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Abstract. Let L(λ) be the irreducible highest weight sp(2n, C)-module
with a highest weight λ, such that L(λ) is an infinite dimensional module
with bounded multiplicities, and let F ($1) be the defining representation of
sp(2n, C). In this article, the tensor product L(λ)⊗ F ($1) is explicitly decom-
posed into irreducible summands. This decomposition may be used in order to
define some invariant first order differential operators for metaplectic structures.
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1. Introduction

Let L(λ) denote the irreducible highest weight module with a highest weight λ
and let us write F (λ) instead of L(λ), if λ is integral dominant with respect to
a choice of a Cartan subalgebra and of a set of positive roots. In this article,
we shall study a decomposition of the tensor product L(λ)⊗ F ($1) as a module
over complex symplectic Lie algebras, where λ is some nonintegral weight from
a suitable set, which will be denoted by A, and $1 is the highest weight of the
defining representation of the complex symplectic Lie algebra sp(2n,C).

This study was motivated by author’s interest in certain first order invari-
ant differential operators, which are symplectic analogues of orthogonal Dirac-type
operators. In general, invariant differential operators are acting between sections
of vector bundles associated to some principal fiber bundles via representations of
the principal group. The operators, we were interested in, are acting between sec-
tions of vector bundles associated to projective contact or symplectic geometries
via the so called higher symplectic spinor modules over complex symplectic Lie al-
gebras. Higher symplectic spinor modules represent symplectic analogues of spinor
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representations of orthogonal complex Lie algebras so(m,C), see Kostant [12].
Projective contact geometries belong to Cartan geometries defined by a contact
grading of the tangent bundle and a projective class of partial affine connections,
see Krýsl [13]. In physics, these geometries play a role of a phase-space of time
dependent Hamiltonian mechanics, while the symplectic geometries are models of
the time independent one. To classify invariant differential operators (on the in-
finitesimal level at least), one needs to decompose the mentioned tensor product
L(λ)⊗ F ($1), if the sections take their values in L(λ). (See, e.g., Slovák, Souček
[15].) One of the invariant differential operators serving as a motivation for our
paper appeared already in Kostant [12] and is known as the Kostant Dirac op-
erator. Analytical and geometrical aspects of the Kostant Dirac operator were
studied by many authors, see, e.g., Habermann [4], Klein [10] and Kadlčáková [8].
The last author is studying also the so called symplectic twistor and symplectic
Rarita-Schwinger operators, which are related to our decomposition as well. Let
us mention that for the basic symplectic spinor modules, a kind of globalization
is known. These globalizations are called Segal-Shale-Weil representations, see
Kashiwara, Vergne [9], where these globalized modules are introduced as repre-
sentations over the metaplectic group Mp(2n,R). Let us also mention that the
study of the corresponding first order differential operators has its application in
theoretical physics, namely in the 10 dimensional super string theory, see Green,
Hull [3], and in the theory of Dirac-Kähler fields, see, e.g., Reuter [14], where the
author of this article found his motivation for this study.

In [1], Britten, Hooper and Lemire and in [2], Britten and Hooper described
the decomposition of L(λi) ⊗ F (ν) for i = 0, 1, where ν is a dominant integral
weight, λ0 = −1

2
$n and λ1 = $n−1 − 3

2
$n, i.e., λi are the highest weights of the

so called basic symplectic spinor modules L(λi) (for notation, see bellow). Britten,
Hooper, Lemire in [1] and Britten, Hooper in [2] are giving a characterization of all
infinite dimensional modules with bounded multiplicities over complex symplectic
Lie algebras. The authors of these articles proved that the class of infinite dimen-
sional highest weight modules with bounded multiplicities equals the set of higher
symplectic spinor modules, i.e., the set {L(λ);λ ∈ A}. In this article, we study a
problem, which is in a sense complementary to that of Britten, Hooper and Lemire.
Namely, we describe the decomposition of the tensor product L(λ)⊗F ($1) of an
arbitrary infinite dimensional module with bounded multiplicities L(λ), λ ∈ A,
and the defining representation F ($1) of the complex symplectic Lie algebra.
Techniques used to decompose the mentioned tensor product are based on a result
on formal characters of tensor products of an irreducible highest weight module
and an irreducible finite dimensional module over simple complex Lie algebras,
described by Humphreys in [5]. The assumption under which his formula is valid
is the same as that one used by Kostant, see [11], for a more general situation.
The second ingredient we have used is the famous Kac-Wakimoto formula in Kac,
Wakimoto [7], which was published for complex simple Lie algebras in Jantzen [6]
earlier, but which is valid for slightly different set of weights.

