and ∀ξ, η ∈ TϕD

where Rϕ : D → D denotes the right translation ψ 7→ ψ ◦ ϕ . The subscript F
in Cω

F refers to the calculus in Fréchet spaces – see Appendix A where we collect
some definitions and notions of the calculus in Fréchet spaces. The metric ν(k)

being weak means that the topology induced by ν(k) on the tangent space TϕD at
an arbitrary point ϕ in D , is weaker than the Fréchet topology on C∞(T).

Definition 1.1. For any given T > 0, a C2
F -smooth curve ϕ : [0, T ] → D , is

called a geodesic with respect to ν(k) , or ν(k) -geodesic for short, if it is a critical
point of the action functional within the class of C2

F -smooth variations γ of ϕ
constrained to keep the end points fixed i.e., for any C2

F -smooth function

γ : (−ε, ε)× [0, T ] → D, (s, t) 7→ γ(s, t)

such that γ(0, t) = ϕ(t) and, γ(s, 0) = ϕ(0) and γ(s, T ) = ϕ(T ) for any −ε <
s < ε , one has

d

ds


s=0
ET

k (γ(s, ·)) = 0. (1a)

where ET
k denotes the action functional

ET
k (γ(s, ·)) :=

1

2

∫ T

0

ν
(k)
γ(s,t)(γ̇(s, t), γ̇(s, t))dt , (1b)

and γ̇(s, t) = ∂γ(s, t)/∂t .

The Euler-Lagrange equations (1a) on D for critical points of the action functional
ET

k defined in (1b) are given by {
ϕ̇ = v

v̇ = Fk(ϕ, v)
(2)

where
Fk(ϕ, v) := Rϕ ◦ A−1

k ◦Bk(v ◦ ϕ−1) (3a)

in which

Ak :=
k∑

j=0

(−1)j∂2j
x (3b)

and, for any smooth function u in C∞(T),

Bk(u) := −2u′Aku+ Ak(uu
′)− uAku

′

= −2u′Aku+Qk(u) (3c)
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where Qk is a polynomial in 2k+ 1 variables, and Qk(u) is short for the function
Qk(u, ∂xu, . . . , ∂

2k
x u). In the sequel, we will refer to Qk(u) as the polynomial in

u, ∂xu, · · · , ∂2k
x u . Here (·)· stands for d/dt and (·)′ for ∂/∂x . Note that t 7→ ϕ(t)

evolves in D whereas t 7→ ϕ̇(t) = v(t) is a vector field along ϕ i.e., a section of
ϕ(·)∗TD . In particular, v(t) belongs to Tϕ(t)D for any 0 ≤ t ≤ T for some T > 0.
We want to study the following initial value problem{

(ϕ̇, v̇) = (v, Fk(ϕ, v))

(ϕ(0), v(0)) = (id, v0) .
(4)

It is easy to check that (4) is equivalent to{
ϕ̇ = u ◦ ϕ

ϕ(0) = id
(5)

and {
Aku̇+ uAku

′ + 2u′Aku = 0

u(0) = v0
(6)

where t 7→ u(t) = (didRϕ(t))
−1ϕ̇(t) belongs to TidD . The initial value problems

(4) and (6) are, via (5), two alternative descriptions of the geodesic flow. The first
corresponds to the Lagrangian description i.e., tracking the moving point in D
along the section ϕ(·)∗TD while the latter describes the events in TidD from the
Eulerian point of view of a fixed observer.

The case k = 1 is particularly interesting since the geodesic flow (4) with
v = u ◦ ϕ is a re-expression of the Camassa-Holm equation (6) – see e.g. [15],[16],
and [20]. Indeed, the dynamical system (4) can be used to study the initial value
problem for (6) – see e.g. [9], [20].

Theorem 1.2. Let the integer k ≥ 1. Then, for any of the right-invariant
metrics ν(k) , there exists an open neighborhood V (k) of 0 in C∞(T) such that, for
any v0 in V (k) , there is a unique ν(k) -geodesic, (−2, 2) → D, t 7→ ϕ(t; v0), issuing
from the identity in the direction v0 . Moreover, the map

(−2, 2)× V (k) → D, (t, v0) 7→ ϕ(t; v0)

is Fréchet analytic.

Theorem 1.2 allows to define, for any given k ≥ 1, the Riemannian exponential
map

Expk


V (k) : V (k) → D, v0 7→ ϕ(1; v0).

Theorem 1.3. For any integer k ≥ 1, there exists an open neighborhood
Ṽ (k) ⊆ V (k) of 0 in C∞(T) and an open neighborhood U (k) of id in D so that

Expk


Ṽ (k) : Ṽ (k) → U (k), v0 7→ ϕ(1; v0)

is a Fréchet bianalytic diffeomorphism.
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Related work: Theorems 1.2 - 1.3 improve the results of Constantin and
Kolev in [7, 8] where it was shown that the exponential map is a C1

F -diffeomorphism.

Method: The approach used to establish Theorems 1.2 - 1.3 is new. It
consists in showing that the analyticity of the geodesic flow as described in Theo-
rem 4.3, Theorem 5.2, Proposition 6.1, and Proposition 6.2, can be obtained by an
interplay of the structure of the equations describing the geodesic flow from a La-
grangian perspective and the structure of the Euler equations. In [14], we applied
our method to define and study exponential maps on the Lie group of orientation
preserving diffeomorphisms on the two dimensional torus R2/Z2 . Moreover, this
new approach improves on the results in [6] for the Virasoro group.

Organization of the paper: Sections 2., 3., and 4. are preliminary. In
particular, we show in detail that the vector fields in the equations defining the
geodesic flows are analytic in suitable spaces. Theorem 1.2 is proved in section 5..
To show Theorem 1.3, we use Theorem A9 which is a version of the inverse
function theorem in a set-up for analytic maps between Fréchet spaces discussed
in Appendix A. In section 6., we verify that the assumptions of Theorem A9 are
satisfied in our situation.

Case k = 0: Our new technique does not apply in the case k = 0; the
equation (2) with k = 0, is no longer a dynamical system (hence, we can not rely
on the existence theorem of ODE’s to establish existence of geodesics in Sobolev
spaces). Indeed, the crucial difference with respect to the case k ≥ 1, lies in the
fact that the inverse of the operator Ak defined in (3b) is the identity operator in
the case k = 0, hence it is not regularizing. More specifically, the expression on the
r.h.s. of the system (2) is the map D` ×H` → H` ×H`−1 , (ϕ, v) 7→ (v,−2vv′/ϕ′)
which is not a vector field on D` × H` . Therefore the proof of Theorem 1.2
in the case k = 0 has to be dealt with differently. One way is to notice that
the geodesic flow (2) with k = 0 is equivalent to the inviscid Burgers equation
u̇ + 3uu′ = 0 (cf. (6)) which can be solved implicitly (locally in time) by the
method of characteristics. However, in the case k = 0, Theorem 1.3 does not
hold. An explicit counter example is given in [8]. For this reason, in the rest of
the paper, we will only concentrate on the case k ≥ 1.

Notation: The notation we use is standard. In particular, Hs = Hs(T) =
Hs(T,R) denotes the space of real valued functions on T of Sobolev class Hs , and
for s ≥ 1,W s,∞ denotes the Banach space of continuous functions f : T → R for
which ∂j

xf are in L∞ = L∞(T) for every 0 ≤ j ≤ s . Further, for s ≥ 2, Ds =
Ds(T) denotes the set of orientation preserving C1 -diffeomorphisms ϕ : T → T of
class Hs . It is a Hilbert manifold modeled on Hs . The complexification of a real
vector space X will be denoted by XC i.e., XC := X ⊗ C .

Acknowledgement: It is a great pleasure for the first author to thank
P. Michor for valuable discussions.

2. The group of diffeomorphisms of T

For the convenience of the reader, we collect in this section the results about the
group of diffeomorphisms of T that we need. For a general discussion on this topic
see [11] and the references therein. Throughout this section, s ≥ 2. Denote by Ds
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the set of all orientation preserving C1 -diffeomorphisms ϕ : T → T such that ϕ′

belongs to Hs−1 i.e.,

Ds := {ϕ : T → T, C1 − diffeomorphism| ϕ′ > 0, and ϕ′ ∈ Hs−1}.

