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Abstract. We give a detailed proof of the good behaviour of non-abelian
cohomology under passage to the limit on the base scheme.
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1. Introduction

One of the central technical results in étale cohomology ([10] théorème VII 5.7
and its corollaries) is the good behaviour of Hq(S,G) for S = lim←−Sλ and G =
lim←−Gλ under reasonable assumptions on the schemes Sλ and the abelian group

schemes Gλ . It is also remarked without proof therein (ibid. remarque 5.14(a))
that similar results hold for non-abelian H1 defined à la Čech, i.e., for sheaf
torsors. This passage to the limit appears as a crucial ingredient in the study
of Galois cohomology of local and henselian rings, as well as in the study of
infinite dimensional Lie theory by cohomological methods (see [2], [3], [4] and
[5] for example). We have considered it useful to write down a detailed proof of
this important fact. For clarity of exposition we have chosen not to restrict our
attention to the case when the Sλ are affine (which would be sufficient for the
work of Gille and Pianzola under consideration).

2. Passage to the limit for non-abelian H1

If X is a scheme and G is a group scheme over X , then H1
f ppf(X,G) will denote

the pointed set of Čech cohomology for the fppf topology of X (see [9] Exp IV.6
for details. See also [6] and [8]). H1

ét and H1
Zar are defined analogously.

Let S0 be a scheme. Throughout we assume that (Sλ)λ∈Λ is a projective
system of S0 -schemes based on some non-empty directed set Λ such that for all
λ ≥ µ the transition morphisms uλµ : Sµ → Sλ are affine. We can then form
the projective limit S = lim←−Sλ in the category of S0 -schemes ([7] §8.2). By
construction, we have for each λ ∈ Λ a canonical morphism uλ : S → Sλ .
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Let G0 be a group scheme over S0 . For λ ∈ Λ let Gλ = G0 ×S0 Sλ , and
G = G0 ×S0 S. If Uα = (Uα

i → Sα) is a covering of Sα in the fppf topology, then
the base change

(Uα
i ×Sα S)×S (Uα

j ×Sα S) ' (Uα
i ×Sα U

α
j )×Sα S → Uα

j ×Sα U
α
j

maps cocycles in Z1
f ppf(Uα,Gα) into cocycles in Z1

f ppf(Uα×Sα S,G). This leads to
a map H1

f ppf(Uα,Gα)→ H1
f ppf(Uα×Sα S,G) which, by passing to the limit over all

coverings of Sα , yields a map ψα : H1
f ppf(Sα,Gα) → H1

f ppf(S,G). By considering
lim−→ψα we obtain a canonical map

ψ : lim−→
λ∈Λ

H1
f ppf(Sλ,Gλ)→ H1

f ppf(S,G).

Completely analogous considerations hold for the Zariski and étale topology.

The main result is as follows.

Theorem 2.1. Assume that S0 and the (Sλ)λ∈Λ are all quasicompact and qua-
siseparated, and that the group G0 → S0 is locally of finite presentation. Then the
canonical map

lim−→
λ∈Λ

H1
f ppf(Sλ,Gλ)→ H1

f ppf(S,G)

is bijective. Similarly for H1
ét and H1

Zar .

We begin by establishing two preliminary results that will be used in the
proof of the Theorem. The notation is chosen to closely match that of [7] (to which
all references henceforth belong).

Lemma 2.2. Let S be a quasicompact scheme. Then any covering U = (Ui
φi→

S)i∈I of S (for either of our three topologies) admits a refinement V = (V`
ψ`→ S)`∈L

where L is finite and the V` are affine. If in addition S is quasiseparated, then the
morphisms ψ` of the refinement V may be assumed to be of finite presentation.

Proof. The φi are open maps (being flat and locally of finite presentation. See
théorème 2.4.6). Given that S is quasicompact, there exists a finite subcovering
(in particular a refinement) of U .

Assume henceforth that I is finite. Let S =
⋃
j∈J
Yj be a finite open covering

of S by affine Yj . Let Wij = φ−1
i (Yj), and let Wij = ∪k∈KVijk be an open affine

cover of Wij (where K is some index set). Consider the morphisms ψijk : Vijk → S
defined by

ψijk : Vijk ↪→ Wij

φi|Wij→ Yj ↪→ S.

The Vijk form a covering of S . Since any covering admits a finite subcov-
ering, we may assume that K is finite. Set L = I × J ×K , and define τ : L→ I

by τ : (i, j, k) 7→ i . Then V = (Vijk
ψijk→ S)(i,j,k)∈L together with τ yield a finite

refinement by affine schemes of our original U .

