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Abstract.  The classical Baker-Campbell-Hausdorff formula gives
a recursive way to compute the Hausdorff series H = In(eXeY) for
non-commuting X,Y . Formally H lives in the graded completion
of the free Lie algebra L generated by X,Y. We present a closed
explicit formula for H = In(eXeY) in a linear basis of the graded
completion of the free metabelian Lie algebra L/[[L, L], [L, L]].
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1. Introduction

1.1. Brief summary. The Baker-Campbell-Hausdorff (BCH) formula
arises naturally in the context of Lie groups and Lie algebras. Originally
the series H = In(ee¥) was used to define a multiplication law in a Lie
group associated to a given Lie algebra. If the variables X,Y commute
then In(eXe¥) = X + Y.

Let L be the free Lie algebra generated by X,Y. Then H =
In(e*e¥) belongs to the graded completion of L, i.e. H contains com-
mutators of all degrees (lengths). A linear basis of L contains exponen-
tially many elements of a fixed degree. That is why the classical BCH
formula is awkward for solving exponential equations in Lie algebras.

The author’s interest in the BCH formula came from knot theory
and number theory. The Kontsevich integral is a powerful knot invariant
and can be computed combinatorially from a knot projection via a Drin-
feld associator [5]. A Drinfeld associator is a non-commutative 2-variable
series living in the graded completion of a Lie algebra and satisfying the
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pentagon and hexagon equations involving 5 and 6 exponential factors,
respectively. An outstanding problem in quantum algebra is to compute
explicitly a Drinfeld associator with rational coefficients.

The set of Drinfeld associators modulo commutators of commuta-

tors contains a specific transcedental solution expressed via the classical
o0

1
zeta values ((n) = Y. o A closed metabelian version of the BCH for-
k=1

mula was used to solve completely the pentagon and hexagon equations

modulo commutators of commutators [10, Theorem 1.5¢|. It turned out
that these equations do not contain polynomial relations between odd
zeta values.

Here we present a self-contained proof of the explicit BCH formula
for H =1In(e®e) in the free metabelian Lie algebra L/[[L, L], [L, L]] .

1.2. Definitions and results. Classical notions of the Lie theory can
be found in [12]. Lie algebras are considered over a field of characteristic
0. The free Lie algebra L generated by X,Y is graded by the degree :
deg X = degY =1 and deg[A, B] = deg A + deg B for all A,B € L.
The graded completion L of the Lie algebra L is the algebra of infinite
series of elements of L.

The Hausdorff series is H = In(e*e¥), where the logarithm and
oo XN
exponential are considered as formal power series, i.e. eX =

and In(1+Y) = i ﬂ

n=1
Hel (3, 4, 8], i.e. H can be expressed as an infinite sum of com-
mutators, see Theorem 2.4. For Ay,..., A,, € L, the long commutator
[A1As ... A1 Ay] is ‘the right bracketing’ [Ay, [As, [ .. [Am—1, Am] - - ]]]],
e.g. [X?Y]=[X,[X,Y]] and [YXY]=][Y,[X,Y]]. Then

n=0 n'

Y"™. The classical BCH formula states that

XY X2Y] - [YXY XYXY
B x vy BV DOV XY) KYXY)

E. Dynkin found a closed formula for H [6], but not in a linear
basis of the graded completion L, see Theorem 2.5. Also the series H
can be expressed via associative monomials W in the variables X,Y
as follows: H = X +Y + > cwW. The generating function for the
coefficients ¢y was computed by K. Goldberg [7], see Theorem 2.6.

If a Lie algebra L satisfies [[L, L], [L,L]] = 0, then L is said to
be metabelian. For a free Lie algebra L, the quotient L/[[L, L}, [L, L]|
is sometimes called the free metabelian Lie algebra.

Let L be the free Lie algebra generated by X,Y . Let L be the
graded completion of L. Introduce the adjoint operators x = ad X,
y=adY, ie zA=[X A], yA=[V,A] for A€ L. Denote by L the
metabelian quotient L/ [[ﬁ, L), [L, ZALH .
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Theorem 1.1.  Under L — L the Hausdorff series H = In(eXeY)

maps onto

ef—1 x4y
x ety — 1

— 1
H:X+Y+—(1— >[XY],
Y
where the operator acting on [XY] is considered as a commutative series
in the adjoint operators x,y commuting on the Lie subalgebra [L, L.