Ds is in a natural way a Hilbert manifold modeled by the Hilbert space Hs . An
atlas of Ds can be described in terms of the lifts of ϕ in Ds . A lift of ϕ is of the
form

R → R, x 7→ x+ f(x)

where f is in Hs . The following two Hilbert charts form an atlas of Ds

Us
1 := {ϕ = id + f | f ∈ Hs and |f(0)| < 1/2; f ′ > −1} (7a)

and
Us

2 := {ϕ = id + f | f ∈ Hs and 0 < f(0) < 1; f ′ > −1}. (7b)

(By a slight abuse of notation we denoted a lift of a diffeomorphism ϕ again by
ϕ .)

Lemma 2.1. Let s ≥ 2. Then, for any ϕ in Ds , the inverse ϕ−1 of ϕ is again
in Ds .

Proof. Clearly, for any ϕ in Ds , ϕ−1 is a C1 -diffeomorphism. Using that
(ϕ−1)′ = (1/ϕ′) ◦ ϕ−1 and the fact that Hr is an algebra for any r ≥ 1, one
sees that (ϕ−1)′ is in Hs−1 , and hence that ϕ−1 belongs to Ds .

Lemma 2.2. Let s ≥ 2. Then the following statements hold:

(i) For any u and ϕ in Hs and Ds respectively, u ◦ ϕ is in Hs .

(ii) For any ϕ in Ds , the right-translation Rϕ : Hs → Hs, u 7→ u ◦ ϕ is
uniformly continuous on subsets W ⊆ Ds satisfying

sup
ϕ∈W

(‖ϕ−1‖W 1,∞ + ‖ϕ‖Hs) < +∞. (8)

(iii) For any u in Hs , the left-translation Lu : Ds → Hs, ϕ 7→ u◦ϕ is continuous.

Proof. (i) First let us prove that for u in L2 and ϕ in D2 , the composition u ◦ϕ
is in L2 . To see this, note that

‖u ◦ ϕ‖2
L2 =

∫
T
|u(ϕ(x))|2dx =

∫
T
|u(x)|2(ϕ−1)′(x)dx ≤ (inf

T
ϕ′)−1‖u‖2

L2 . (9)

Moreover, as s ≥ 2, by the Sobolev embedding theorem, ϕ′ is bounded for any ϕ
in Ds . Hence, the argument above shows that, for any s ≥ 2, given any u in Hs

and any ϕ in Ds , u ◦ ϕ and (u ◦ ϕ)′ = (u′ ◦ ϕ)ϕ′ are in L2 . For any 2 ≤ n ≤ s ,
we get by the chain and product rules

∂n
x (u ◦ ϕ) = (u′ ◦ ϕ)∂n

xϕ+
n∑

j=2

pn,j(ϕ)[(∂j
xu) ◦ ϕ] (10)
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where pn,j(ϕ) is a polynomial in ∂xϕ, . . . , ∂
n+1−j
x ϕ . Now, for s ≥ 2, the fact that

u′ is in Hs−1 ⊆ H1 ⊆ C0 implies that u′ ◦ ϕ is bounded so that (u′ ◦ ϕ)∂n
xϕ is in

Hs−n ⊆ L2 . Similarly, for every 2 ≤ j ≤ n , (∂j
xu) ◦ ϕ are seen to be in L2 , and

pn,j(ϕ) is bounded. But then, as ∂n
x (u ◦ϕ) is in L2 for every 2 ≤ n ≤ s , and since

u ◦ ϕ and (u ◦ ϕ)′ were shown to be in L2 too, we conclude that, for any s ≥ 2,
u in Hs and ϕ in Ds imply that u ◦ ϕ is in Hs as asserted.

(ii) Let (um)m≥1 be a sequence in Hs which converges to u in Hs . By (9),
one has

‖(um − u) ◦ ϕ‖L2 ≤ ‖ϕ−1‖1/2

W 1,∞‖um − u‖L2 ,

and
‖((um − u) ◦ ϕ)′‖L2 ≤ ‖ϕ‖1/2

W 1,∞‖um − u‖H1 .

To estimate the derivatives of order 2 ≤ n ≤ s , we use formula (10). By the
Sobolev embedding theorem,

‖[(um − u)′ ◦ ϕ]∂n
xϕ‖L2 ≤ ‖um − u‖W 1,∞‖ϕ‖Hn ≤ C‖um − u‖Hs‖ϕ‖Hs ,

where C > 0 denotes a constant, and for every 2 ≤ j ≤ n ,

‖pn,j(ϕ)[∂j
x(um − u) ◦ ϕ]‖L2 ≤ [qn,j(‖ϕ‖Hs)]1/2‖ϕ−1‖1/2

W 1,∞‖um − u‖Hs

where qn,j is a polynomial in one variable with positive coefficients. It then follows
from (10) and the above estimates that, for any 0 ≤ j ≤ s ,

‖∂j
x[Rϕ(um − u)]‖L2 = O(‖um − u‖Hs)

for ϕ in sets W ⊆ Ds satisfying (8). This establishes uniform continuity of the
right translation within the set W .

(iii) Let (ϕm)m≥1 ⊆ Ds be convergent to ϕ in Ds . First we will assume
that u belongs to Hs+2 . As s ≥ 2, u is Lipschitz continuous i.e., for any x in T ,

|u ◦ ϕm(x)− u ◦ ϕ(x)| ≤ ‖u‖W 1,∞|ϕm(x)− ϕ(x)|.

This implies
‖u ◦ ϕm − u ◦ ϕ‖L2 ≤ ‖u‖W 1,∞‖ϕm − ϕ‖L2 .

Similarly, as (u ◦ϕm)′ = (u′ ◦ϕm)ϕ′m , one can estimate ‖(u ◦ϕm)′− (u ◦ϕ)′‖L2 by

‖(u′ ◦ ϕm)(ϕ′m − ϕ′)‖L2 + ‖(u′ ◦ ϕm − u′ ◦ ϕ)ϕ′‖L2

≤‖u‖W 1,∞‖(ϕm − ϕ)′‖L2 + ‖ϕ‖W 1,∞‖u‖W 2,∞‖ϕm − ϕ‖L2

≤Cmax(1, ‖ϕ‖W 1,∞)‖u‖H3‖ϕm − ϕ‖L2 ,

where in the last step we used the estimate ‖u‖W 1,∞ ≤ ‖u‖W 2,∞ ≤ C‖u‖H3 , which
follows by the Sobolev embedding theorem.

Next, as in the proof of (ii), we use (10) to estimate the higher order
derivatives (2 ≤ n ≤ s). First,

‖∂n
x (u ◦ ϕm − u ◦ ϕ)‖L2 ≤ ‖(u′ ◦ ϕm)∂n

xϕm − (u′ ◦ ϕ)∂n
xϕ‖L2

+
∑n

j=2 ‖pn,j(ϕm)[(∂j
xu) ◦ ϕm]− pn,j(ϕ)[(∂j

xu) ◦ ϕ]‖L2 .
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Based on previous estimates, the norm ‖(u′◦ϕm)∂n
xϕm−(u′◦ϕ)∂n

xϕ‖L2 is bounded
by

‖u′ ◦ ϕm − u′ ◦ ϕ‖L∞‖∂n
xϕm‖L2 + ‖u‖W 1,∞‖∂n

xϕm − ∂n
xϕ‖L2 ,

while ‖pn,j(ϕm)[(∂j
xu) ◦ ϕm]− pn,j(ϕ)[(∂j

xu) ◦ ϕ]‖L2 is bounded by

‖(pn,j(ϕm)− pn,j(ϕ))[(∂j
xu) ◦ ϕm]‖L2 + ‖pn,j(ϕ)[(∂j

xu) ◦ ϕm − (∂j
xu) ◦ ϕ]‖L2 .