In the second section of this article, some known results on formal characters
of irreducible highest weight modules (Theorem 2.1), decomposition of tensor
products (Theorems 2.2, 2.3) and formal character of a tensor product (Theorem
2.4) are presented. The second part contains also Lemma 2.7, in which Theorem
2.1 is adapted to the situation of our interest. The third part of this paper is
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devoted to the formulation of the decomposition of L(λ)⊗ F ($1) for λ ∈ A and
to its proof (Theorem 3.1).

2. Tensor products and higher symplectic modules

2.1. Tensor products decompositions.

Let g be a complex simple Lie algebra of rank n and let ( , ) denote the Killing
form of g. Suppose a Cartan subalgebra h together with a subset Φ+ of positive
roots of the set Φ of all roots are given. The set of roots determines its R-linear
span, denoted by h∗0. With help of the Killing form on g, we can introduce a
mapping 〈 , 〉 : h∗0 × (h∗0 − {0}) → R by the following equation

〈v, w〉 := 2
(v, w)

(w,w)
,

for v ∈ h∗0 and w ∈ h∗0 − {0}. The half-sum of all positive roots will be denoted
by δ, i.e., δ := 1

2

∑
α∈Φ+ α. Further, let us denote the Weyl group associated to

(g, h) by W . The determinant of an element σ ∈ W is denoted by ε(σ). If λ ∈ h∗

then the symbol Wλ is used for a subgroup of the Weyl group W generated by
reflections in planes perpendicular to such simple roots γ, for which 〈λ, γ〉 ∈ Z.
Further, let us denote the affine action of a Weyl group element by a dot, thus
σ.λ := σ(λ + δ) − δ is an affine action of an element σ ∈ W on λ ∈ h∗. For
λ, µ ∈ h∗, let us write λ ∼ µ, if there is an element σ ∈ W such that σ.λ = µ.
We will call such weights linked to each other. Let us denote the set of positive
coroots by R+ and the set {X ∈ R+;λ(X) ∈ Z} for some λ ∈ h∗ by Rλ

+. Further,
denote the basis of Rλ := Rλ

+ ∪ −Rλ
+ by Bλ(⊆ Rλ

+).

For a complex simple Lie algebra g, let L(λ) be the irreducible highest
weight module over g with a highest weight λ and M(λ) be the Verma module
with a highest weight λ. To stress that λ is integral and dominant for a choice of
(h,Φ+), i.e., the corresponding module L(λ) is finite dimensional, we will denote
L(λ) by F (λ) or simply by F, if the highest weight is not important or clear from
the context. Let Π(λ) be the set of all weights of the module L(λ) and n(ν) be
the multiplicity of weight ν ∈ Π(λ). For a weight λ ∈ h∗, symbol Lλ denotes the
weight space of weight λ of a highest weight module L. Further, let us denote
the formal character of a highest weight module L by ch L. The central character
corresponding to a weight λ is denoted by χλ, i.e., we have z.v = χλ(z)v for each
element v of a highest weight module with a highest weight λ and an element
z ∈ Z := Z(U(g)) of the center of the universal enveloping algebra U(g).

Let L be a highest weight module over a complex semisimple algebra g. We
call L module with bounded multiplicities, if there is k ∈ N such that dimLλ ≤ k
for all weights λ of the module L. Such minimal k is called degree of L. We call
a module with bounded multiplicities completely pointed provided its degree is 1.
Let us mention that the basic symplectic spinor modules L(λi), i = 0, 1 (see the
Introduction for their definition via fundamental weights) are completely pointed
and these are the only ones among infinite dimensional irreducible highest weight
modules over the complex symplectic Lie algebra, see Britten, Hooper, Lemire [1].

There is a result on a formal character of an irreducible highest weight
module over a complex semisimple algebra. In this theorem, the formal characters
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of Verma modules M(σ.λ) for some Weyl group elements σ are related to the
formal character of the irreducible module L(λ).

Theorem 2.1. Let λ ∈ h∗0 be such that (λ+ δ)α > 0 for all α ∈ Bλ. Then we
have

ch L(λ) =
∑

σ∈Wλ

ε(σ)ch M(σ.λ).