We claim that if S is quasiseparated, then the morphism ψijk above are
of finite presentation, i.e., quasicompact, quasiseparated, and locally of finite
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presentation. The ψijk are locally of finite presentation since V is a covering
in one of our three topologies. That ψijk is quasiseparated is automatic since the
Vijk, being affine, are quasiseparated (cor. 1.2.3(i)). Finally, since any morphism
from a quasicompact scheme into a quasiseparated scheme is quasicompact (prop.
1.2.4), the ψijk are quasicompact.

Proposition 2.3. Assume S0 is quasicompact and quasiseparated. Let
f : X → S be a morphism of S0 -schemes which is of finite presentation. Then.

(i) There exist α ∈ Λ, and a scheme morphism fα : Xα → Sα of finite presenta-
tion, such that Xα ×Sα S ' X as S -schemes.

(ii) If α is as in (i), then for f to be surjective (resp. an open immersion, flat,
faithfully flat, étale), it is necessary and sufficient that there exist λ ≥ α for which
fλ = fα × ISλ

: Xα ×Sα Sλ → Sα ×Sα Sλ ' Sλ is surjective (resp. an open
immersion, flat, faithfully flat, étale).

Proof. The existence of fα : Xα → Sα as in (i) is given by théorème 8.8.2.
In view of (i), to establish (ii) we may assume with no loss of generality that
X = Xα ×Sα S and f = fα × IS . For all λ ≥ α set

Xλ = Xα ×Sα Sλ and fλ = fα × ISλ
.

The existence of λ as prescribed in (ii) follows from théorème 8.10.5 (for f
surjective or an open immersion), théorème 11.2.6 (for f flat), and proposition
17.7.8 (for f étale). Combining surjectivity with flatness yields a λ for which fλ
is faithfully flat.

We are now ready to establish our main result.

Proof (of Theorem 2.1). For future use we begin with an observation. For α ∈ Λ
the morphism uα : S → Sα is affine, hence quasicompact and quasiseparated.
Thus S itself is quasicompact and quasiseparated.

In what follows we fix one of our three topologies on S . All coverings,
cocycles, and H1 will refer to this chosen topology.

ψ is surjective. Let c ∈ H1(S,G), and choose a covering U = (Ui → S)i∈I so
that c corresponds to a cocycle z ∈ Z1(U ,G). Taking into account that Čech
cohomology is defined by passing to the limit of all refinements of covers of S , we
may by Lemma 2.2 assume with no loss of generality that I is finite and that the
Ui → S are of finite presentation. Given that Λ is directed, Proposition 2.3 now
yields the existence of an α ∈ Λ and a covering Uα = (Uα

i → Sα) which induces
U under the base change uα : S → Sα . Thus,

zij ∈ G
(
(Uα

i ×Sα S)×S (Uα
j ×Sα S)

)
' G(Uα

i ×Sα U
α
j ×Sα S) = G(Uα

i ×Sα U
α
j ×Sα lim←−

λ≥α
Sλ)

= lim−→
λ≥α

Gλ(U
α
i ×Sα U

α
j ×Sα Sλ)

= lim−→
λ≥α

Gλ

(
(Uα

i ×Sα Sλ)×Sλ
(Uα

j ×Sα Sλ)
)
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(this penultimate equality of limits because G is locally of finite presentation. See
théorème 8.8.2(i)). This yields the existence of a β ≥ α for which there exists
elements zβij ∈ Gβ

(
(Uα

i ×Sα Sβ) ×Sβ
(Uα

j ×Sα Sβ)
)

such that zβij 7→ zij under the

base change uβ : S → Sβ. We do not know whether the zβij satisfy the cocycle
condition, but since the zij do, we can again use the fact that G is locally of finite
presentation to conclude that there exists γ ≥ β such that the image zγij of the

zβij under the base change uβγ : Sγ → Sβ form a cocyle. Since zγij 7→ zij , our map
ψ is surjective.

ψ is injective. Let c1 ∈ H1(Sα1 ,Gα1) and c2 ∈ H1(Sα2 ,Gα2) be such that
ψ(c1) = ψ(c2). We must show that c1 and c2 have the same image under the
respective canonical maps

H1(Sαn ,Gαn)→ lim−→
λ≥αn

H1(Sλ,Gλ), (2)

where n = 1, 2. Since Λ is directed, we may assume with no loss of generality that
α1 = α2 = α for some α ∈ Λ. We may also assume, as explained above and after
taking a common refinement, that cn corresponds to a cocyle zαn ∈ Z1(Uα,Gα)
for some covering Uα = (Uα

i → Sα)i∈I of Sα with I finite and Uα
i affine. Since

ψ(c1) = ψ(c2), there exists a refinement V = (Vj → S)j∈J of the cover Uα×Sα S =
(Uα

i ×Sα S → S)i∈I where the images of zα1 and zα2 become cohomologous. We
may again assume J to be finite and the Vj to be affine.

