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Abstract. In [12] we developed a general classification scheme for metric Lie
algebras, i.e. for finite-dimensional Lie algebras equipped with a non-degenerate
invariant inner product. Here we determine all nilpotent Lie algebras l with
dim[l, l] = 2 which are used in this scheme. Furthermore, we use the scheme to
classify all nilpotent metric Lie algebras of dimension at most 10.
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1. Introduction

All of what we know of nilpotent Lie algebras suggests that it is hopeless to try
and classify them. Even under suitable reasonable conditions the classification of
nilpotent Lie algebras is a difficult problem, see [7, 8] for a summary of what is
currently known. Here we are mainly interested in real finite-dimensional nilpotent
Lie algebras which have a non-degenerate invariant inner product. We call a Lie
algebra together with such an inner product a metric Lie algebra. Metric Lie
algebras are not only interesting from an algebraic but also from a geometric point
of view since they correspond to Lie groups with a bi-invariant pseudo-Riemannian
metric, i.e. to special pseudo-Riemannian symmetric spaces.

There are several constructions of metric Lie algebras. The best-known
one is the method of double extensions developed independently by Medina and
Revoy [13] and Favre and Santharoubane [6]. Each indecomposable non-simple
metric Lie algebra can be obtained by such an extension from a lower-dimensional
metric Lie algebra. This allows an inductive construction of all metric Lie algebras.
In [6] nilpotent metric Lie algebras of dimension at most 7 are classified using this
method. Unfortunately, in general a given metric Lie algebra can be obtained in
many different ways by this construction. This fact causes trouble if one wants to
apply double extensions to classification problems for metric Lie algebras of higher
dimension with arbitrary index of the metric.

A second method by Medina and Revoy [14] produces examples of metric
Lie algebras from an arbitrary Lie algebra l , an orthogonal l-module a and a 3-
cocycle on l with values in the one-dimensional trivial representation. For further
results on the structure of metric Lie algebras see e.g. [1, 4, 10].
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In [12] we present a construction which goes back to an idea of Bérard
Bergery used in his unpublished work on pseudo-Riemannian symmetric spaces
[2, 3]. We call it quadratic extension. It looks similar to the second method by
Medina and Revoy, but the data describing the extension contain an additional
2-cocycle. The quadratic extension has the following advantages compared to the
previously mentioned constructions. Any metric Lie algebra without simple ideals
has the structure of a quadratic extension (of course we are here interested only
in metric Lie algebras without simple ideals since semi-simple metric Lie algebras
are known). Though also here different extensions can give isomorphic metric Lie
algebras, we can use the method for classification since we can always distinguish
one of these extensions (up to equivalence). We call this extension the balanced
one. Hence any metric Lie algebra can be obtained as a balanced quadratic
extension in a unique way. However, balanced quadratic extensions use only semi-
simple orthogonal modules. Consequently, compared to the construction in [14]
our method has the advantage that it is sufficient to use semi-simple orthogonal
modules. In particular, in the case of nilpotent metric Lie algebras we may restrict
ourselves to trivial modules.

Similar to ordinary extensions quadratic extensions of Lie algebras are de-
scribed by a second cohomology, too. But now we have to use a sort of non-linear
cohomology. More exactly, there is a one-to-one correspondence between equiva-
lence classes of quadratic extensions of a Lie algebra l by an orthogonal module
a and elements of the second quadratic cohomology set H2

Q(l, a). Quadratic co-
homology sets are a special case of cohomology sets associated by Grishkov [9]
to a cochain complex with a cup product taking values in a second complex, see
also [12] for a self-contained presentation. In order to classify metric Lie algebras
the main problem is to find those cohomology classes that correspond to balanced
quadratic extensions. We will call such cohomology classes admissible and denote
the subset of admissible cohomology classes in H2

Q(l, a) by H2
Q(l, a)] . Then the

moduli space of all isomorphism classes of metric Lie algebras can be written as∐
(l,a)

H2
Q(l, a)]/G(l,a), (1)

where the union is taken over all isomorphism classes of pairs (l, a) of Lie algebras
l and semi-simple orthogonal l-modules a and G(l,a) is the automorphism group
of the pair (l, a). See [12] for detailed explanations, in particular for a general
characterisation of the subset H2

Q(l, a)] ⊂ H2
Q(l, a). Note that it is not necessary

to consider all Lie algebras l in this union, since in most cases H2
Q(l, a)] = Ø.

The description (1) of the moduli space of isomorphism classes of metric
Lie algebras allows a systematic approach to the construction and classification of
metric Lie algebras. Of course it is far from being an explicit classification (e.g. a
list). A full classification would require that we can determine all Lie algebras l for
which H2

Q(l, a)] is not empty for some orthogonal l-module a . These Lie algebras
are called admissible. Although admissibility is a very strong condition it seems
to be hard to give a classification of these Lie algebras. Another difficulty is the
explicit computation of the cohomology sets.

However, (1) yields a general classification scheme, i.e. a systematic method
which can be used to obtain a full classification for metric Lie algebras satisfying
suitable additional assumptions. Such assumptions can be, e.g., restrictions on the
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index of the inner product or on the structure of the Lie algebra. These restrictions
give additional conditions for the Lie algebras l occuring in (1). Hence, in order to
get a classification from (1) one has first to determine all admissible Lie algebras l

which satisfy these additional conditions and afterwards one has to determine orbit
sets of cohomology classes of these Lie algebras. For example, the classification of
metric Lie algebras with index p leads to the classification problem for admissible
Lie algebras of dimension dim l ≤ p . In [11] and [12] we show how one can solve
this problem for small p . In particular, we give a classification of all metric Lie
algebras whose invariant inner product is of index two or three.

The aim of this paper is to give a further example which shows that (1)
is really a useful mean for concrete classification problems concerning metric Lie
algebras. We have seen that the classification of admissible Lie algebras l is a
main step in solving such problems. The first part of the paper deals with the
determination of a certain class of admissible Lie algebras. We will classify all
nilpotent admissible Lie algebras l whose derived algebra l′ is two-dimensional.
In particular, we will see how restrictive the admissibility condition is. We can
prove that such Lie algebras are direct sums g ⊕ Rk , where g is nilpotent and
admissible of dimension at most 6. The precise classification result is stated in
Theorem 3.1. The easier case of solvable non-nilpotent admissible Lie algebras
with two-dimensional nilpotent radical was already treated in [12]. We will prove
Theorem 3.1 exploiting only the admissibility condition, i.e. without using other
classification results on nilpotent Lie algebras.

In the second part we show how to apply the general classification scheme
for metric Lie algebras to low-dimensional nilpotent metric Lie algebras. For an
upper bound of the dimension d we have chosen d = 10. This is high enough to
show how the machinery of the classification scheme works where other methods
don’t work any longer but low enough to avoid overly long calculations. We state
the classification result in Theorem 4.7 at the end of this paper. Besides isolated
nilpotent metric Lie algebras also 1-parameter families occur.

2. Admissible cohomology classes

In [12] we introduced the quadratic cohomology H2
Q(l, a) for a Lie algebra l

with values in an orthogonal l-module a . As mentioned in the introduction
this cohomology is a special case of non-linear cohomology sets introduced by
Grishkov [9]. Let us recall its definition. An orthogonal l-module is a triple
(ρ, a, 〈· , ·〉a) (also a in abbreviated notation) consisting of a finite-dimensional
pseudo-Euclidean vector space a and a representation ρ of l on a satisfying
ρ(L) ∈ so(a, 〈· , ·〉a) for all L ∈ l . For l and (any l-module) a we have the standard
cochain complex (C∗(l, a), d) and corresponding cohomology groups Hp(l, a). If a

is the one-dimensional trivial representation, then we denote this cochain complex
also by C∗(l). We define a product 〈· ∧ ·〉 : Cp(l, a)×Cq(l, a) −→ Cp+q(l) by the
composition

〈· ∧ ·〉 : Cp(l, a)× Cq(l, a)
∧−→ Cp+q(l, a⊗ a)

〈· ,·〉a−→ Cp+q(l).

Let p be even. Then the group of quadratic (p− 1)-cochains is the group

Cp−1
Q (l, a) = Cp−1(l, a)⊕ C2p−2(l)
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with group operation defined by

(τ1, σ1) ∗ (τ2, σ2) = (τ1 + τ2, σ1 + σ2 + 1
2
〈τ1 ∧ τ2〉) .

