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Abstract. A Lie group G equipped with a left invariant symplectic form
ω+ is called a symplectic Lie group and the pair (g, ω), where g is its Lie al-
gebra, the tangent space to G at the unit ε , is said a symplectic Lie algebra.
Among others things, we determine connected and simply connected symplectic
Lie groups of dimension four which have discrete cocompact subgroups, that is,
uniform lattices. We describe in the solvable non nilpotent case, all isomorphy
classes of lattices Γ and in this fashion obtain an infinity of nonhomeomorphic
compact symplectic solvmanifolds. Finally we show that these four dimensional
symplectic Lie groups have left invariant symplectic affine structures, that is, left
invariant flat and torsion free symplectic connexions.
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1. Introduction and main results

The procedure of symplectic Lie double extension of a symplectic Lie algebra
by a 1-dimensional Lie algebra, introduced and studied in [8] and [1] enables
to construct inductively all nilpotent symplectic Lie algebras starting from the
zero algebra. So, it is an essential tool to get symplectic compact nilmanifolds,
together with classical results from Malcev about lattices in nilpotent Lie groups.
For example, up to finite coverings we can obtain the symplectic nilmanifolds of
dimension ≤ 6 using the list of symplectic nilpotent Lie algebras given in [4] and
Morozov’s classification of nilpotent Q-Lie algebras for these dimensions.

Recall that a Lie group admitting a lattice is unimodular, and according to
a result of Lichnerowicz-Medina [6] an unimodular symplectic Lie group is solvable;
so we shall consider only solvable groups. We will prove among other results:

Theorem 1.1. The Lie algebra of a four dimensional symplectic Lie group hav-
ing lattices is a symplectic double extension of the abelian two-dimensional sym-
plectic Lie algebra by a 1-dimensional Lie algebra. Up to isomorphism, there are
five such algebras.
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Among the algebras in Theorem 1.1, two are non nilpotent. The most interesting
one for lattices corresponds to the direct product G = R×G1 where G1 denotes
R3 with the product given by

(x, y, t) · (x′, y′, t′) =
(
x+ etx′, y + e−ty′, t+ t′

)
.

Then we have

Theorem 1.2. The isomorphism classes of lattices in G1 correspond bijectively
with the classes of pairs (A, I) where A is a ring of integers in a real quadratic
number field and I an ideal in A (i.e a fractionnal ideal) determined up to iso-
morphism. Each lattice of G1 is contained in a finite number of non isomorphic
lattices of G.

To complete and make this result more explicit , we have

Theorem 1.3. a) The rings involved in Theorem 1.2 are
An = Z [X] / (X2 − nX + 1) where n is a positive integer ≥ 3, whose quotient
field is Q

(√
dn

)
and dn is the squarefree part of n2 − 4.

b) Lattices of G1 corresponding to pairs (A, I) and (B, J) are strictly commensu-
rable in G1 if and only if A and B have the same fraction field.

Recall that Γ1 and Γ2 are commensurable if there exists ϕ in AutG1 such that
Γ1 ∩ ϕ(Γ2) is of finite index in both of them. If ϕ is the identity, they are said
strictly commensurable.

Remark 1.4. If (G,ω+) is a symplectic Lie group, the formula

(1) ω
(
∇a+b+, c+

)
= −ω

(
b+,

[
a+, c+

])
where x+ denotes the left invariant vector field on G whose value at ε is x ∈ g

defines a left invariant affine structure on G , i.e a left invariant flat and torsion
free connection. This affine structure, called associated to the symplectic structure,
plays an important role in what follows.

2. Symplectic double extension

Recall the construction of symplectic double extension ( see [8] and [1] for more
details and generalization ). Denote by K the field of real or complex numbers
and consider a symplectic K-Lie algebra

(
B,ω

′)
and δ a derivation of B . The

formula
(
δ · ω′)

(a, b) := ω
′
(δa, b) + ω

′
(a, δb) for a and b ∈ B defines a scalar

2-cocycle over B . If we put δ(2) · ω
′
:= δ ·

(
δ · ω′)

, we have

Theorem 2.1. Let
(
B,ω

′)
be a symplectic Lie algebra and δ a derivation such

that δ(2) · ω
′

is a coboundary. Let z in B such that
(
δ(2) · ω

′)
(a, b) = ω

′
(z, [a, b])

for every a and b in B .
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The Lie algebra semidirect product of the central extension Ke×B of B , by means
of δ · ω′

, and Kd = K with [d, e] = 0 and [d, a] = −ω′
(z, a) e− δa for a ∈ B , is

a symplectic Lie algebra for ω , the orthogonal sum of ω
′
over B and ω (e, d) = 1

on Span(e, d).

Definition 2.2. The symplectic Lie algebra, denoted by B (δ, z), obtained in
Theorem 2.1 is called the symplectic double extension of

(
B,ω

′)
by means of

(δ, z).