One then shows that ‖∂n
x (u◦ϕm−u◦ϕ)‖L2 → 0 as m→ +∞ using the estimates

‖u′ ◦ ϕm − u′ ◦ ϕ‖L∞‖∂n
xϕm‖L2 ≤ ‖u‖W 2,∞ supm≥1{‖ϕm‖Hn}‖ϕm − ϕ‖H1 ,

‖u′ ◦ ϕ‖L∞‖∂n
xϕm − ∂n

xϕ‖L2 ≤ ‖u‖W 1,∞‖ϕm − ϕ‖Hn ,

and
‖(pn,j(ϕm)− pn,j(ϕ))[(∂j

xu) ◦ ϕm]‖L2 ≤
≤ ‖∂j

xu‖L2‖ϕ−1
m ‖1/2

W 1,∞‖pn,j(ϕm)− pn,j(ϕ)‖L∞

≤ ‖u‖Hs supm≥1{‖ϕ−1
m ‖1/2

W 1,∞}rn,j(‖ϕm − ϕ‖W s−1,∞)

where rn,j is a polynomial in one variable with positive coefficients, and

‖pn,j(ϕ)[(∂j
xu) ◦ ϕm − (∂j

xu) ◦ ϕ]‖L2 ≤ ‖pn,j(ϕ)‖L∞‖∂j
xu‖W 1,∞‖ϕm − ϕ‖L2

≤ qn,j(‖ϕ‖W n−1,∞)‖u‖W j+1,∞‖ϕm − ϕ‖L2

≤ Cqn,j(‖ϕ‖W s−1,∞)‖u‖Hs+2‖ϕm − ϕ‖L2

where the last inequality results from the fact that, for every 2 ≤ j ≤ s ,
‖∂j

xu‖W 1,∞ ≤ ‖u‖W j+1,∞ ≤ ‖u‖W s+1,∞ ≤ C‖u‖Hs+2 by the Sobolev embedding theo-
rem, and where qn,j is a polynomial in one variable with positive coefficients. Alto-
gether, since u was assumed to be in Hs+2 , we have shown that (Lu−Lum)◦ϕ→ 0
as m→ +∞ in Hs .

The general case, where u is merely in Hs , is now obtained by a limiting
argument. Indeed, as Hs+2 is densely embedded in Hs , we may choose a sequence
(ui)i≥1 ⊆ Hs+2 so that ui → u in Hs as i→ +∞ . Then

‖u◦ϕm−u◦ϕ‖Hs ≤ ‖u◦ϕm−ui ◦ϕm‖Hs +‖ui ◦ϕm−ui ◦ϕ‖Hs +‖ui ◦ϕ−u◦ϕ‖Hs .

Note that supm≥1(‖ϕ−1
m ‖W 1,∞ + ‖ϕ−1

m ‖Hs) < +∞ as ϕm → ϕ in Ds for s ≥ 2.
Hence, we have by (ii) that, for any given ε > 0, there exists i0 = i0(ε) ≥ 1 so
that, for any i ≥ i0 , and any m ≥ 1, the first and third factors on the r.h.s. of the
last display are no larger than ε/3. Finally, by the argument above, there exists
m0(ε) ≥ 1 such that for every m ≥ m0 the middle term is smaller than ε/3, and
we are done.

Proposition 2.3. For any s ≥ 2 and any r in Z≥0 , the composition Hs+r ×
Ds → Hs , (u, ϕ) 7→ u ◦ ϕ is Cr -smooth.

Proof. Consider first the case r = 0. It is to prove that, for any sequences
(um)m≥1 ⊆ Hs and (ϕm)m≥1 ⊆ Ds such that um → u in Hs and ϕm → ϕ in Ds

as m→ +∞ , the sequence (um ◦ ϕm)m≥1 converges in Hs to u ◦ ϕ . Indeed,

‖um ◦ ϕm − u ◦ ϕ‖Hs ≤ ‖(um − u) ◦ ϕm‖Hs + ‖u ◦ ϕm − u ◦ ϕ‖Hs .

As ϕm converges to ϕ in Ds and s ≥ 2, one has that supm ‖ϕ−1
m ‖W 1,∞ < +∞ .

Hence one can apply Lemma 2.2 (ii) to conclude that ‖(um − u) ◦ ϕm‖Hs → 0.
By Lemma 2.2 (iii), ‖u ◦ϕm − u ◦ϕ‖Hs → 0 as m→ +∞ . The proof of the case
r ≥ 1 is similar and is left to the reader.
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Proposition 2.4. For every s ≥ 2 and any r in Z≥0 , the map Ds+r → Ds ,
ϕ 7→ ϕ−1 is Cr -smooth.

Proof. As above, we will give the proof of the case r = 0, and leave the case
r ≥ 1 to the reader. Let (ϕm)m≥1 be a sequence in Ds with ϕm → ϕ in Ds . By
Lemma 2.1, ϕ−1

m and ϕ−1 are in Ds . It is to prove that ϕ−1
m → ϕ−1 in Ds . To

this end, write

ϕ−1
m − ϕ−1 = (id− ϕ−1 ◦ ϕm) ◦ ϕ−1

m .

By Lemma 2.2 (iii), ϕ−1 ◦ ϕm → ϕ−1 ◦ ϕ = id in Ds as m → +∞ . As
supm(‖ϕ−1

m ‖Hs + ‖ϕm‖W 1,∞) < +∞ , it then follows from Lemma 2.2 (ii) that
(ϕ−1 ◦ ϕm − id) ◦ ϕ−1

m → 0 as m→ +∞ .

Remark 2.5. From Proposition 2.3 and Proposition 2.4 it follows that the
composition and the inverse maps, D × D → D respectively D → D , are C∞

F -
smooth, hence D is a Lie group. Its Lie algebra TidD can be canonically identified
with C∞(T,R), with bracket given by [u, v] = uv′ − u′v .

3. The vector field Fk

In the present section, let the integer k ≥ 1, and ` ≥ `k := 2k + 2. For any (ϕ, v)
in D` ×H` , consider

Fk(ϕ, v) := (v, Fk(ϕ, v)), (11)

where Fk is defined in (3). It follows from Lemma 2.1 and Lemma 2.2 that, for
any (ϕ, v) in D` ×H` , the r.h.s. of (11) is well-defined and belongs to the space
H` × H` . In particular, (11) defines a dynamical system (ODE) on D` × H` .
Introducing

Ak : D` ×H` → D` ×H`−2k, (ϕ, v) 7→ (ϕ,Rϕ ◦ Ak ◦Rϕ−1v)

and

Bk : D` ×H` → D` ×H`−2k, (ϕ, v) 7→ (ϕ,Rϕ ◦Bk ◦Rϕ−1v)

with Ak and Bk as in (3b), respectively (3c), we can write

Fk = Proj2 ◦ A−1
k ◦ Bk

where Proj2 is the projection onto the second component (ϕ, v) 7→ v , and A−1
k

is the inverse of Ak described in the following proposition.

Proposition 3.1. Let k ≥ 1, and ` ≥ `k = 2k + 2. Then

(i) the map

Ak : D` ×H` → D` ×H`−2k, (ϕ, v) 7→ (ϕ,Rϕ ◦ Ak ◦Rϕ−1v) (12a)

is a bianalytic diffeomorphism with inverse given by the map

A−1
k : D` ×H`−2k → D` ×H`, (ϕ, v) 7→ (ϕ,Rϕ ◦ A−1

k ◦Rϕ−1v) . (12b)
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(ii) The map

Bk : D` ×H` → D` ×H`−2k, (ϕ, v) 7→ (ϕ,Rϕ ◦Bk ◦Rϕ−1v) (13)

is analytic.

As a consequence,

(iii) the vector field

Fk : D` ×H` → H` ×H`, (ϕ, v) 7→ A−1
k ◦ Bk(ϕ, v) (14)

is analytic on the Hilbert manifold D` ×H` .

To prove Proposition 3.1 we need two auxiliary lemmas.

Lemma 3.2. Let k ≥ 1, and ` ≥ `k = 2k + 2. Then, for any ϕ in D` and v
in H` , and, for any 1 ≤ n ≤ 2k , the following statements hold:

(i) ∂x(ϕ
−1) ◦ ϕ = 1/ϕ′ , and for n ≥ 2, (∂n

xϕ
−1) ◦ ϕ is a polynomial in 1/ϕ′ ,

∂xϕ, . . . , ∂
n
xϕ with integer coefficients.