Now we consider the set

Zp
Q(l, a) = {(α, γ) ∈ Cp(l, a)⊕ C2p−1(l) | dα = 0, dγ = 1

2
〈α ∧ α〉}

of so-called quadratic p-cocycles. The group Cp−1
Q (l, a) acts on Zp

Q(l, a) by

(α, γ)(τ, σ) = ( α + dτ, γ + dσ + 〈(α + 1
2
dτ) ∧ τ〉 ).

and we define the quadratic cohomology set Hp
Q(l, a) := Zp

Q(l, a)/Cp−1
Q (l, a). We

denote the equivalence class of (α, γ) ∈ Zp
Q(l, a) in Hp

Q(l, a) by [α, γ] .

Let us recall the definition of admissible cohomology classes from [12].
Admissible cohomology classes are certain elements of H2

Q(l, a) for a Lie algebra
l and a semi-simple orthogonal l-module a . Here we will give the definition
of admissibility only for nilpotent Lie algebras. So we have the two following
simplifications compared to [12]: Firstly, if l is a nilpotent Lie algebra, then
H∗(l, a) = H∗(l, al) holds for any semi-simple l-module a (see [5]). This implies
that H2

Q(l, a) = H2
Q(l, al) holds for any orthogonal semi-simple l-module a , too.

Secondly, if l is nilpotent, then its k -th nilpotent radical Rk(l) equals lk+1 , where
lk+1 is defined by l1 = l, . . . , lk+1 = [l, lk] . As usual we often denote l2 by l′ .

Definition 2.1. Let l be a nilpotent Lie algebra and let (ρ, a, 〈· , ·〉a) be a semi-
simple orthogonal l-module. Let m be such that lm+2 = 0. Put l(0) = z(l) ∩ ker ρ
and l(k) = z(l) ∩ lk+1 for k ≥ 1. Take a cohomology class in H2

Q(l, a) and
represent it by a cocycle (α, γ) satisfying α(l, l) ⊂ al . Then [α, γ] ∈ H2

Q(l, a)
is called admissible if and only if the following conditions (Ak) and (Bk) hold for
all 0 ≤ k ≤ m .

(Ak) Let L0 ∈ l(k) be such that there exist elements A0 ∈ a and Z0 ∈ (lk+1)∗

satisfying

(i) α(L, L0) = 0,

(ii) γ(L, L0, ·) = −〈A0, α(L, ·)〉a + 〈Z0, [L, ·]l〉 as an element of (lk+1)∗ ,

for all L ∈ l , then L0 = 0.

(Bk) The subspace α(ker [· , ·]l⊗lk+1) ⊂ a is non-degenerate, where ker [· , ·]l⊗lk+1 is
the kernel of the map [· , ·] : l⊗ lk+1 → l .

This definition is independent of the choice of the cocycle representing [α, γ] ∈
H2

Q(l, a). We denote the set of all admissible cohomology classes in H2
Q(l, a) by

H2
Q(l, a)

]
. A Lie algebra l is called admissible if there is a semi-simple orthogonal

l-module a such that H2
Q(l, a)

]
6= Ø.
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3. Nilpotent admissible Lie algebras with 2-dimensional radical

In this section we determine all nilpotent admissible Lie algebras l with dim R1(l) =
dim l′ = 2. We will often describe a Lie algebra by giving a basis and some of the
Lie bracket relations. In this case we always assume that all other brackets of basis
vectors vanish. If we do not mention the basis explicitly, then we assume that all
basis vectors appear in one of the bracket relations (on the left or the right hand
side). Using this convention we define

h(1) = {[X1, X2] = Y },
g4,1 = {[X1, Z] = Y, [X1, X2] = Z},

g5,2 = {[X1, X2] = Y, [X1, X3] = Z},
g6,4 = {[X1, X2] = Y, [X1, X3] = Z, [X3, X4] = Y },
g6,5 = {[X1, X2] = Y, [X1, X3] = Z, [X2, X4] = Z, [X3, X4] = −Y }.

Theorem 3.1. If l is an admissible nilpotent Lie algebra with dim l′ = 2, then
l is isomorphic to one of the (admissible) Lie algebras

h(1)⊕ h(1)⊕ Rk, g4,1 ⊕ Rk, g5,2 ⊕ Rk, g6,4 ⊕ Rk, g6,5 ⊕ Rk.

Proof. Let us first show that all these Lie algebras are admissible. In [12] we
proved that h(1) is admissible. In Props. 4.3 and 4.4 we will see that g4,1 and g5,2

are also admissible. Let us verify now that g6,4 is admissible. Take a = R2,2 and
ρ = 0. Let A1, A2, A3, A4 be a Witt basis of a , i.e. 〈A1, A3〉 = 〈A2, A4〉 = 1 and
〈Ai, Aj〉 = 0 for the remaining pairs 1 ≤ i ≤ j ≤ 4. We define α ∈ C2(l, a) by

α(X1, Y ) = −α(X4, Z) = A1, α(X3, Y ) = α(X2, Z) = A2, α(X3, Z) = A3,

α(X1, Z) = A4, α(X2, Y ) = α(X4, Y ) = α(Xi, Xj) = α(Y, Z) = 0.

Then a direct calculation shows that (α, 0) is a cocycle and that [α, 0] is admissible.
Similarly one can see that l = g6,5 is admissible. Since Rk is also admissible and
direct sums of admissible Lie algebras are admissible the assertion follows.

Now we prove that each admissible nilpotent Lie algebra l with dim l′ = 2
is isomorphic to one of the mentioned Lie algebras. We distinguish between two
cases: l′ 6⊂ z(l) (case I) and l′ ⊂ z(l) (case II).

Case I: l′ 6⊂ z(l)

In this case we can choose a basis Y, Z of l′ and vectors X1, X2 in l \ l′ such that

[X1, Z] = Y, [X1, X2] = Z, [X2, Z] = 0, [l, Y ] = 0. (2)

In particular it is possible to choose a vector space decomposition

l = span{X1, X2} ⊕ V ⊕ l′

of l such that [X1, V ] = 0, [X2, V ] ⊂ R · Y, [V, Z] = 0 and [V, V ] ⊂ R · Y .

Now we distinguish between the cases [X2, V ] 6= 0 and [X2, V ] = 0.
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Case I.1: [X2, V ] 6= 0

Claim. A Lie algebra l which satisfies the conditions of case I.1 is not admissible.

Proof. By (2) and our choice of V we find a basis X3, . . . , Xl of V such that

l = { [X1, X2] = Z, [X1, Z] = Y, [X2, X3] = Y, [Xi, Xj] = yijY, i, j ≥ 3 }

for suitable yij ∈ R . Assume that l is admissible. Then we can choose a semi-
simple orthogonal l-module a and [α, γ] ∈ H2

Q(l, a) such that [α, γ] is admissible.
As explained above we may assume α(l, l) ⊂ al . Hence dα = 0 implies

α(Y, Z) = 0, α(Z,X3) + α(Y,X1) = 0, α(Y,Xj) = 0, j ≥ 2 . (3)

Because of 〈α ∧ α〉 = 2dγ we have 〈α ∧ α〉(X1, X3, Y, Z) = 2dγ(X1, X3, Y, Z) = 0
and by (3) this yields 〈α(Y,X1), α(Y,X1)〉 = 0 . Summarizing we obtain

α(Y, Z) = 0, 〈α(Y,X1), α(Y,X1)〉 = 0, α(Y,Xj) = 0, j ≥ 2 . (4)

Now let us consider Condition (B2). Since l3 = R · Y ⊂ z(l) it is satisfied if and
only if the space α(l, Y ) is non-degenerate. Now (4) implies that (B2) holds if
and only if α(Y, l) = 0. But if α(Y, l) = 0, then Condition (A2) is not satisfied, a
contradiction.

Case I.2: [X2, V ] = 0

Claim. An admissible Lie algebra l which satisfies the conditions of case I.2 is
isomorphic to g4,1 ⊕ Rk .

Proof. By (2) and our choice of V we find a basis X3, . . . , Xl of V such that

l = { [X1, X2] = Z, [X1, Z] = Y, [Xi, Xj] = yijY, i, j ≥ 3 } .

for suitable yij ∈ R , i, j ≥ 3. Suppose [α, γ] ∈ H2
Q(l, a) is admissible and

α(l, l) ⊂ al . The cocycle condition for α yields

α(Y, Z) = 0, α(Y,X2) = 0, α(Y,Xi) = 0, yijα(Y, X1) = 0, i, j ≥ 3.

