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Abstract. In this paper, we show substantial formulas of the sl{(NV, C)-weight
system from a representation theoretical viewpoint. Although some of them
can be essentially recovered by the universal sl(N, C)-weight system formulated
by the first author in [12], they have more efficient descriptions than the ones
recovered by the universal weight system in the sense that the dimension of the
representation space of sl(IN,C) used in this paper is taken to be minimal. In
addition, in this paper, we also have the aim of making an exposition of the
sl(N, C)-weight system: we show some elementary facts which are not easy to
calculate concretely.
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1. Background of the weight system

For a quantum group U,(g) associated with a simple Lie algebra g and an arbitrary
representation p of U,(g), the quantum (g, p)-invariant @)y, for framed links
can be defined. It takes values in the ring C[[A]] of the formal power series in
h. Regarding expressions of the quantum invariant, it is in fact very hard to
present or formulate it concretely since the structure of the quantum group and
its representation are usually quite complicated.

On the other hand, in the 1990’s Kontsevich constructed an invariant for
knots taking values in a certain linear space A(S'). This so-called Kontsevich
invariant is reviewed in Section 2. by using Drinfeld’s work on the universal
solution of the Kniznik-Zamolodchikov equation ([4], [7]). Based on the Kontsevich
invariant, Le and Murakami constructed an invariant of framed links which takes
its values in the space A(ILS') by using a combinatorial method ([8], [9], [10]). This
is called the modified Kontsevich invariant and denoted by Z (refer to Chapter 6
in [15], for example).

Now, we have a special linear map from the algebra A(ILS') to C, called
the (g, p)-weight system W, , defined in Section 6.6 of [15] in detail. Note that
there exist two definitions of the weight system. The definition in [15] uses the
representations of the Lie algebra. The other definition in [1] uses “state”. These
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are indeed equivalent, however we will follow the definition in [15] and make a
representation theoretic approach to the weight system in this paper. The graded
weight system W, , is a linear map from A(ILS') to C[[h]] defined in Theorem
2.1. It is well known that the quantum (g, p)-invariant can be derived from the
modified Kontsevich invariant Z via the graded weight system Wg » (see Theorem
2.1). Namely, Z is a lift of Qg to A(ILS') and the graded weight system Wg,p
is the projection of 7 to (4,,- Note that the modified Kontsevich invariant
does not depend on g and p, while the weight system does. Thus the quantum
(g, p)-invariant can be reconstructed as the composition of Z with W, , without
U,(g) and its representation, but just by using g and p. Though this process
makes the calculation of the quantum invariants somewhat simpler as above, it
is still very hard to calculate the weight system (and the modified Kontsevich
invariant), because of the representation theoretical complexity. However, to avoid
the complexity, we can in fact use the formula introduced by Le and Murakami
for the calculations of the weight system Wy )0

Theorem 1.1. (Le and Murakami [8])

1
Wsl(N,C),po (TT) = NWSI(N,C),p() (] x) - Wsl(N,(C),po (><) s

where py 1s the fundamental representation.
After that, a formula for (si(2,C),ad) was given by Chmutov and Varchenko:

Theorem 1.2. (Chmutov and Varchenko [3])

where ad is the adjoint representation.
Furthermore, Kuga and Yoshizumi studied the case of (g, p) = (sl(3,C),ad):

Theorem 1.3. (Kuga and Yoshizumi [16])

+ W o ( ) + 3Wai3,0,ad () + 3W(3,0)ad () :
where ad is the adjoint representation.

Remark 1.4.  Let p be the trivial representation of si(/N,C). Then note that
the direct sum ad @ p is isomorphic to the tensor representation pj® po, where pj
is the dual representation of py. Let I and E;; be the unit matrix and the (i, 7)-
matrix unit of gl(N,C) respectively. Considering that the representation spaces
of ad® i and pi® py are sl(N,C) @ CI = gl(N,C) and (CV)*® CVN respectively,
we fix a linear map ¢,

L3ad@/i—>,03®,00, [’(EZ]) eg®em (1SiajSN)7
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where {e;}Y, and {e;}Y, are the canonical basis of CV and its dual respectively.
We can easily check that ¢ is an isomorphism. This isomorphism naturally induces
an isomorphism :®¢ from (ad®u)®? to (pf®py)®?. Note that the inverse (1®¢)~"
1 g -1
ISt QL .