Proof. See Kac, Wakimoto [7], Theorem 1, pp. 4957.

A version of the previous theorem appeared already in Jantzen [6], Theorem
2.23, pp. 70 but for a slightly different set of weights. We will refer to the formula
in the preceding theorem as the Kac-Wakimoto formal character formula.

In the next theorem a decomposition of a tensor product of an irreducible
highest weight module (possibly of infinite dimension) and a finite dimensional
irreducible module into invariant summands is described, for further comments
see Humphreys [5], pp. 1 - 64.

Theorem 2.2. Let F be a finite dimensional module over a complex semisimple
Lie algebra g and L(λ) be an irreducible highest weight module with a highest
weight λ over g, then one has a canonical decomposition F ⊗ L(λ) = M (1) ⊕
. . . ⊕M (k), where M (i) is the generalized eigenspace corresponding to χλ+µi

and
µi runs over a subset of the weights of F, so that the indicated central characters
are distinct.

Proof. See Humphreys [5], sect 4.4. and pp. 39.

Let us recall the famous Harish-Chandra theorem, which says that χλ = χµ,
if and only if λ ∼ µ. In the next theorem, the generalized eigenspaces are specified
more precisely.

Theorem 2.3. Keep the above notation. Suppose µ := µi is a weight of F
such that for all weights ν 6= µ of F , λ+ν and λ+µ are not linked to each other.
Then M := M (i) is a direct sum of n copies of L(λ+ µ), where n = dim Mλ+µ.

Proof. See Humphreys [5] sect. 6.3., pp. 40.

In the next theorem, the formal character of the generalized eigenspace
is related to formal characters of some Verma modules and to multiplicities of
corresponding weights of the finite dimensional module F.

Theorem 2.4. Keep the above notation and denote by n(µ) the multiplicity of
the weight µ in the irreducible finite dimensional module F. Suppose that for all
weights ν 6= µ of F, λ+ν and λ+µ are not linked to each other. Further suppose
that (λ+ µ+ δ)α > for each α ∈ Bλ+µ and each weight µ of F. Then

n(µ)
∑

σ∈Wλ

ε(σ)ch M(σ.(λ+ µ)) = n chL(λ+ µ).

Proof. See Humphreys [5] sect. 6.4., pp. 42 and use the Kac-Wakimoto formal
character formula in the substitution for a(w, λ) from Humphreys.
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2.2. The case of sp(2n,C) and higher symplectic spinor modules.

In this subsection, we focus our attention to the complex symplectic Lie
algebra, i.e., g = sp(2n,C)(= Cn), and to a distinguished class of infinite dimen-
sional irreducible highest weight modules. For a choice of a Cartan subalgebra
h ⊆ g and of a system of positive roots Φ+ of g, there is a set of fundamental
weights, which will be denoted by {$i}n

i=1. Having chosen the Cartan subalgebra
h of g, we can define a subset {εi}n

i=1 of h∗0, such that $i =
∑i

j=1 εj, i = 1, . . . , n
which is an orthonormal basis of h∗0 with respect to the restriction of the Killing
form ( , ) to the subspace h∗0 × h∗0.

Now, let us describe modules we shall be dealing with.

Definition 2.5. Let us denote the set of weights

{λ =
n∑

i=1

λi$i;λi ≥ 0, i = 1, . . . , n− 1, λn ∈ Z +
1

2
, λn−1 + 2λn + 3 > 0} ⊆ h∗0

by A. We will call the modules L(λ) for λ ∈ A higher symplectic spinor modules.

Theorem 2.6. The following are equivalent:

1.) L(λ) is a higher symplectic spinor module, i.e., λ ∈ A,

2.) L(λ) has bounded multiplicities,

3.) L(λ) is equivalent to a direct summand of the tensor product L(−1
2
$n)⊗F (ν)

for some choice of dominant integral weight ν.

Proof. See Britten, Lemire [2], Theorem 2.1 pp. 3417 and Theorem 1.2 pp.
3415.

In the next lemma, Theorem 2.1 is adapted to the situation we are studying.

Lemma 2.7. Let ν ∈ Π($1) and λ, λ+ ν ∈ A, then

ch L(λ+ ν) =
∑

σ∈Wλ

ε(σ)ch M(σ.(λ+ ν)).