If yij 6= 0 for some i, j ≥ 3, then α(Y, l) = 0 holds. But then (A2) is not satisfied,
a contradiction. Consequently, yij = 0 for all i, j ≥ 3, which proves the claim.

Case II: l′ ⊂ z(l)

In this case we can choose a 3-dimensional subspace l̄ of l that satisfies [ l̄, l̄ ] = l′ .
Moreover, we can fix a basis X1, X2, X3 of l̄ and a basis Y, Z of l′ satisfying

[X1, X2] = Y, [X1, X3] = Z, [X2, X3] = 0. (5)

Lemma 3.2. If [α, γ] ∈ H2
Q(l, a) and α(l, l) ⊂ al , then we have

(i) α(Y, Z) = 0;

(ii) α(Y, L) = 0 for all L ∈ l satisfying [L, X1] = [L, X2] = 0;

(iii) α(Z,L) = 0 for all L ∈ l satisfying [L, X1] = [L, X3] = 0;

(iv) 〈α(U1, L1), α(U2, L2)〉 = 〈α(U1, L2), α(U2, L1)〉 for all U1, U2 ∈ l′ , L1, L2 ∈ l.
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Proof. Assertions (i), (ii), (iii) follow from the cocycle condition for α , from
l′ ⊂ z(l) and from the special conditions on L ∈ l in (ii) and (iii), respectively.

As for assertion (iv) we first observe that

dγ(U1, U2, L1, L2) = −γ([L1, L2], U1, U2) = 0, (6)

where the first equality follows from U1, U2 ∈ z(l) and the second equality follows
from [L1, L2] ∈ l′ and dim l′ = 2. Combining (6) with the cocycle condition for
(α, γ) we obtain

〈α(U1, U2), α(L1, L2)〉+ 〈α(U2, L1), α(U1, L2)〉+ 〈α(L1, U1), α(U2, L2)〉 = 0.

Since (i) implies α(U1, U2) = 0 the first term vanishes and the assertion follows.

Lemma 3.3. Let [α, γ] ∈ H2
Q(l, a) be admissible and let α satisfy α(l, l) ⊂ al .

(i) If K ∈ l′ satisfies α(K, l̄) = 0, then α(K, l) = 0.

(ii) If L ∈ l satisfies [L, l̄ ] = 0, then α([L, l], l) = 0.

Proof. Let X1, X2, X3, Y, Z be as in (5). For L1, L2 ∈ l and K ∈ l′ we have

〈α(K, L1), α(Y, L2)〉 = 〈α(K, L1), α([X1, X2], L2)〉
= 〈α(K, L1), α([L2, X2], X1)〉+ 〈α(K, L1), α([X1, L2], X2)〉
= 〈α(K, X1), α([L2, X2], L1)〉+ 〈α(K, X2), α([X1, L2], L1)〉
= 0,

where we first used the dα = 0 and then Lemma 3.2. Similarly, we have

〈α(K, L1), α(Z,L2)〉 = 〈α(K,L1), α([X1, X3], L2)〉 = 0.

This implies α(K, L1) ⊥ α(l′, l). Now (B1) yields α(K, L1) = 0 for all L1 ∈ l .

Let L ∈ l satisfy [L, l̄ ] = 0. By (i) it suffices to prove that α([L, L′], X) = 0
holds for all L′ ∈ l and X ∈ l̄ . Since [X, L] = 0 the cocycle condition for α gives

dα(L, L′, X) = −α([L, L′], X)− α([L′, X], L) = 0.

The assertion now follows since α([L′, X], L) = 0 by Lemma 3.2 (ii), (iii).

Lemma 3.4. Let l be admissible. Then [L1, L2] = 0 holds for all L1, L2 ∈ l

satisfying [L1, l̄ ] = [L2, l̄ ] = 0.

Proof. We choose a semi-simple orthogonal l-module a such that there is an
admissible cohomology class [α, γ] ∈ H2

Q(l, a). We may assume α(l, l) ⊂ al . From
dα = 0 and [ l̄, L1] = [ l̄, L2] = 0 we obtain α([L1, L2], l̄) = 0. Lemma 3.3 (i) now
implies

α([L1, L2], ·) = 0. (7)
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Take X1, X2, X3, Y, Z as in (5). Using [L1, L2] ∈ l′ ⊂ z(l) and (7) we see that

γ(Y, [L1, L2], Li) = −dγ([L1, L2], X1, X2, Li) = −1
2
〈α ∧ α〉([L1, L2], X1, X2, Li)

= 0 (8)

for i = 1, 2 and similarly we obtain

γ(Z, [L1, L2], Li) = 0 (9)

for i = 1, 2. Assume now that [L1, L2] 6= 0. By (8), (9) and [L1, L2] ∈ span{Y, Z}
we obtain γ(Y, Z, Li) = 0 for i = 1, 2. This yields

dγ(U,L1, L2, L) = −γ([L1, L2], U, L) (10)

for all L ∈ l and U ∈ l′ . On the other hand,

dγ(U,L1, L2, L) = 〈α(U,L), α(L1, L2)〉. (11)

by Lemma 3.2 (ii), (iii). From (10) and (11) we get

γ(L, [L1, L2], ·) = 〈α(L1, L2), α(L, ·)〉

as an element of (l′)∗ . Hence Condition (A1)(ii) is satisfied for L0 = [L1, L2] ,
A0 = −α(L1, L2), Z0 = 0. Since also (A1)(i) holds by (7) and [α, γ] is admissible
we get [L1, L2] = 0, which is a contradiction.

Let X1, X2, X3, Y, Z be as in (5). We extend these vectors to a basis X1, X2, X3, . . . ,
Xl, Y, Z of l satisfying

[X1, X2] = Y, [X1, X3] = Z, [X2, X3] = 0 (12)

[X1, X4] = 0, [X2, X4] = λZ, λ ∈ {0, 1}, (13)

[X1, Xj] = [X2, Xj] = 0, j ≥ 5. (14)

Let j0 be such that [X1, Xj] = [X2, Xj] = [X3, Xj] = 0 for all j ≥ j0 . Then we
have [Xr, Xs] = 0 for all r, s ≥ j0 by Lemma 3.4.

We define W := span{X4, . . . , Xl} and W ′ := span{X5, . . . , Xl} .

Case II.1: λ = 0

Case II.1.1: [X3, W ] = 0

Claim. An admissible Lie algebra l that satisfies the conditions of case II.1.1 is
isomorphic to g5,2 ⊕ Rk .

Proof. In this case we have [X1, W ] = [X2, W ] = [X3, W ] = 0 by assumption
and [W, W ] = 0 by Lemma 3.4.

Case II.1.2: dim[X3, W ] = 1

Claim. An admissible Lie algebra l that satisfies the conditions of case II.1.2 is
isomorphic to g6,4 ⊕ Rk or to h(1)⊕ h(1).
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Proof. We may assume [X3, X4] = cY + dZ 6= 0, c, d ∈ R and [X3, Xr] = 0
for r ≥ 5. Let us first consider the case d 6= 0. We may assume c = 0 and d = 1
by changing the basis suitably. We will prove that the admissibility of l implies
[X4, Xr] = 0 for r ≥ 5. Assume first that there is a vector X ∈ span{X5, . . . , Xl}
such that [X4, X] = aY + bZ , a 6= 0 and b 6= 0. Let [α, γ] ∈ H2

Q(l, a) be
admissible and choose α such that α(l, l) ⊂ al . Then the cocycle condition for α
on span{X1, . . . , X4} yields

α(Y,X3) = α(Z,X2), α(Z,X4) + α(Z,X1) = 0, α(Y, X4) = α(Z,X2) = 0.

Moreover, Lemma 3.3 (ii) for L = X yields α(aY + bZ, ·) = 0. Since a 6= 0
and b 6= 0, this equation together with the cocycle conditions above implies
α(l′, Xi) = 0 for i ≤ 4. Lemma 3.2 (ii), (iii) now gives α(l′, l) = 0. In particular
we obtain dγ(l′, l, l, l) = 0. Using this condition one easily computes γ(Y, Z, ·) = 0.
But then [α, γ] does not satisfy Condition (A1). This contradicts the admissibility
of [α, γ] . Hence [X4, Xr] ∈ RZ for all r ≥ 5 or [X4, Xr] ∈ RY for all r ≥ 5. If
we are in the first case and if there is an s ≥ 5 such that [X4, Xs] 6= 0, then
we may assume [X4, X5] = Z . If we replace our l̄ by span{X1, X2, X3 + X5} ,
then this new l̄ , L1 = X4 and L2 = X5 satisfy the assumptions of Lemma 3.4.
But [X4, X5] = Z 6= 0 yields a contradiction. Similarly we can exclude the case
[X4, Xr] ∈ RY for all r ≥ 5 and [X4, Xs] 6= 0 for some s ≥ 5. We deduce
[X4, Xr] = 0 for r ≥ 5. We conclude that in case d 6= 0 the Lie algebra l is
isomorphic to

{[X1, X2] = Y, [X1, X3] = Z, [X3, X4] = Z} ⊕ Rk ∼= h(1)⊕ h(1)⊕ Rk.

