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Abstract. We construct flat Laguerre planes that admit the universal
covering group of SL2R , extended by a factor R , as a group of automor-
phisms. These planes contain the affine Moulton planes as derived planes,
and they are constructed by gluing together two copies of a Moulton plane,
folded up along their fixed lines. The action of the Moulton group carries
over (modulo Z2 ) to the Laguerre planes, and the circles and parallel classes
are essentially orbits of 4 types of one-parameter groups of the Moulton ac-
tion. These planes have group dimension 4 and also provide examples of
flat Laguerre planes of Kleinewillinghöfer type II.G.1.
Mathematics Subject Index 2000: 51H15, 51B15, 22E46.
Keywords and phrases: Universal cover of the unimodular group, Moulton
plane, Moulton group, Laguerre plane.

1. Introduction

The analytic and group structures of the universal covering group Ω̃ of Ω =
PSL2(R) are well known; see, for example, [2], [5], [7]. However this group is most
elusive as it permits no faithful linear representation and only a few geometries are
known on which Ω̃ acts as a group of automorphisms. Among the 2-dimensional
projective planes only the Moulton planes, see [12], section 34, or the following
section 2., admit Ω̃ as a collineation group. The Moulton planes can be obtained
from an action of a certain group of the form R · Ω̃ on R2 , fixing the origin. One
takes as lines the closures of the orbits of the center and all orbits of all parabolic
one-parameter groups of Ω̃; finally one adds a line at infinity.

We shall show that the Moulton plane minus the origin may be folded up
along the line at infinity in a way compatible with the action. This yields an action
on a cylinder with one boundary circle. Gluing two copies of this cylinder along the
two boundaries we obtain an action of the original Moulton group modulo Z2 on
a cylinder, having 3 orbits. We shall construct a Laguerre plane from this action
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by taking as circles all orbits of compact one-parameter groups of R · Ω̃ and of all
hyperbolic and parabolic one-parameter groups of Ω̃; some of the circles consist
of two orbits, joined by a single point. The orbits of the center yield the parallel
classes of the Laguerre plane.

Although it is not obvious from the construction, the Moulton plane reap-
pears if we take the derived affine plane of our Laguerre plane at a point of the
1-dimensional orbit.

In [14] it was shown that a connected locally simple Lie subgroup of the
automorphism group of a flat (i.e., 2-dimensional) Laguerre plane is isomorphic
to either Ω = PSL2(R) or Ω̃. The former group occurs in the classical flat
Laguerre plane and also in certain semi-classical Laguerre planes, see [13], but
no flat Laguerre planes were known on which the latter group acts. Our aim with
the above construction is to provide examples for the latter kind of flat Laguerre
planes. The planes obtained also provide examples of flat Laguerre planes of
Kleinewillinghöfer type II.G.1, one of the types whose existence remained open in
[11] and [17].

2. Moulton Planes and Moulton Groups

A flat affine plane is an affine plane whose point set is R2 and whose lines are
closed subsets homeomorphic to R. The Moulton planes are flat affine planes.
They were introduced by Moulton in 1902, see [9], and are some of the earliest
examples of non-classical flat affine planes. The most homogeneous non-classical
flat projective planes are the projective extensions of these flat affine planes.

We fix a real number k > 1 and replace every line in the Euclidean plane
with negative slope m by a line that starts out as this Euclidean line in the right
half-plane and continues as a line of slope km in the left half-plane, see [12], 31.25b.
This gives the following bent lines.

{(x,mx + t) ∈ R
2 | x ≥ 0} ∪ {(x, kmx + t) ∈ R

2 | x ≤ 0},

where m, t ∈ R, m < 0. You can also think of this plane as being glued together
along the y -axis from two Euclidean halves. The number k is the ‘glue’ factor.

For our purpose we need lines to be glued together along the x-axis instead.
This is achieved by applying the transformation (x, y) 7→ (y, x). The lines of the
resulting plane Mk are

• the horizontal lines y = a for a ∈ R;

• the vertical lines x = b for b ∈ R;

• the Euclidean lines y = m(x− b) for b,m ∈ R, m > 0; and

• the bent Euclidean lines y =
{
m(x− b), if x ≥ b,
km(x− b), if x < b

for b,m ∈ R, m < 0.

The projective extensions Mk of the Moulton planes Mk play a prominent
role in the theory of flat projective planes. Two such planes Mk and Mk′ are
isomorphic if and only if k′ = k , and none of these planes are Desarguesian.
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It is quite cumbersome to extract information about the full automorphism
group of Mk from the above models. Clearly, the maps of the form

R
2 → R

2 : (x, y) 7→ (cx+ b, ay)

where a, b, c ∈ R, a, c > 0, form a 3-dimensional group of collineations of Mk .
Furthermore, the transformation

R
2 → R

2 : (x, y) 7→
{

(x,−y), for y ≥ 0,
(x,−ky), for y ≤ 0

also is a collineation of Mk .

In fact, the full automorphism group of Mk is 4-dimensional and does not
fix the line at infinity. The only point and line fixed by all automorphisms of are
the point at infinity of the y -axis and the x-axis, respectively. Furthermore, the
automorphism group of a flat projective plane has dimension 4 if and only if it is
isomorphic to one of the mutually non-isomorphic projective Moulton planes Mk

for k > 1.

These facts are best seen by looking at the radial model M(s) of the
Moulton plane Mk , where k = e2πs ; see [1] or, for the version preferred here,
[12], Section 34. The affine plane M(s) is isomorphic to the complement of the
x-axis in Mk . Its point set is the complex number plane C, and its lines are the
ordinary lines passing through the origin and the curves of the form

{
cesϕ

cosϕ
eiϕ

∣∣∣∣ − π

2
< ϕ <

π

2

}
,

where c ∈ C× . Obviously, this line system is invariant under rotation and under
multiplication by positive real numbers. An isomorphism between M(s) and Mk

is obtained by extending the homeomorphism

C \ iR → (R × R \ {0}) : reiϕ 7→
(

tanϕ,
esϕ

r cosϕ

)
,

where r > 0, π/2 6= ϕ ∈ (−π/2, 3π/2). In fact, this homeomorphism uniquely
extends to an isomorphism between M(s) and Mk that maps the line at infinity
of M(s) to the x-axis in Mk .

Let ∆ denote the automorphism group of M(s). This group fixes (pre-
cisely) the origin and the line at infinity, hence it can be seen within the affine
plane M(s). The group ∆ is a connected 4-dimensional Lie group. We exhibit
four one-parameter groups generating ∆, see [12], 34.4:

• the central one-parameter group H = {ηt | 0 < t ∈ R}, where ηt(re
iϕ) =

treiϕ ;

• the rotation group R = {ρt | t ∈ R} ∼= SO2R, where ρt(re
iϕ) = rei(ϕ+t) ;

• the hyperbolic group Ξ = {ξt | 0 < t ∈ R} defined below; and

• the parabolic group E = {εt | t ∈ R} defined below.



688 Löwen and Steinke

The groups H,E,Ξ are also considered (under a similar name) in [12]. Note,
however, that R does not correspond to the group of spiral rotations considered
there, which is contained in the commutator subgroup Ω̃ of ∆ and is not compact;
for us, the compact group R is more important.

The definition of ξt is given by ξt(x) = x/t for x ∈ iR and

ξt(re
iϕ) =

r cosϕ

t cosψ
es(ψ−ϕ)eiψ,

where tanψ = t2 tanϕ and ϕ, ψ ∈ (−π/2, π/2) or ϕ, ψ ∈ (π/2, 3π/2). The map
εt has a very similar form; note that it is written incorrectly in [12]: on iR, the
action of εt is the identity, and

εt(re
iϕ) =

r cosϕ

cosψ
es(ψ−ϕ)eiψ,

where tanψ = tanϕ+ t and ϕ, ψ ∈ (−π/2, π/2) or ϕ, ψ ∈ (π/2, 3π/2).

According to [12], 34.6, the group ∆ = ∆(s) generated by H,R,E,Ξ is
locally isomorphic to GL2R and is independent of s (up to isomorphism). The
commutator group ∆′ is isomorphic to the universal covering group Ω̃ of PSL2R.
The center of ∆ is generated by H together with ρπ = −id, and it intersects the
commutator group precisely in the infinite cyclic center of the latter. Although
the Moulton groups ∆(s), ∆(s′) determined by different choices s, s′ > 0 are
isomorphic groups, they are different as transformation groups of C

× , see [12],
34.7.