Note that a derivation δ of B gives rise to a double extension only if δ(2) ·ω
′

is a coboundary. The cohomology class of δ ·ω′
depends only on δ ’s class modulo

inner derivations. The choice of z is determined by the coboundary δ(2) ·ω
′
modulo

the orthogonal of [B,B] for ω
′
.

We give two particular cases we will use later:

Corollary 2.3. Suppose that the symplectic Lie algebra
(
B,ω

′)
is unimodular.

Then the symplectic double extension B (δ, z), is unimodular if and only if δ has
trace zero.

Proof. In the previous theorem, Trd = −Trδ and the corollary is clear.

Note that if δ ·ω′
= 0, i.e δ is an infinitesimal symplectomorphism, Trδ = 0

and the corollary holds.
We also note here that the symplectic reduction process, inverse of the symplectic
double extension, reduces an unimodular Lie algebra into an unimodular one;
nevertheless there are symplectic unimodular Lie algebras which can’t be obtained
by double extension, for example the following one. Let W = (K4, ω1) a symplectic
abelian Lie algebra and d = Diag(λ1,−λ1, λ2,−λ2) with distinct and nonzero λi

a diagonal endomorphism of K4 in the canonical basis, symplectic for ω1 . Let
V = (Span(d, d3), ω2) the symplectic abelian Lie algebra. The semidirect product
V oW = A , with the natural action of W on V is a symplectic unimodular Lie
algebra with ω = ω1⊥ω2 . Since A has a trivial center, it is not a double extension
as defined above.

Corollary 2.4. Let
(
B,ω

′)
an abelian symplectic Lie algebra and δ an invert-

ible infinitesimal symplectomorphism of
(
B,ω

′)
. The symplectic double extension

A = B (δ, z) is isomorphic to the double extension B (δ, 0), 0 ∈ B .

Proof. As δ · ω′
= 0, the central extension Ke × B = I⊥ by means of δ · ω′

is abelian. For b ∈ B , we have d(b) = [d, b] = −ω′
(z, b) e − δ(b); let us change

B into B
′
:=

{
b+ ω

′
(x, b) e; b ∈ B

}
where x ∈ B will be chosen later and B′ is

any supplementary space to Ke in I⊥ , with ω restricted to B′ non degenerate.
To show that B (δ, z) is isomorphic to B (δ, 0) it is enough to find B′ such that
d(B′) = B′ . As d

(
b+ ω

′
(x, b) e

)
= d(b) = −δ(b) − ω

′
(z, b) e , this must be

δ(b) − ω
′
(x,−δ(b)) e ; so for every b in B , we must have ω

′
(x, δ(b)) = ω

′
(z, b)

which is solved by x = (δ∗)−1 (z) where δ∗ is the adjoint of δ with respect to ω
′
,

and the result is proved.

Note that the left symmetric product on B (δ, z) given by (1) satisfies dd=z.
With the assumption of Corollary 2.4, we modify this product so that d2 = 0 with-
out changing the bracket on A , which is unimodular.
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Proof. [Proof of Theorem 1.1] We first describe symplectic 4-dimensional
Lie algebras obtained by double extension.

Claim. Any symplectic double extension of the non abelian two dimensional(
B,ω

′)
Lie algebra is not unimodular.

As B is non abelian, ω
′
is a coboundary; so δ ·ω′

and δ(2) ·ω
′
too. The first exact

sequence
0 −→ Ke = I −→ I⊥ −→ B −→ 0

is split and we may suppose δ ·ω′
= 0. As dimB is two, δ ·ω′

=Trδ ·ω′
so Trδ = 0.

Because the derivation δ is triangular in any base {e1, e2} where Ke2 = [B,B] ;
we have δe1 = λe2 and δe2 = 0 with λ ∈ K and z ∈ B which satisfy ω

′
(z, e2) = 0

so z = µe2 with µ ∈ K . This shows that derivation d on I⊥ is given by de = 0,
de1 = λe2 and de2 = 0. Then it is clear that A = B (δ, z) is not unimodular since
Tr(adA(e1)) = 1. At the opposite we can:

Claim. A symplectic double extension of a two-dimensional abelian Lie algebra
is unimodular. Moreover the associated simply connected symplectic Lie group
admits uniform lattices.