Remark 1.5. Let ¢+ and ¢ ® ¢ be the isomorphisms in Remark 1.4. Then they
naturally induce isomorphisms of algebras,

7 : Endgn,c(ad @ p) = Endgn,o (0 ® po), 2(f) =to fo L
for any element f in Endgy,c (ad @ p), and
187 Enduuwo (d@m)™) - Enduno (55900)), 181(g) = (190)ogo(1e) 7,

for any element g in Endgy,c ((ad @ p)®?) respectively.

In this paper we generalize Theorems 1.2 and 1.3 as follows:

Theorem 1.6.  Let t ® ¢ be the isomorphism in Remark 1.5. Then the follow-
g equation holds:

L@ (Wsl(N,(C),ad (TT)) = Waw,0),00 (\H’) + Wano),m0 (l |)
— Wano), (“D%) — Wsin,0),0 (13%[) ;

where both sides are equal as elements in Endgy,c) (05 ® po)®?).

Note that Wy c)ad (I ,,,,,, T ), which is an element of Endgn, (ad ® ad), can be

naturally considered as an element of Endgy,c) ((ad@® p)®?) via the inclusion of ad
in ad @ p. Therefore the left side of the equation in Theorem 1.6 is well-defined.
We sometimes omit the isomorphism ¢ ® ¢ in the above equation for convenience.

This paper is organized as follows. In Section 2., we review some concepts
related to quantum invariants and the weight system. In Section 3., we show our
formulas of the weight system Wy c)ada. In Section 4., we calculate the weight
system Wy n,0),aa for some special cases by using the formula in Theorem 1.6. In
the final section, we observe that Theorem 1.6 is a generalization of Theorems 1.2
and 1.3.

2. Short review of Jacobi diagrams, Kontsevich invariant, quantum
invariants and weight systems

In this section, we review some concepts related to quantum invariants.

We first review the Jacobi diagrams, which are variously called chord, web
or Feynman diagrams, and which play an important role in this paper (refer to
Chapter 7 in [15] for details). Let X be a real 1-dimensional compact oriented
manifold with finitely many connected components. (We assume that all com-
ponents of X are ordered.) Then a Jacobi diagram with support X is defined
as a trivalent graph D such that D consists of X and unoriented dashed edges
satisfying the following conditions:
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1. a vertex lies on the interior of X, or a vertex is a common end point of
dashed edges.
2. edges adjacent to a vertex are ordered cyclically.

In this paper, we assume that the cyclic order is taken to be counterclockwise.
Since a graph have no notion of knotting, we do not have to consider the sign of
crossing for a Jacobi diagram. Therefore every crossing in a Jacobi diagram is

drawn as a singular crossing.
Q ] 1 1

Figure 1: Jacobi diagrams with support S!

Two Jacobi diagrams are said to be equivalent, if they are equivalent as
graph with cyclic ordered trivalent vertices.

Figure 2: Two equivalent Jacobi diagrams

We next review the space A(X) to describe the weight system. For a 1-
manifold X defined above, the space A(X) is a vector space over C spanned by
Jacobi diagrams with the support X modulo the AS, the AS’, the IHX and the
STU relations as in Figure 3. A(X) is naturally graded by the degree of Jacobi
diagrams. The degree of a Jacobi diagram D is half the number of trivalent
vertices of D. In this paper, the completion of A(X) in terms of the grading is
also denoted by A(X). The vector spaces are discussed in [2] in more detail.