Proof. We must check whether the assumption of Theorem 2.1 is satisfied. At
first, we determine the set Rλ+ν

+ for ν ∈ Π($1) and λ, λ+ ν ∈ A. Looking at the
definition of the set Rλ+ν

+ , we easily obtain that

Rλ+ν
+ = {ei + ej, 1 ≤ i ≤ j < n} ∪ {ei − ej, 1 ≤ i < j < n} ∪ {ek, 1 ≤ k < n},

where {ei}n
i=1 is the dual basis of h0 to the basis {εi}n

i=1. The basis Bλ+ν of Rλ+ν
+

is

Bλ+ν = {ei − ei+1, 1 ≤ i ≤ n− 2} ∪ {en−1}.

Secondly, we need to compute (λ + ν + δ)α for α ∈ Bλ+ν . Suppose that
ν = tεp for some p = 1, . . . , n and t ∈ {−1, 1}.
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1.) A := (λ+ν+δ)(ei−ei+1) = [
∑n

r=1(
∑n

s=r λs +n−r+1+ tδrp)εr](ei−ei+1) =
λi + 1 + t(δip − δi+1,p), i = 1, . . . , n − 2. We know that λ + ν ∈ A, from
which it follows that λi + t(δip − δi,p−1) ≥ 0 for i = 1, . . . , n − 1, because
εp = $p −$p−1, p = 1, . . . , n, where $0 = 0 and δi,−1 := 0 for i = 1, . . . , n
are to be understood. Thus the condition A > 0, we have had to check, is
satisfied.

2.) B := (λ + ν + δ)(en−1) = [
∑n

r=1(
∑n

s=r λs + n − r + 1 + tδrp)εr](en−1) =
λn−1 + λn + 2 + tδn−1,p. If λn > 0, then the inequality B > 0 is evidently
satisfied. Now, suppose that λn ≤ −1

2
. If p = n−1, then using the inequality

λn−1 + 2λn + 3 + t ≥ 1 (λ + ν ∈ A) and λn ≤ −1
2
, one obtains, that

λn−1 + λn + 3
2

+ t ≥ 0, from which B > 0 easily follows. If p 6= n− 1, then
using the inequality λn−1 + 2λn + 3 ≥ 1 (λ ∈ A) and λn ≤ −1

2
, one obtains

that λn−1 + λn + 3
2
≥ 0, from which B > 0 follows.

Thus, we have proved that the assumption of Theorem 2.1 is satisfied and
therefore the conclusion of this lemma follows.

3. Decomposition of L(λ)⊗ F ($1) for λ ∈ A

Theorem 3.1. Let L(λ) be a higher symplectic spinor module, i.e., λ ∈ A.
Then

L(λ)⊗ F ($1) =
⊕
µ∈Aλ

L(µ),

where Aλ = {λ+ ν; ν ∈ Π($1)} ∩ A. 2

Proof. Part I. We would like to use Theorem 2.3. In this part, we shall verify
its assumption. Thus we shall prove that λ+µ and λ+ν are not conjugated by the
affine action of an element of the Weyl group W of the algebra Cn, if ν 6= µ are
arbitrary weights of F ($1) and λ ∈ A. Two elements φ, ψ ∈ h∗ are conjugated by
the affine action of an element of the Weyl group if and only if φ+δ and ψ+δ are
conjugated by an element of the Weyl group, i.e., if and only if σ(φ+ δ) = ψ + δ,
for some σ ∈ W .

Let us first prove that {λ+ ν + δ, λ+ µ+ δ} ⊆ W1 ∪W2, where

W1 := {
n∑

i=1

βiεi; β1 > . . . > βn > 0},

W2 := {
n∑

i=1

βiεi; β1 > . . . > βn−1 > −βn > 0}

are two open neighbor Weyl chambers of Cn, and where X denotes the closure of
X ⊆ h∗0 wr. to the restriction of the Killing form ( , ) to h∗0 × h∗0 . An arbitrary
weight µ of F ($1) is of the form µ = sεp for s ∈ {−1, 1} and some p = 1, . . . , n.
In the case of Cn, we have δ = nε1 + (n − 1)ε2 + . . . + εn. Using the relation

2One can easily compute that the (saturated) set Π($1) of weights of F ($1) equals {±εi; i =
1, . . . , n}.
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$j =
∑j

i=1 εi (j = 1, . . . , n), one easily computes that for λ =
∑n

i=1 λi$i, we
have

λ+ µ+ δ =:
n∑

i=1

βiεi =
n∑

i=1

[(
n∑

j=i

λj) + n− i+ 1 + sδip]εi.