The series in x,y is a genuine power series with non-negative
powers. The key advantage of the above metabelian BCH formula is that
H is written in a linear basis of the free metabelian Lie algebra L, see
Lemma 3.1. The metabelian BCH formula can be effectively applied for
solving exponential equations in Lie algebras, see Propositions 4.2, 4.4.

In section 2 we recall classical versions of the BCH formula. The
original proof of Theorem 1.1 used the classical BCH formula and large
combinatorial formulae involving extended Bernoulli numbers, see [10,
Propositions 2.8, 2.12]. Section 3 contains a self-contained proof of
Theorem 1.1. In section 4 we give applications to solving exponential
equations in metabelian Lie algebras.

Acknowledgement. The author thanks A. Alekseev, S. Garoufalidis,
H. Morton for useful remarks. The author was supported by Marie Curie
Fellowship 007477.

2. The classical Baker-Campbell-Hausdorff formula

2.1. The recursive Baker-Campbell-Hausdorff formula. Here we
recall the classical version of the BCH formula (Theorem 2.4) proved by
H. Baker [3], J. Campbell [4], F. Hausdorff [§].

Definition 2.1. The Bernoulli numbers B, are defined by the gen-
n t
erating function: Z t"=——.eg By=1, B, =- B, =

1
non' et —1 27 6’
B; =0.

t
One can verify that + 5 is an even function, hence B,, =0

et —1
for all odd n > 3. The Bernoulli numbers can be easily computed from

the recursive relation Z ("B, = —1, m > 1, see [10, Lemma 2.2a].
n=1

Definition 2.2. A derwation of the graded completion L of a Lie
algebra L is a linear function D : L —> L satistying the Leibnitz rule
D([A,B]) = [D(A), B] + [A,D(B)] for all A,B € L.

The adjoint operator adA : L — L, ad A(B) = [A,B], is a
derivation. The Leibnitz rule for the derivation ad A coincides with
the Jacobi identity: ad A([B,C]) = [ad A(B),C] + [B,ad A(C)]. Any
continuous derivation of L is uniquely determined by its values on the
topological generators.
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Definition 2.3.  Let L be the free Lie algebra generated by X and
Y. Denote by Dy the derivation of wzth respect to Y such that

Dy(X)=0and Dy(Y)=H, = X + 2 tyrx]e L.

Due to the property B, =0 for odd n > 3, the series H; can be
rewritten as follows:

Dy(Y)=H, = Z 2” Y2”X

Theorem 2.4 is quoted from [12, Corollaries 3.24-3.25, p. 77-79].

Theorem 2.4.  [3, /, 8] The Hausdorff series H = In(eXeY) is

- 1
H = Z H,,, where Hy=Y and H,, = —Dy(H,,_1) for m > 1.
m

m=0
2.1. The BCH formulae in the forms of Dynkin, Goldberg.

Theorem 2.5.  [6] The Hausdorff series H =1In(eXe¥) equals

O (—1)m1 XPya Xpeya  XPmYdm
n-y B A
pilar! . ol Do (pi + @)

m=1 pi +q; >0
Pi,qi =0

The terms of the above Dynkin series are linearly dependent, e.g.
[XY] = —[XYXY"].
Let us express the Hausdorff series H = In(e*eY) via associative

monomials in X, Y, where the exponents si,...,s,, are positive:
H=> culsi,...,8m) XY (X VY)™ 4
—|—ch ($15. 0, Sm) Y X% (Y V X)* where

(X VY)* is X* for odd m and Y*" for even m. Put m’ = [m/2].

Theorem 2.6.  [7] The generating function for the coefficients ¢, is

s Sm m'Z; € 7 — 1
Z Co(S1ye vy Sm) 2yt 20 ZZ@ HeZz_eZ
S1yeeny Sm ‘7751
One has cy(s1,...,8m) = (=1)" tey(s1,.. ., Sm), where n =" s;.
For example, > 00 ¢, (s)X* = X and > o0, ¢,(s)Y*® =Y, hence
the Hausdorff series starts as expected: H = X +Y +---. Theorem 2.6

implies that c,(si,...,s,) is invariant under any permutation of the s;
and ¢;(s1,...,5,) =0 when m is odd and n is even.
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3. The metabelian Baker-Campbell-Hausdorff formula

Here we give an elementary proof of Theorem 1.1. After we interpret the
resulting metabelian BCH formula as a linear part of a deeper formula
via commutators of commutators, see Proposition 3.8.