AS: X b= = e

I H

STU Voo

Figure 3: The AS, the AS’, the IHX and the STU relations

We can now review the definition of the weight system. A weight system of
a Jacobi diagram can be simply thought of as a linear map between representation
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spaces associated with finite dimensional irreducible representations of an arbitrary
simple Lie algebra such that the map commutes with the action of the Lie algebra
via its representation (such a linear map is sometimes called an intertwiner). An
exact definition is as follows (refer to Section 6.6 of [15] for more details). We
assume that the support X of a Jacobi diagram has k£ connected components.
For an arbitrary simple linear Lie algebra g, let p; : g — End¢(V),i =1, .., k, be
an irreducible representation of g. We fix the canonical basis {e;-}, j=1,..,dimV;,
of V;. Let pf: g — Endc(V;*) be the dual representation of p;, where V* is the
dual space of V;. Then we denote by €, the dual base of €. Let B be the Killing
form on g. In this paper, we define B on si(N,C) by B(z,y):=tr(zy) for z,y in
sl(N,C).2 Then we fix an orthonormal basis {I;},7 = 1, ..,dimg, of g with respect
to B. For a Jacobi diagram D with the support X, we first put g on all dashed
lines and V; on the i-th component of X for all 7. Next, we decompose D into
the fundamental parts as in Figure 4 by using some horizontal lines (if necessary
we may move some dashed lines in the process). Note that a linear map is given
for each fundamental part in Figure 4. We compose the maps from bottom to top
according to the decomposition of the Jacobi diagram. Then the weight system
W (o1,.00) (D) of the Jacobi diagram is defined as the composite map.

Vi > pi(z)v Vit s pi(x)f VeVt s N e ®F
gRVi> Qv gVi*s2z1z® f C>o1

C> f(z) C> f(x) VireVisxirlid @l
VireVis fex VioVirsz® f C>1

g3 [z,yl =2y —yx C9B($ay) g ®99§]‘}i;nflj®]j
ag232xQy ag2rQy C>1

Figure 4: Fundamental parts of the Jacobi diagrams and the corresponding maps

Note that in the calculations of the (sl(N,C),ad)-weight system we can
consider every component of the support of a Jacobi diagram as a dashed line.
For convenience, Wy, . is denoted by W;,, and a representation p and its
representation space V' are used without distinction in the rest of this paper.

The following theorem, which is one of the most important theorems when
we study quantum invariants, tells us the role of the weight system.

Theorem 2.1. (Kassel [5], Le and Murakami [10])
The quantum (g, p) -invariant Qg , can be reconstructed by using the composition

2Although B on sl(N,C) is usually defined by B(z,y) := 2N -tr(ay) for z,y in sl(N,C),
we use the modified version for convenience in this paper.
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of the modified Kontsevich invariant 7 with the (g, p) -graded weight system Wg,p.
Namely,

Qg,p(L)‘q:eh = Wg,p(Z(L))a
for an arbitrary oriented framed link L, where Wg’p(D) = W, ,(D) hies(D)

As mentioned before, according to this theorem, the graded weight system W\g,p is
the projection of a lift Z of the quantum invariant Qg to C[[h]]. Therefore, if we
can derive a formula similar to Theorems 1.1 through 1.6 for a pair (si(V,C), ad),
and moreover we can calculate the modified Kontsevich invariant, we can essen-
tially evaluate the quantum invariant Qv c).a Without the adjoint representation
ad (recall Section 1.).

In the rest of this paper, we concentrate our interest on the formulation of
the weight system for the pair (sl(N, C),ad) and its application.

3. Representation theoretical approach to Theorem 1.6

In this section, we prove Theorem 1.6. from a representation theoretical view-
point. Note that there exists another definition of the weight system in [1] by
using the “state” without representations of Lie algebra. However we follow the
definition in [15] which is made by using the representations of Lie algebra. For
convenience, Wy n,c),, is denoted by W, from now on. The idea of the proof is to
take the double of the support of the Jacobi diagram and apply Theorem 1.1 at
two vertices which are connected by a dashed line.

Proof of Theorem 1.6. By using the following fact for any representations p
and A,

Woeon (H) Wi (]H1)+W(,,0*,p0,p0*,,,0)(mD "
+ Wonrsmaro (| H1) + W (111)-

On the other hand, the representation p§® po of si(NN,C) is isomorphic to
the direct sum of the adjoint and the trivial representations. Namely,

Po @ po = ad @ p,
where p is the trivial representation. Therefore the two representation spaces
(addp)®? =(ad®ad)® (ad@ p) & (p®ad) ® (1 p)

and

(5 ® po)®* = p5 ® po ® P @ po
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are also isomorphic. Let t®¢ be the map from Endgg((ad & ©)®?) to
Endgvc) (0 ® 00)®%%) as in Remark 1.5. That is, for any element ¢ in
Endgy v, ((ad @ p)*?),

(®ug)=(®)ogo(t®).