(ii) Dn(ϕ, v) := Rϕ ◦ ∂n
x ◦ Rϕ−1v = (∂n

x (v ◦ ϕ−1)) ◦ ϕ =
∑n

j=1 pn,j(ϕ)∂j
xv where

pn,j(ϕ) is a polynomial in 1/ϕ′ , ∂xϕ, . . . , ∂
n+1−j
x ϕ with integer coefficients.

In particular, pn,n(ϕ) = 1/(ϕ′)n .

Proof. The proof follows by a straightforward application of the chain rule (cf.
discussion following (10)).

Recall that Hs
C := Hs(T,C) is the complexification of Hs .

Lemma 3.3. For s ≥ 1, let W s
C denote the open subset W s

C := {f ∈ Hs
C :

f(x) 6= 0 ∀x ∈ T}. Then, the map W s
C → Hs

C , f 7→ 1/f is analytic.

Proof. Let f in W s
C , and Uε,C(f) be the neighborhood

Uε,C(f) = {f − g | g ∈ Hs
C, ; ‖g‖Hs

C
< ε}

with ε > 0 so small that ‖g/f‖Hs
C
< 1. Such a choice is possible since, Hs

C being
a Banach algebra for s ≥ 1, ‖g/f‖Hs

C
≤ C‖g‖Hs

C
‖1/f‖Hs

C
so that it suffices to pick

0 < ε < 1/(C‖1/f‖Hs
C
). Then, 1/(f − g) can be written in terms of a series

1

f − g
=

1

f

(
1 +

g

f
+

(
g

f

)2

+ . . .

)

which converges uniformly in Uε,C(f) to an element in Hs
C .

Corollary 3.4. For any s ≥ 2, the map Ds → Hs−1 , ϕ 7→ 1/ϕ′ is analytic.

Proof. The map Ds → Hs−1 , ϕ 7→ 1/ϕ′ is the composition of the linear map
Ds → Hs−1 , ϕ 7→ ϕ′ , and the analytic map Hs−1 → Hs−1 , ϕ′ 7→ 1/ϕ′ .
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Proof of Proposition 3.1. (i) By direct computation, one sees that the map defined
in (12b) is indeed the inverse of (12a). In particular, this shows that Ak is bijective.
By Lemma 3.2, the definition (3b) of Ak , and that of Dn(ϕ, v) (cf. Lemma 3.2
(ii)), we have that

Rϕ ◦ Ak ◦Rϕ−1v = v +
k∑

j=1

(−1)jD2j(ϕ, v)

= v +
2k∑

j=1

q2k,j(ϕ)∂j
xv (15)

where q2k,j(ϕ) is a polynomial in 1/ϕ′ , ∂xϕ, . . . , ∂
2k+1−j
x ϕ with integer coefficients.

Note that in view of Lemma 3.2 (ii), q2k,2k(ϕ) = (−1)k/(ϕ′)2k .

By Corollary 3.4, the map

D` ×H` → (H`−2k)4k+2 , (ϕ, v) 7→ (1/ϕ′, ∂xϕ, . . . , ∂
2k
x ϕ, v, ∂xv, . . . , ∂

2k
x v)

is analytic and, since for ` ≥ `k = 2k+2, H`−2k is a Banach algebra, we conclude
that the r.h.s. of (15) is analytic and hence that Ak is analytic. Moreover, for any
(ϕ0, v0) in D` ×H` , the differential d(ϕ0,v0)Ak : H` ×H` → H` ×H`−2k is of the
form

d(ϕ0,v0)Ak(δϕ, δv) =

(
δϕ 0

Λ(δϕ) Rϕ0 ◦ Ak ◦Rϕ−1
0
δv

)
(16)

where

Λ : H` → H`−2k , and Rϕ0 ◦ Ak ◦Rϕ−1
0

: H` → H`−2k

are bounded linear maps. As the latter map is invertible, the open mapping
theorem implies that it is a linear isomorphism. Hence, d(ϕ0,v0)Ak is a linear
isomorphism and, by the inverse function theorem, the map defined in (12a) is a
local Cω -diffeomorphism and since we have seen that Ak is bijective, assertion (i)
follows. The proof of item (ii) is similar to the proof of the analyticity of Ak in
part (i).

4. The complex analytic extension of Fk

As in the previous section, let k ≥ 1, and ` ≥ `k = 2k + 2. Denote by U`
1,C the

complexification of the Hilbert chart U`
1 defined in (7a),

U`
1,C := {ϕ = id + f | f ∈ H`

C ; |f(0)| < 1/2; Re [(ϕ′)2k−3] > 0} . (17)

(The condition Re [(ϕ′)2k−3] > 0 will be used in the proof of Proposition 6.1.) It
follows from Lemma 3.2 and Lemma 3.3 that, for any 1 ≤ n ≤ 2k , the map

U`
1 ×H` → H`−n, (ϕ, v) 7→ Dn(ϕ, v) := Rϕ ◦ ∂n

x ◦Rϕ−1v (18a)

can be extended to an analytic map

U`
1,C ×H`

C → H`−n
C , (ϕ, v) 7→ Dn

C(ϕ, v). (18b)
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As a consequence, the map (cf. (15))

U`
1 ×H` → H`−2k , (ϕ, v) 7→ Ak(ϕ, v) := v +

k∑
j=1

(−1)jD2j(ϕ, v) (19a)

has an analytic extension

U`
1,C ×H`

C → H`−2k
C , (ϕ, v) 7→ Ak,C(ϕ, v) := v +

k∑
j=1

(−1)jD
2j
C (ϕ, v) .

Note that the latter is of the form

Ak,C(ϕ, v) = v +
2k∑

j=1

q2k,j(ϕ)∂j
xv (19b)

where q2k,j(ϕ) is a polynomial in 1/ϕ′, ∂xϕ, . . . , ∂
2k+1−j
x ϕ . Further, we introduce

the analytic map (the complexification of (12a))

Ak,C : U`
1,C ×H`

C → U`
1,C ×H`−2k

C , (ϕ, v) 7→ (ϕ, Ak,C(ϕ, v)) . (20)

Analogously, Lemma 3.2 and Lemma 3.3 imply that the map (13) can be analyti-
cally extended to the map

Bk,C : U`
1,C ×H`

C → U`
1,C ×H`−2k

C . (21)

Lemma 4.1. For any k ≥ 1 and ` ≥ `k , there exists a complex neighborhood
U`,k;C of id in U`

1,C such that (12b) can be extended to a bianalytic diffeomorphism

A−1
k,C : U`,k;C ×H`−2k

C → U`,k;C ×H`
C (22)

with inverse Ak,C
∣∣
U`,k;C×H`

C
.

Proof. By Proposition 3.1, for any ` ≥ `k , there exists a complex neighborhood
U`,k;C × W

(k)
`,C of (id, 0) in U`

1,C × H`
C such that Ak,C

∣∣
U`,k;C×W

(k)
`,C

is a bianalytic

diffeomorphism onto its image. In particular, cf. (20), for any given ϕ in U`,k;C ,

the map Ak,C(ϕ, · ) : W
(k)
`,C → H`−2k

C extends, by linearity, to a bounded map

Ak,C(ϕ, · ) : H`
C → H`−2k

C .

As Ak,C(ϕ, · ) is a bianalytic diffeomorphism near the origin, it is in fact bijective.
Hence, by the open mapping theorem, Ak,C(ϕ, · ) is a linear isomorphism for any
ϕ in U`,k;C and hence

Ak,C
∣∣
U`,k;C×H`

C
: U`,k;C ×H`

C → U`,k;C ×H`−2k
C (23)

is bijective. Moreover, from (20), one sees that, for any (ϕ0, v0) in U`,k;C×H`
C , the

differential d(ϕ0,v0)Ak,C of the map in (23) is of the form (16), and hence, a linear
isomorphism. Altogether, it follows that (23) is a bianalytic diffeomorphism.
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Lemma 4.2. For any k ≥ 1 and any ` ≥ `k , the neighborhood U`,k;C in

Lemma 4.1 can be chosen to be of the form U
(k)
`,C := U`k,k;C ∩ U`

1,C .

Proof. For any ` ≥ `k , formula (20) defines an analytic map from U
(k)
`,C × H`

C to

U
(k)
`,C ×H

`−2k
C . By Lemma 4.1, for ` = `k , this map is a bianalytic diffeomorphism.