3.1. A self-contained proof of the metabelian BCH formula.
Firstly we describe a linear basis of the metabelian quotient

L=1/ [[f), L],[L, f}]] of the free Lie algebra L generated by X,Y . For
any word W of length > 2, the Jacobi identity implies

X,V V)] — [V 1%, )] = (XY, )] = o.

So we can permute the letters X,Y and express any long commutator
via the elements [X*Y'XY] for k,1 > 0. Lemma 3.1 states that these
elements are linearly independent in the quotient L.

Lemma 3.1.  [12, Theorem 5.7], [2, Section 4.7] Let L be the
algebra generated by X,Y . The metabelian quotient L = L/[ [L, L
has the linear basis X,Y, [ X*Y'XY], k,1 > 0.

free Lie
L. 1]]

Let us express the Hausdorff series H = In(e*e¥) via associative

monomials in X,Y as before Theorem 2.6. Look at the terms of the
type ¢.sX"Y?, where the letter X always precedes Y. The generating

function c(u,v) = > c.su"v® of the corresponding coefficients can be
r,s>1
extracted from Theorem 2.6, but we prefer a simple independent proof.

Lemma 3.2. The generating function c(u,v) of Golberg’s coefficients
Crs in front of the terms X"Y* in the Hausdorff series In(eXeY) equals

e’ —1 e —1

c(u,v) = E crsu’ v’ = ue® + ve”

el — ev ev — 6u‘
r,s>1

Proof. Put P=¢X —1 and Q =e¥ — 1. The ‘X before Y’ part of

m—1

H =In(eXe") =1In (1+P+Q+PQ):Z%(P+Q+PQ)’”

equals i%l( Z PO + Z Pr+1Qs+1), (%)
m= r+s=m r+s=m-—1

r,s > 1 r,s >0

The above sum does not change if permute P,(. Lemma 3.3 is a
straightforward computation, multipy both sides by P — Q.
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Lemma 3.3.  For commuting variables P, (), we have

Z°° (—1)m-1 Z r s QIn(1+P)—Pln(1+Q)

(a> m=2 m r+s=m PQ B P_Q ’
C (_1>m71 rMSs PQ 1+ P

(b) mEZI—m Tﬂgmﬂ PQ)® = P—an1+Q'

In (%) replace P,Q by e* —1,e" — 1, respectively, where u,v are
commuting variables of the function (x). By Lemma 3.3 we have

_ @In(1+P)— Pn(1+Q) PQ 1 1+P

clu,v + n =
() P—-qQ P—-—@Q 1+Q
Cu(e’—1)—v(e" = 1)+ (u—v)(e* = 1)(e’" —1)
o eu — ev -
uee” — vee’ — ue" + ve’ L€' —1 L4 =1 .
= = ue + ve as required. ®
e’LL J— e’U e’lL — e’U e’U J— 6'I.L

Lemma 3.4.  Let L be the free Lie algebra generated by X,Y . The
Hausdorff series has the form

In(eXe’) =X +Y + ) hy[X*V'XY]+ H,
k,1>0

where hy € Q, H' € [[L,L],[L,L)]. The only terms contributing to
crs XY are hyy[X*Y'XY]. One has cii1041 = (—1) hyy for k,1>0.

Proof.  Let the length of a non-commutative monomial in X,Y be
the length of the resulting word after replacing all the positive powers
by 1, e.g. the length of X?Y X? is 3. The shortest monomials coming
from a commutator [A, B], A,B € L, are X"Y® and Y*X", r;s > 1.
The polynomial expression of any commutator [[A, B],[A’, B']] with
A’ B' € L starts with monomials like X"Y*+ X" YsX™+'y*  The
result follows: [X*Y!XY] = (—1)!X* Y14 (longer monomials). n

Now we finish the proof of Theorem 1.1.