Then we can easily check that + ® ¢ is an isomorphism of algebras. Note that the
weight system Woge, (I ,,,,,, T ) is an intertwiner on (ad @ u)®? and so is an element

of Endgn,c) ((ad ® p)®?) (refer to [15] for details on the intertwiner). Here, by the
definition of ¢ ® ¢, the following equation holds:

we get the equation below:

oo (1-1) -

+

&
o~
N
Q.
D
=
S
—:—b
N~
N~~~

I
&
o~

=
Q.
[

S
RS
—:—b
N—
N—
_|_
~
g

)

The Lie algebra si(V,C) acts on C as the 0-map, so we get the following conclu-
sion:

&

o~
=
[

&
/N
—:—b
N——
N——
_|_
o~
9
-

S
=
E
/N
—:—.
N——
N——

By comparing Equation (1) with Equation (2), we obtain

=Y <Wad (H)) = W ([11]) 4 W (111
+ W (| 111) + Wi (1111)

Next, since the relation below holds for any representation p

o —
D —
D ———
 ——
N———
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we have the following equation:

@7 (W (1)) = W (1111) + W0 (1111) W20 (1111) + 20 (1111)

Finally, applying Theorem 1.1 to the equation above, we get Theorem 1.6
as follows:

il )
N——

4. Demonstration

In this section we calculate the weight system of the Jacobi diagram called the
wheel with 2n legs (refer to Figure 5).

[=v=1
2N

Figure 5: Wheel with 2n legs

Corollary 4.1.  Let 1 ® ¢ be the isomorphism fized in Remark 1.5. Then for
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n>1, the following equation holds:

— o (| 21) +00uncm (TH) +taon (1)
+ aatan () +tbinsn (|[]]) # Mbnn (35
+ gaWavop (>ﬁ<> N(an-1 + fa-1) +2dp_1}

x M,,,o(p\ DS [ 2K R

/) \
— 4ap—1 + fa-1 + Nen) Wan,0),00 (% + h)

+ 2(an-1+ fa-1)Wan,0),00 (Hﬁ + KHJF % * %J‘)
uu)

+ A 1 Wan,0),00 (r\f\

where the sequences a,, through g, (n > 1) are as follows:

1 2n—+1 2n—1 2n—1

b, = ap,

n—1 - i ]
NQz _ 2N21—2 _ 221—1
¢, = 22n71N2n72 (l | N2 1 )

=1

n—1 i ; n—1
) 6N2(NQZ _ 221) . N2k _ 2N2k—2 _ 22k—1
n—i—1 2141
ey (S e ) (T 220
=1

k=i+1
d - 227L—1
n =
e, = dp
f _ 2N2n—1 _ 22n—1N
" N2 —4
9 = [fn

In particular, ag = —fo, co =0 and dy = —%. Note that the both sides are equal

as elements in Endgnc) (05 @ po)®?).
Proof. For convenience, + ® ¢ is omitted in this proof. For n > 1, we first put

| )
= a'nWsl(N,(C),po (lz T) + ansl(N,(C),po ( }:I/\( ) + Cn sl(N,C),p (%)
+ ansl(N,(C),pg < >BK> + enWsl(N,(C),po (J ] J r) + fn sI(N,0),po (%)

+ G Wsi(v,0),00 (}%«) + Wa(n,0),po (other 15 diagrams) .
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We can check that the left side of the above equation is presented by 22 diagrams
on the right side of the equation in Corollary 4.1. Note that the last 15 diagrams
can be ignored in the calculations to determine the coefficients of all diagrams of

at least a cup U or a cap N. In general, they can be classified into the following
4 types, A, B, C and D:

u!! Ny Y 1!
A=... B=,. . C="1 D= ".
i, didi, Nii, N

composition

Wan0),ad (TD O Wisi(N,C),ad (lsf}zn ) 0 Wsi(N,C),ad (TD .