Since δ(2) · ω
′
= (Trδ)2 ω

′
, it is a coboundary if and only if Trδ = 0 , so

δ · ω′
= 0 and I⊥ is an abelian 3-dimensional ideal of B (δ, z). As Trδ = 0,

δ2 is an homothety and so we distinguish three cases : δ2 = 0, δ2 is positive
or δ2 is negative. When δ2 = 0, if δ is 0, the double extension is abelian; if
δ 6= 0, B (δ, z) is two or three step nilpotent according to z belonging to Kerδ or
not. Then we get F2 × K (direct product) or F3 ; we here denote Fn the filiform
Lie algebra Vect(d, e1, · · · , en) where the non-zero brackets are [d, ei] = ei+1 for
i < n . The associated Lie groups have lattices because the structural constants
are integers. These lattices are semidirect product of Z3 by an action ϕ of Z given
by ϕ(1) = IdZ3 + T where T : Z3 −→ Z3 is nilpotent of order two or three. In

the first case, ϕ(1) is

 1 k 0
0 1 0
0 0 1

 in a suitable basis of Z3 , where |k| ∈ N\ {0}

determines the isomorphism class of the lattice of the Lie group R × H3 (H3 is
the 3-dimensional Heisenberg group ). If T is nilpotent of order 3, it has rank 3
and two numerical invariants caracterize its isomorphism class: the cardinality of
the torsion subgroup of Z3/ImT 2 and the cardinality of the torsion subgroup of
ImT/ImT 2 which divides the first one.
The set of nondegenerate scalar 2-cocycles on these nilpotent Lie algebras is an
open set in the space of scalar 2-cocycles which is of dimension 5 or 4 according
the different cases ([8]). Now we deal with the case of non zero δ2 : we may
take δ2 = −IdB or δ2 = +IdB according to the sign of the homothety δ2 .
Here I⊥ is also a 3-dimensional abelian ideal of A and we study now d : its
characteristic (and minimal) polynomial is X3 +X or X3 −X so that d is semi-
simple and the isomorphism class of B (d, z) does not depend on z . Following the
notations of [8], we have the following symplectic Lie algebras: A3,4(0)×Ab1 and
A3,2(−1)×Ab1 . In the first case, the associated simply connected Lie group is the
direct product of R by the universal covering of the group of positive isometries
of the euclidean plane. This group is isomorphic to C × R with the product
(z, t) ·

(
z

′
, t

′)
=

(
z + e2iπtz

′
, t+ t

′)
and it has , for instance an abelian lattice
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isomorphic to Z3 with t ∈ Z and z a gaussian integer ( this is only one example
and there are others which are non abelian ). In the second case, the associated
group is the direct product R × G1 where G1 is R3 with the already mentioned
product (x, y, t) ·

(
x

′
, y

′
, t

′)
=

(
x+ etx

′
, y + e−ty

′
, t+ t

′)
. It has lattices because

G1 has some as showed in [10].

Finally an examination of the exhaustive list of symplectic 4-dimensional
Lie algebras given in [8] shows that these five algebras, which have lattices, are the
only unimodular algebras. This proves that the double extension process gives all
algebras we are looking for, but this is very particular and due to dimension 4.

Remark 2.5. For even dimension ≥ 6, there are unimodular symplectic Lie
groups which do not have lattices, because of arithmetical reasons. Here is an
example. Let A = B (δ, 0) be the symplectic double extension of the abelian Lie
algebra B =

(
R4, ω

′)
where δ is an infinitesimal symplectomorphism of B given in

a symplectic basis by the diagonal matrix Diag(1,−1, λ,−λ) with λ a non rational
algebraic real number. The algebra A is symplectic and unimodular of dimension
six. If the simply connected Lie group associated to A had a lattice, there would
be in the one parameter subgroup t 7−→ exp(td) a non identity matrix conjugated
to a matrix in Gl (4,Z). Consequently there would be a non zero t ∈ R with
a = et and b = eλt = aλ would be both algebraic. But this is not true because of
a result of O. Gelfond related to Hilbert’s seventh problem ([3]).

Proof. [Proof of Theorem 1.2 and 1.3] To determine the lattices of R×G1 ,
we begin by G1 . For this, let us recall some facts of the theory of lattices in
solvable Lie groups ([9]). Let Γ be a lattice in the solvable Lie group K ; if N is
the nilradical of K , Γ∩N is a lattice of the nilpotent Lie group N . Furthermore,
the image of Γ by the natural projection of K over K/N is a lattice in K/
N . In the case of G1 , as we may identify Γ1 ∩ N , where Γ1 is a lattice in
G1 , to Z2 as an abstract group, Γ1 is described by the exact sequence of groups
1 −→ Z2 −→ Γ1 −→ Z −→ 1. It follows that Γ1 is a semidirect product of Z2

by an action ϕ of Z on Z2 such that ϕ(1) = M belongs to Gl (2,Z) = AutZ2

and is in a one-parameter subgroup t 7−→M(t) of Gl (2,R) conjugate in it to the
subgroup t 7−→ Diag (et, e−t). For this, it enough, and necessary too, that the
integral matrix M has its real eigenvalues, distinct, positive and inverse to each
other. This shows that the charateristic polynomial of M must be X2 − nX + 1
where n is an integer greater than 2. In an suitable basis of Γ1 ∩ N , M acts as

A =

(
0 −1
1 n

)
, companion matrix of the corresponding polynomial.