Hence, it is injective for any ` ≥ `k . The proof of Lemma 4.1 shows that it suffices
to prove that, for any ϕ in U

(k)
`,C ,

Ak,C(ϕ, · ) : H`
C → H`−2k

C , v 7→ Ak,C(ϕ, v) ,

is onto. Indeed, for any ϕ in U
(k)
`,C and any h in H`−2k

C , the equation for v ,
Ak,C(ϕ, v) = h , is by (19b) the ODE

v +
2k∑

j=1

q2k,j(ϕ)∂j
xv = h .

Now, first observe that for ϕ in U
(k)
`,C ⊆ U

(k)
`k,C , the linear operator Ak,C(ϕ, · ) maps

H`k
C to H`k−2k

C , and since the latter is a linear isomorphism, it follows that (for
any ϕ and h as above) this equation has a unique solution v in H`k

C . Finally,

as q2k,j(ϕ) is in H`−2k+j−1
C and q2k,2k(ϕ) = (−1)k/(ϕ′)2k does nowhere vanish by

(17), it then follows that v is in H`
C .

From now on, we choose U`,k;C in Lemma 4.1 to be given by

U
(k)
`,C := U`k,k,C ∩ U`

1,C .

Recall that the maps Ak,C and Bk,C described in (20) respectively (21) are analytic

on U`
1,C ×H`

C . By Lemma 4.1, A−1
k,C is analytic on U

(k)
`,C ×H`−2k

C (cf. Lemma 4.2).
Hence, the vector field

Fk,C : U
(k)
`,C ×H

`
C → H`

C×H`
C , (ϕ, v) 7→ (v, Fk,C(ϕ, v)) := A−1

k,C ◦Bk,C(ϕ, v) . (24)

is analytic; in fact the analytic extension of the vector field defined in (14). We

will study the properties of the dynamical system corresponding to Fk,C on U
(k)
`,C

i.e., {
ϕ̇ = v

v̇ = Fk,C(ϕ, v) .
(25)

As, for any k ≥ 1, (id, 0) is a zero of Fk,C (and hence an equilibrium solution of
(25)), one gets from [10, Theorem 10.8.1] and [10, Theorem 10.8.2] the following
result.

Theorem 4.3. Let k ≥ 1, and ` ≥ `k = 2k + 2. Then there exists an open
neighborhood V`,k;C of 0 in H`

C so that, for any v0 in V`,k;C , the initial value
problem for (25) with initial data (ϕ(0), v(0)) = (id, v0) has a unique analytic
solution

(−2, 2) → U
(k)
`,C ×H`

C, t 7→ (ϕ(t; v0), v(t; v0)). (26a)

Moreover, the flow map,

(−2, 2)× V`,k;C → U
(k)
`,C ×H`

C, (t, v0) 7→ (ϕ(t; v0), v(t; v0)) (26b)

is analytic.
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Remark 4.4. In fact, [10, Theorem 10.8.1] and [10, Theorem 10.8.2] imply that
(26b) is a C1 -map over C , and thus that the map (26b) is analytic.

Remark 4.5. Theorem 4.3 does not exclude that
⋂

`≥`k
V`,k;C = {0} . This

possibility is ruled out by Theorem 5.2 given in the next section.

5. The exponential map and its analytic extension

As in the previous sections, let k ≥ 1, and set `k := 2k + 2. By (26b) of
Theorem 4.3, the Riemannian exponential map

Expk,`k
: V`k,k;C ∩H`k → D`k , v0 7→ ϕ(1; v0)

admits an analytic extension

ExpC
k,`k

: V`k,k;C → U
(k)
`k,C, v0 7→ ϕ(1; v0) . (27)

Set
V

(k)
`k,C := V`k,k;C .

Noting that d0ExpC
k,`k

= Id
H

`k
C

, it then follows from the inverse function theorem

that, by shrinking the neighborhoods V
(k)
`k,C and U

(k)
`k,C if necessary, one can ensure

that the mapping (27) is a bianalytic diffeomorphism. This will be tacitly assumed
in the remaining of the paper. In this section, we study the restriction of ExpC

k,`k

to V
(k)
`k,C ∩ C∞(T,C).

A priori relation: For a while let us study the equation (2) instead of its analytic
extension (25). Consider the curve u = v ◦ ϕ−1 where t 7→ (ϕ(t), v(t)) is an

arbitrary C1 -solution of (2) in (U
(k)
`,C ∩ U`

1)×H` on some nontrivial time interval
(−T, T ). By Proposition 2.3 and Proposition 2.4,

(−T, T ) → H` ⊆ H`−1 , t 7→ u(t) = v(t) ◦ ϕ−1(t) ,

is a C1 -curve in H`−1 . Moreover, it satisfies (6). Our aim is to derive, for any
−T < t < T , a formula for (Aku(t)) ◦ ϕ(t) which will be used to study regularity
properties of the exponential map. By the chain rule,

[(Aku) ◦ ϕ]· = (Aku̇) ◦ ϕ+ [(Aku)
′ ◦ ϕ]ϕ̇.

As v = ϕ̇ = u ◦ ϕ , the initial value problem (6) then leads to{
[(Aku) ◦ ϕ]· + 2(u′ ◦ ϕ)[(Aku) ◦ ϕ] = 0

(Aku(0)) ◦ ϕ(0) = Akv0.

By definitions (18a) and (19a), (Aku)◦ϕ = Ak(ϕ, v), and u′ ◦ϕ = D1(ϕ, v). Hence,
the latter can be rewritten as{

[Ak(ϕ, v)]
· + 2D1(ϕ, v)[Ak(ϕ, v)] = 0

Ak(ϕ(0), v(0)) = Akv0.
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where, for −T < t < T , t 7→ Ak(ϕ(t), v(t)) is of class H`−2k and t 7→ D1(ϕ(t), v(t))
evolves in H`−1 . Both of these curves are C1 -smooth. Solving the latter equation
one gets

Ak(ϕ(t), v(t)) = e−2
∫ t
0 D1(ϕ(τ),v(τ)) dτAkv0. (28)

On the other hand, differentiating of (5) with respect to x yields

(ϕ′)· = D1(ϕ, v)ϕ′ .

Since ϕ(0) = id, one obtains

ϕ′(t) = e
∫ t
0 D1(ϕ(τ),v(τ)) dτ . (29)

Hence, (28) can be rewritten as

Ak(ϕ(t), v(t)) = Akv0/(ϕ
′(t))2 .

Let

(U
(k)
`,C ∩ U`

1)×H` → H`−2k, (ϕ, v) 7→ Ik(ϕ, v) := Ak(ϕ, v)(ϕ
′)2

then, the above identity shows that the function

Ik(ϕ(t), v(t)) = Ak(ϕ(t), v(t))(ϕ′(t))2

is independent of t , and is equal to Akv0 . As a consequence, the derivative LFk
(Ik)

of Ik in the direction Fk vanishes on the open set (U
(k)
`,C ∩ U`

1)×H` .

Now, let us return to the analytic extension (25) of (2). First note that

U
(k)
`,C ×H`

C → H`−2k
C , (ϕ, v) 7→ Ik,C(ϕ, v) := Ak,C(ϕ, v)(ϕ′)2 , (30)

is an analytic extension of Ik . Further, Fk,C analytically extends Fk , and the
derivative LFk,C(Ik,C) of Ik,C in the direction Fk,C , analytically extends LFk

(Ik)

to U
(k)
`,C ×H`

C so that

LFk,C(Ik,C)
∣∣
(U

(k)
`,C∩U`

1)×H` = LFk
(Ik) .

As LFk
(Ik) vanishes on (U

(k)
`,C ∩ U`

1) × H` , it then follows that LFk,C(Ik,C) = 0

everywhere in U
(k)
`,C ×H`

C , – see e.g. [4, Proposition 6.6]. In other words, (30) is a

conserved quantity for the solutions of (25) on U
(k)
`,C ×H`

C .