Remember that W(n c),ad (T ,,,,,, [ ) can be considered as

e (111) = wasan ({1 - msn (1)
s (111 R 1)}

as in the proof of Theorem 1.6. Here let us denote the sum of the first and the
third terms of the above equation by F and the sum of the second and the fourth
term by F'. Then for any Jacobi diagram D of type A,

Eo Wsl(N,(C),po (D) - Oa Fo Wsl(N,(C),po (D) - 0,

by the AS’ relation. Therefore for any Jacobi diagram D of type A,

Wiy (n),ad (1 rrrrrr T ) o Wan,0),p0 (D) = (E + F) o Wen,0),p0 (D) = 0.

Similarly we can get the same result in the case of other types, B, C, and D.

calculation of Wn,c)ad '1} 2(n+1) ). Moreover the coefficients of the last 15

diagrams are determined by the sequences a, through g, as in Corollary 4.1 by
the composition above.
Considering the composition,
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for n > 1 and the facts above, we can get the following recurrence relations:

any1 = N?a, + Nepy,

but1i = NZ?b, + Ney,

cr1 = 3N(an+bn+ fo+ gn) + 2N (an + bn)cn + 2(dy + €n),
dpy1 = 2dp + 2ep,

ent1 = 2d, + 2e,,

fat1 = Ndn+ N?f,,

gns1 = Ndn+ Ng,.

Here we can easily check that

ap=bj=N,co=di=e1=2, fi=09=0.

In particular, for the formula in the case of n =1, we put ag = —fo, ¢o = 0 and
dy = —%. Resolving the above recurrence relations we can get the sequences a,
through g, in Corollary 4.1. [ ]

Corollary 4.2. With the same notations and condition as in Corollary 4.1,
the following equation holds:

Wsl(N,(C)aad (an) = 2N3an + NQCn + NQ(NQ + 1)dn + 2N fn — 4N(N2 + 1)a”_1
—4N?c, | —16N?d,_, + AN(N? = 1)f,_,

where the Jacobi diagram w, is the wheel with 2n legs.

Proof. By closing the support on both sides of Corollary 4.1, we can easily get
the equation above. Here we use Lemma 4.3 below to close the support. ]

Note that in the case of the odd version wy,; we can get a similar relation
to the even case.

Lemma 4.3. Let 1@ and ¢ be the isomorphisms fixed in Remarks 1.4 and 1.5
respectively. Then for an arbitrary finite-dimensional irreducible representation p,
the following equations hold:

_ 1 N,
L (Wsl(N,(C),p ( >) = Waw,0),00 (‘ D - NWsl(N,(C),po (F\) ,

(t® 1) o Wan), ( ) = Wanc).p0 ( U) - % SI(N,C),p0 (% U)

Wan,o),p ( ) o (t® )t = Wynop (ﬁ) - % S1(N,C), 0 (ﬁ %)

where both sides of each equation above are equal as elements in Endgv,c) (05 ®po)
Homgn,c) (1 (0§ ® po)®?) and Homgn,c) (0§ ® po)®?, 1) respectively.

Note that the left side of the third equation is well-defined. That is,
W0, () can be naturally considered as an element of

Homsl N,C) ((a’d > /.,L) lu) = Homsl(N,C) (gl(Na (C)®25 (C)a
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because the Killing form B of sl{(N,C) is the restriction of that of gl(N,C) to
sl(N,C)®? (up to a constant multiple).

In the proof of Lemma 4.3, we will also show that the left side of the
second equation is well-defined. We sometimes omit the isomorphisms 7, (¢ ® ¢)
and (:®¢)7! in the equations in Lemma 4.3 for convenience.