Now we consider the case d = 0. We may assume c = 1. Now we
have a basis X1, X2, X3, . . . , Xl, Y, Z of l satisfying (12), (13), (14), [X3, X4] =
Y and [X3, Xr] = 0 for r ≥ 5. We will prove that [X4, Xr] = 0 holds for
r ≥ 5. Assume that this is not true. Then we have without loss of generality
[X4, X5] = aY + bZ 6= 0. If b 6= 0, then we replace X3 by X ′

3 := X3 + X5 . The
basis X1, X2, X

′
3, X4, . . . , Xl, Y, Z satisfies (12), (13), (14) with λ = 0, [X ′

3, X4] =
(1− a)Y − bZ , and [X ′

3, Xr] = 0 for r ≥ 5. Thus we are in the above case where
d 6= 0. This implies [X4, X5] = 0, a contradiction. If b = 0, then we may assume
a = 1. If we replace our l̄ by span{X1, X2, X3+X5} , then this new l̄ , L1 = X4 and
L2 = X5 satisfy the assumptions of Lemma 3.4, but [X4, X5] 6= 0, a contradiction.
Therefore we have [X4, Xr] = 0 for r ≥ 5, thus l ∼= g6,4 ⊕ Rk.

Case II.1.3: dim[X3, W ] = 2

Claim. A Lie algebra l that satisfies the conditions of case II.1.3 is not admissible.

Proof. Obviously we may assume that X1, . . . , Xl, Y, Z is a basis of l which
satisfies (12), (13), (14) with λ = 0, [X3, X4] = Y , [X3, X5] = Z , and [X3, Xr] = 0
for r > 5. Moreover, we have [X4, X5] = yY + zZ for suitable y, z ∈ R . Let
[α, γ] ∈ H2

Q(l, a) be admissible and suppose that α(l, l) ⊂ al . Then we get

α(Y,X2) = α(Y, X3) = α(Z,X2) = 0, (15)

α(Z,X5) + α(Z,X1) = 0, α(Z,X4) + α(Y,X1) = 0, (16)

α(X1, yY + zZ) = 0, (17)

α(Y,X5) + α(yY + zZ, X3)− α(Z,X4) = 0 (18)
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using dα = 0 on span{X1, . . . , X5} . Moreover, by Lemma 3.2 (ii) we have
α(Y,Xj) = 0 for j ≥ 4. Together with (15) this yields α(Y,Xj) = 0 for j ≥ 2.
Lemma 3.2 (iv) gives

〈α(Y, X1), α(Z,Xj)〉 = 〈α(Y,Xj), α(Z,X1)〉 = 0

for j ≥ 2. Together with (16) this implies α(Y, X1) ⊥ α(l′, l). Now we use that
the admissibility condition (B1) implies that α(l, l′) is non-degenerate. Hence
α(Y, X1) = 0. Consequently, α(Y, l) = 0. Now we get α(Z,X4) = 0 from (16).
Assume that z 6= 0. Then (17) would give α(Z,X1) = 0. Thus α(Z,X5) = 0 by
(16). Finally, (18) would yield α(Z,X3) = 0. Since, moreover, α(Z,Xk) = 0 for
k ≥ 6 by Lemma 3.2 (ii) we would obtain also α(Z, l) = 0. From 2dγ(l′, l, l, l) =
〈α∧α〉(l′, l, l, l) = 0 one now computes γ(Y, Z, l) = 0. This together with α(l′, l) =
0 gives a contradiction to admissibility. Hence z = 0 and [X4, X5] = yY . However,
now we can apply Lemma 3.4 to l̄ := span{X3, X4 + yX2, X5} , L1 = X1 + X5 ,
L2 = X2 and we obtain a contradiction to [X1 + X5, X2] = Y 6= 0.

Case II.2: λ = 1

Claim. An admissible Lie algebra l which satisfies the conditions of case II.2
and which does not have a basis satisfying already the conditions of case II.1 is
isomorphic to g6,5 ⊕ Rk .

Now X1, . . . , Xl, Y, Z is a basis of l that satisfies (12), (13), and (14) with λ = 1.

Lemma 3.5. If [α, γ] ∈ H2
Q(l, a)

]
and α(l, l) ⊂ al , then α([X3, W

′], ·) = 0.

Proof. By Lemma 3.3 (i) it suffices to prove α([X3, Xj], Xi) = 0 for all j ≥ 5
and i = 1, 2, 3. For i = 2 this follows obviously from the cocycle condition for α .

Let us consider i = 3. Using [X1, X2] = Y , the cocycle condition for α and
Lemma 3.2 (iv) we see that

〈α([X3, Xj], X3), α(Y, L)〉 = α([X3, Xj], L), α(Y, X3)〉
= 〈α([X3, Xj], L), α([X1, X2], X3)〉
= 〈α([X3, Xj], L), α([X1, X3], X2)〉
= 〈α([X3, Xj], X2), α([X1, X3], L)〉 = 0,

where the last equality follows from the above considerations for i = 2. Similarly
(using now [X2, X4] = Z ) we obtain

〈α([X3, Xj], X3), α(Z,L)〉 = 0.

Since (B1) implies that α(l, l′) is non-degenerate we conclude α([X3, Xj], X3) = 0.

Finally we consider the case i = 1. Note first that dα = 0 implies

α([X3, Xj], X1) = −α(Z,Xj) . (19)

Using now Lemma 3.2, (ii) and (iv) we obtain

〈α([X3, Xj], X1), α(Y, L)〉 = −〈α(Z,Xj), α(Y, L)〉 = −〈α(Z,L), α(Y,Xj)〉 = 0
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for all L ∈ l . Consequently, α([X3, Xj], X1) ⊥ α(Y, l). Now we will prove that
also α([X3, Xj], X1) ⊥ α(Z, l) and thus α([X3, Xj], X1) ⊥ α(l′, l) holds. By (B1)
this will give α([X3, Xj], X1) = 0. We observe that

〈α([X3, Xj], X1), α(Z,L)〉 = −〈α(Z,Xj), α(Z,L)〉 = −〈α(Z,Xj), α([X2, X4], L)〉
= −〈α(Z,Xj), α([X2, L], X4)〉 − 〈α(Z,Xj), α([L, X4], X2)〉, (20)

where we used (19) and dα = 0. By Equation (19) and Lemma 3.2 (iv) we have

−〈α(Z,Xj), α([L, X4], X2)〉 = 〈α([X3, Xj], X1), α([L, X4], X2)〉
= 〈α([X3, Xj], X2), α([L, X4], X1)〉 = 0

since α([X3, Xj], X2) = 0. Hence the last term in (20) vanishes and we get

〈α([X3, Xj], X1), α(Z,L)〉 = −〈α(Z,Xj), α([X2, L], X4)〉 = c〈α(Z,Xj), α(Z,X4)〉

for some real number c ∈ R since [X2, L] ∈ span{Y, Z} and since

〈α(Z,Xj), α(Y,X4)〉 = 〈α(Z,X4), α(Y,Xj)〉 = 0

by Lemma 3.2 (ii) and (iv). Furthermore, we have

〈α(Z,Xj), α(Z,X4)〉 = 〈α(Z,Xj), α([X1, X3], X4)〉 = −〈α(Z,Xj), α([X3, X4], X1)〉 .

Since we already know that α(Z,Xj) ⊥ α(Y,X1) the last equation implies that in
order to prove α([X3, Xj], X1) ⊥ α(Z,L) it suffices to show α(Z,Xj) ⊥ α(Z,X1).
However, this follows from Lemma 3.2, (ii) and (iv):

〈α(Z,Xj), α(Z,X1)〉 = 〈α(Z,Xj), α([X2, X4], X1)〉
= −〈α(Z,Xj), α([X1, X2], X4)〉 = −〈α(Z,Xj), α(Y,X4)〉
= −〈α(Y,Xj), α(Z,X4)〉 = 0 .