Lemma 5.1. For any (ϕ, v) in U
(k)
`,C ×H`

C , and any 1 ≤ j ≤ 2k , the following
relation holds

∂j
xv = D

j
C(ϕ, v)(ϕ′)j + D1

C(ϕ, v)∂j
xϕ+ . . . (31)

where D
j
C(ϕ, v) is the analytic extension of (18a) to U

(k)
`,C ×H`

C , and . . . stand for

a polynomial in the variables 1/ϕ′ , ∂xϕ,. . . , ∂j−1
x ϕ and ∂xv ,. . . ,∂

j−1
x v .
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Proof. First let us consider (ϕ, v) in (U
(k)
`,C ∩ U`

1) × H` . Then ϕ is in D` and

u := v ◦ ϕ−1 is well-defined in H` , and thus we can write v = u ◦ ϕ . By
differentiation we get

v′ = (u′ ◦ ϕ)ϕ′ . (32a)

As u′ ◦ ϕ = Rϕ ◦ ∂x ◦Rϕ−1v , one has by definition (18a) that

v′ = D1(ϕ, v)ϕ′ . (32b)

By the analyticity of D1
C , the identity (32b) continues to hold for (ϕ, v) in U

(k)
`,C×H`

C
i.e.,

v′ = D1
C(ϕ, v)ϕ′ .

For j ≥ 2, we argue similarly i.e., given (ϕ, v) in (U
(k)
`,C ∩U`

1)×H` , we differentiate
(32a) (j − 1) times to get

∂j
xv = Dj(ϕ, v)(ϕ′)j + D1(ϕ, v)∂j

xϕ+ . . . (32c)

where . . . stand for a polynomial in 1/ϕ′ , ∂xϕ ,. . . , ∂j−1
x ϕ and ∂xv ,. . . ,∂j−1

x v .

Finally, (32c) extends by analyticity to U
(k)
`,C ×H`

C leading to (31).

Now, let t 7→ (ϕ(t), v(t)) be a solution of (25) in C1((−2, 2), U
(k)
`,C × H`

C).

Then, by Lemma 5.1, the curve t 7→ (Ak − 1)ϕ(t) =
∑k

j=1(−1)j∂2j
x ϕ(t) satisfies

the inhomogeneous transport equation{
((Ak − 1)ϕ)· − D1

C(ϕ, v)(Ak − 1)ϕ = Ak,C(ϕ, v)(ϕ′)2k + g2k−1(ϕ, v)

(Ak − 1)ϕ(0) = 0
(33)

where g2k−1(ϕ, v) is a polynomial (with constant coefficients) in 1/ϕ′ , ∂xϕ ,. . . ,
∂2k−1

x ϕ and v , ∂xv ,. . . , ∂2k−1
x v . (For convenience, we consider (Ak − 1)ϕ instead

of Akϕ so that the initial value problem (33) involves periodic functions only.)
Integrating (33) by the method of variation of parameters, and using (29) to write
the final expression in compact form, we get that, for any −2 < t < 2,

(Ak − 1)ϕ(t) = ϕ′(t)

∫ t

0

[
Ak,C(ϕ(τ), v(τ))(ϕ′(τ))2k−1 +

g2k−1(ϕ(τ), v(τ))

ϕ′(τ)

]
dτ.

By (30) which when evaluated at the solution of (25) is equal to Akv0 , we then
have that, for any −2 < t < 2,

(Ak−1)ϕ(t)−ϕ′(t)
(∫ t

0

(ϕ′(τ))2k−3dτ

)
Akv0 = ϕ′(t)

∫ t

0

ρ2k−1(ϕ(τ), v(τ)) dτ (34)

where

U
(k)
`,C ×H`

C → H`−2k+1
C , (ϕ, v) 7→ ρ2k−1(ϕ, v) := g2k−1(ϕ, v)/ϕ

′ (35)

is analytic by Lemma 3.3. As we will explain in detail later on, the a priori relation
(34) plays a fundamental role in the proofs of Theorem 5.2 and Theorem 1.3 below.
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Theorem 5.2. Let k ≥ 1, and ` ≥ `k = 2k + 2. Then, for any v0 in
V

(k)
`,C := V

(k)
`k,C∩H`

C , there exists a unique solution of (25) in C1((−2, 2), U
(k)
`,C ×H`

C)
with initial data (id, v0). Moreover, the flow map

(−2, 2)× V
(k)
`,C → U

(k)
`,C ×H`

C, (t, v0) 7→ (ϕ(t; v0), v(t; v0))

is analytic.

Proof. We argue by induction with respect to ` ≥ `k . For ` = `k the statement
follows from Theorem 4.3 since, by definition, V

(k)
`k,C = V`k,k;C . Assume that the

statement is true for any given ` > `k i.e., that given any v0 in V
(k)
`,C , there exists a

unique solution of (25) in C1((−2, 2), U
(k)
`,C ×H`

C) with initial data (id, v0) and, in

addition, that the flow map (−2, 2)×V (k)
`,C → U

(k)
`,C ×H`

C is analytic. Then, by (35),

the r.h.s. of (34) is in H`−2k+1
C . Now, let v0 be in V

(k)
`+1,C and, for −2 < t < 2, let

t 7→ ζ(t) := (ϕ(t), v(t)) ∈ U (k)
`,C ×H`

C

be the corresponding solution of (25) issuing from (id, v0). In particular, t 7→ ζ(t)
satisfies the integral equation

ζ(t) = (id, v0) +

∫ t

0

Fk,C(ϕ(τ), v(τ)) dτ . (36)

As v0 belongs to V
(k)
`+1,C and k ≥ 1, Akv0 and hence the second term on the

l.h.s. of (34) are in H`−2k+1
C . Altogether, it then follows from (34) that t 7→

(Ak − 1)ϕ(t) is a C1 -curve evolving in H`−2k+1
C for −2 < t < 2. Hence, as v = ϕ̇ ,

t 7→ ζ(t) = (ϕ(t), v(t)) is a continuous curve in U
(k)
`+1,C ×H`+1

C . By the analyticity
of the map (24), it then follows that the integrand in (36) is a continuous function
of τ with values in H`+1

C ×H`+1
C . Finally, the integral equation (36) implies that

ζ is a solution of (25) in C1((−2, 2), U
(k)
`+1,C×H

`+1
C ) with initial data (id, v0). The

second statement of the theorem follows by combining [10, Theorem 10.8.1] and
[10, Theorem 10.8.2] (cf. Remark 4.4).

Proof of Theorem 1.2. Theorem 1.2 is an immediate consequence of Theorem 5.2.
Indeed, for any k ≥ 1,

V (k) := V
(k)

C ∩ C∞(T,R) (37)

satifies the properties stated in Theorem 1.2.

Theorem 5.2 allows to define the exponential map. Recall that, for any
` ≥ `k ,

V
(k)
`,C := V

(k)
`k,C ∩H

`
C . (38a)

where V
(k)
`k,C = V`k,k;C . (Note that for ` ≥ `k + 1, V

(k)
`,C might not coincide with the

neighborhood V`,k;C introduced in Theorem 4.3.) Introduce

V
(k)

C := V
(k)
`k,C ∩ C

∞(T,C) =
⋂
`≥`k

V
(k)
`,C (38b)

U
(k)
C := U

(k)
`k,C ∩ C

∞(T,C) =
⋂
`≥`k

U
(k)
`,C .
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By Theorem 5.2, for any ` ≥ `k , the restriction ExpC
k;` of ExpC

k,`k
to V

(k)
`,C takes

values in U
(k)
`,C . Moreover, ExpC

k,` : V
(k)
`,C → U

(k)
`,C is analytic. Hence, the restriction

ExpC
k of ExpC

k,`k
to V

(k)
C takes values in U

(k)
`k,C ∩ C∞(T,C) i.e.,

ExpC
k : V

(k)
C → U

(k)
C , v0 7→ ϕ(1; v0) .

6. A Fréchet analytic chart of id in D(T)

Theorem 1.3 states that the exponential map Expk


V (k) : V (k) → D that is defined

using Theorem 1.2, can be used to define an analytic chart of the identity in D .