3. Action of the Moulton group on the Laguerre cylinder

In this section, we construct the point sets Z = Z(s) of our new Laguerre planes
and we describe an action of the Moulton group ∆(s) on Z(s); later it will turn
out that this yields the maximal connected automorphism group of those Laguerre
planes. The actions of ∆(s) on C× and on Z(s) will be related via an equivariant
twofold covering map α from C× to the upper half of the cylinder Z . The normal
subgroup 〈ρπ〉 of order 2 will act trivially on Z .

We fix k > 1 for the remainder of this paper and let s = ln k
2π

so that
k = e2πs . For x ∈ R let

µ0(x) =





1, if x > 0,√
k, if x = 0,

k, if x < 0.

The value of µ0(0) does not matter too much, because in every occurrence of µ0(0)
it is multiplied by 0. The choice above is such that µ0(x) = limc→0+ e

2s cot−1(x/c)

where cot−1 : R → (0, π) is the inverse cotangent. Since µ0(x)x
j occurs frequently

for j = 1, 2, we introduce the abbreviation

µj(x) = µ0(x)x
j =

{
xj, if x ≥ 0,
kxj, if x < 0.

The Laguerre cylinder Z = Z(s) is defined as

Z = (R ∪ {∞}) × R,
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with a topology defined as follows. We consider R ∪ {∞} ≈ S1 as the one-point-
compactification of R and define the topology of Z as the inverse image of the
product topology under the map Z → (R ∪ {∞}) × R given by

(x, y) →
{

(x, y
µ2(x)

), if x ∈ R, x ≥ 1 or x ≤ −1/
√
k,

(x, y), if x = ∞ or −1/
√
k ≤ x ≤ 1.

In other words, a sequence (xn, yn) ∈ Z converges to (∞, y) if, and only if, those
yn with xn = ∞ converge to y , and for the remainder of the sequence we have
xn → ∞ and

y = lim
yn

µ2(xn)
.

At all points (x, y) with x 6= ∞, the neighborhood system is the usual one.
This topology is distinct from the product topology but is, by its very definition,
homeomorphic to it.

We define two subsets Z± ⊆ Z by the conditions ±y > 0; their common
boundary is the set L0 ≈ S1 defined by y = 0. We shall next describe a map
α : C× → Z , which will turn out to be a twofold covering of Z+ ; there is a
similar covering of Z− which will not be made explicit at this point. Later we
shall introduce an action of ∆(s) on Z such that α is equivariant. Note that α
is closely related to a map considered in Section 2.

Proposition 3.1. The following formula defines a continuous surjective map
α : C× → Z+ ⊆ Z(s):

α(reiϕ) =





(− tanϕ, e2sϕ

r2µ2(cosϕ)
), if π

2
6= ϕ ∈ (−π

2
, 3π

2
)

(∞, 1
r2

√
k
), if ϕ ∈ {−π

2
, π

2
, 3π

2
}.

Proof. Only continuity of α at points r0e
iϕ0 with ϕ0 ∈ {−π

2
, π

2
, 3π

2
} requires a

proof. Let rn → r0 and ϕn → ϕ0 ; we may assume that ϕn 6= ϕ0 . Then α(rne
iϕn)

converges to (∞, y0), where

y0 = lim
e2sϕn

r2µ2(cosϕn)µ2(− tanϕn)
,

provided that this limit exists. Checking the cases ϕn → −π
2
+, ϕn → π

2
−,

ϕn → π
2
+, ϕn → 3π

2
− separately, it is straightforward to verify that the limit does

exist and has the value 1
r2

√
k
.

Our next aim is to use the map α in order to transfer the action of ∆(s) on
C× to Z+ (and later, to Z ). This will be done by employing a general technique
provided by the following lemma. We assume that we are given several things,
namely,

1. a group G and a subset H ⊆ G generating G;

2. sets X and Y

3. an action G×X → X , written as (g, x) → xg ;
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4. a map H ×Y → Y , written as (h, y) → yh such that y → yh is bijective for
fixed h;

5. a surjective map f : X → Y which is equivariant for generators, i.e., such
that f(xh) = f(x)h holds for each h ∈ H .

Lemma 3.2. In the situation described above, there is a unique action of G on
Y such that f : X → Y is G-equivariant. If X, Y are topological spaces and all
maps y → yh , h ∈ H , are homeomorphisms of Y , then the same is true for the
maps y → yg , g ∈ G.

Proof. The second assertion is a trivial consequence of the first one. For the
first assertion, we shall give the proof under the special assumption that every
element of G is a product of some elements of H , i.e., that taking inverses is not
required in the generation process. If that has been proved, then the general case
will follow, because we can define the map y → yh

−1

to be the inverse of the map
y → yh ; then equivariance with respect to h−1 follows from equivariance with
respect to h. Indeed, let x ∈ X be given and define x′ , y′ and y by x = (x′)h ,
y′ = f(x′), and y = (y′)h , respectively. Then f(x) = f((x′)h) = f(x′)h , and hence
f(xh

−1

) = f(x′) = f(x)h
−1

, as desired. Therefore, the special case may be applied
to the situation where H is replaced with H ∪H−1 , and the lemma will follow.

In the special situation, there is no other choice but to define

y(h1...hn) = (. . . (yh1)h2 . . .)hn

for hi ∈ H . Then we claim that f(x)g = f(xg) holds for all g ∈ G: this follows by
induction from assumption 5; the first inductive step is f(x)(h1h2) = (f(x)h1)h2 =
(f(xh1))h2 = f((xh1)h2) = f(x(h1h2)).

It remains to be shown that we have defined an action on Y . So let
g1, g2 ∈ G be arbitrary elements and set g = g1g2 . We have to show that
yg = (yg1)g2 holds for each y ∈ Y . Choose x ∈ X such that y = f(x). Then
yg = f(x)g = f(xg) by what we have just proved. On the other hand, in the same
way we obtain (yg1)g2 = (f(x)g1)g2 = (f(xg1))g2 = f((xg1)g2) = f(x(g1g2)) = f(xg),
which finishes the proof.

We shall apply the lemma to X = C× , Y = Z+ and f = α ; the part of
G will be played by ∆, and the generating set H will be the union of the one-
parameter groups H,E,Ξ together with the set {ρt | 0 < t < π} (which generates
R). We would be allowed to omit one of the sets E,Ξ, but we shall need to know
explicitly how each of these one-parameter groups acts on Z , and their action is
easy to write down anyway. Only the action of R is a little more complicated.
We need to define the action of the generators on Z+ , but actually we shall define
them on all of Z at no extra cost.

For p, q, r ∈ R such that p, r > 0, we define a bijection γp,q,r : Z → Z by

γp,q,r : (x, y) 7→
{

(px + q, ry), if x ∈ R

(∞, ry/p2), if x = ∞,

and we set ηt = γ1,0,t−2 , εt = γ1,−t,1 , ξt = γt2,0,t2 , so that we have

ηt(x, y) = (x, t−2y), εt(x, y) = (x− t, y), ξt(x, y) = (t2x, t2y),
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except for the special cases εt(∞, y) = (∞, y) and ξt(∞, y) = (∞, t−2y). It is
easily seen that the maps γp,q,r form a permutation group of Z isomorphic to the
group L2 ×R, where L2 denotes the non-abelian 2-dimensional Lie group, but we
shall obtain more information later.

Finally, let ρ0 be the identity of Z and define ρt : Z → Z for 0 < t < π by

ρt : (x, y) 7→





(x cos t−sin t
x sin t+cos t

, e2sty
µ2(x sin t+cos t)

), if x ∈ R, x sin t+ cos t 6= 0,

(∞, (sin2 t)e2sty/k), if x ∈ R, x sin t+ cos t = 0,
(cot t, e2sty/ sin2 t), if x = ∞.

We extend the definition of ρt to all t ∈ R by reducing modulo π .

Our next task is to show that all generating maps are homeomorphisms of
Z+ ; in fact, we shall show this for Z instead of Z+ .

Proposition 3.3. The maps ηt, εt, ξt and ρt defined above are homeomor-
phisms of the Laguerre cylinder Z .