Proof. Under L — E the Hausdorff series maps onto H = X +Y +

ST hy[X*YIXY] for some coefficients hy € Q. By Lemma 3.4 the
k,1>0

generating function c(u,v) of Goldberg’s coefficients can be expressed

via h(z,y) = > hwrty' as c(z,y) = xyh(z,—y). We consider these
k>0
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commutative series as formal Laurent ones, although the results always
have non-negative powers. Lemma 3.2 implies

1 1 eV — 1 e — 1
- _ - x - - -y_- - _
h(zx,y) = xy@(x, y) = 0 (we prampeial L ew) =

yertv—1 xl—etv ety —1

Yy i

et 1—eY 1 e —1 1 (exﬂ/—e“’t ex—l)

1 e —1 (1 1 1 e —1 x4y :
S () S O as required. ®
y ertv—1\y =« Y r ety —1

Example 3.5. Theorem 1.1 allows us to compute easily first terms of
the metabelian series H obtained from In(eXe¥) by L — L. Suffice to

expand the operator h(x,y) acting on [XY] in Theorem 1.1, namely
H=X+Y +h(x,y)[XY], where h(x,y) =

1 o—y wxy 2 +da’y—day’ —y° 2Py + 4Py’ +ay’

2 12 24 720 1440

+(deg > 5).

The above terms agree with the results from [10, Appendix, Proposition
A.4] and coincide with the commutators of In(e®e¥) up to degree 4.

3.2. A deeper BCH formula via commutators of commutators.
The original BCH formula of Theorem 2.4 gives a recursive way to
compute In(e¥e¥) via commutators in X,Y. The linear part of this
formula is X + Y. Here we interpret the metabelian BCH formula of
Theorem 1.1 as a linear part of a deeper formula for In(eXe¥) — X —Y
via commutators of commutators, see Proposition 3.8.

Let L be the free Lie algebra generated by X,Y . Denote by
{m,n} the long commutator [X™Y"™X], eg. {0,0} = [YX]|. The

series H; of Theorem 2.4 can be rewritten as follows: H; = X +
< B, .

> —'{O7 n — 1}. Lemma 3.6 computes the action of z,y on long com-
n=1 TV

mutators.

Lemma 3.6. The operators x,y act as follows:

z{m,n} = {m+1,n}, -
y{m,n} = {m,n + 1}+1€Z::1 (?)[{k— 1,0}, {m —k,n}].

Proof.  The first formula is trivial, the second one is obtained by
induction on m. The base: y{0,n} = [Y""X] = {0,n + 1}. The
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inductive step:
y{m+1,n} = [Y X"y "t X]
= [[YX], [ XY™ X]] 4+ 2y[ XY X]

m

= [{0,0}, {m,n}] + a{m,n+ 1} + > (?)x[{k’ — 1,0}, {m — k,n}]

-y (”;) (I{F, 0}, fm — k. n}] + [{k = 1,0}, {m — k + 1,n}])+

[{0,0},{m,n}]+{m+1,n+ 1}

:;((le) n (Z))[{kz—1,0},{m—k:+1,n}]+{m+1,n+1}

m+1

—{mtLn+1}+ Y (m;—l)[{kz—l,O},{m—k‘Jrl,n}]

Lemma 3.6 allows us to compute z*y'{m,n} for all k,I > 0 by
using the Leibnitz rule, e.g.

y{m, n}, {r; s}] = [y{m, n}, {r,s}] + [{m, n}, y{r, s}.

We rewrite the derivative Dy via the operators z =ad X, y =adY .

Lemma 3.7. The derwative Dy mapping X and Y to 0 and Hi,
respectively, can be expressed via the adjoint operators x,y as follows:

[e.o]

Dy{m,0} = —Zi{m+ 1,1—1},

o0

Proof. We have

. B
Dy (IX"YX]) = —[X"" H)] = -2y 210,11}
— l!
The case n = 0 follows from Lemma 3.6. The case n > 1 follows from
the Leibnitz rule:
n—1
Dy (XYY" X)) = o™y [Hy, X] + 2™ > o' [H, [Y"*'X])] =
k=0
Now we rewrite ln(eX ey) via long commutators and commutators
of commutators. Proposition 3.8 follows directly from Theorem 2.4.
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Proposition 3.8.  In the graded completion of the free Lie algebra
generated by X, Y we have

o Bn o
In(e®e¥) =X +Y + Z H{O,n -1} + Z H(yy, where
n=1

m=2

Dy Hm)

Hay = Tmrl

=B
Z k—ny{O, k — 1}, H(m+1) = , m2 2.
k=1

N | —

Theorem 1.1 states that the metabelian image of In(eXeY’) is equal
to X+Y =", hu{k, l}, where the generating function of the coefficients
i 1 e =1 z+4+y
kol — 2 (1 _
hkl 1S Zkl hkll‘ Yy = " 1 - ooty — 1
be interpreted as an infinite linear combination of long commutators. All
non-linear terms in the formula of Proposition 3.8 can be rewritten via

commutators of long commutators due to Lemmas 3.6 and 3.7

. This metabelian part can

Proposition 3.8 and Lemmas 3.6, 3.7 give a hope to extend The-
orem 1.1 to the quotient L = L/ (L[, L], L' = [L,L]. A linear basis
of the graded completion of L consists of X, Y, {m,n}, [{k, 1}, {m,n}],
where either k >m >0, ,n>0o0or k=m, [ >n >0, see [12, §4.1].