It follows that Γ1 determines the subring An = Z [X] / (X2 − nX + 1) of the
real quadratic number field Q

(√
n2 − 4

)
= Q [X] / (X2 − nX + 1) generated by

εn = n+
√
n2 − 4/2. We may consider Γ1 ∩N as a finitely generated An -module

of finite type of rank 1, i.e a fractional ideal of An .
Conversely, suppose we are given a pair (An, I) where I is a fractional ideal of An .
If I is principal, Z3 is a group denoted by Γn for the product ((u, v), w) ((u′, v′), w′)
= ((u, v)+(u′, v′)Aw, w + w′) where the matrix A acts on the right on the row
(u′, v′) of Z2 . If I is not principal, there is a sublattice J of Z2 stable by A and
isomorphic to I as An module. Then, in the same way that for the principal case,
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we make J × Z a group and in fact it is a finite index subgroup of Γn .
We now realize Γn as a discrete cocompact subgroup of G1 : we consider in G1 = R3

the subset
Γ

′

n =
{
(u− εnv, εnu− v, w ln εn) /(u, v, w) ∈ Z3

}
.

It is easy to convince oneself that Γ
′
n is a subgroup of G1 , isomorphic to Γn ; using

ε2
n = nεn − 1 and ε−1

n = n− εn , one computes the product in G1

(0, 0, ln εn) (u′ − εnv
′, εnu

′ − v′, 0) = (α, β, 1)

where one finds (α, β) = (u′, v′)A .
When I is not a principal ideal, it is enough to have the pair (u, v) belonging to
a certain sublattice of Z2 on which the action of A on the right gives the suitable
An -module structure.
We now want to compare two realizations of Γn as lattices in G1 , i.e two injective
homomorphisms ϕ1 and ϕ2 of Γn in G1 . More precisely, we want to show that
there is an automorphism ϕ of G1 sending ϕ1 (Γn) on ϕ2 (Γn), a result known
to be always true for lattices in nilpotent Lie groups, but not necessarily in the
solvable case. Since G1 is a completely solvable Lie group, the existence of the
isomorphim ϕ is guaranted by the Saito’s Theorem as quoted in [[10], page 65].

Recall that two lattices in a Lie group are said strictly commensurable if
their intersection is of finite index in both of them; they are called commensurable
if the first is strictly commensurable with an automorphic image of the other.
We thus have showed two lattices in G1 , isomorphic as abstract groups, are
commensurables. It is also the case if the lattices Γ1 and Γ2 correspond to the
same quadratic numberfield because they will have subgroups of finite index which
are isomorphic.
Conversely let Γ and Γ

′
two lattices of G1 which are strictly commensurable.

Their images in G1/N by the canonical projection are strictly commensurable
so ln εn and ln εm are Q-proportionnal where εn (resp. εm ) denotes the unit
associated to Γ (resp. to Γ

′
). This means there are h and k in N∗ such that

εh
n = εk

m and Z
[
εh

n

]
= Z

[
εk

m

]
is a common subring of An and Am , of rank 2,

which have therefore the same fraction field.
We now have to describe lattices of G = R×G1 (direct product). It is clear that the
direct product of a lattice of G1 and a lattice of R is a lattice in G . Such lattices
are isomorphic if and only if their G1 -components are also isomorphic. We proceed
now to a general study to get all the lattices of G . Such a group

∧
is given by an

exact sequence 1 −→ Z3 −→
∧
−→ Z −→ 1 where Z3 is a lattice of the nilradical

of G , abelian as for G1 : the action of Z on Z3 is given by a matrix A = ϕ(1) in
Gl (3,Z) which is conjugate in Gl (3,R) with the diagonal matrix Diag(1, λ, λ−1).
So the characteristic polynomial of A is (X − 1) (X2 − nX + 1) and λ is εn , the
biggest root of x2 − nx+ 1 = 0, n ≥ 3. In Z3 , Ker(A− I3) is a free direct factor

of rank one. Changing the basis in Z3 we may take A =

 1 α β
0 B
0

 where

B ∈ Gl (2,Z) has X2 − nX + 1 as characteristic polynomial.
Therefore Z3 = Z ⊕ I where I , via B , is a fractional ideal of An . Note that
in a suitable Z-basis of I the multiplication by εn is given by the matrix B . If
α = β = 0, the lattice

∧
associated to A is a direct product and our next task is
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to look for the other isomorphism classes of lattices which are not direct product:
to A is associated matrix B and I , i.e a couple (An, I), lattice in G1 . We now
wonder when matrices A and A′ do give isomorphic lattices in G : A and A′

must be conjugate in Gl (3,Z) and so B and B′ are conjugate in Gl (2,Z) and
the ideal I and I ′ are isomorphic ( that means the intersection of the two lattices
with G1 are isomorphic). Changing one if necessary, we may suppose B = B′ .