Thus the requirement λ + µ + δ ∈ W1 reduces to λi + 1 ≥ s(δi+1,p − δip) which
is evidently satisfied for all i = 1, . . . , n − 1, see Definition 2.5. For i = n, the
condition we need to check is βn ≥ 0 or βn−1 ≥ −βn ≥ 0. If βn ≥ 0, we are done.
Suppose βn < 0, then the remaining condition we need to check is βn−1 ≥ −βn−1,
because −βn ≥ 0 follows from our assumptions. The inequality βn−1 ≥ −βn−1

translates into

λn−1 + 2λn + 3 + s(δn−1,p + δnp) ≥ 0. (1)

Condition (1) is satisfied due to the last inequality in Definition 2.5 of higher
symplectic spinor modules.

Suppose that there are some weights µ 6= ν with µ, ν ∈ Π($1) for which
λ+µ+ δ and λ+ ν + δ are conjugated by an element σ of the Weyl group of Cn,
i.e., σ(λ+ µ+ δ) = λ+ ν + δ.

(1) Suppose that λ+ µ+ δ ∈ W1 and λ+ ν + δ ∈ W2 (or λ+ µ+ δ ∈ W2 and
λ+ ν+ δ ∈ W1, which is analogous). The condition σ(λ+µ+ δ) = λ+ ν+ δ
implies σW1 = W2. It is evident that σεnW1 = W2. The Weyl group acts
simply transitively on the set of open (or closed) Weyl chambers. Hence
σ = σεn . The weight εn does not belong to the system of simple roots,
but it is evident that we could have written σ2εn instead of σεn . Now,
σεn(λ+µ+δ) = λ+µ+δ−2(εn, λ+µ+δ)εn = λ+µ+δ−2(λn +sδnp +1)εn.
This element equals to λ + ν + δ if and only if µ − ν = 2(λn + sδnp + 1)εn
which is impossible due to the structure of the set Π($1) and the condition
λn ∈ Z + 1

2
.

(2) The case λ+ µ+ δ, λ+ ν + δ ∈ Wi and σ(λ+ µ+ δ) = λ+ ν + δ for i = 1, 2
leads to the condition σ = id, i.e., ν = µ - a contradiction.

(3) The remaining case is λ + µ + δ, λ + ν + δ ∈ W1 ∪W2 − (W1 ∪W2), i.e.,
the considered elements lie on the walls of the two Weyl chambers. (The
other cases are impossible: if there is an element lying on a wall of a closed
Weyl chamber and the other one is lying in the open Weyl chamber, then they
cannot be conjugated.) The inspection of the fact λ+µ+δ, λ+ν+δ ∈ W1∪W2

showed that if these elements lie on the walls of W1 and W2, then they lie in
their interior (i.e., they do not lie on the walls of codimension 2): inequalities
in the definition of W1 (β1 ≥ . . . βn ≥ 0) become equations only once and
the same is true for W2. Let us define two families of open Weyl chambers

Yr := {
n∑

i=1

βiεi; β1 > . . . > βr−1 > −βr > βr+1 > . . . > βn > 0},

r = 1, . . . , n− 1 and

Y ′
t := {

n∑
i=1

βiεi; β1 > . . . > βt−1 > −βt > βt+1 > . . . > −βn > 0},
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t = 1, . . . , n− 1.

(3.1) Suppose that λ + µ + δ ∈ W1 ∩ Yr and λ + ν + δ ∈ W2 ∩ Y ′
t for some

r, t = 1, . . . , n − 1. If we suppose that σ(λ + µ + δ) = λ + ν + δ, then
the fact that these elements lie in the interior of the walls implies that
σW1 = W2 or σW1 = Y ′