Proof of Theorem 1.3. By definitions (37) and (38b), V (k) = V
(k)

C ∩ C∞(T,R),
and the map ExpC

k , defined at the end of the previous section, is the analytic
extension of Expk . We want to apply to ExpC

k the inverse function theorem in
Fréchet spaces, Theorem A9. Fix k ≥ 1. To match the notation of this theorem,
we write, for any integer n ≥ 0, ` := `k + n (`k = 2k + 2), and define

Xn := H`
C; Yn := H`

C, and Vn := V
(k)
`,C ; Un := ExpC

k,`(V
(k)
`,C )

where V
(k)
`,C is defined in (38a), and ExpC

k,` is the exponential map introduced in

section 5.. Further, let f := ExpC
k,`k

: V0 → U0 . It follows from our construction
that f is a C1 -diffeomorphism and hence item (a) of Theorem A9 is verified.
Assumption (b) holds in view of Theorem 5.2, whereas items (c) and (d) hold,
respectively, by Proposition 6.1, and Proposition 6.2 below. Hence, Theorem 1.3
follows from Theorem A9.

It remains to show the two propositions used in the proof above.

Proposition 6.1. Let k ≥ 1, and `k = 2k + 2. Then, for any ` = `k + n,
n ≥ 0, and any v0 in V

(k)
`k,C ,

ExpC
k,`k

(v0) ∈ U (k)
`,C =⇒ v0 ∈ V (k)

`,C .

Proof. Let (ϕ(·; v0), v(·; v0)) denote the solution of (25) with initial data (id, v0)

with v0 in V
(k)
`k,C , and suppose that (Ak − 1)ϕ(1; v0) belongs to H`−2k

C . We will

show that v0 has to be in H`
C . For ` = `k , the result holds by construction. Now,

inductively, assume that v0 is in V
(k)
`,C for any given ` > `k . By Theorem 5.2, this

solution actually lies in C1((−2, 2), U
(k)
`,C × H`

C). This implies that the r.h.s. of

(34), when evaluated at t = 1, is in H`−2k+1
C . Moreover, as U

(k)
`,C ⊆ U`

1,C , we have

by definition (17) that the factor ϕ′(1)
∫ 1

0
(ϕ′(τ))2k−3 dτ does not vanish and is in

H`−1
C ⊆ H`−2k+1

C since k ≥ 1. Altogether, it follows from (34) that Akv0 lies in
H`−2k+1

C , and hence that v0 is in H`+1
C .

By Theorem 5.2, (−2, 2) × V
(k)
`,C → U

(k)
`,C × H`

C, (t, v0) 7→ (ϕ(t; v0), v(t; v0))

is analytic. Then, the variation δv0 in H`
C of the initial data v0 in V

(k)
`,C induces

the variation of t 7→ (ϕ(t; v0), v(t; v0))

t 7→ (δϕ(t), δv(t)) :=
d

dε

∣∣∣
ε=0

(ϕ(t; v0 + εδv0), v(t; v0 + εδv0))
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which is a continuous curve in H`
C ×H`

C . Differentiating (34) in direction δv0 in

H`
C at v0 in V

(k)
`,C yields

(Ak − 1)(δϕ(t))− ϕ′(t)

(∫ t

0

(ϕ′(τ))2k−3 dτ

)
Ak(δv0) =

= P2k−1(ϕ(t), v(t); δϕ(t), δv(t)) (39)

where P2k−1 : U
(k)
`,C ×H`

C ×H`
C ×H`

C → H`−2k+1
C is analytic.

Proposition 6.2. Let k ≥ 1, `k = 2k + 2, and ` = `k + n, n ≥ 0. Assume
that v0 is in V

(k)
`,C . Then

(dv0ExpC
k,`)(H

`
C\H`+1

C ) ⊆ H`
C\H`+1

C .

Proof. Assume v0 ∈ V
(k)
`,C , and let (ϕ(·; v0), v(·; v0)) in C1((−2, 2), U

(k)
` × H`

C) be
the unique solution of (25) issuing from (id, v0) as guaranteed by Theorem 5.2.
As before, it follows from (17) that the factor in front of Akδv0 in formula (39),
evaluated at t = 1, is a non-zero function in H`−1

C ⊆ H`−2k+1
C whereas the term

on the r.h.s. of this identity is in H`−2k+1
C . Hence, just as in the proof of Proposi-

tion 6.1 which followed from analyzing (34), the statement of Proposition 6.2 can
be obtained from (39), evaluated at t = 1.

A Analytic maps between Fréchet spaces

For the convenience of the reader we collect in this appendix some definitions and
notions from the calculus in Fréchet spaces and present an inverse function theorem
valid in a set-up for Fréchet spaces which is suitable for our purposes. For more
details on the theory of smooth functions in Fréchet spaces we refer the reader to
[13]. For the theory of analytic functions in Fréchet spaces, we follow the approach
developped in [3, 4] (cf. also [17]). In the sequel K denotes either the field C of
complex numbers or the field R of real numbers.

Fréchet spaces: Consider the pair (X, {||·||n}n≥0) where X is a vector space
over K and {|| · ||n}n≥0 is a countable collection of seminorms. A topology on X
is defined in the usual way as follows: A basis of open neighborhoods of 0 in X is
given by the sets

Uε,k1,...,ks := {x ∈ X : ||x||kj
< ε ∀1 ≤ j ≤ s}

where s, k1, . . . , ks are nonnegative integers and ε > 0. Then the topology on X
is defined as the collection of open sets generated by the sets x + Uε,k1,...,ks , for
arbitrary x in X and arbitrary s, k1, . . . , ks in Z≥0 and ε > 0. In this way, X
becomes a topological vector space. Note that a sequence (xk)k≥0 converges to x
in X iff, for any n ≥ 0, ||xk − x||n → 0 as k → +∞ .

Moreover, the topological vector space X described above is Hausdorff iff,
for any x in X , ||x||n = 0 for every n in Z≥0 implies x = 0. A sequence (xk)k∈N
is called Cauchy iff it is a Cauchy sequence with respect to any of the seminorms.
By definition, X is complete iff every Cauchy sequence converges in X .
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Definition A1. A pair (X, {|| · ||n}n≥0) consisting of a topological vector space
X and a countable system of seminorms {|| · ||n}n≥0 is called a Fréchet space 3 iff
the topology of X is the one induced by {|| · ||n}n∈Z≥0 , and X is Hausdorff and
complete.

The space of continuous maps f : U → Y from an open subset U ⊆ X into the
Fréchet space Y is denoted by C0(U, Y ).

C1
F -differentiability: Let f : U ⊆ X → Y be a map from an open set U of

a Fréchet space X to a Fréchet space Y .

Definition A2. If the limit

lim
ε∈K,ε→0

1

ε
(f(x+ εh)− f(x))

in Y exists with respect to the Fréchet topology of Y , we say that f is differen-
tiable at x in the direction h . The limit is declared to be the directional derivative
of f at the point x in U in the direction h in X . Following [3, 4], we denote it
by δxf(h).

Definition A3. If the directional derivative δxf(h) exists for any x in U and
any h in X , and the map

(x, h) 7→ δxf(h), U ×X → Y

is continuous with respect to the Fréchet topology on U × X and Y , then f is
called continuously differentiable on U . The space of all such maps is denoted by
C1

F (U, Y ).4 A map f : U → V from an open set U ⊆ X onto an open set V ⊆ Y
is called a C1

F -diffeomorphism if f is a homeomorphism and f as well as f−1 are
C1

F -smooth.

Lemma A4. Let U ⊆ X be an open subset. Then

(i) C1
F (U, Y ) ⊆ C0(U, Y )

(ii) Assume that a map f in C1(U, Y ) is a C1
F -diffeomorphism onto an open

subset V ⊆ Y . Then, for any x in U , δxf : X → Y is a linear isomorphism.

Proof. Statement (i) follows from [13, Theorem 3.2.2.] whereas statement (ii) is
a consequence of [13, Theorem 3.3.4.].

Analytic functions in Fréchet spaces: Let X and Y be Fréchet spaces over
K and let f : U ⊆ X → Y be a map from an open set U ⊆ X into Y . A map
fs : X → Y is called a homogeneous polynomial of degree s ∈ Z≥0 if there exists
a s-linear symmetric map fs : Xs → Y such that fs(x) = fs(x, . . . , x) for any x
in X (cf. [3, Definition 2]).

3Unlike for the standard notion of a Fréchet space, here the countable system of seminorms
defining the topology of X is part of the structure of the space.