We can suppose A′ = P−1AP where P =

 e l1 l2
0
0 U

 where U belongs to

Gl (2,Z) and e2 = 1; then P−1 =

 ε l
′
1 l

′
2

0
0 U−1

 so B and U must commute.

Consider C = {α ∈ Frac (An) / αI ⊂ I} ; it is a subring of the ring of all integers
in Frac(An) = Q

(√
n2 − 4

)
containing An . As UB = BU and U is in Gl (2,Z),

U is an invertible element of C . Following Dirichlet unit theorem, the group of
units of C is made of the elements ±εh , h ∈ Z , where ε is the fundamental unit of
C . This implies that there are integers p and q such that U = ±εp et B = ±εq .
Finally, equation A′ = P−1AP is now equivalent to:(

l
′

1, l
′

2

)
= e (l1, l2) ε

p + (u, v) (I2 −B)

where matrices act on the right. We may consider (l1, l2) and
(
l
′
1, l

′
2

)
as elements

of the group I∗ =Hom(I,Z) on which An and C operate on the right. The
subgroup Im(I2 −B) (I∗) is of rank two and of index n− 2 = |det (I2 −B)| .
Consider the group H = I∗/Im(I2 −B) I∗ =Coker(I2 −B): it is a finite abelian
group of order n− 2. Two rows (l1, l2) and

(
l
′
1, l

′
2

)
give isomorphic lattices in G

if and only if their images in H correspond under the action of the automorphism
group induced by

(α, β) 7−→ ± (α, β) εp.

The number of non isomorphic lattices obtained from a matrix B is equal to the
number of orbits in H under the action of this automorphism group. This finishes
the proof of theorem1.2 and 1.3.

Corollary 2.6. The symplectic Lie group G = R × G1 has an infinity of non
isomorphic lattices and there is an infinite number of non homeomorphic symplectic
solvmanifolds M = Γ\G where Γ is a lattice in G.

Proof. As G1 has non isomorphic lattices Γn for every integer n greater than
2, it is the same for G , taking Γ = Zz × Γn , where z is a non zero real number,
a direct product lattice.

Remark 2.7. 1) If n = 3, the group H is trivial and there is just one lattice
associated to B . If n > 3, the direct product lattice corresponds to the orbit in
H formed by a single element, the zero element of H . For small values of n , a
direct analysis can be done to determine the number of non isomorphic lattices.

2) Let r ≥ 1 be a positive integer and n = 2r + 2, B =

(
0 1
1 n

)
. Then H
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is isomorphic to the cyclic group of order 2r and there are r non isomorphic
indecomposable lattices associated to B , corresponding to the elements of H of
order 2r, 2r−1, · · · , 2.
3) Note that the number of matrices B in Gl (2,Z) associated to an integer n ≥ 3
is the (finite) class number of the quadratic ring An = Z [X] /(x2 − nX + 1)
which is an easily computed multiple of the class number of the quadratic field
Q

(√
n2 − 4

)
.

3. Geometry of some symplectic solvmanifolds

In the following, we consider manifolds M = Γ\ (G,ω+) where (G,ω+) is a
symplectic Lie group, Γ a lattice in G and ∇ is the affine structure associated to
ω+ . We denote by π : G −→ M the canonical projection. It is obvious that ω+

induces a symplectic form ω on M for which π is a symplectic covering. We have:

Theorem 3.1. Let (G,ω+) a symplectic Lie group. If G is unimodular, the left
invariant affine structure on G given by the left symmetric product on g defined
by ω (ab, c) = −ω (b, [a, c]) is complete. Therefore G is solvable, so every manifold
M = Γ\ (G,ω+) , as above, is a compact solvmanifold.

Proof. We may suppose G is connected and simply connected. As ω is a scalar
2-cocycle on g , the mapping x 7−→ (i(x)ω, (ad∗x)∗) is a Lie algebra representation
from g to aff(g∗) = g∗ o gl(g∗). It gives a Lie group representation ρ : G −→
Aff(g∗): orbits of ρ are leaves of an affine Poisson structure on the manifolds g∗ .
As ω is non degenerate, there are open orbits, for instance, the orbit O of the
origin of the vector space g∗ . Let p : G −→ O the associate orbital mapping.
It is a local diffeomorphism and the inverse image by p of the connection on O ,
induced by the usual connection of g∗ , is a left invariant connection ∇ on G which
is affine, i.e with zero torsion and curvature. Thus this connection is given by the
left invariant symmetric product on g ,

ab = Lab = Rba

where La = q−1 ◦ad∗a◦q and q(x) = i(x)ω . Connection ∇ is complete if and only
if the Poisson structure has only one leaf i.e O = g∗ . But a result of Lichnerowicz-
Medina ([6]) tells that an affine Poisson structure whose linear part is a Lie algebra
g has only one symplectic leaf if and only if g is unimodular and symplectic. As
here g is unimodular, ∇ is complete and p , the developping map of ∇ , is a
diffeomorphism. Hence G is a solvable Lie group.