Proof. It suffices to show continuity of the maps, since the inverses are of the
same kind; for instance, the inverse of ρt is ρπ−t . We shall concentrate on the
proof of continuity for ρt ; the treatment of the other maps (and of the composite
maps γp,q,r ) is very easy and will be left to the reader. The points where continuity
of ρt is not obvious are those where the second or third line in the definition of ρt
applies.

To show continuity at (∞, y0), consider a sequence (xn, yn) converging to
this point. This means that xn → ∞ (and we may assume that xn 6= ∞ for all
n), and that yn

µ2(xn)
→ y0 . We have to show that ρt(xn, yn) → ρt(∞, y0). We may

assume that t ∈ (0, π), hence µ0(xn sin t + cos t) = µ0(xn) for n large, and the
limit in question is equal to

lim

(
xn cos t− sin t

xn sin t + cos t
,

e2styn
µ2(xn sin t + cos t)

)
=

(
cot t,

lim(e2stynµ2(xn
−1))

lim(sin t+ x−1
n cos t)2

)
.

Comparing this to the definition of ρt(∞, y0) establishes our claim.

Now consider a point (x0, y0) ∈ R × R such that x0 sin t + cos t = 0. We
are given a sequence (xn, yn) converging to this point in the usual sense, and we
may assume that xn sin t + cos t is always nonzero. Our assumption implies that
x0 = − cot t, and thus

x0 cos t− sin t = −(sin t)−1 < 0

(we assume again that t ∈ (0, π)). We have to show that ρt(xn, yn) converges to the
point (∞, (sin2 t)e2sty0k

−1). This means that in the first place, h(xn) = xn cos t−sin t
xn sin t+cos t

tends to ∞ (which is the case) and that, moreover,

e2styn
µ0(xn sin t+ cos t)(xn sin t + cos t)2µ0(h(xn))h(xn)2

converges to (sin2 t)e2sty0k
−1 . Now we have seen that the numerator of h(xn) is

negative, which shows that µ0(h(xn)) = µ0(−(xn sin t+ cos t)), hence the product
of the µ0 ’s in the denominator is k . Moreover, xn cos t − sin t → −(sin t)−1 , and
our claim follows.
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Next, we aim to prove equivariance of α . It would suffice to do this
for a minimized system of generators. However, in most cases it is completely
straightforward to obtain equivariance with respect to a one-parameter group,
and this justifies the explicit definitions given above.

Proposition 3.4. The map α : C
× → Z introduced in 3.1 is equivariant with

respect to all generators of ∆ introduced above, that is, the maps ηt, εt, ξt , and ρt .

Proof. We deal only with the hard part, ρt . We may assume that t ∈ (0, 2π),
for if we prove this much, then we know that ρπ induces the identity on Z+ , and
we know from 3.2 that the family of maps ρt , t ∈ (0, 2π), of Z embeds in a one-
parameter group. It follows then that ρt may be computed by reduction of t mod
π . This agrees with our definition of ρt for general t.

We have to prove the equation α(ρt(re
iϕ)) = ρt(α(reiϕ)) for all r > 0 and

all ϕ ∈ [−π
2
, 3π

2
]. Now the definitions of α and of ρt involve case distinctions.

Since we know that α and ρt are continuous, it suffices to prove the equation in
the generic cases. Thus, the action of ρt on Z is given as follows:

ρt(x, y) =

(
x cos t− sin t

x sin t+ cos t
,

e2st̃y

µ2(x sin t̃+ cos t̃)

)
,

where we have written t̃ ∈ [0, π) for t reduced mod π , and we have omitted the
tilde where it makes no change. Here we ignore the exceptional cases x = ∞ and
x sin t + cos t = 0. The formula for α may be used in the generic form valid for
π
2
6= ϕ ∈ (−π

2
, 3π

2
). Then we have

α(ρt(re
iϕ)) =


− tan(ϕ+ t),

e2s(ϕ̂+t)

r2µ2(cos(ϕ+ t))


 ,

where ϕ̂+ t ∈ (−π
2
, 3π

2
) denotes ϕ+ t reduced mod 2π . Now let

ϕ+ t = ϕ̂+ t+ 2nπ, t = t̃+mπ.

Then we have 2s(ϕ̂+ t) = 2s(ϕ + t) − 4nsπ = 2sϕ + 2st̃ + 2smπ − 4snπ , hence
(with k = e2πs ),

e2s(ϕ̂+t) = e2sϕe2st̃km−2n.

On the other hand, we obtain from the definitions that

ρt(α(reiϕ)) =

(
− tanϕ cos t− sin t

− tanϕ sin t+ cos t
,

e2st̃e2sϕ

r2µ2(cosϕ)µ2(− tanϕ sin t̃+ cos t̃)

)
.

This is simplified using the identities − tanϕ cos t − sin t = −(cosϕ)−1 sin(ϕ + t)
and − tanϕ sin t + cos t = (cosϕ)−1 cos(ϕ + t). Together, the equations obtained
so far yield

ρt(α(reiϕ)) =


− tan(ϕ+ t),

e2s(ϕ̂+t)

r2km−2nµ0(cosϕ)µ0((cosϕ)−1 cos(ϕ+ t̃)) cos2(ϕ+ t)


 .
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Now our claim will follow from the identity

µ0(cos(ϕ+ t))=km−2nµ0(cosϕ)µ0((cosϕ)−1 cos(ϕ+ t̃)).

It suffices to prove this identity for m ∈ {0, 1}. This is routinely checked by a
case distinction depending on which of the intervals (−π

2
, π

2
), (π

2
, 3π

2
), (3π

2
, 5π

2
), or

(5π
2
, 7π

2
) contains ϕ or ϕ+ t. The details are omitted.

We introduce one more map acting on the Laguerre cylinder Z , namely the
involution σ given by

σ : (x, y) 7→
{

(x,−y), for y ≥ 0
(x,−ky), for y ≤ 0.

This map fixes all points of the set

L0 = (R ∪ {∞}) × {0},
and it interchanges the complementary components Z+ , Z− of L0 . We are now
ready to state some comprehensive results.

Theorem 3.5. 1. There is an action of the Moulton group ∆ = ∆(s) on the
Laguerre cylinder Z(s) extending the actions of the one-parameter groups
η, ε, ξ and ρ and generated by them.

2. The action of ∆ on Z has three orbits, Z+ , Z− and L0 .

3. Let τ : Z → Z be defined by τ(x, y) = (x,−y). The maps α : C× → Z+

and τ ◦ α : C× → Z− are twofold coverings and are equivariant with respect
to ∆.

4. The map α has a continuous ∆-equivariant extension α to the complement
of the ∆-fixed point in the Moulton plane, sending the ∆-fixed line at infinity
bijectively onto L0 .

5. The kernel of the action of ∆ on Z is generated by the element ρπ of order 2.
The center of the effective factor group ∆eff = ∆/〈ρπ〉 is the one-parameter
group H (considered as a subgroup of ∆eff ). The simply connected cover
Ω̃ of SL2 R is (isomorphic to) a subgroup of ∆eff , and ∆eff = HΩ̃. The
intersection H ∩ Ω̃ is the infinite cyclic center of Ω̃ . In particular, ∆eff is
4-dimensional.

6. The kernel of the action of ∆ on L0 is the center H〈ρπ〉 of ∆, and the
effective action induced on L0 is the 2-transitive standard action of Ω =
PSL2 R on the projective line.

7. The map σ normalizes ∆eff , in fact, σγp,q,rσ = γp,q,kr and σρtσ = γ1,0,kρt .
In particular, ∆eff has index 2 in the extension Γ = ∆eff〈σ〉, and ∆eff = Γ1

is the identity component of Γ.

8. The action of Γ on Z has two orbits, L0 and Z \ L0 .

It is worthwhile to picture the map α . What happens is that the Moebius
strip P \{0} (the point set of the projective Moulton plane minus the fixed point 0)
is folded along its ‘middle circle’ L∞ , thus producing a cylinder with one boundary
curve (resulting from the folding line) and one ‘open boundary’.
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Proof. The maps τ defined in 3 and ζ : Z → L0 defined by ζ(x, y) = (x, 0)
commute with each of the homeomorphisms ρt, ηt, εt, ξt of Z , hence by 3.4 the
three maps α : C× → Z+ , τ ◦ α : C× → Z− and ζ ◦ α : C× → L0 are equivariant
with respect to those homeomorphisms. Therefore, assertion 1 together with the
last part of 3 (equivariance with respect to all of ∆) follows from 3.2. Assertion 2
is now obvious.