Lemma 3.6. If l is admissible, then [X3, W
′] = 0 and [X4, W

′] = 0.

Proof. Recall that X1, . . . , Xl, Y, Z is a basis of l which satisfies (12), (13),
(14) with λ = 1. Assume [X3, W

′] 6= 0. Then we may assume that

[X3, X5] = uY + vZ 6= 0 . (21)

holds. Take [α, γ] ∈ H2
Q(l, a)

]
such that α(l, l) ⊂ al . From Lemma 3.5 we get

α(uY + vZ, ·) = 0 , (22)

which implies dγ(uY + vZ, X1, X2, Xk) = 0 for all k and therefore

γ(Y, uY + vZ, X3)− γ(Z, uY + vZ, X2) = 0 (23)

γ(Y, uY + vZ, X4) + γ(Z, uY + vZ, X1) = 0 (24)

γ(Y, uY + vZ,Xk) = 0, k ≥ 5 . (25)
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Furthermore, dα(X1, X2, X3) = dα(X1, X2, X4) = 0 yields

α(Y, X3) = α(Z,X2), α(Y,X4) + α(Z,X1) = 0 . (26)

Let us first consider the case v 6= 0 in (21). Then we may assume u = 0 and
v = 1 in (21), i.e. [X3, X5] = Z . Now (22) says α(Z, ·) = 0. Hence α(Y, Xj) = 0
for j ≥ 3 by Lemma 3.2 (ii) and (26). Equations (23), (24), and (25) imply
γ(Y, Z,Xj) = 0 for j ≥ 3. Using all this we obtain

γ(Y, Z,Xi) = dγ(Y,Xi, X3, X5) = 〈α(Y, Xi), α(X3, X5)〉, i = 1, 2.

In particular, L0 = Z , A0 = −α(X3, X5), and Z0 = 0 satisfy the conditions (i)
and (ii) of (A1). Hence Z = 0 by admissibility, which is a contradiction.

If v = 0, then we may assume u = 1, i.e. [X3, X5] = Y . Then (22)
implies α(Y, ·) = 0 and (26) now gives α(Z,X1) = α(Z,X2) = 0. Hence
α(X1, l

′) = α(X2, l
′) = 0 and therefore 0 = dα(X2, X4, X3) = dα(X1, X3, Xk)

implies α(Z,Xk) = 0 for k ≥ 3. This implies α(l′, l) = 0. From (23) and (24) we
obtain γ(Y, Z,Xj) = 0 for j = 1, 2. Using this we get

2γ(Y, Z,Xj) = 2dγ(Z,X1, X2, Xj) = 〈α ∧ α〉(Z,X1, X2, Xj) = 0

for all j ≥ 3. Hence γ(l′, l′, l) = 0. Again this contradicts (A1).

Let us now show [X4, W
′] = 0. Note that

X ′
1 := X2, X ′

2 := X1, X ′
3 := X4, X ′

4 := X3, X ′
j := Xj, j ≥ 5, Y ′ := −Y, Z ′ := Z

is also a basis satisfying (12), (13), (14) with λ = 1. Hence [X4, Xj] = [X ′
3, X

′
j] = 0

for j ≥ 5 by the first part of the lemma.

Proof of the Claim. We know from Equations (12), (13), (14) and Lemma 3.6
that l is isomorphic to l1 ⊕ Rk , where

l1 = {[X1, X2] = Y, [X1, X3] = Z, [X2, X4] = Z, [X3, X4] = aY + bZ}

for suitable a, b ∈ R . It is not hard to verify that either l1 is isomorphic to g6,5

or it already satisfies the conditions of case II.1.

This finishes the proof of Theorem 3.1.

4. Nilpotent metric Lie algebras of dimension ≤ 10

In this section we will determine the isomorphism classes of indecomposable nilpo-
tent metric Lie algebras of dimension ≤ 10. Recall that a metric Lie algebra
is called indecomposable if it is not the direct sum of two non-trivial metric Lie
algebras.

Let us first consider the following construction. We start with a nilpotent
Lie algebra l , a pseudo-Euclidean vector space (a, 〈· , ·〉a) which we consider as a
trivial orthogonal l-module and a cocycle (α, γ) ∈ Z2

Q(l, a). Let d be the vector
space l∗ ⊕ a⊕ l . We define a Lie bracket [· , ·] on d by [l∗ ⊕ a, l∗ ⊕ a] = 0 and

[L, Z] = ad∗(L)(Z)

[A, L] = 〈A, α(L, ·)〉
[L1, L2] = γ(L1, L2, ·) + α(L1, L2) + [L1L2]l
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for all L, L1, L2 ∈ l , A ∈ a , and Z ∈ l∗ and an inner product 〈· , ·〉 on d by

〈Z1 + A1 + L1, Z2 + A2 + L2〉 := 〈A1, A2〉a + Z1(L2) + Z2(L1)

for Z1, Z2 ∈ l∗ , A1, A2 ∈ a and L1, L2 ∈ l . Then it is not hard to prove that
dα,γ(l, a) := (d, [· , ·], 〈· , ·〉) is a nilpotent metric Lie algebra (see also [12] for the
case of a general metric Lie algebra).

Let li , i = 1, 2 be Lie algebras and let ai , i = 1, 2 be pseudo-Euclidean
vector spaces which we consider as trivial orthogonal li -modules. Consider a pair
(S, U) consisting of a homomorphism S : l1 → l2 and an isometry U : a2 → a1 .
Then (S, U)∗ : Cp(l2, a2) → Cp(l1, a1) induces a map (S, U)∗ : Hp

Q(l2, a2) →
Hp

Q(l1, a1).

In particular, G(l,a) := Aut(l)×O(a, 〈· , ·〉a) acts on H2
Q(l, a).

Definition 4.1. Let l be a nilpotent Lie algebra and let (a, 〈· , ·〉a) be a pseudo-
Euclidean vector space considered as a trivial l-module. A cohomology class
ϕ ∈ H2

Q(l, a) is called decomposable if there are decompositions a = a1 ⊕ a2

and l = l1 ⊕ l2 , at least one of them being non-trivial and cohomology classes
ϕi ∈ H2

Q(li, ai), i = 1, 2 such that ϕ = (q1, j1)
∗ϕ1+(q2, j2)

∗ϕ2 , where qi : l → li are
the projections and ji : ai → a are the inclusions. Here we consider ai as trivial li -
modules. We denote the subset of indecomposable admissible cohomology classes
in H2

Q(l, a) by H2
Q(l, a)

0
.

One can check easily that H2
Q(l, a)

0
is invariant with respect to the action of G(l,a)

on H2
Q(l, a). The classification scheme (1) now gives

Proposition 4.2. The set of isomorphism classes of indecomposable nilpotent
metric Lie algebras of dimension at most 10 is in bijective correspondence with⋃

l∈L

⋃
a∈Al

H2
Q(l, a)

0
/G(l,a),

where L is the set of isomorphism classes of nilpotent Lie algebras of dimension at
most 5 and for a fixed l ∈ L the set Al consists of all isometry classes of pseudo-
Euclidean vector spaces of dimension at most 10 − 2 dim l which we consider as
equivalence classes of trivial orthogonal l-modules.

As already explained it is not necessary to determine the whole set L . We
are interested only in those l ∈ L for which H2

Q(l, a)
0
6= Ø for some a ∈ Al . If

dim l ≤ 4 this is only possible for l ∈ {g4,1, h(1) ⊕ R, h(1), Rk, k = 1, . . . , 4} by
Theorem 3.1 and [12], Prop. 5.2. Furthermore, if l is nilpotent and if dim l = 5 and
a = 0, then H2

Q(l, a)
0
6= Ø implies l = R5 or l = g5,2 . Indeed, let [0, γ] ∈ H2

Q(l, a)
0

be such that γ 6= 0. Then we know from (Ak) that dim lk+1 6= 1 holds for all
k ≥ 0. Since l is nilpotent the codimension of l2 in l cannot be one. Hence we
have only the following possibilities:

(i) dim l2 = 0,

(ii) dim l2 = 2, dim l3 = 0,

(iii) dim l2 = 3, dim l3 = 0, or

(iv) dim l2 = 3, dim l3 = 2, dim l4 = 0.
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If (i) holds, then l ∼= R5 . If (ii) holds, then l ∼= g5,2 by Proposition 3.1. The condi-
tions in (iii) cannot be satisfied for a 5-dimensional Lie algebra l . In case (iv) the
cocycle condition dγ = 0 implies γ(l3, l3, l)=0, which contradicts Condition (A2).