Corollary 3.2. Let M = Γ\ (G,ω+) be as above, where G is a connected Lie
group ; then ∇ induces an affine connection ∇ on M such that π : G −→ M is
an affine (symplectic) covering.

Remark 3.3. Note that connection ∇ , (and ∇), is symplectic if and only if
G is abelian. This results from the formula (1).
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Theorem 3.4. Let be M = Γ\ (G,ω+) as above, where G is connected. If the
natural action ψ of G on M is symplectic, then G is abelian and M is a torus.

Proof. The action ψ is given by ψ ([τ ], σ) = [τσ] = ψσ [τ ] for σ and τ in G .
Let x the fondamental field for ψ associated to x ∈ g = TεG where ε is the unit
element of G . Let us suppose ψ symplectic , i.e ψ∗σω = ω for every σ in G .
Therefore Lxω = 0 where Lx is the Lie derivative in the direction x . It means
that the 1-form i(x)ω is closed, therefore x is locally hamiltonian. According
to a result of Lichnerowicz on a symplectic manifolds, the bracket of two locally
hamiltonian fields is an hamiltonian field. So if z = [x, y] with x and y in g , z
is an hamiltonian field and there is a smooth function f : M −→ R such that
df = i (z)ω . As M is compact, f has critical points. Let [τ ] such a point :
z[τ ] = 0 = d

dt
|t=0 [τ exp tz] = π∗,τ (z

+
τ ) where z+ is the left invariant vector field

associated to z . But , as π is a local diffeomorphism, it follows that z+
τ = 0 and

z+ is zero, so g is abelian.

For our purpose we need to recall some basic notions.
Let (M,Ω) be a 2n-dimensional symplectic manifold and i : L ↪→ M an immer-
sion. We say that L is a Lagrangian immersed submanifold of M if Txi(TxL) is a
n-dimensional totally isotropic subspace of Ti(x)M for each x ∈ L . A Lagrangian
foliation is a foliation in (M,Ω) whose leaves are Lagrangian submanifolds of M .
From the Frobenius’ Theorem it is clear that every Lagrangian Lie subalgebra of
g = Tε(G) determines a left invariant Lagrangian foliation in (G,Ω+).

Our manifolds have often Lagrangian foliations as showed by the following
result ([7]).

Theorem 3.5. Let be M = Γ\ (G,ω+) as above. If G is completely solvable, G
contains a connected lagrangian Lie subgroup and therefore M admits Lagrangian
foliations.

4. Lagrangian foliations and symplectic connections

Recall that there are four non abelian real unimodular Lie algebras of dimension
four endowed with a scalar non degenerate 2-cocycle given in terms of a basis
{ej, 1 ≤ j ≤ 4} whose nonzero brackets are the following :

(2)

G1 : [e1, e2] = e3; [e1, e3] = e4
G2 : [e1, e2] = e2; [e1, e3] = −e3
G3 : [e1, e2] = e3; [e1, e3] = −e2
G4 : [e1, e2] = e3

We have :

Theorem 4.1. Every unimodular 4-dimensional symplectic Lie group G con-
tains Lagrangian Lie subgroups. Moreover if Lie(G) = Gi , i = 2 or 4, G admits
pairs of tranversal Lagrangian Lie subgroups. Hence any symplectic solvmanifold
Γ\G inherits Lagrangian foliations (if i = 2 or 4 they have pairs of such transver-
sal foliations ).
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Proof. We must describe in Gi the Lagrangian Lie subalgebras. First , sup-
pose i ≤ 3. In this case every nondegenerate 2-cocycle on Gi can be written as
αe∗1 ∧ (e∗4 +βe∗2 + γe∗3) + δe∗2 ∧ e∗3 where

{
e∗j

}
is the dual basis of {ek, 1 ≤ k ≤ 4}

and α , β , γ and δ real numbers with αδ 6= 0 . Every 2-dimensional subalge-
bra of Gi is abelian, except Span{e1, e2} and Span{e1, e3} in G2 . If i = 2 or 3,
Kere∗1 = [Gi,Gi] + Z(Gi), where Z(Gi) denotes the center of Gi , is an abelian and
characteristic ideal of Gi . Denote by B an 2-dimensional subalgebra of Gi . Assume
that B ⊂ Kere∗1 . If B =Span{b1, b2} is Lagrangian we will have e∗2∧e∗3(b1, b2) = 0
and hence B =Span{λe2 + µe3, e4} with (λ, µ) 6= (0, 0).
If B is not contained in Kere∗1 , B =Span{b1, b2 = ue2 + ve3 + we4} with e∗1(b1) 6=
0 because B∩ Kere∗1 is one dimensional. We may suppose b1 = e1 + b