Proof of Lemma 4.3. Regarding the first equation, we first get the following
relation by using the properties of the representation and the weight system as in
the first proof of Theorem 1.6:

o )il () 0
= Waw,0)p5000 ( ‘ > = Waw,0).00 (‘ D ’ (4)

where the notation is the same as in the first proof of Theorem 1.6. (Note that
Wy N,@),p(i) is an element of Endgy,)(ad). We can think of it as an element of
Endg v, (ad @ i) such that it is zero on the subspace p and the identity map
on ad. Hence the first term above is well-defined.) Thus it suffices to show the
following equation:

_ 1
t (WSl(NaC)7N ( ’ )> = NWSI(N7(C)ap0 <X) ’ (5)

where the map Wy n.c),p0 ( is an intertwiner on pj ® po which is isomorphic

=)
=
to ad®pu. Note that the Jacobi diagram >< can be decomposed into v and ‘4
by cutting horizontally across the center of the diagram and so we can consider
that the intertwiner Wy Ny@)7p0(><) is the 0-map on the subspace of p§ ® po iso-
morphic to ad and a constant map %Id“ on the subspace of pjj ® py isomorphic
to p. The reason is as follows. f = Wy c),p (") is an intertwiner from pf ® po,
which is isomorphic to ad @ u, to p. By the meaning of the intertwiner, f is the
0-map on the subspace of pj ® py isomorphic to ad and a non zero constant map
kId, on the subspace of py ® py isomorphic to p. Similarly the intertwiner g =
Wan,0),p ( * ) is the embedding of 4 into pg ® po. So the composition g o f is
the 0-map on the subspace of pj® py isomorphic to ad and the constant map kId,
on the subspace isomorphic to i. Hence we get the equation as follows:

L (WSI(N,(C),N ( ‘ )) = kWsl(N,(C),po (x> .

By comparing the right sides of the following two relations

2 N\
{? (Wsl(N,C),u ( ’ )) } = KWy <) 00 (O) = K> NWa(v,0).00 (X) :
M\

and

(o (1)) =r{ (1) =o1nen ().

it follows that k*N =k and so k = 1. (Note that & is non zero.) Thus Equation
(5) holds. This completes the proof of the first equation.
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Next, we prove the second equation in Lemma 4.3. By definition, we see
that the weight system (¢ ® ¢) o Wan,c),ad () is the intertwiner from pu to
(5 ® po)®? taking 1 € C to the image (¢ ® ¢)(T) of the invariant 2-tensor T for
sl(N,C)%?2,

N%Z-1
T=)> L®Ie€sl(N,0

i=1

where {I;}¥° 7! is an orthonormal basis of sl(N,C) with respect to the Killing
form B of sl(N,C) (for more details on the invariant 2-tensor, refer to Section 5.1
in [15] for example). Here we can easily check that the following N? — 1 elements
give us an orthonormal basis of s/(N,C) in terms of B:

k
E,,+E; E;— E, 1
{ it J ZlHl|1<z<j<N 1<k<N—1}

Vi VR D &

where E;; is the (4, j)-matrix unit and H; is Ey — Ej4q 41 for any ¢, j and [.
Hence the invariant 2-tensor 7" is given by the following:

®2
1 1
> §(EZ-]-+E]-,~)®2— > o (Bij — Eji ®2+;”+1 (ZJ )

N>j>i>1 N>j>i>1

N fhl (22:1 jQHJ@Q + Zi2n>m21 mn(H,, ® H, + H, ® Hm))
Z Eij®Eji+i:ZI G D)

h,j=1,i#]

Here the sum 7" = va 11 z(zil) (22:1 j2Hj®2+Zi2n>m21 mn(H,QH,+H,®H,,))

is transformed as follows:

N—-1N-1

_ j? . mn(H, ® H, + H, ® Hy,,)
o= Zzi(i+1)H]®2+ 2. Z i(i+ 1)

j=1 i=j N—=1>n>m>1 =l
N-1 . .
_ (N =3) 17 en m(N —n)
= DTy THT Y ~— (Hn ® Hy + H, @ Hy)
j=1 N—-1>n>m2>1
-1
H;®* H, ® H, + H, ® Hp,
= 2>yt N
N>I>k>1 j=k N>I>k>11-1>n>m>k
-1
1
— ®2
= 3 (ZHJ + Y (Hm®Hn+Hn®Hm)>
N>I>k>1 \j=k I-1>n>m>k
®2
1
— _ ®2
-5 > (Th) -5 X tu-m
N>l>lc>1 N>I>k>1

The second equality above is shown by the following relation:

i 1L _k+1-j
—i(i+1)  jk+1)’

i=j
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which can be proved by induction. (Actually, it is easy to see the above calculation
of T'" from the bottom to the top.) Therefore we get an expression of 7" as below:

N N N
1
T = E Eij X Eji + N E Ekk ® E (Ekk - Ell)
k=1 =1

b,j=1,i#]
N N 1 N
Y Be B+ Bue (E - Nzal)
N 1 N
=Y E;®Ej— ~ Y Eu® Ey.
ij=1 k=1

Hence we get the following consequence immediately:

N N N
~ - 1 ~ ~
(t@)(T) = E ¢ ®e®e Qe — (kil €k®€k) ® (lgl el®ez> .