t . The first case leads to a contradiction as we
have shown. Using the fact that the Weyl group acts simply transitively,
we easily find that σ = σεtσεn in the second case. Let us compute
σεtσεn(λ+ µ+ δ) = λ+ µ+ δ − 2(εt, λ+ µ+ δ)εt − 2(εn, λ+ µ+ δ)εn =
λ + µ + δ − 2(λt + sδpt + n − t + 1)εt − 2(λn + sδpn + 1)εn. This
element equals λ + ν + δ if and only if µ − ν = 2(λt + sδpt + n −
t + 1)εt + 2(λn + sδpn + 1)εn. Because of the structure of Π($1), we
obtain: µ − ν ∈ {±2εt,±2εn,±εt ± εn,±εt ∓ εn}. The first possibility
leads to 0 = λn + sδnp + 1, which is impossible because λn is half-
integral. The second possibility implies 0 = λt + sδtp + n − t + 1 ≥
λt +n− t > 0 - a contradiction. The third and fourth possibilities force
±1 = 2(λt +sδtp +n− t+1) - an odd number equals an even one, which
is a contradiction.

(3.2) Suppose that λ+µ+ δ ∈ W1∩Yr and λ+ ν+ δ ∈ W1∩Yt. In this case,
σW1 = W1 or σW1 = Yt. The first case leads to a contradiction as we
already know. In the second case, one easily finds that σεtW1 = Yt, i.e.,
using the simplicity of the Weyl group action, this implies σ = σεt . Let
us compute σεt(λ+µ+δ) = λ+µ+δ−2(λt+sδpt+n−t+1)εt. This element
equals λ + ν + δ if and only if {µ, ν} = {εt,−εt}, i.e., µ − ν = ±2εt.
That means that 1 = λt + 1 + n − t + 1 or −1 = λt − 1 + n − t + 1
which are impossible because λt ≥ 0 and t < n for t = 1, . . . , n− 1.

(3.3) The remaining cases are analogous to the previous ones and actually
have been done.

Part II. Summarizing part I of the proof, we have proved that the as-
sumption of Theorem 2.3 is satisfied, and therefore for each νi ∈ Π($1) we have
that the generalized eigenspace M (i) occurring in the canonical decomposition
L(λ)⊗ F ($1) = M (1) ⊕ . . .⊕M (k) can be written as M (i) = niL(λ+ νi) for some
nonnegative integer ni. We should determine the numbers ni for i = 1, . . . , k. To
do it, we should use Theorem 2.4. Let us suppose that νi ∈ Π($1) is such that
λ+ νi ∈ A. It follows from the proof of Lemma 2.7 that for such weights, we have
(λ + νi + δ)α > 0 for each α ∈ Bλ+νi , i.e., the condition of Theorem 2.4 is satis-
fied. We may therefore write n(νi)

∑
σ∈Wλ ε(σ)ch M(σ.(λ+ νi)) = nichL(λ+ νi).

Because we know, that n(νi) = 1 for all weights νi ∈ Π($1), we get∑
σ∈Wλ

ε(σ)chM(σ.(λ+ νi)) = nichL(λ+ νi).

Using the formal character formula of Kac and Wakimoto from Lemma 2.7, we get
chL(λ+ νi) = nichL(λ+ νi), which implies ni = 1 for such νi ∈ Π($1) for which
λ+νi ∈ A. From Theorem 2.3, we know that if L(µ) appears in the decomposition
of L(λ) ⊗ F (ν), then µ = λ + η, where η ∈ Π($1). Still, we have shown that
µ ∈ (λ+Π($1))∩A =: Aλ occurs in the decomposition, we are interested in, with
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multiplicity 1. The remaining question is, whether a weight from (λ + Π($1))\A
may occur in the decomposition. But this is not possible, because the highest
weight µ of an irreducible summand L(µ) of the decomposition lies in the set A. To
see it, consider an integral dominant weight ν ∈ h∗0 such that L(λ) ⊆ L(λ0)⊗F (ν).
Such weight ν exists due to Theorem 2.6 (1. ⇒ 3.). Using the associativity of
a tensor product, we have L(µ) ⊆ L(λ0) ⊗ (F (ν) ⊗ F ($1)). The tensor product
F (ν)⊗F ($1) decomposes into a finite direct sum of finite dimensional irreducible
sp(2n,C)-modules, and therefore L(µ) is a direct summand in a tensor product
L(λ0) ⊗ F (ν ′) for some integral dominant weight ν ′. Using Theorem 2.6 (3. ⇒
1.) we get µ ∈ A.

Further research could be devoted to an investigation of real higher symplec-
tic spinor representations of real symplectic Lie algebras and to their globalizations.
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