For the remaining part of 3 (the covering property), it is sufficient to
consider α , since τ is a homeomorphism Z+ → Z− . The complement Z\({∞}×R)
is evenly covered by α ; in fact, each of the two components of C× \ iR is mapped
homeomorphically onto this set. Transitivity of ∆ on Z+ now implies that every
point of Z has an open neighborhood that is evenly covered by α , and the claim
3 follows.

Let 0 and L∞ denote the fixed point and the fixed line of the Moulton plane
M(s), respectively. The map α sends each affine line L passing through 0 onto
some generator of the cylinder Z . We extend α by sending the point of intersection
L∧L∞ to the point α(L)∧L0 . The extension α is equivariant, because ∆ permutes
the lines passing through 0 and also permutes the generators. Moreover, α is
continuous, because a sequence of points an = rne

iϕn ∈ C× = P \ L∞ converges
to a ∈ L∞ if, and only if, rn → ∞ and the projections (an ∨ 0) ∧ L∞ converge to
a. If this is the case, then the second coordinates of α(an) converge to 0 and the
first coordinates converge to α(a), hence α(an) → α(a) as desired.

In [12], 34.6, it is proved that the commutator group ∆′ is (isomorphic to)
Ω̃ and that ∆ is the product of its center H〈ρπ〉 with Ω̃, the intersection of the
two groups being the infinite cyclic center of Ω̃. (Note that ρπ has a different
meaning in [12]; what we call ρπ is denoted −1 there.) In particular, the factor
group ∆/(H〈ρπ〉) is the simple group Ω. Since H〈ρπ〉 acts trivially on L0 but ∆
does not, we infer that the former group is the kernel of the action on L0 and the
induced group is isomorphic to Ω. There is only one action of Ω on the circle,
and claim 6 is proved. See below for a more direct proof.

Assertion 5 now follows easily; just observe that the kernel of the action on
Z must be contained in the kernel on L0 , and that H acts faithfully on Z . The
center of ∆eff is not larger than H since the factor group Ω is simple. Assertion
7 is verified by direct computation, and 8 is obvious.

As an alternative, we give a direct proof of the isomorphism of the effective
action on L0 to the action of Ω on the projective line (the set of all 1-dimensional
subspaces of R2 ). Each element of Ω can be represented by a 2 × 2 matrix(
a b
c d

)
such that ad− bc = 1. This matrix operates on the set of 1-dimensional

subspaces of R2 like the fractional linear map x 7→ ax+b
cx+d

on R ∪ {∞}. Under

this correspondence the standard group SO2(R) of rotations
(

cos t − sin t
sin t cos t

)
for

t ∈ R yields the permutations x 7→ x cos t−sin t
x sin t+cos t

induced by ρt on L0 . The maps
induced by γp,q,1 are obtained in a similar way from upper triangular matrices.
Together, these matrices generate Ω, and the isomorphism follows.

We have avoided the question whether the action of ∆ on Z is continuous,
i.e., whether δ(z) depends continuously on the pair (δ, z). We do know from 3.2
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that each δ ∈ ∆ acts as a homeomorphism of Z . This will suffice for our purposes.
Continuity of the action can be deduced from continuity of the Moulton action,
using the equivariant maps α and τ ◦ α from Theorem 3.5 and observing that
these maps admit local cross sections.

We remark here that some of the results of 3.5 could have been obtained
independently of the facts about Moulton actions that we took from [12]. In a
first draft of this paper, we started from the definition of a Laguerre plane given
in the next section and showed that the generators of Γ considered in the present
section are automorphisms of that plane (by essentially the same proof as in the
next section) and we used known facts about automorphism groups of Laguerre
planes. We prefer the present version because it gives a more complete picture of
the structure of Γ and its action.

4. The Laguerre planes

In this section we present the circles that make up our Laguerre planes. In general,
a flat (or 2-dimensional) Laguerre plane L = (Z, C) is an incidence structure on
the cylinder Z = S1 × R (where S1 is represented as R ∪ {∞} as before) where
C is a collection of graphs of continuous functions S

1 → R such that the usual
axioms of joining and touching are satisfied and parallel classes of points are the
verticals (or generators) on the cylinder; compare [3] and [4] or [10] Chapter 5 or
[16].

For a given k = e2πs > 1, we are going to construct a plane Lk . The
automorphism group of this plane will be the group Γ constructed in Section 3;
see Theorem 3.5. Therefore, we shall use the Laguerre cylinder Z from Section
3 as the point set. Since the topology of Z is not the product topology in our
representation of Z , our circles will be graphs of functions that are discontinuous
at ∞. Nevertheless, they will be topological circles in the topology induced by Z .

The first one of our circles is the 1-dimensional ∆-orbit L0 . The shape of
the other circles will be obtained from the action of certain one-parameter groups
of ∆eff . Since the circle space C of a flat Laguerre plane is a 3-manifold, it is
clear that every circle C is fixed by some one-parameter group Φ, and Φ has to
be distinct from H because C should meet every generator exactly once. Thus,
elements of Φ have the form ηatψt , where a ∈ R and ψ is a nontrivial one-
parameter group of Ω̃. Conjugation in ∆ does not change the number a, but
can be used to reduce ψ to one of the three types of one-parameter groups in Ω̃,
represented by ε, ξ , and by the spiral rotations ρ̃t = ηestρt (in our notation; in
[12], these maps are simply called ρt ). All one-parameter subgroups of Ω̃ are non-
compact. The one-parameter groups that we actually use in order to construct
circles are the ∆-conjugates of E,Ξ and of the compact group R ∼= SO2R (which
is not contained in Ω̃). Notice that also the H -orbits are objects of the Laguerre
plane; the parallel classes consist of two of these orbits plus one point on L0 .

The choice of an orbit of a given one-parameter group does not matter very
much. If Φ fixes C , and A = Φ(a) ⊆ Z+ is a nontrivial orbit contained in C ,
then all H -images of A are also orbits of Φ because H is central, and they are
contained in the corresponding H -images of C . Thus we may choose suitable
orbits of the preferred one-parameter groups arbitrarily and combine them into
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circles (not so arbitrarily), and then apply the group ∆ to obtain all circles.

The R-orbits in Z+ are simply the α-images of half circles
{
reiϕ | − π

2
< ϕ ≤ π

2

}
.

They are topological circles because ρπ acts as the identity on Z+ . By definition
of α , see 3.1, they have the following form:

C =

{(
− tanϕ,

e2sϕ

r2cos2ϕ

) ∣∣∣∣ − π

2
< ϕ <

π

2

}
∪ {(∞, r−2k−

1

2 )},

where 0 < r ∈ R; observe that µ0(cosϕ) = 1 in the given range. If we define
x = − tanϕ for ϕ 6= π

2
, then ϕ = − tan−1 x = cot−1 x− π

2
, and (cosϕ)−2 = x2 +1.

This gives
C =

{
(x, ae2s cot−1 x(1 + x2))

∣∣∣ x ∈ R

}
∪ {(∞, a)},

where a = r−2k−
1

2 . Since R is centralized by RH and ∆ is generated by this set
together with EΞ, we obtain all orbits in Z+ of all conjugates of R if we apply
the transformations (x, y) → (cx + b, y) to C , where b, c ∈ R and c > 0. The
orbits in Z− are obtained from these by the transformation τ introduced in 3.5.
This leads to the circles Da,b,c appearing in the following list. It is clear from the
construction that the set of these circles is invariant under ∆. They are precisely
the circles disjoint from L0 ; this corresponds to the fact that R is of elliptic type,
i.e., fixes no point on L0 .

Here we have looked at all orbits of one-parameter groups conjugate to R .
For the remaining groups E and Ξ, we shall be content to show that all orbits of
this group itself have been used to form circles appearing in the final list. That
the same is true for conjugate groups will follow once we know that the whole
system of circles is ∆-invariant. Invariance under the groups H , E and Ξ is
fairly obvious, compare 4.1 below, but R-invariance requires some computations,
which are omitted. Since these one-parameter groups generate ∆, invariance under
∆ then follows.