2,j=1
The right side of this equation is the same as the image of 1 € C under the sum
of weight systems
1
WSl(NzC)aPE;@PO (U) - N sl(N,C),p5 ®po (% U) !
and so this completes the proof of the second equation.

Finally, we prove the third equation. The weight system Wy ), (- ) is
the Killing form B of sl(N,C). As above, we can consider it as an element of
Homg v,y ((ad @ )2, ) = Homgn,c) (gl (NN, C))®%, C). Comparing both sides of
the third equation with respect to the basis {€&; ® e; ® € ® 1}, ,—1 of p§ ® po,
we can easily check the equality. So we omit the details. [ ]

Similar to Theorem 1.6, Wy c),ad (T l) can be interpreted as Wy c),p0
as follows.

Corollary 4.4.  Let +: ® ¢ be the isomorphism fized in Remark 1.5. Then the
following equation holds:

L@t (Wsl(N,C),ad <T """"" l)) = Waw,0),p0 (\%D + Wawv,0),00 (l |
— Waw.,0),00 (HD%) — Wav,0),00 (13%‘) ;

where both sides are equal as elements in Endgn,c) ((p§ ® po)®?).

Note that the adjoint and the trivial representation of sl(NN,C) is self-dual, that
is, ad* = ad and pu* = p and so (ad® u) ® (ad ® p)* = (ad & pu)®2. Therefore the
left side of the equation in Corollary 4.4 is well-defined.

Proof. First, transform the Jacobi diagram T ————————— l into —]ol Next, decompose

it as in Figure 6. Then calculate the weight system of each part of the decom-
posed Jacobi diagram by Theorem 1.6 and Lemma 4.3 and contract them. This
completes the proof. [ ]

We remark that formulas of the weight system for lT , ll analogous to
Corollary 4.4 can be derived in the same way.



NAGASATO AND TAKAMUKI 277

Figure 6: Decomposition using horizontal and vertical lines

5. Reconstruction

In this section, we reconstruct Theorems 1.2 and 1.3 by using Theorem 1.6. For
convenience, the isomorphisms 7 and ¢+ ® ¢ are omitted and the weight systems
Wan,0),aa and Wyn),p are denoted by W and V' respectively from now on.
(Note that N is considered as 2 in Theorem 1.2 and as 3 in Theorem 1.3.)

Reconstruction of Theorem 1.2. By Theorem 1.6, we have

W(—) = V(XD +VOH) = v = VKD

The following two relations are derived from Lemma 4.3:

() = V)~ V() — VO + (),

W)= V() = v - v () + v (Y.
2 2 4

Next, a Jacobi diagram with singular points means a Jacobi diagram with
bivalent vertices on the support such that the orientations of two edges at a bivalent

vertex are in opposite directions. Let us define the weight system V(X) of the

Jacobi diagram % with two singular points as follows (this is possible in the case
of N =2):

v(X) = v (1 1)-v(=). Q

By definition, two singular points on the support can be cancelled as follows:

v()=v(lo)=r(lo)-v (o)== () - (3)-
B ) )

By using Equation (6) and the above cancellation of singular points, we can
remove all crossings and singular points of the support. Then we get the following
relations:

VOH) = —2V(ZR)+ V) +VED) +VIIR) VRN +V )+ V)
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—V(R) VSN =V -VED+VIRD

V(X) = -V Hu V(IR + V([ +VI||| V(=D

VXD ==VEID+VESD+VED+ VD = V(=D

V) = =2V(SD+ VD +VID +VESD V() + VAT +V R
—VER) =VER) = VAR = VEID +VZR):

By using these relations, we can reconstruct Chmutov-Varchenko’s formula. [ ]

Reconstruction of Theorem 1.3. By Theorem 1.6, we get

W) = V(D +3VOH) + 2V (D) + 2v ) +2v (D) - V(| 72)
= VESD V() VD V) = VD) = V(EK) = VER).