In the following we will often abbreviate G(l,a) to G . Furthermore, we will
use the following conventions. An orthonormal basis of a pseudo-Euclidean vector
space (a, 〈· , ·〉a) is a basis A1, . . . , Ap+q consisting of pairwise orthogonal vectors
satisfying 〈Ai, Ai〉a = −1 for 1 ≤ i ≤ p and 〈Ai, Ai〉a = 1 for p + 1 ≤ i ≤ p + q .
The pair (p, q) is called signature of a . We denote the standard pseudo-Euclidean
vector space of signature (p, q) by Rp,q . A Witt basis of R1,1 is a basis A1, A2 ,
where A1, A2 are isotropic and 〈A1, A2〉 = 1.

Proposition 4.3. 1. If l = R5 and a = 0, then H2
Q(l, a)

0
/G consists of

one element. This element is represented by [0, γ0] ∈ H2
Q(l, a)

0
, where

γ0 = (σ1 ∧ σ2 + σ3 ∧ σ4) ∧ σ5 for a fixed basis σ1, . . . , σ5 of l∗ .

2. If l = g5,2 = {[X1, X2] = Y, [X1, X3] = Z} and a = 0, then H2
Q(l, a)

0
/G

consists of two elements. These elements are represented by [0, γ1], [0, γ2] ∈
H2

Q(l, a)
0
, where γ1 = σ1 ∧ σY ∧ σZ and γ2 = σ1 ∧ σY ∧ σZ + σ2 ∧ σ3 ∧ σZ

for the basis σ1, σ2, σ3, σY , σZ of l∗ which is dual to X1, X2, X3, Y, Z .

Proof. The statement for l = R5 is easy to prove. Take l = g5,2 . Let us first
describe the automorphism group of g5,2 . For c , A ∈ GL(2, R), y = (y1, y2),
y1, y2 ∈ R2 , x ∈ gl(2, R) we define a linear map S(c, A, x, y) : g5,2 → g5,2 by

S(c, A, x, y) =

 c 0 0
y1 A 0
y2 x cA


with respect to the basis X1, X2, X3, Y, Z of g5,2 . Then one proves

Aut(g5,2) = {S(c, A, x, y) | c ∈ R \ 0, A ∈ GL(2, R), y1, y2 ∈ R2, x ∈ gl(2, R)} .

Obviously, we have H2
Q(l, 0) = H3(g5,2). Observe that q := span{X2, X3, Y, Z} ⊂

g5,2 is an abelian ideal. Using the Hochschild-Serre spectral sequence we see that
H3(g5,2) is determined by the exact sequence

0 −→ H1(R ·X1, C
2(q)) −→ H3(g5,2) −→ H0(R ·X1, C

3(q)) −→ 0.

We have

H1(R ·X1, C
2(q)) = C1(R ·X1, C

2(q))/B1(R ·X1, C
2(q)),

where

B1(R·X1, C
2(q)) =

σ ∈ C1(R·X1, C
2(q))

∣∣∣∣∣∣
σ(X1)(X2, Z) + σ(X1)(X3, Y ) = 0
σ(X1)(X2, Y ) = σ(X1)(X3, Z) = 0
σ(X1)(Y, Z) = 0

 ,

and

H0(R ·X1, C
3(q)) = {σ ∈ C3(q) | σ(X2, Y, Z) = σ(X3, Y, Z) = 0} . (27)



Kath 55

Observe that H2
Q(l, 0)0 = H2

Q(l, 0)] since l is not the direct sum of two non-trivial
Lie algebras. In particular, Condition (A1) and Equation (27) imply

H2
Q(l, 0)0 = {[γ] ∈ H3(g5,2) | γ(X1, Y, Z) 6= 0}.

Using the description of H1(R ·X1, C
2(q)) given above we see that

{S(c, Id, x, 0) | c ∈ R \ 0, x ∈ gl(2, R)} ⊂ Aut(g5,2)

acts transitively on {[σ] ∈ H1(R · X1, C
2(q)) | σ(X1)(Y, Z) 6= 0} . Furthermore,

using the description of H0(R ·X1, C
3(q)) we see that the action of

{S(1, A, 0, 0) | det A = 1} ⊂ Aut(g5,2)

on H0(R ·X1, C
3(q)) has two orbits represented by σ1 = 0 and σ2 = σ2∧σ3∧σZ .

Moreover, this group leaves σ1 ∧ σY ∧ σZ invariant.

It is easy to check that the orbits of [0, γ1] and [0, γ2] are different.

Proposition 4.4. Take l = g4,1 = {[X1, Z] = Y, [X1, X2] = Z} and let a be a
trivial l-module. If a = 0 or dim a ≥ 3, then H2

Q(l, a)
0

= Ø. If dim a = 1, then

H2
Q(l, a)

0
/G consists of four elements. They are represented by

[α, γ] = [σ1 ∧ σY ⊗ A, rσ2 ∧ σY ∧ σZ + sσ1 ∧ σY ∧ σZ ],

where (r, s) ∈ {(0, 0), (1, 0), (0, 1), (0,−1)} and A is a fixed unit vector in a.

If a ∈ {R2, R2,0}, then H2
Q(l, a)

0
/G consists of two one-parameter families.

They are represented by

[α, γ] = [σ1 ∧ σY ⊗ A1 + σ2 ∧ σZ ⊗ A2, sσ
1 ∧ σY ∧ σZ ], s ∈ R (28)

and

[α, γ] = [σ1 ∧ σY ⊗ A1 + σ2 ∧ σZ ⊗ A2, rσ
2 ∧ σY ∧ σZ ], r ∈ R+, (29)

where A1, A2 is a fixed orthonormal basis in a.

If a = R1,1 , then H2
Q(l, a)

0
/G consists of four one-parameter families. They

are represented by (28) and (29), too, but now either A1, A2 or A2, A1 is an
orthonormal basis.

Proof. Let us first describe the automorphism group of l . For a, b, c ∈ R and
x = (x1, . . . , x4) ∈ R4 we define a linear map S(a, b, c, x) : l → l by

S(a, b, c, x) =


a 0 0 0
x1 b 0 0
x2 c ab 0
x3 x4 ac a2b


with respect to the basis X1, X2, Z, Y of l . It is not hard to check that

Aut(g4,1) = {S(a, b, c, x) | a, b ∈ R \ 0, c ∈ R, x ∈ R4} .
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Obviously q = span{X2, Y, Z} is an abelian ideal of g4,1 . The cohomology group
H2(g4,1, a) is determined by the exact sequence

0 −→ H1(R ·X1, H
1(q, a)) −→ H2(g4,1, a) −→ H0(R ·X1, H

2(q, a)) −→ 0 .

We have

H1(R ·X1, H
1(q, a)) = C1(R ·X1, C

1(q, a))/B1(R ·X1, C
1(q, a)),

where

B1(R ·X1, C
1(q, a)) = {σ ∈ C1(R ·X1, C

1(q, a)) | σ(X1)(Y ) = 0} ,

and

H0(R ·X1, H
2(q, a)) = C2(q, a)X1 = {σ ∈ C2(q, a) | σ(X2, Y ) = σ(Y, Z) = 0} .

In particular, (A2) is equivalent to α(Y,X1) 6= 0. If α(Y,X1) 6= 0, then also (A0)
and (A1) are satisfied. Since dγ = 0 for all γ ∈ C3(l) the equation 2dγ = 〈α∧α〉
holds if and only if α(Y,X1) ⊥ α(X2, Z). Hence we obtain

H2
Q(l, a)

0
=

{
[α, γ] ∈ H2

Q(l, a)
∣∣∣ α = (σ1 ∧ σY )⊗ A1 + (σ2 ∧ σZ)⊗ A2,

a = span{A1, A2}, A1 ⊥ A2, A1 6= 0

}
.

Because of B3(l) = {γ ∈ C3(l) | γ(X1, Y, Z) = γ(X2, Y, Z) = 0} we may assume

γ = rσ2 ∧ σY ∧ σZ + sσ1 ∧ σY ∧ σZ .