′
1 with

b
′
1 ∈ Kere∗1 and [b

′
1, b2] = 0 . If i = 3, B must be abelian so u = v = 0 and

B =Span
{
e1 + b

′
1, e4

}
is not Lagrangian. This shows that G3 contains Lagrangian

subalgebras, necessarily included in Kere∗1 , but there are no pairs of supplemen-
tary Lagrangian subalgebras in G3 .
Suppose now i = 2. If w 6= 0 and (u, v) 6= (0, 0) , B would be 3-dimensional,
thus (u, v) = (0, 0) and B =Span

{
e1 + b

′
, e4

}
which is not Langrangian.

If w = 0 there are two possibilities: B =Span
{
e1 + b

′
, e2

}
or B =Span

{
e1 + b

′
, e3

}
In the first case, we can set b′ = λe3+µe4 and ω(e1+b

′, e2) = αβ−δλ , so we choose
λ = αβδ−1 to make B Lagrangian. In fact G2 contains also Lagrangian subalge-
bras of type Span

{
e1 + b

′
, e3

}
. Moreover , L =Span

{
λ

′
e2 + µ

′
e3, e4

}
contained in

Kere∗1 , is a supplementary Lagrangian subalgebra of B =Span{e1 + λe3 + µe4, e2}

if and only if the 4-order determinant

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 λ

′
0

λ 0 µ
′

0
µ 0 0 1

∣∣∣∣∣∣∣∣ does not vanish, i.e µ
′ 6= 0.

Thus there are pairs of supplementary Lagrangian subalgebras in G2 .
We now turn to the filiform Lie algebra G1 . One can easily show that with a basis
change that do not modify the brackets, any non degenerate scalar 2-cocycle can
be written e∗1∧e∗4+e∗2∧e∗3 . As every 2-dimensional subalgebra is abelian, because of
nilpotency, we see that every Lagrangian subalgebra is of type Vect{λe2 + µe3, e4}
with (λ, µ) 6= (0, 0). Hence G1 contains Lagrangian subalgebras but no pairs of
supplementary Lagrangian subalgebras.
We now come to G4 . Here the space of 2-coboundary is Span{e∗1 ∧ e∗2} , so the
classes of e∗i ∧ e∗j , where i belongs to {1, 2} and j belongs to {3, 4} , generate
H2(G4,R). Moreover every 2-cocyle is cohomologous to an ω = f ∧ e∗3 + g ∧ e∗4
with f and g in Span{e∗1, e∗2} . Then ω is non degenerate if f ∧ g is nonzero. As
Kerf and Kerg contain Z(G4) =Span{e3, e4} , we can find e

′
1 and e

′
2 in G4 such

that Span
{
e

′
1, e

′
2, e3, e4

}
is a basis of G4 , f = e

′∗
1 , g = e

′∗
2 and ω = e

′∗
1 ∧e∗3+e

′∗
2 ∧e∗4 .

Then [e
′
1, e

′
2] = λe3 with nonzero λ , and multiplying e3 and ω by a scalar, we may

write ω = e
′∗
1 ∧ e

′∗
3 + e

′∗
2 ∧ e

′∗
4 with [e

′
1, e

′
2] = e

′
3 and then we omit the primes. Ob-

viously L1 =Span{e1, e3} and L2 =Span{e2, e4} are supplementary Lagrangian
subalgebras in G4 .

Remark 4.2. Let be (G,ω+) the connected and simply connected symplectic
Lie group whose Lie algebra is G4 , Γ a cocompact subgroup of G and M =
(Γ\G, ω̄) the associated symplectic nilmanifold. A direct computation shows that
b2(M) = 2, so, by a result of Taubes ( see [2] for more information ), Gromov
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invariant and Seiberg-Witten invariant of M coincide.

Here is a result useful in what follows ( to compare with Theorem 7.7 of [11]).

Lemma 4.3. Let (G,ω+) be a symplectic Lie group with the left invariant affine
structure given by

ω+(∇+
x+y

+, z+) = −ω+(y+, [x+, z+]).

If H is a Lagrangian Lie subgroup then the connection ∇ induces on H a left
invariant affine structure . Moreover if G is unimodular, both connections are
complete.

Proof. For every x, y, z ∈ G =LieG , we have ω(xy, z) = −ω(y, [x, z]); taking
x and y in Lie(H ), we see that xy is still in Lie(H ), since the second terme is
zero for every z in Lie(H ). If G is unimodular, ∇ is complete ( see [6]) that is
TrRx = 0 for every x ∈ G . The same is true for the left symmetric product of
Lie(H ).