Let Λ′ = {λ ∈ Λ : λ ≥ α} . Assume i ∈ I and j ∈ J are such that a
morphism Vj → Uα

i ×SαS is part of our refinement. The same reasoning used at the
end of the proof of Lemma 2.2 shows that this morphism is of finite presentation.1

For λ ∈ Λ′ define S ′
λ = Uα

i ×Sα Sλ and S ′ = Uα
i ×Sα S . Then S ′ = lim←−S

′
λ

where the limit is taken over Λ′. By Proposition 2.3 applied to S ′ , there exists
λ ∈ Λ′ such that our (flat, étale...) morphism Vj → S ′ comes from a (flat,
étale...) morphism V λ

j → S ′
λ by the base change S ′ → S ′

λ arising from uλ .
In fact, since I and J are finite and Λ′ is directed, there exists β ≥ α such
that our entire refinement V of Uα comes from a refinement Vβ of the covering
Uα×SαSβ by the base change S → Sβ . Replacing the zαn by their respective images
zβn ∈ Z1(Uα×SαSβ,Gβ), and then Uα×SαSβ by its refinement Vβ does not change
our cn . This allows us to reduce to the case where our original cocycles zα1 and
zα2 are such that their images z1 and z2 in Z1(Uα ×Sα S,G) are cohomologous.
Accordingly, there exists elements gi ∈ G(Uα

i ×Sα S) such that

gi(z1)ijg
−1
j = (z2)ij for all i, j ∈ I (3)

(where in (3) the gi’s are restricted to the Uα
i ×Sα U

α
j ×Sα S as usual). Because

G is locally of finite presentation the gi’s may be assumed to come from some
elements gγi ∈ Gγ(U

α
i ×Sα Sγ) for some γ ≥ α. Replacing zα1 and zα2 by their

images zγ1 and zγ2 under the base change uαγ : Sγ → Sα we see that gγi (z
γ
1 )ij(g

γ
j )

−1

and (zγ2 )ij have the same image under the base change uγ : S → Sγ. Again since G
is of finite presentation, we obtain that gδi (z

δ
1)ij(g

δ
j )

−1 = (zδ2)ij after a base change
uγδ : Sδ → Sγ with δ ≥ γ suitably chosen.

1 To see that Uα
i ×Sα S is quasiseparated observe that because Uα

i is affine, it is quasisep-
arated over Sα . Thus Uα

i ×Sα
S is quasiseparated over S , and we can now conclude from the

fact that S is quasiseparated.
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Remark 2.4. We assume throughout that S0 and the Sλ are quasicompact
and quasiseparated.

(a) If G0 is flat, affine and locally of finite presentation over S0 , then
by descent theory the sheaf torsors whose isomorphism classes are measured by
H1

f ppf(Sλ,Gλ) are representable. Similarly for H1
f ppf(S,G). The surjectivity of

the map lim−→H
1
f ppf(Sλ,Gλ) → H1

f ppf(S,G) is as in (10.16) of [9] VIB (where the

case when the Sλ are affine and the Gλ are of finite presentation is studied).
Groups which are locally of finite presentation but not finitely presented (which
are covered by our result) arise naturally in the classification of reductive groups,
in particular of tori.

(b) Let G be a finitely presented group scheme over S. By Proposition 2.3
the group G is obtained from a finitely presented group over Sα by base change.
Replacing Λ by Λα = {λ ∈ Λ : λ ≥ α} puts us back within the assumptions of
Theorem 2.1. Thus, H1(S,G) can be computed in terms of direct limits.

(c) If G is a flat affine and finitely presented group scheme over S, and
if Y is a torsor over S under G, then the twisted S -group YG is also finitely
presented and the considerations of (b) above apply.

(d) In Theorem 2.1 the assumption that G0 be representable is not crucial.
The proof goes through as long as G0 is a group functor on S0 which is locally of
finite presentation.2 An important example is the case when G0 is the group of
automorphisms AutS0(X0) of a finitely presented scheme X0 over S0 (see [1] for
details).
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