Consider the group E , which is of parabolic type (i.e., E fixes exactly one
point on L0 , namely the point (∞, 0)). The E -orbits will be used accordingly to
assemble circles touching the circle L0 in that unique fixed point. Now εt acts on
Z by (x, y) → (x− t, y), hence the orbits have the form

Lc = {(x, c) | x ∈ R} ∪ {(∞, 0)}.

Under the mapping ρt , the circle Lc is taken to the circle Cck−1e2st sin2 t,cot t,cot t

appearing in the list below.

Similarly, the group Ξ of hyperbolic type (fixing two points on L0 ) yields
those circles which intersect L0 twice, namely in the points (0, 0) and (∞, 0). We
have ξt(x, y) = (t2x, t2y), hence the orbits of Ξ are Euclidean rays starting from
(0, 0). We use them to compose lines Lm,b that look like lines of the affine Moulton
plane Mk ; observe, however, that they have nothing to do with the lines of the
plane M(s) that we used to cover Z+ via the mapping α . Yet the appearance of
Moulton lines is not a coincidence: it will turn out that the derivation of Lk in
the point (∞, 0) is equal to Mk .
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Here is our definition of circles of Lk :

Lc = {(x, c) | x ∈ R} ∪ {(∞, 0)}
for c ∈ R;

Lm,b =
{
(x,m(x− b)) | x ∈ R

}
∪ {(∞, 0)}

where m, b ∈ R, m > 0;

Lm,b = {(x,mµ1(x− b)) | x ∈ R} ∪ {(∞, 0)}
where m, b ∈ R, m < 0;

Ca,b,c = {(x, aµ1(x− b)(x− c)) | x ∈ R} ∪ {(∞, a)}
where a, b, c ∈ R, a > 0, b ≤ c;

Ca,b,c = {(x, a(x− b)µ1x− c) | x ∈ R} ∪ {(∞, a)}
where a, b, c ∈ R, a < 0, b ≤ c;

Da,b,c =
{
(x, ae2s cot−1 x−b

c ((x− b)2 + c2)) | x ∈ R

}
∪ {(∞, a)}

where a, b, c ∈ R, a 6= 0, c > 0.

The sets Lc and Lm,b are precisely the non-vertical lines of the Moulton plane
Mk except for the point (∞, 0). The sets Ca,b,c are composed of two branches of
Euclidean parabolae. For b 6= c these parabolae pass through the same two points
on the x-axis; the two parts are pasted together at one of their common points
on the x-axis at which both the parabolae have non-positive Euclidean slopes and
such that some bent line of the Moulton plane Mk becomes a tangent at this
point. For b = c the sets Ca,b,b have only one point in common with L0 , the point
(b, 0), and except for this point are entirely above or below L0 for a > 0 and
a < 0, respectively.

Let

Ck = {Lc | c ∈ R} ∪ {Lm,t | m, t ∈ R, m 6= 0}
∪{Ca,b,c | a, b, c ∈ R, a 6= 0, b ≤ c}
∪{Da,b,c | a, b, c ∈ R, a 6= 0, c > 0}

We denote by Lk = (Z, Ck) the incidence structure with point set the cylinder Z
and circle set Ck . We say that two points (x, y) and (x′, y′) are parallel if and
only if x = x′ ; the parallel classes, that is, the maximal sets of mutually parallel
points, are just the generators of Z , that is, the vertical lines in our description.

We will show in Section 5. that Lk is a Laguerre plane and indeed a flat
Laguerre plane. In the last section we show that the full automorphism group of Lk

is in fact the 4-dimensional group Γ introduced in 3.5, and that the planes Lk are
mutually non-isomorphic. As we remarked above, the generating one-parameter
groups of ∆eff consist of automorphisms of Lk . In fact, also the map σ introduced
in 3.5 is an automorphism (but not the map τ !). We list the images of circles under
the generating automorphisms (except for rotations) in the following proposition.

Proposition 4.1. σ and each γp,q,r for p, q, r ∈ R, p, r > 0, is an automor-
phism of Lk . More specifically,
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γp,q,r(Lc) = Lrc, σ(Lc) = L−µ1(c),
γp,q,r(Lm,b) = Lrm/p,pc+q, σ(Lm,b) = L−µ1(m),b,
γp,q,r(Ca,b,c) = Cra/p2,pb+q,pc+q, σ(Ca,b,c) = C−µ1(a),b,c,
γp,q,r(Da,b,c) = Dra/p2,pb+q,pc, σ(Da,b,c) = D−µ1(a),b,c.

Since the group Γ is generated by these maps together with the rotations
ρt , see Theorem 3.5, we obtain the following corollary.

Corollary 4.2. The group Γ introduced in 3.5 consists of automorphisms of
Lk . Moreover, Σ = {γp,q,p2 | p, q ∈ R, p > 0} is a subgroup of Γ that acts trivially
on the infinite parallel class Π∞ = {∞} × R.

5. The Laguerre axioms

The axioms of a Laguerre plane are equivalent to the condition that for each point
p of a Laguerre plane L the incidence structure Ap = (Ap,Lp) whose point set Ap

consists of all points of L that are not parallel to p and whose line set Lp consists
of all restrictions to Ap of circles of L passing through p and of all parallel classes
not passing through p is an affine plane. We call Ap the derived affine plane at p.

Since the group of automorphisms obtained in Section 4. has two orbits on
the cylinder Z by Proposition 3.5, it suffices to verify that the derived incidence
structures at the points (∞, 0) and (∞, 1) are affine planes in order to show that
the incidence structure Lk from Section 4. is a Laguerre plane. For the first point
we just obtain, by construction, the Moulton plane Mk as described in Section 2.

Proposition 5.1. Each derived incidence structure of Lk at a point of L0 is
an affine plane isomorphic to the Moulton plane Mk . In particular, these derived
affine planes are non-Desarguesian.

The verification that the derived incidence structure A at the second point
(∞, 1) is an affine plane is done in a number of steps. Recall that A has point
set R2 and lines the vertical Euclidean lines and the restrictions to R2 of the
circles C1,b,c and D1,b,c , that is, these circles minus the point (∞, 1). We refer to
such a line as Cb,c or Db,c , respectively. For convenience we sometimes make the
coordinate transformation

ψ : (x, y) 7→
{

(x,
√
y), if y ≥ 0,

(x,−√−y), if y < 0

to obtain an isomorphic model ψ(A). The advantage of ψ(A) is that

ψ(Cb,b) = {(x, x− b) | x ≥ b} ∪ {(x,−
√
k(x− b) | x < b}

is made up of halves of two Euclidean lines. In order to distinguish lines of ψ(A)
from Euclidean lines we denote the Euclidean line y = mx + t by Em,t . We
further call the Euclidean lines E1,−b and E−

√
k,b

√
k the supporting Euclidean lines

of ψ(Cb,b).

Note that each automorphism γp,q,p2 in Σ from Proposition 4.2 induces a
collineation γp,q of A. Furthermore, in the coordinates of ψ(A) the collineation
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γp,q becomes the dilatation γψp,q : (x, y) 7→ (px + q, py) of the real affine plane. In
particular, Euclidean lines are mapped to parallel Euclidean lines.

We begin with some properties of the functions that describe ψ(D0,1) and
ψ(C0,1). Note that ψ(D0,1) is entirely above the x-axis whereas ψ(C0,1) has two
connected pieces above the x-axis; compare Figures 1 and 2 below. We call the
collection of all points of ψ(C0,1) whose abscissas are greater than 1 the right
branch and those points whose abscissas are negative the left branch.

Lemma 5.2. 1. Let

f(x) = es cot−1 x
√
x2 + 1

so that ψ(D0,1) is the graph of f . Then the derivative f ′(x) is strictly
increasing from −

√
k to 1 and E1,s and E−

√
k,−s

√
k are oblique asymptotes for

f . These Euclidean lines are supporting Euclidean lines for ψ(C−s,−s) and
intersect on L0 in the point (−s, 0). Furthermore, ψ(D0,1) is strictly above
ψ(C−s,−s). If (xi, yi), i = 0, 1, are two points on ψ(D0,1) with x0 < x1 , then

−
√
k < y1−y0

x1−x0
< 1 < y1+y0/

√
k

x1−x0
.