4Note that even in the case where X and Y are Banach spaces this definition of continuous
differentiability is weaker than the usual one (cf. [13]). In order to distinguish it from the classical
one we write C1

F instead of C1 . We refer to [13] for a discussion of the reasons to introduce the
notion of C1

F -differentiability.
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Definition A5. Following [4, Definition 5.6], a continuous function f : U → Y
is called analytic if, for any x in U , there exist an open neighborhood V of 0 in
X and a sequence of continuous homogeneous polynomials (fs)s≥0 , deg fs = s ,
such that x + V ⊆ U and, for any h in V , f(x + h) =

∑∞
s=0 fs(h) converges in

Y 5.

We will need the following lemma.

Lemma A6. Assume that X and Y are Fréchet spaces over C, U ⊆ X is an
open subset of X , and f : U → Y is in C1

F (U, Y ). Then f is analytic.

Remark A7. The converse of Lemma A6 is true as well. More precisely,
assume that X and Y are K-Fréchet spaces and f : U → Y is analytic. Then,
by the definition of an analytic map, f is in Cn

F (U, Y ) for any n ≥ 0.

Proof of Lemma A6. According to [4, Theorem 6.2], it suffices to prove that f
is continuous and that it is analytic on affine lines. By Lemma A4 (i), f is
continuous. By Definition A3, it follows that, for any x in U , and any h in
X , the map fx,h : z 7→ f(x + zh) with values in Y , defined on the open set
{z ∈ C : x + zh ∈ U} ⊆ C is (complex) differentiable. In particular, by [4,
Theorem 3.1], fx,h(z) is analytic. Hence, h in X being arbitrary, f is analytic on
affine lines.

Analytic functions in Fréchet spaces over R: Now, assume that X and Y
are Fréchet spaces over R . Denote by XC = X ⊗ C the complexification of X .
The following theorem follows directly from [3, Theorem 3] and [4, Theorem 7.1].

Theorem A8. Let U be an open subset of X . A function f : U → Y is
analytic iff there exists a complex neighborhood Ũ ⊇ U in XC and an analytic
function f̃ : Ũ → YC such that f̃ |U = f .

In this paper we consider mainly the following spaces:

Fréchet space C∞(T): The space C∞(T) ≡ C∞(T,R) denotes the real
vector space of real-valued C∞ -smooth, 1-periodic functions u : R → R . The
topology on C∞(T) is induced by the countable system of Sobolev norms:

‖u‖n := ‖u‖Hn =
( n∑

j=0

∫ 1

0

[∂j
xu(x)]

2 dx
)1/2

, n ≥ 0.

Fréchet manifold D : By definition, D denotes the group of C∞ -smooth
positively oriented diffeomorphisms of the torus T = R/Z . A Fréchet manifold
structure on D can be introduced as follows: Passing to the universal cover R → T ,
any element ϕ of D gives rise to a smooth diffeomorphism of R in C∞(R,R), again
denoted by ϕ , satisfying the normalization condition

−1/2 < ϕ(0) < 1/2 or 0 < ϕ(0) < 1.

5In case K = R , an analytic function f : U → Y is sometimes called real analytic.
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The function f := ϕ − id is 1-periodic and hence lies in C∞(T). Moreover
f ′(x) > −1 for any x in R . The above normalizations give rise, respectively, to
two charts U1 , U2 of D with U1 ∪ U2 = D , defined by

Fj : Vj → Uj, f 7→ ϕ := id + f

where j = 1, 2, and

V1 := {f ∈ C∞(T) | − 1/2 < f(0) < 1/2 and f ′ > −1}
V2 := {f ∈ C∞(T) | 0 < f(0) < 1 and f ′ > −1}.

As V1,V2 are both open subsets in the Fréchet space C∞(T), the construction
above gives an atlas of Fréchet charts of D . In this way, D is a Fréchet manifold
modeled on C∞(T).

Hilbert manifold Ds(T) (s ≥ 2): Ds = Ds(T) denotes the group of posi-
tively oriented bijective transformations of T of class Hs . By definition, a bijective
transformation ϕ of T is of class Hs iff the lift ϕ̃ : R → R of ϕ , determined by
the normalization, 0 ≤ ϕ̃(0) < 1, and its inverse ϕ̃−1 both lie in the Sobolev space
Hs

loc(R,R). As for D one can introduce an atlas for Ds with two charts in Hs ,
making Ds a Hilbert manifold modeled on Hs .

Hilbert approximations: Assume that for a given Fréchet space X over K
there is a sequence of K-Hilbert spaces (Xn, || · ||n)n≥0 such that

X0 ⊇ X1 ⊇ X2 ⊇ · · · ⊇ X and X =
∞⋂

n=0

Xn

where {|| · ||n}n≥0 is a sequence of norms inducing the topology on X so that
||x||0 ≤ ||x||1 ≤ ||x||2 ≤ . . . for any x in X . Such a sequence of Hilbert spaces
(Xn, ||·||n)n≥0 is called a Hilbert approximation of the Fréchet space X . For Fréchet
spaces admitting Hilbert approximations one can prove the following version of the
inverse function theorem.

Theorem A9. Let X and Y be Fréchet spaces over K = C or R with Hilbert
approximations (Xn, ‖ · ‖n)n≥0 , and respectively (Yn, | · |n)n≥0 . Let f : V0 → U0 be
a map between the open subsets V0 ⊆ X0 and U0 ⊆ Y0 of the Hilbert spaces X0 ,
respectively Y0 . Define, for any n ≥ 0,

Vn := V0 ∩Xn, Un := U0 ∩ Yn.

Assume that, for any n ≥ 0, the following properties are satisfied:

(a) f : V0 → U0 is a bijective C1 -map, and, for any x in V := V0 ∩ X ,
dxf : X0 → Y0 is a linear isomorphism;

(b) f(Vn) ⊆ Yn , and the restriction f


Vn
: Vn → Yn is a C1 -map;

(c) f(Vn) ⊇ Un ;

(d) for any x in V , dxf(Xn\Xn+1) ⊆ Yn\Yn+1 .
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Then for the open subsets V := V0 ∩ X ⊆ X and U := U0 ∩ Y ⊆ Y , one has
f(V ) ⊆ U and the map f∞ := f


V

: V → U is a C1
F -diffeomorphism.

Proof. By properties (a) and (b), fn := f


Vn
: Vn → Un is a well-defined, injective

C1 -map. By (c), fn is onto. Hence, f∞ := f


V
: V → U is bijective. In order

to prove that f∞ : V → U is a C1
F -diffeomorphism, consider, for any n ≥ 0, and

any x in V , the differential dxfn : Xn → Yn . As (dxf)


Xn
= dxfn and, by (a),

dxf : X0 → Y0 is bijective, one concludes that dxfn is one-to-one. We prove by
induction (with respect to n) that, for any x in V , dxfn : Xn → Yn is onto. For
n = 0 (V ⊆ V0 ), the statement is true by property (a). Next, assume that for
arbitrary positive integer n , and arbitrary x in V , dxfn−1 : Xn−1 → Yn−1 is onto.
Then, for any x in V , and η in Yn ⊆ Yn−1 , there exists a (unique) ξ in Xn−1

verifying dxfn−1(ξ) = η . By property (d), it follows that ξ belongs to Xn . In other
words, for any given n ≥ 0, and any x in V , we have that the map dxfn : Xn → Yn

is bijective, and thus, by Banach’s theorem, the inverse (dxfn)−1 : Yn → Xn is a
bounded linear operator. As, for any n ≥ 0, fn is C1 -smooth, the map

V ′
n ×Xn → Yn, (x, ξ) 7→ dxfn(ξ) (40)

is continuous and, by the inverse function theorem it follows that

U ′
n × Yn → Xn, (y, η) 7→ dy(f

−1
n )(η) (41)

is continuous as well. Here V ′
n (U ′

n ) denotes the subset V (U ) with the topology
induced by | · |n (‖ · ‖n ). As for any x in V , and n ≥ 0,

δxf∞ = dxfn


X

one gets from (40) - (41) that

V ×X → Y, (x, ξ) → δxf∞(ξ)

and
U × Y → X, (x, η) 7→ δyf

−1
∞ (η)

are continuous. In particular, one concludes (cf. Definition A3) that

f∞ : V → U

is a C1
F -diffeomorphism.
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