Suppose that dim a = 1. Take [α, γ] ∈ H2
Q(l, a)

0
, α = (σ1 ∧ σY ) ⊗ A1 , u :=

〈A1, A1〉 6= 0. Applying Aut(g4,1) to [α, γ] we see that we may assume u = ±1
and (r, s) ∈ {(0, 0), (1, 0), (0, 1), (0,−1)} without changing the G-orbit. The four
orbits which correspond to different values of (r, s) are pairwise different. Similarly
we determine the G-orbits in H2

Q(l, a)0 for dim a = 2.

Now let l be one of the Lie algebras h(1)⊕R = {[X1, X2] = X3}⊕R ·X4 or
R4 = span{X1, . . . , X4} . Let σ1, . . . , σ4 be a basis of l∗ that is dual to X1, . . . , X4 .
Let A1, A2, . . . be a basis of a vector space a . We define the following 2-forms

α1 = (σ1 ∧ σ3 + σ2 ∧ σ4)⊗ A1 + (σ2 ∧ σ3 + σ1 ∧ σ4)⊗ A2

α2 = (σ1 ∧ σ3 − σ2 ∧ σ4)⊗ A1 + (σ2 ∧ σ3 + σ1 ∧ σ4)⊗ A2

α3 = (σ1 ∧ σ3)⊗ A1 + (σ2 ∧ σ3 + σ1 ∧ σ4)⊗ A2

α4 = (σ1 ∧ σ3)⊗ A1 + (σ2 ∧ σ3)⊗ A2

α5 = (σ1 ∧ σ3)⊗ A1 + (σ1 ∧ σ4)⊗ A2, α′
5 = (σ1 ∧ σ4)⊗ A1 + (σ1 ∧ σ3)⊗ A2

α6 = (σ1 ∧ σ3)⊗ A1 + (σ2 ∧ σ4)⊗ A2, α′
6 = (σ2 ∧ σ4)⊗ A1 + (σ1 ∧ σ3)⊗ A2

α7 = (σ1 ∧ σ3)⊗ A1 .

Moreover, we define the 3-form γ0 on l by γ0 = σ2 ∧ σ3 ∧ σ4 .
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Proposition 4.5. Take l = h(1) ⊕ R = {[X1, X2] = X3} ⊕ R · X4 . Let a

be a trivial orthogonal l-module. If a = R2 or a = R2,0 , then the elements
in H2

Q(l, a)
0
/G are represented by [α1, 0], [α5, 0], [α5, γ0], [α6, 0], [α6, γ0], where

A1, A2 is a fixed orthonormal basis of a.

If a = R1,1 , then H2
Q(l, a)

0
/G has eleven elements, three of them are

represented by [α1, 0], [α2, 0], [α3, 0], where A1, A2 is a fixed Witt basis of a,
eight further elements are represented by [α5, 0], [α5, γ0], [α6, 0], [α6, γ0], [α′

5, 0],
[α′

5, γ0], [α′
6, 0], [α′

6, γ0], where A1, A2 is a fixed orthonormal basis of a.

If a = R1 or a = R1,0 , then there is only one element in H2
Q(l, a)

0
/G. It is

represented by [α7, γ0], where A1 is a fixed unit vector in a.

If a = 0, then H2
Q(l, a)

0
= Ø.

Proof. For A, X ∈ gl(2, R) and u = (u1, u2, u3) ∈ R3 we define

S(A, X, u) =

(
A 0
X U

)
∈ gl(4, R), where U =

(
u1 u2

0 u3

)
∈ gl(2, R).

Then the automorphism group of l = h(1)⊕ R equals

Aut(l) =
{
S(A, X, u) | u ∈ R3, X ∈ gl(2, R), A ∈ GL(2, R), det A = u1, u3 6= 0

}
,

where we consider all automorphisms with respect to the basis X1, . . . , X4 of l .
Using the Künneth formula and the description of H2(h(1), a) in [12], we see that

Zl := {α ∈ C2(l, a) | α(X1, X2) = α(X3, X4) = 0} −→ H2(l, a)

α 7−→ [α]

is a bijection. Now take [α, γ] ∈ H2
Q(l, a)

0
, α ∈ Zl . Since, obviously, dγ = 0 we

have 〈α ∧ α〉 = 0. Condition (A1) gives α(X3, l) 6= 0 and Condition (B1) says
that α(X3, l) is non-degenerate. By indecomposability we have α(l, l) = a . Hence
α is an element of the G-invariant subset C ⊂ Zl defined by

C := {α ∈ Zl | 〈α ∧ α〉 = 0, α(l, l) = a, 0 6= α(X3, l) ⊂ a is non-degenerate}.

A cocycle α ∈ Zl satisfies 〈α ∧ α〉 = 0 if and only if

〈α(X1, X3), α(X2, X4)〉 = 〈α(X2, X3), α(X1, X4)〉. (30)

Let us determine the G-orbits in C in the case that dim a ≤ 2. Take
α ∈ C . Then we have dim α(X3, l) = 1 or dim α(X3, l) = 2.

Let us first consider the case dim α(X3, l) = 1. Replacing α by an element
in the G-orbit of α we may assume α(X1, X3) = A1 and α(X2, X3) = 0, where
〈A1, A1〉 = ±1. From (30) we obtain 〈α(X1, X3), α(X2, X4)〉 = 0. Hence either
α(X2, X4) = 0 or α(X2, X4) =: A2 6= 0 and A1 ⊥ A2 . In the latter case A2 cannot
be isotropic since a is at most two-dimensional. Hence, replacing α by an element
in the same G-orbit we may assume that 〈A2, A2〉 = ±1 and α(X1, X4) = 0,
hence α is in the same G-orbit as α6 or as α′

6 for an orthonormal basis A1, A2 .
In the first case, where α(X2, X4) = 0 we may assume that α(X1, X4) = 0 or
α(X1, X4) = A2 6= 0 and A1 ⊥ A2 , 〈A2, A2〉 = ±1, hence α is in the same orbit as
α5 or α′

5 for an orthonormal basis A1, A2 or as α7 for a unit vector A1 . Obviously,
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the orbit of α7 contains neither α5 , α′
5 , α6 , nor α′

6 . Also the orbits of α5 and
α6 are different. Indeed, α5(X2, l) = 0 and α6(L, l) 6= 0 for all L ∈ l, L 6= 0.
Analogously, the orbits of α′

5 and α′
6 are different. Moreover, αi and α′

i , i = 5, 6,
are not on the same orbit, since X3 plays a distinguished role in l .

Now we consider the case dim α(X3, l) = 2. Then α(X1, X3) =: A1 and
α(X2, X3) =: A2 are linearly independent. First we observe that we may assume
that A1, A2 is an orthonormal basis of a if a = R2 or a = R2,0 and that A1, A2

is a Witt basis if a = R1,1 (replacing α by an element in the same G-orbit). By
(30) we have

〈A1, α(X2, X4)〉 = 〈A2, α(X1, X4)〉. (31)

Replacing X4 by a suitable linear combination of X4 and X3 we may assume that
α(X2, X4) is a multiple of A1 .

Assume that a = R2 or a = R2,0 . If α(X2, X4) = 0, then (31) implies that
α(X1, X4) is a multiple of A1 . Hence we may assume that either α(X1, X4) = 0
or that α(X1, X4) = A1 . Consequently, α is in the same orbit as α4 or as the
2-form

(σ1 ∧ σ3 + σ1 ∧ σ4)⊗ A1 + (σ2 ∧ σ3)⊗ A2,

which is in the same orbit as α1 . If α(X2, X4) = rA1 , r 6= 0, then rescaling X4

we may assume that α(X2, X4) = A1 . Now (31) yields α(X1, X4) = A2 + sA1 .
We will show that we may assume s = 0. For s ∈ R we choose t ∈ R such that
s = 2 tan 2t and we define

a = sin t, b = cos t, u2 = sin 2t, u3 = − cos 2t

and

A =

(
a −b
b a

)
, u = (1, u2, u3) ∈ R3.

For this choice of A , and u we consider S = S(A, 0, u) ∈ Aut(l) and we define
X ′

i = SXi , i = 1, . . . , 4. Then we have

α(X ′
1, X

′
3) = aA1 + bA2 =: A′

1

α(X ′
2, X

′
3) = −bA1 + aA2 =: A′

2

α(X ′
1, X

′
4) = (u2a + au3s + bu3)A1 + (u2b + au3)A2 = A′

2

α(X ′
2, X

′
4) = (−u2b− sbu3 + au3)A1 + (u2a− bu3)A2 = A′

1,

where A′
1, A

′
2 is again an orthonormal basis. Hence, α is in the same orbit as α1 .