2. Let

g(x) =





√
µ1(x)(x− 1), for x ≤ 0 or x ≥ 1,

−
√
x(1 − x), for 0 < x < 1,

so that ψ(C0,1) is the graph of g . Then g′(x) is strictly decreasing from −
√
k

to −∞ on the interval (−∞, 0) and from +∞ to 1 on (1,∞). The Euclidean
lines E1,−1/2 and E−

√
k,
√
k/2 are oblique asymptotes for g . These Euclidean

lines are supporting Euclidean lines for ψ(C1/2,1/2) and intersect on L0 in
the point (1/2, 0). Furthermore, ψ(C0,1) is strictly below ψ(C1/2,1/2). If
(xi, yi), i = 0, 1, are two points on ψ(C0,1) with x0 < x1 , then y1−y0

x1−x0
≥ 1 in

case these points are on the right branch, y1−y0
x1−x0

≤ −
√
k if they are on the

left branch, and −
√
k < y1−y0

x1−x0
< 1 but y1+y0/

√
k

x1−x0
≤ 1 if (x0, y0) is on the left

branch and (x1, y1) is on the right branch.

Figure 1 Figure 2
ψ(D0,1) and ψ(C−s,−s) for k = 6 ψ(C0,1) and ψ(C1/2,1/2) for k = 6
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Proof. 1) Differentiating f twice one finds

f ′(x) = es cot−1 x(x− s)/
√
x2 + 1,

f ′′(x) = (s2 + 1)es cot−1 x/(x2 + 1)3/2.

Hence f ′′(x) > 0 for all x ∈ R and f ′ is strictly increasing. But limx→∞ f ′(x) = 1
and limx→−∞ f ′(x) = −

√
k . This proves the statements on f ′ .

Using l’Hôpital’s rule we obtain

lim
x→∞

(f(x) − x) = lim
x→∞

es cot−1 x
√

1 + x−2 − 1

x−1

= lim
x→∞

es cot−1 x(sx + 1)/
√
x2 + 1

= s

and

lim
x→−∞

(f(x) +
√
kx) = lim

x→−∞

−es cot−1 x
√

1 + x−2 +
√
k

x−1

= lim
x→−∞

es cot−1 x(sx+ 1)/
√
x2 + 1

= s
√
k.

Since f ′(x) − 1 < 0 for all x ∈ R, the function x 7→ f(x) − (x + s) is strictly
decreasing and f(x) > x + s for all x ∈ R. Similarly, f ′(x) +

√
k > 0 for all

x ∈ R so that the function x 7→ f(x) +
√
k(x+ s) is strictly increasing. Therefore

f(x) > −
√
k(x + s) for all x ∈ R.

The first two inequalities involving two points on ψ(D0,1) follow from the
mean value theorem and from the fact that f is strictly convex with derivatives
between −

√
k and 1. As for the third inequality, we consider the Euclidean lines

of slopes −
√
k and 1 through the left and right point, respectively. Each of these

Euclidean lines is above the asymptote of the same slope. But the asymptotes
intersect in a point on the x-axis. Therefore the point of intersection of the
Euclidean lines must be above the x-axis. Explicitly, we have the Euclidean lines
y = x− x1 + y1 and y = −

√
k(x− x0) + y0 which have the point

(
1

1 +
√
k
(y0 − y1 + x1 + x0

√
k),

√
k

1 +
√
k
(y1 + y0/

√
k − x1 + x0)

)

in common. This shows that y1+y0/
√
k

x1−x0
> 1.

2) The statements follow similarly to the first part from

g′(x) = µ0(x)(x−
1

2
)/g(x) and g′′(x) = −µ0(x)

2/(4g(x)3)

for x < 0 or x > 1. If (x0, y0) is on the left branch and (x1, y1) is on the
right branch, then the right branch is strictly between the Euclidean lines though
(x0, y0) of slopes 1 and −

√
k . This implies that −

√
k < y1−y0

x1−x0
< 1. The inequality

y1+y0/
√
k

x1−x0
≤ 1 follows from the fact that the Euclidean lines though (x0, y0) of slope

−
√
k and through (x1, y1) of slope 1 must intersect below or on the x-axis.
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Since γc,b(D0,1) = Db,c and γc−b,b(C0,1) = Cb,c the results of Lemma 5.2
carry over to arbitrary lines Db,c and Cb,c , after application of ψ . The right and
left branch of Cb,c are defined analogously to the right and left branch of ψ(C0,1)
in the obvious way.

Corollary 5.3. Let (xi, yi), i = 0, 1, be two points with x0 < x1 and y0, y1 > 0.

1. If the two points are on a line Db,c , then −
√
k <

√
y1−

√
y0

x1−x0
< 1 <

√
y1+

√
y0/k

x1−x0
.

2. If the two points are on a line Cb,c , then
√
y1−

√
y0

x1−x0
≥ 1 in case they are

on the right branch,
√
y1−

√
y0

x1−x0
≤ −

√
k if they are on the left branch, and

−
√
k <

√
y1−

√
y0

x1−x0
< 1 but

√
y1+

√
y0/k

x1−x0
≤ 1 if (x0, y0) is on the left branch and

(x1, y1) is on the right branch of Cb,c .

Proposition 5.4. A is a linear space, that is, any two points can be uniquely
joined by a line.

Proof. Let (xi, yi), i = 0, 1 be two points of R2 . The existence and uniqueness
of a joining line is obvious for x0 = x1 . Using the group of collineations of A
induced by Σ we can therefore assume that x0 = 0 and x1 = 1. If at least one
yi is non-positive, any joining line must come from a circle C1,b,c . For example, in
case y0 ≤ 0, the joining line is found from the system of equations

y0 = bc (1)

y1 = (1 − b)(1 − c) (2)

as in the classical flat Laguerre plane. This system of equations leads to

b2 + (y1 − y0 − 1)b+ y0 = 0. (3)

The discriminant of this quadratic equation in b is

D = (y1 − y0 − 1)2 − 4y0, (4)

which is non-negative. Hence (3) has two solutions, the smaller one being the
parameter b and the larger one being the parameter c of a joining line Cb,c .

In case y0 > 0 ≥ y1 one obtains a similar system of equations which leads
to essentially the same equation (3) and discriminant (4), the only difference being
that y0 is replaced by y0/k .

We now assume that y1, y2 > 0. If not all inequalities in Corollary 5.3 are
satisfied, the two points must be on a line of the form Cb,c . This leads to similar
systems of equations for b and c as above, and consequently to a similar quadratic
equation (3), where y0 or y1 may be replaced by y0/k and y1/k , respectively.
For example, if

√
y1 − √

y0 ≥ 1, both points must be on the right branch of
Cb,c and we obtain exactly the same equation (3). But

√
y1 −

√
y0 ≥ 1 implies

y1 = (
√
y1)

2 ≥ (
√
y0 + 1)2 = y0 + 1 + 2

√
y0 so that y1 − y0 − 1 ≥ 2

√
y0 and the

discriminant D as in (4) is non-negative.
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Likewise, if
√
y0/k+

√
y1 ≤ 1, then −

√
k < −√

y0 <
√
y1−

√
y0 <

√
y1 < 1

so that (0, y0) must be on the left branch of Cb,c and (1, y1) on the right branch.
This means that in equation (1) and also in the subsequent equations (3) and (4)

y0 is replaced by y0/k . Now
√
y0/k +

√
y1 ≤ 1 implies y1 ≤ (1 −

√
y0/k)

2 =

1 + (y0/k)− 2
√
y0/k so that 2

√
y0/k ≤ 1 + (y0/k)− y1 and the discriminant D is

again non-negative.

Note that in any of the cases above, the joining line Cb,c is unique.

We finally assume that all inequalities in Corollary 5.3(1) are satisfied. A
joining line cannot be of the form Cb,c in this case and we have to show that there
is a unique line of the form Db,c though these points.

The inequalities in Corollary 5.3(1) imply that there is an m such that both
points (0, y0) and (1, y1) are above Cm,m . More precisely, one finds that 1−√

y1 <

m <
√
y0/k . (One only has to consider the lines of the form Cm,m through each

of these points and below the other point.) Furthermore, for each such m there is
precisely one c > 0 such that Dm+sc,c passes through (0, y0). (ψ(Dm+sc,c) has the
supporting Euclidean lines of ψ(Cm,m) as asymptotes; compare Lemma 5.2(1).)
In order to see this consider the function fm(c) = e2s cot−1(−s−m/c)((m+ sc)2 + c2).
Its derivative is f ′

m(c) = 2c(s2 + 1)e2s cot−1(−s−m/c) > 0 so that fm is strictly
increasing in c. But limc→∞ fm(c) = ∞ and limc→0 fm(c) = µ2(−m). If m ≥ 0,
then µ2(−m) = km2 < y0/k < y0 , because k > 1. For m < 0 we have
µ2(−m) = m2 < (1 − √

y1)
2 < y0 by one of the inequalities in Corollary 5.3(1).