Note that the connection associated to ω+ is symplectic if and only if G is
abelian. However we have:

Theorem 4.4. [5] Let (M,Ω) be a symplectic manifold. We endow χ(M) with
a product XY given by the formula

Ω(XY,Z) = −Ω(Y, [X,Z]).

If there are on M two Lagrangian transversal foliations Fi , i = 1, 2 then (M,Ω)
is endowed a unique torsion free symplectic connection ∇ satisfying ∇Fi ⊂ Fi

which is given by:

(3) ∇(X1,X2)(Y1, Y2) := (X1Y1 + [X2, Y1]1, X2Y2 + [X1, Y2]2)

where (X1, X2) and (Y1, Y2) are in TM = F1 ⊕ F2 , Fi denoting the subbundle of
TM corresponding to Fi .

According to our study and Hess’s result we have the following:

Proposition 4.5. Let (G,ω+) be a unimodular symplectic 4-dimensional Lie
group. If Lie(G)= Gi , i = 2 ou 4 then G has a unique left invariant torsion
free symplectic connection ∇ such that ∇Fj ⊂ Fj , j = 1, 2 where Fj are the two
subbundles of TG associated to a pair of transversal Lagrangian subgroups of G.

In fact we have the following stronger result:

Theorem 4.6. If (G,ω+) is a unimodular symplectic 4-dimensional Lie group.
Then G admits a complete and left invariant symplectic affine structure. Conse-
quently every symplectic solvmanifold associated to G inherits a flat and torsion
free symplectic connection.
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Proof. We must find in G = Lie(G) a left symmetric product ab = La(b)
satisfying ab − ba = [a, b]G and ω(La(x), y) + ω(x, La(y)) = 0 for all a, b, x and
y ∈ G . We successively study the four different cases. Suppose G = G1 . Every
scalar non degenerate 2-cocycle over G is equivalent to ω = e∗1 ∧ e∗4 + e∗2 ∧ e∗3 . For
the sake of simplicity, we choose Le4 = 0. A straight computation in the basis

{e1, e2, e3, e4} shows that Le1 =


0 0 0 0
α 0 0 0
0 β 0 0
0 0 −α 0

 ,

Le2 =


α 0 0 0
0 0 0 0

β − 1 0 0 0
0 β − 1 0 0

 , where α and β are real numbers related

by 2α(β− 1) = α+1 gives a family of invariant connections over G satisfying the
requirement of the theorem.
Suppose now that G is not nilpotent. There are two such real Lie algebras :G2 and
G3 which are C-isomorphic. So it is enough to study one of them, for example
G2 endowed with ω = e∗1 ∧ e∗4 + e∗2 ∧ e∗3 . If we set Lei

= 0 for i = 2, 3, 4 and

Le1 =


0 0 0 0
0 1 0 0
0 0 −1 0
α 0 0 0

 , where α is any real number, we get a suitable family of

left invariant connections over G with Lie(G)= G2 .
In the last case , G = G4 and ω = e∗1 ∧ e∗4 + e∗2 ∧ e∗3 . We set Le3 = Le4 = 0 , thus

Le1 and Le2 can be written in the following block form: Le1 =

(
O2 O2

A1 O2

)
and

Le2 =

(
O2 O2

A2 O2

)
so we have [Le1 , Le2 ] = 0 = Le3 . A direct computation shows

that, taking A1 =

(
β β

′

γ β

)
, Le1 is symplectic. Then Le1e2 − Le2e1 = e3 and

Le2 symplectic implies A2 =

(
β

′ − 1 β
β β

′ − 1

)
where the coefficients of A1 are

any real numbers.

Remark 4.7. Let (G,ω+) be as in theorem 4.6. with G simply connected.
Integrating the representation x 7−→ (x, Lx), x ∈ G , we can consider G as a
transformation group of the affine space G , the elements of G having a linear part
in Sp(G, ω). The particular representations exhibited in the proof of Theorem 4.6
show that this group contains non trivial one parameter subgroups of translations.
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variante, in: “Symplectic Geometry, Groupoids and Integrable Systems,”
M. S. R. I. Publ., Berkeley (1991), 247–266.

[9] Raghunathan, M. S., “Discrete Subgroups of Lie Groups,” Springer-Verlag,
New York, 1972.

[10] Vinberg, E. B., V. V. Gorbatsevich, and O. V. Shvartsman, “Discrete
Subgroups of Lie Groups,” Springer-Verlag, Encyclopedia of mathematical
sciences 21, 2000.

[11] Weinstein, A., Symplectic manifolds and their Lagrangian submanifolds,
Advances in Math. 6 (1971), 329–346.

Alberto Medina and Phillip Revoy
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