4. Applications of the metabelian BCH formula

We show how powerful the metabelian BCH formula is for solving expo-
nential equations in metabelian Lie algebras. We can rewrite both sides
of a given equation in a linear basis and compare coefficients.

4.1. The metabelian Zassenhaus formula. A linear combination
C' of commutators in a free Lie algebra is called a homogeneous Lie
element of degree n if the length of all commutators in C' is n. The
standard definition is equivalent to the above one [12, § 1.3]. According
to W. Magnus [11, section IV], Zassenhaus proved, but didn’t publish
the following remarkable result.

Theorem 4.1.  (Zassenhaus) Let L be the free Lie algebra generated
by X,Y . Then L has a uniquely determined homogeneous Lie element
C.,, of degree n = 2,3,4, ..., satisfying the Zassenhaus equation e*+Y =
eXeYeC2eCel ... in the universal enveloping algebra of L.

W. Magnus proved the above theorem and gave a recursive way

to compute the elements C,, in [11, section IV]. We describe explicitly
the metabelian images C,, of the elements C,, in the quotient L.

Proposition 4.2.  Let L be the free Lie algebra generated by X,Y .
In the universal enveloping algebra of L = L/[[L, L], [L, L]] , the solution
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to the metabelian Zassenhaus equation eXTY = eXeYeC2eC3e ... s

= 1 -1 |
ch: '6 '<1+€ : / )[XYL
— T+y Y x ey —1

where C,, € L are homogeneous Lie elements of degree n = 2,34, . ..

Proof.  Use Theorem 1.1 in the quotient L : Z = In(e XeX*Y) =

I
T ey —1

:(—X)+(X+Y)+xiy<1+e )[—X,X+Y]:

1 -1
=Y - (l—l—e Y )[XY], where z =ad X, y =adY.
rT+y r e¥—1

z

Z —Y belongs to [L, L] and, for z = ad Z, the operator Tyl acts
6 - J—

identically on [L, L] modulo commutators of commutators. We perform

computations for commutative series in the algebra of Laurent series.

The result will be a genuine formal series with non-negative powers:

1 1
In(e e XX =In(e™e?) = Y + 7 + - (1 - ) [-Y, Z] =
y —y

-1 (1+€—x_1 yy _(1+e—?1_1)(1+e -1 y ))[XY]

r e¥—1 Y r e¥—1

1 ev—1 1
- .(1+6 Y )[XY].

:x+y Y xr e¥—1

It remains to notice that C,, consist of commutators only, hence

In(e e XeX* ™) =1n (H eC”> = Z C, in L as required. n

n=2 n=2

Example 4.3.  Proposition 4.2 allows us to calculate effectively

00 B 1 2 2
ZC’n — <_§+%+%— % — % — ‘%) [XY] + (degree > 5), hence

_ XY 6 Y], [YXY] (X*Y] [XYXY] [Y2XY]

6 3 YT 288
The elements computed above coincide with the original Cy, C5, Cy since
the subspace of L spanned by all commutators up to degree 4 maps
injectively to L.
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4.2. The commutator equation in the metabelian quotient. The
famous Kashiwara-Vergne conjecture [9, p. 250, Proposition 5.3] involves
the following commutator equation: In(e*e¥) — X —Y = [X, F]+[Y, G|
for unknown F,G in the graded completion of the free Lie algebra L
generated by X,Y . M. Kashiwara and M. Vergne proved the existence
in their conjecture for a soluble Lie algebra [9, Proposition 0]. Recently
A. Alekseev and E. Meinrenken showed the existence of a solution for
any Lie algebra [1]. The Kashiwara-Vergne solution was obtained from
a differential equation not leading to a closed formula.