Hence, in any case limc→0 fm(c) < y0 and by continuity there must be a cm such
that fm(cm) = y0 . But for this cm the point (0, y0) is on Dm+scm,cm . Moreover,
cm is uniquely determined because fm is injective.

We differentiate fm(cm) with respect to m. Since fm(cm) = y0 we obtain

0 =
d

dm
fm(cm) = 2e2s cot−1(−s−m/cm)(m + 2scm + (s2 + 1)cmc

′
m)

where c′m denotes the derivative of cm . Hence

m+ 2scm + (s2 + 1)cmc
′
m = 0. (5)

Let h(m) = e2s cot−1(−s+(1−m)/cm)((1−m−sc)2 + c2) so that (1, h(m)) is the
point of intersection of Dm+scm,cm with the vertical line x = 1. For the derivative
of h one finds

h′(m) = 2e2s cot−1(−s+(1−m)/cm)(m− 1 + 2scm + (s2 + 1)cmc
′
m)

= −2e2s cot−1(−s+(1−m)/cm) < 0

by (5). This shows that h is strictly decreasing. For m close to 1 − √
y1 one

finds h(m) > y1 (Dm+scm,cm intersects x = 1 above the other point (1, y1)) and

for m close to
√
y0/k one has h(m) < y1 (Dm+scm,cm intersects x = 1 close to

(1, µ2(1−
√
y0/k)), the point of intersection of C√

y0/k,
√
y0/k

with x = 1). However,

µ2(1 −
√
y0/k) < y0 so that by continuity there is an m such that h(m) = y1),

that is, Dm+scm,cm passes through both points (0, y0) and (1, y1). Moreover, m is
uniquely determined because h is injective.
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Note that for a line Db,c through both points there is a unique line Cm,m
such that the supporting Euclidean lines of ψ(Cm,m) are asymptotes of ψ(Db,c).
From what we found above we know that Db,c then must be the line Dm+scm,cm .
Thus the line joining both points is unique in this case too.

We now deal with the parallel axiom in A and first establish criteria for
two lines to be parallel.

Lemma 5.5. Two lines Cb,c and Cb′,c′ are parallel if and only if b+ c = b′ + c′ .

Proof. Suppose that b+ c = b′ + c′ and, without loss of generality, that b < b′ .
From

(x− b′)(x− c′) = x2 − (b′ + c′)x + b′c′

= x2 − (b + c)x+ bc + b′c′ − bc

= (x− b)(x− c) + b′c′ − bc

we see that µ1(x − b)(x − c) 6= µ1(x − b′)(x − c′) for x ≤ b or x ≥ b′ . But for
b < x < b′ we have µ1(x − b)(x − c) < 0 and µ1(x − b′)(x − c′) > 0 so that
µ1(x− b)(x− c) 6= µ1(x− b′)(x− c′) for all x ∈ R. This shows that Cb,c and Cb′,c′

are parallel.

Conversely, assume that b+ c 6= b′ + c′ . If u ∈ {b, c} ∩ {b′, c′}, then ((u, 0)
is a finite point on both Cb,c and Cb′,c′ . We thus assume that {b, c}∩{b′, c′} = Ø,
and, by symmetry, that b < b′ .

Let f(x) = µ1(x−b′)(x−c′)−µ1(x−b)(x−c). From µ0(x−b) = µ0(x−b′)
for x < b or x > b′ we find that

x =
bc− b′c′

b + c− b′ − c′

is a zero of f unless this value is between b and b′ . But then

(c′ − b)(b′ − b)

b+ c− b′ − c′
= b− bc− b′c′

b+ c− b′ − c′
< 0 < b′ − bc− b′c′

b+ c− b′ − c′
=

(c− b′)(b′ − b)

b+ c− b′ − c′
.

Since b < b′ ≤ c′ , the inequalities above imply that b ≤ c < b′ ≤ c′ . But then

f(c) = k(c− b′)(c− c′) > 0,

f(b′) = −(b′ − b)(b′ − c) < 0.

Hence, by continuity, f has a zero between c and b′ . This shows that in any case
f has a zero and thus Cb,c and Cb′,c′ have a finite point of intersection.

Recall that by Lemma 5.2 the lines D0,1 and C−s,−s are parallel. This yields
a clue as to when lines of A of different types are parallel.

Lemma 5.6. Two lines Db,c and Cb′,c′ are parallel if and only if b − sc =
(b′ + c′)/2.
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Proof. Suppose that b − sc = (b′ + c′)/2 = m. From Lemma 5.5 we know
that Cb′,c′ and Cm,m are parallel. Furthermore, because µ1(m − b′)(m − c′) =
−(c′ − b′)2/4 ≤ 0, we see that Cb′,c′ lies strictly below Cm,m unless b′ = c′ = m.
Lemma 5.2 shows that D0,1 is strictly above C−s,−s . Hence Db,c = γc,b(D0,1) is
strictly above γc,b(C−s,−s) = Cm,m . This shows that Db,c and Cb′,c′ are parallel.

Conversely, let b − sc = m but b′ + c′ 6= 2m. From what we have already
seen we know that Db,c and Cm,m are parallel and that Db,c lies above Cm,m .
Moreover, the supporting Euclidean lines of ψ(Cm,m) are asymptotes for ψ(Db,c).

By Lemma 5.5 the lines Cm,m and Cb′,c′ intersect and, depending on the
sign of b′ + c′ − 2m, limx→±∞(µ1(x − b′)(x − c′) − µ2(x − m)) = ±∞ or ∓∞,
that is, ψ(Cb,c) is unboundedly above ψ(Cm,m) sufficiently far to the right and
ψ(Cb,c) is unboundedly below ψ(Cm,m) sufficiently far to the left or the other way
around. But ψ(Db,c) behaves asymptotically like ψ(Cm,m) so that we obtain that
ψ(Cb,c) is unboundedly above ψ(Db,c) sufficiently far to the right and ψ(Cb,c) is
unboundedly below ψ(Db,c) sufficiently far to the left or the other way around.
In any case, connectedness implies that ψ(Db,c) and ψ(Cb′,c′), and thus Db,c and
Cb′,c′ , have a point of intersection.

Lemma 5.7. Two lines Db,c and Db′,c′ are parallel if and only if b−sc = b′−sc′ .

Proof. Suppose that b− sc = b′− sc′ = m and, without loss of generality, that
c < c′ . Let f(t, x) = e2s cot−1 x−m−st

t ((x − m − st)2 + t2) so that y = f(c, x) and
y = f(c′, x) describe the lines Db,c and Db′,c′ . For the partial derivatives ∂f

∂t
(t, x)

one finds ∂f
∂t

(t, x) = 2e2s cot−1 x−m−st
t (s2 + 1)t. Hence ∂f

∂t
(t, x) > 0 and t 7→ f(t, x)

is strictly increasing. In particular, f(c, x) < f(c′, x) and Db,c and Db′,c′ have no
finite point of intersection. This shows that Db,c and Db′,c′ are parallel.

Conversely, let b−sc = m 6= m′ = b′−sc′ . From Lemma 5.6 we already know
that Db,c and Cm,m are parallel and that Cm′,m′ and Db′,c′ are parallel. By Lemma
5.5 the lines Cm,m and Cm′,m′ intersect so that the difference between the respective
describing functions is unbounded and takes on opposite signs for large positive
x or large negative x. However, ψ(Db,c) and ψ(Db′,c′) behave asymptotically like
ψ(Cm,m) and ψ(Cm′,m′), respectively, so that, as in the proof of Lemma 5.6, Db,c

and Cb′,c′ have a point of intersection by connectedness.

Proposition 5.8. A is an affine plane.