By the THX relation, we have
W( ) =V(ED+VEH) - V) - VER).

A uni-trivalent plane graph means a uni-trivalent graph which can be embedded
in a plane. From now on, we suppose that every uni-trivalent plane graph is
embedded in a plane. Next, for a uni-trivalent plane graph G,

¢=.

we define the weight system V(G) as follows:

v(X)=v (1 )-2(X)

In fact, the idea of the above definition comes from Yokota’s paper ([17]) and a
graphical relation of the HOMFLY polynomial described by using “flow” ([11]).
The following relations can be derived from the definition:

V(D) = V(D). )
v(TT) - v(—=)=v (> Q) ®)

By using Equations (7) and (8) above again and again, we can get uni-trivalent
plane graphs from a Jacobi diagram with crossings. Then we get the following
consequence:

VEH) = V(A2 V) + VIR + VER) + V(2 + VRN + VR
—sV (YY) =8V ([ —sv (o) —sv(IC) + 16v (1D
V(S + V() + VAT -8V
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VXD =VESD+ VD + V(1) =svoD
V) =V(ZN+ V(R + V() -8V
VER) =VISD+VER) + V(2 -sv(D)
V(K = V(Z2) + VA + VRN =8V
V) = VIR + V(2 + V(RID = 8v(E))
VORD = VS + VA + V(1) = sV
V) = V) + V) +V(I2) - 8v(EY)
V) =VIED+VUHID + VD + VIS + VIS + V() + VIAD
—sV(1)) -8V () —sv (D) —sv(CD +16v (D).

For example, the second equation is derived as follows:

V(1K) = (1K) =v (1K) -2 (1)
- v<1%>_2v(w)w(1>¢g)
= v (1) -2 (180) +av (1) +av (1 80)
- 8V<\):';()

By using Equations (7) and (8), we can get the following consequence:

(1) = (1) v (12 v (1) - ()

By using these relations, we can reconstruct Yoshizumi-Kuga’s formula. [ ]

6. Remark on the formula in Theorem 1.6

Although Theorem 1.6 is generalized for the universal si(NV,C)-weight system in
[12], the formula in Theorem 1.6 has a more efficient description than the formula
in [12] in the sense that the dimension of the representation space of si(N,C) in
Theorem 1.6 is taken to be minimal (refer to [12] for details).

In fact, Theorem 1.6 can be also proved by using Lemma 4.3 and the
following result:

Lemma 6.1. (Bar-Natan [1]) Let ¢ and ¢+ ® ¢ be the isomorphisms fized in
Remark 1.4. Then for an arbitrary finite-dimensional irreducible representation
p, the following equation holds:

Waw,o).p ( ) =o (Wsl(N,C),po ( A) ~ Wawv.c)n0 < A)) o (t®u),

where both sides are equal as elements in Homgn ¢ ((ad @ p)®?,ad @ p).
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Note that the left side of the equation in Lemma 6.1 is well-defined. That is, the
weight system W nc),( - ), which is the Lie bracket [-,-] on si(N,C), can be
naturally thought of as an element of

Homyyy,c) ((ad & 1)¥*, ad & p) = Homyw,o) (91(N, €)%, gl(N, ©)),
because the Lie bracket on sli(N,C) is the restriction of that on gl(N,C) to
sl(N,C).

To show Theorem 1.6 by using Lemma 6.1, we first decompose the Jacobi

diagram 1 ,,,,,, T into three parts as in Figure 7. Then we calculate the weight system

of each part of the Jacobi diagram by using Lemmas 6.1 and 4.3. Composing
those weight systems, we get Theorem 1.6 as in Figure 8.

Lemma3.1
K

[ fom . fomm,
R\\ES\Lanma32

Figure 7: Transformation and decomposition

T R (A A)
ce b (RN ) (-3 R)

Figure 8: Evaluation using Lemmas 6.1 and 4.3
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