We solve the commutator equation completely in the graded com-

pletion of the metabelian quotient L = L/ [[ﬁ, L,[L, ZALH . Denote by H

the image of the Hausdorff series In(e*e¥) under L — L. The commu-

tator equation
H-X-Y=[X,FIX,)Y)]+]Y,G(X,Y)]
has the symmetry
{F(X,Y),G(X,Y)} <« {(G(-Y,-X),F(-Y,—-X)}.

So we can restrict our attention to the symmetrized equation

H-X-Y=[X,FIX,Y)]+]Y,F(-Y,—-X)]
for FGeL. Put r=adX,y=adY.
Proposition 4.4.  Any solution to the equation

H-X-Y =[X,F(X,)Y)]+[Y,F(-Y,—X)]
in L equals F(X,Y) =aX + % + f(z,y)[XY], where

1 1 e*=1 z+4y (z+y)e+3r—y

A e R e e S P FR)

+yg(z,y),

f(z,y) is a commutative series with non-negative powers, a is a con-
stant, g(z,y) is any genuine series satisfying g(z,y) = —g(—y, —z).

Proposition 4.4 will follow from Lemmas 4.5 and 4.6.
Lemma 4.5.  Any solution to

Y
has the form F(X,Y) =aX + 7+ f(z,y)[XY], where a is a constant

and f(x,y ) is a commutative series with non-negative powers, satisfying

-1 z+y
x erty —1 /)"

45)  af(z,y) —yf(-y, —2) = —% + 5 <1 _ <
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Proof. Lemma 3.1 implies that any series F' € L is F = aX + bY +
f(z,y)[XY] for some constants a,b and a commutative series f(x,y).
By Theorem 1.1 the symmetrized equation is equivalent to

1 1 e —1 x+y
Y x ety — 1

) =b— (=) +zf(x,y) —yf(=y, —2).
. . . 1 1
Since the left hand side starts with 5 We get b= 1 and (4.5) holds. m

Lemma 4.6.  In the ring of formal series with non-negative powers,

any solution to xf(x,y) = yf(—y, —x) has the form f(x,y) = yg(z,y),
where g is any function verifying the symmetry g(—y, —x) = —g(x,y).

Proof.  The given condition implies that f(z,y) = yg(x,y) for a series
g(x,y). The substitution gives g(—y, —x) = —g(z,y). [
Now we finish the proof of Proposition 4.4.

-1 x4y
T ety — 1

appeared in Theorem 1.1 and satisfies the important symmetry hA(z,y) =
h(—y, —x) since In(eXe¥) = —In(e Ye X). Equation (4.5) is zf(z,y) —

yf(—y,—x) = h(x,y) — 3 hence

1
Proof. Put h(x,y) = ; (1 - ) . The function h(z,y)

where

Odd h(l’,y) = QTEVGHf(ZE, y) - yEvenf(—y, —ZE),
{ Even h(x,y) — % = 20dd f(z,y) — yOdd f(—y, —x),

hMz,y) —h(—z,—y) 1 € —1 e+1 x4y
Odd h(z,y) = 9 :g_ r 2y Certy — 17

h h(—z, — v 1 w1
Even h(z, y) (z,y) + h(—z,—y) e e Tty
2 T 2y erty — 1
The property Odd h(x,z) = 0 implies that the series Odd h(x,y)
0dd h(z, y)

is divisible by x —y. The function Even f(z,y) = satisfies

the first equation in the above system. Actually, we have

) = Odd h(—y, —x) _ Odd h(zx,y)
Even f(—y, —z) = — -

= Even f(z,y).

1 1
The function Odd f(x,y) = o (Even h(z,y) — 5 verifies the
x

second equation. The expression in the brackets is divisible by x due to
1 1
Even h(0,y) = 3 So xOdd f(z,y)—yOdd f(—y, —x) = Even h(z, y)—ﬁ.
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The final solution is

Odd h(x,y) Evenh(z,y) 1
_|_ -
x—y 2z 4x

1 1 -1 z4y (r+ye’+3x—y

ylx —y) 4z r  emtv—1 dary(x —y)

[z, y) =

We may pose the problem to describe all solutions to the sym-
metrized equation In(eXe¥) — X — YV = [X, F(X,Y)] + [V, F(-Y, —X)]
in the graded completion L of free Lie algebra L generated by X,Y. A
closed BCH formula in a linear basis of the graded completion L would
help to find explicitly all solutions to the Kashiwara-Vergne conjecture.
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