The 2-forms α1 and α4 are on different orbits, since α4(X4, l) = 0 and α1(L, l) 6= 0
for all L ∈ l, L 6= 0.

Take now a = R1,1 . Recall that we may assume α(X1, X3) = A1 and
α(X2, X3) = A2 such that A1, A2 is a Witt basis and that α(X2, X4) = rA1 ,
r ∈ {0, 1} . From (31) we get α(X1, X4) = sA2 for a real number s . If r = s = 0,
then α is in the same orbit as α4 . If r = 0, s 6= 0 or r = 1, s = 0, then α is
in the same orbit as α3 . If r = 1, s 6= 0, then α is in the same orbit as α1 or
α2 . The 2-forms α1, . . . , α4 are on different orbits, since the elements of its orbits
differ in the properties of their projections to the isotropic lines in a = R1,1 .

We can summarize this as follows. If a = R2 or a = R2,0 , then there are four
G-orbits in C represented by α1, α4, α5, α6 , where A1, A2 is a fixed orthonormal
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basis of a . If a = R1,1 , then there are eight G-orbits in C , four of them are
represented by α1, α2, α3, α4 , where A1, A2 is a fixed Witt basis of a , four further
orbits are represented by α5, α

′
5, α6, α

′
6 , where now A1, A2 is a fixed orthonormal

basis of a . If a = R1 or a = R1,0 , then α7 ∈ C and G acts transitively on C .

Since Z1(l, a) = {τ ∈ C1(l, a) | dτ = 0} = {τ ∈ C1(l, a) | τ(X3) = 0} and
B3(l) = {dσ | σ ∈ C2(l)} = R ·σ1 ∧σ2 ∧σ4 we have B3(l) + 〈αi ∧Z1(l, a)〉 = C3(l)
for i = 1, . . . , 4. Hence [αi, γ] = [αi, 0] ∈ H2

Q(l, a) for i = 1, . . . , 4 and arbitrary
γ ∈ C3(l). Note that [α4, 0] is decomposable. If α ∈ {α5, α

′
5, α6, α

′
6, α7} , then γ0

spans a complement of B3(l) + 〈α ∧Z1(l, a)〉 in C3(l). Hence, for all these α and
for all γ ∈ C3(l) there exists a real number c such that [α, γ] = [α, cγ0] ∈ H2

Q(l, a).
Moreover, [α, cγ0] is in the same G-orbit as [α, 0] or [α, γ0] .

It remains to check admissibility and indecomposability. All cohomology
classes [α, γ] ∈ H2

Q(l, a) with α ∈ C satisfy (B0), (A1), and (B1). Moreover, it
is not hard to see that all cohomology classes listed in the proposition satisfy also
(A0) and are indecomposable.

A similar but easier computation gives the following result for the remaining
Lie algebra l = R4 .

Proposition 4.6. Let l be the abelian Lie algebra R4 = span{X1, . . . , X4} and
let a be a trivial orthogonal l-module.

If a = R2 or a = R2,0 , then the elements in H2
Q(l, a)

0
/G are represented

by [α1, 0] and [α4, σ
1 ∧ σ2 ∧ σ4], where A1, A2 is a fixed orthonormal basis of a.

If a = R1,1 , then the elements in H2
Q(l, a)

0
/G are represented by [α1, 0],

[α2, 0], [α3, 0], [α4, σ
1 ∧ σ2 ∧ σ4] where A1, A2 is a fixed Witt basis of a.

If a = R1 or a = R1,0 , then H2
Q(l, a)

0
/G contains exactly one element.

This is represented by [α7, γ0], where A1 is a fixed unit vector in a.

If a = 0, then H2
Q(l, a)

0
= Ø.

Combining the description of the moduli space given in Prop. 4.2 with
Props. 4.3 to 4.6 and the computations of H2

Q(l, a)
0

for dim l ≤ 3 in [11] and
[12] we obtain the following result. We use the 2-forms α1, . . . , α7, α

′
5, α

′
6 and the

3-form γ0 introduced before Prop. 4.5.

Theorem 4.7. If (g, 〈· , ·〉) is an indecomposable non-abelian nilpotent metric
Lie algebra of dimension at most 10, then it is isomorphic to dα,γ(l, a) for exactly
one of the data in the following list:

1. l = R5

a = 0, (α, γ) = (0, σ1 ∧ σ2 + σ3 ∧ σ4) ∧ σ5);

2. l = g5,2 = {[X1, X2] = Y, [X1, X3] = Z}

a = 0, α = 0, γ ∈ {σ1 ∧ σY ∧ σZ , σ1 ∧ σY ∧ σZ + σ2 ∧ σ3 ∧ σZ};

3. l = g4,1 = {[X1, Z] = Y, [X1, X2] = Z}

(a) a ∈ {R1, R1,0}, A ∈ a fixed unit vector,
α = σ1 ∧ σY ⊗ A,
γ ∈ {0, σ2 ∧ σY ∧ σZ , σ1 ∧ σY ∧ σZ , −σ1 ∧ σY ∧ σZ};



60 Kath

(b) a ∈ {R2, R2,0} with fixed orthonormal basis A1, A2 ,
α = σ1 ∧ σY ⊗ A1 + σ2 ∧ σZ ⊗ A2 ,
γ ∈ {sσ1 ∧ σY ∧ σZ | s ∈ R} ∪ {rσ2 ∧ σY ∧ σZ | r ∈ R+};

(c) a = R1,1 with fixed orthonormal basis A1, A2 ,
α ∈ {σ1 ∧ σY ⊗ A1 + σ2 ∧ σZ ⊗ A2, σ2 ∧ σZ ⊗ A1 + σ1 ∧ σY ⊗ A2},
γ ∈ {sσ1 ∧ σY ∧ σZ | s ∈ R} ∪ {rσ2 ∧ σY ∧ σZ | r ∈ R+};

4. l = h(1)⊕ R1

(a) a ∈ {R2, R2,0} with fixed orthonormal basis A1, A2

(α, γ) ∈ {(α1, 0), (α5, 0), (α5, γ0), (α6, 0), (α6, γ0)};
(b) a = R1,1 ,

(α, γ) ∈ {(α1, 0), (α2, 0), (α3, 0)}, where A1, A2 is a fixed Witt basis, or
(α, γ) ∈ {(α5, 0), (α5, γ0), (α6, 0), (α6, γ0), (α′

5, 0), (α′
5, γ0), (α′

6, 0), (α′
6, γ0)},

where A2, A1 is a fixed orthonormal basis of a;

(c) a ∈ {R1, R1,0},
(α, γ) = (α7, γ0), where A1 is a fixed unit vector in a;

5. l = R4

(a) a ∈ {R2, R2,0} with fixed orthonormal basis A1, A2 ,
(α, γ) ∈ {(α1, 0), (α4, σ

1 ∧ σ2 ∧ σ4)};
(b) a = R1,1 with fixed Witt basis A1, A2 ,

(α, γ) ∈ {(α1, 0), (α2, 0), (α3, 0), (α4, σ
1 ∧ σ2 ∧ σ4)};

(c) a ∈ {R1, R1,0},
(α, γ) = (α7, γ0), where A1 is a fixed unit vector in a;

6. l = h(1) = {[X1, X2] = Y }

(a) a ∈ {R1, R1,0},
(α, γ) = (σ1 ∧ σY ⊗ A, 0), where A is a fixed unit vector in a;

(b) a ∈ {R2, R2,0, R1,1} with fixed orthonormal basis A1, A2 ,
(α, γ) = (σ1 ∧ σY ⊗ A1 + σ2 ∧ σY ⊗ A2, 0);

7. l = R3

(a) a = 0, (α, γ) = (0, σ1 ∧ σ2 ∧ σ3);

(b) a ∈ {R2, R2,0, R1,1} with fixed orthonormal basis A1, A2 ,
(α, γ) = (σ1 ∧ σ2 ⊗ A1 + σ1 ∧ σ3 ⊗ A2, 0);

(c) a ∈ {R3, R2,1, R1,2, R3,0} with fixed orthonormal basis A1, A2, A3 ,
(α, γ) = (σ1 ∧ σ2 ⊗ A1 + σ1 ∧ σ3 ⊗ A2 + σ2 ∧ σ3 ⊗ A3, 0);

8. l = R2

a ∈ {R1, R1,0},
(α, γ) = (σ1 ∧ σ2 ⊗ A, 0), where A is a fixed unit vector in a.
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Ann. Sci. Ècole Norm. Sup. (4) 18 (1985), 553–561.
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