Proof. ¿From Proposition 5.4 we already know that A is a linear space, so
it only remains to verify the parallel axiom in A. This axiom is clearly satisfied
for vertical lines. By Lemmas 5.5, 5.7 and 5.6 each non-vertical line of A is
characterised by an m ∈ R. Let Bm be the collection of all lines Cm+c,m−c for
c ≤ 0 and Dm+sc,c for c > 0. Any two lines in Bm are parallel by Lemmas 5.5,
5.7 and 5.6. Let

f(c, x) =

{
µ0(x−m− c)((x−m)2 − c2), for c ≤ 0,

e2c cot−1( x−m
c

−s)((x−m− sc)2 + c2), for c > 0.
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(Thus y = f(c, x) describes the line with parameter c in Bm .) It readily follows
that for given x ∈ R the function c 7→ f(c, x) is continuous in c and that
limc→±∞ f(c, x) = ±∞. Hence every y ∈ R occurs for precisely one c ∈ R as
y = f(c, x). The line corresponding to this c is the parallel we are looking for.

Theorem 5.9. Lk is a flat Laguerre plane. Furthermore, Lk is not ovoidal.

Proof. As mentioned at the beginning of this section, the verification that Lk

is a Laguerre plane is equivalent to showing that the derived incidence structures
at (∞, 0) and (∞, 1) are affine planes. This has been done in Propositions 5.1
and 5.8. The Laguerre cylinder L is homeomorphic to S1 × R by construction,
see section 3.. As we remarked in section 4., each circle of Lk is homeomorphic to
S1 . Therefore, Lk is in fact a topological Laguerre plane, see [4], 3.10.

Since each derived affine plane of an ovoidal flat Laguerre plane is Desar-
guesian, we obtain from Proposition 5.1 that Lk cannot be ovoidal.

Note that circles can be defined in exactly the same way as in section 4.
for arbitrary k > 0, not just for k > 1. The resulting incidence structure is again
a flat Laguerre plane. For k = 1 one obtains the classical real Laguerre plane.
We did not include this special case for simplicity as the automorphism group of
the classical real Laguerre has rather different properties from the automorphism
groups of the planes Lk , see the following section. Furthermore, Lk and L1/k are
isomorphic via the mapping (x, y) → (−x,−y), so that one obtains the full picture
by restricting oneself to k > 1.

6. Automorphism group and Kleinewillinghöfer type

Every automorphism of a flat Laguerre plane is continuous and thus a homeomor-
phism of Z . The collection of all automorphisms of a flat Laguerre plane L forms
a group with respect to composition, the automorphism group of L. This group
is a Lie group of dimension at most 7 with respect to the compact-open topology,
see [14].

We say that a flat Laguerre plane has group dimension n if its automor-
phism group is n-dimensional. All flat Laguerre planes of group dimension at least
5 have been classified; see [8]. The classical flat Laguerre plane is the only flat La-
guerre plane of group dimension at least 6 (and indeed has group dimension 7) and
the flat Laguerre planes of group dimension 5 are precisely the ovoidal Laguerre
planes over proper skew parabolae, cf. [8], Theorem 1.

Furthermore, in the same paper [8], in Theorem 2 all flat Laguerre planes
whose automorphism groups are 4-dimensional and fix one point were classified.
There are two families, one consisting of planes of shear type over a pair of two
different skew parabolae and the other consisting of the non-classical planes of
translation type over a pair of skew parabolae; the former planes contain two fixed
parallel classes, the latter only one. All flat Laguerre planes of group dimension
4 whose automorphism group fixes a parallel class were determined by the second
author. Our planes provide examples of flat Laguerre planes of group dimension
4 such that neither is a parallel class fixed by the connected component of the
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automorphism group containing the identity nor is the group transitive on the
cylinder. The other known flat Laguerre planes of group dimension 4 with this kind
of orbit structure are certain semi-classical Laguerre planes obtained by pasting
along a circle, see [13]. (The planes L(ϕ, id), in the notation of [13], with one of
the describing homeomorphisms being the identity and the other one, ϕ, being
multiplicative.)

Theorem 6.1. The 4-dimensional group Γ described in 3.5 is the full group of
automorphisms of Lk .

Proof. Since, on the one hand, the group Γ consists of automorphisms of
Lk and has dimension 4, the automorphism group of Lk must be at least 4-
dimensional. On the other hand, a flat Laguerre plane of group dimension at least
5 is ovoidal, see [8], Theorem 1, hence by Theorem 5.9, Lk has group dimension
4.

Suppose that there is an automorphism of Lk that does not fix L0 . Then Γ
and thus also Γ1 is transitive on Z . Hence Lk must be classical by [15] and thus
each derived affine plane must be Desarguesian—a contradiction to Proposition
5.1.

Let γ be an automorphism of Lk . Using a rotation ρt , if necessary, we
may assume that γ fixes the point (∞, 0). But then γ induces a collineation of
the derived affine plane at (∞, 0), that is, a collineation γ̃ of Mk . In Mk it now
follows that γ̃ is a composition of collineations of the form γa,b,c and σ .

Any isomorphism between Laguerre planes Lk and Lk′ induces an isomor-
phism of the corresponding group actions. Being the unique 1-dimensional orbit,
the distinguished circle L0 must therefore be mapped to L0 under any isomor-
phism. Since the Moulton planes Mk are mutually non-isomorphic, we obtain the
following corollary by passing to derived affine planes at points of L0 .

Corollary 6.2. The flat Laguerre planes Lk are mutually non-isomorphic.

Kleinewillinghöfer [6] classified Laguerre planes with respect to central au-
tomorphisms, that is, automorphisms that fix at least one point such that central
collineations are induced in the derived projective plane at one of the fixed points.
In [11] and [17] flat Laguerre planes were considered and their so-called Kleinewill-
inghöfer types were investigated, that is, the Kleinewillinghöfer types with respect
to the full automorphism group. In particular, all possible types of flat Laguerre
planes with respect to Laguerre translations and Laguerre homotheties were com-
pletely determined. Examples for some of the possible Kleinewillinghöfer types of
flat Laguerre planes can be found in [11] section 6 and [17] but there are still a few
open cases. One of them is Kleinwillinghöfer type II.G.1 in which there is a circle
C such that the group of all C -homologies and the groups of all (|p|, B(p, C))-
translations for p ∈ C are linearly transitive; see [11] or [17] for a definition of
these kinds of automorphisms. (Here B(p, C) denotes the tangent bundle of all
circles that touch the circle C at the point p.)

Theorem 6.3. Lk is of Kleinewillinghöfer type II.G.1.
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Proof. The maps γa,0,1 for a > 0 and σ from Section 3. are automorphisms,
see Proposition 4.1. They fix exactly the points of the circle L0 , that is, each is
an L0 -homology. Furthermore the group

{γa,0,1 | a > 0} ∪ {γa,0,1σ | a > 0}
is transitive on each parallel class minus its point of intersection with L0 . This
shows that the set of circles for which the automorphism group of Lk is linearly
transitive with respect to Laguerre homologies contains L0 .

Since L0 is fixed by every automorphism of Lk , one sees that L0 is the only
circle for which Γ can be linearly transitive with respect to Laguerre homologies.
This shows that Lk must have type II with respect to Laguerre homologies.

Likewise, the automorphisms γ1,b,1 for b ∈ R fix each circle Lc and
each point on the infinite parallel class Π∞ = {∞} × R, that is, γ1,b,1 is a
(Π∞, B(∞, L0))-translation in the notation of [11]. The group {γ1,b,1 | b ∈ R}
is transitive on each circle Lc minus the point (∞, 0). Applying the rotations ρt
this therefore shows that the set of all tangent bundles for which the automorphism
group of Lk is linearly transitive with respect to Laguerre translations contains
each bundle B(p, L0) for p ∈ L0 .

L0 being fixed by every automorphism implies that B(p, L0) for each p ∈ L0

are the only tangent bundles for which Γ can be linearly transitive with respect
to Laguerre translations and there cannot be any G-translations. This shows that
Lk must have type G with respect to Laguerre translations.

Finally, assume that Γ is linearly transitive with respect to some Laguerre
homotheties. Then the centres of the Laguerre homotheties must be on L0 and Γ
must be (p, q)-transitive for all distinct p, q ∈ L0 . But this implies that the derived
affine plane at any point of L0 is Desarguesian—a contradiction to Proposition 5.1.
This shows that Lk must have type 1 with respect to Laguerre homotheties.
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