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Abstract. We give a complete classification of spin holonomy algebras
on eight-dimensional Euclidean spaces w.r.t. a linear spin connection con-
structed from a self-dual 4-form T with constant coefficients. An important
rôle in this classification is played by the set of spinors fixed by T , which is
the algebraic model for the set of parallel spinors w.r.t. the spin connection.
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1. Introduction

Let (M8, g) be an eight-dimensional Riemannian spin manifold with spinor bundle
denoted by /S(M). For any differential form T on M , not necessarily of pure
degree, one can form the linear connection ∇T on /S(M) by setting

∇T
Xψ = ∇Xψ + (X T )ψ, (1)

whenever ψ is a spinor field on M and X is in TM . We are mainly interested
in parallel spinors w.r.t. the above spin connection. When T is a 3-form, the
connection ∇T on /S(M) is induced from a metric connection with totally skew-
symmetric torsion on TM , and moreover ∇T preserves the chirality decomposition

/S(M) = /S+(M)⊕ /S−(M).

Then ∇T -parallel spinors in /S+(M) are, in the case when T is a 3-form, in one to
one correspondence with unit length harmonic spinors in /S+(M). Moreover, they
correspond to a certain class of Spin(7)-structures on M (see [10] and references
therein).

The next situation to look at is when T is a 4-form, when the associated
connection ∇T is no longer induced from one on TM , nor is it metric for the
positive signature inner product on /S(M). Also the chirality decomposition fails
to be preserved.
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As it is well known [3], if ∇Tψ = 0 holds for a spinor field ψ , then at each
point x of M we have that ψx is fixed by the holonomy algebra holTx at x of the
spin connection ∇T . Conversely, an algebraic spinor at a given point x of M ,
which is fixed by holTx extends, at least when the manifold is simply connected, to
a ∇T -parallel spinor field.

Therefore, one object of interest as far as ∇T -parallel spinors are concerned
is the holonomy algebra holT . Following [2] we will restrict to the special case of a
flat manifold, where moreover T is assumed to have constant coefficients. In this
situation, our goal in this paper is to obtain a full classification of the algebras
holT where T is a self-dual 4-form in 8-dimensions. Let us make the following
definitions.

Definition 1.1. Let (V, 〈·, ·〉) be an eight-dimensional Euclidean vector space
and let Cl8 be its Clifford algebra. Then:

(i) the fix algebra of T in Cl8 is the Lie-sub-algebra g∗T of Cl8 generated by
{XyT : X ∈ V }.

(ii) the holonomy algebra of some T in Cl8 is given as h∗T = [g∗T , g
∗
T ].

In this situation holT and h∗T coincide [1] due to the flatness of the metric
and of the constancy of T , whence the geometric significance of the algebraic
objects introduced in Definition 1.1. However, the holonomy algebra h∗T is still a
rather non-trivial object, especially because its generators are fairly inaccessible.
Consequently we will deal with the fix algebra g∗T rather than with h∗T itself. This
is less restrictive than it might appear, in view of general structure results of [2].
In particular let us mention that we are not aware of any example of a fix algebra,
which is neither perfect nor abelian and hence does not completely determine
the holonomy algebra. Here we recall that a fix algebra g∗T is called perfect if it
coincides with the holonomy algebra h∗T .

Another object of relevance for our study is the space ZT of spinors fixed
by g∗T , that is

ZT = {ψ ∈ /S : g∗Tψ = 0}.
where /S is some irreducible Cl(V )-module and T is some form on V . This is the
algebraic model, in the flat case, for the space of spinors which are parallel w.r.t
the connection ∇T . By [2, Prop. 3.8] the set ZT is trivial in any dimension less
than eight, while the cases when T has degree less than four have been studied
([1] for the case of 3-forms) or produce trivial results. This provides some further,
algebraically inspired motivation, to treat the case of 4-forms in eight dimensions.

This is the precise working context in this paper which is structured as
follows. Section 2 contains a few preliminaries on Clifford algebras and spinor
modules and also a brief review of some results from [2] to be used later on. In
Section 3 we give a complete classification of holonomy algebras generated by
self-dual 4-forms in dimension 8. More precisely, we show:

Theorem 1.1. Let V be an oriented Euclidean vector space of dimension 8
and let T 6= 0 be a self-dual four form on V . The fix algebra of the form T is
perfect and its holonomy algebra is isomorphic to the Lie algebra so(8, 8−dimR ZT )
exception made of the cases when
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(i) T is proportional to a unipotent element, that is T 2 = λ(1 + ν) in Cl8 , for
some λ > 0

or

(ii) dimR ZT = 6

when the holonomy algebras are isomorphic to so(8, 1) and so(6, 2) respectively.

The proof of Theorem 1.1, exception made of the case when dimR ZT = 6,
uses the splitting of the space of two forms induced by a given self-dual four form.
This is combined with the observation that raising the generating element to any
odd Clifford power leaves the initial fix algebra unchanged. In Section 4 of the
paper, we treat directly the special case appearing in (ii) of Theorem 1.1 using the
one to one correspondence [8] between the existence of a such a form and that of
an SU(4)-structure on our vector space.

2. Preliminaries

Let (V 8, 〈·, ·〉) be an eight-dimensional Euclidean vector space which is moreover
assumed to be oriented by a volume form ν in Λ8(V ). The Clifford algebra over
V shall be denoted by Cl8 with multiplication given by (ϕ1, ϕ2) 7→ ϕ1ϕ2 for all
ϕ1, ϕ2 in Cl8 . We shall also remind the reader of the expansion of the Clifford
product in the exterior algebra Λ∗(V )

v ϕ = v ∧ ϕ− v ϕ, (−1)kϕv = v ∧ ϕ+ v ϕ, (2)

where v is in V and ϕ is in Λk(V ) ⊆ Cl8 . Note that here and in what follows we
will systematically identify 1-forms and vectors by using the inner product on V .

Since in eight dimensions the volume element ν is an involution of Cl8 , in
the sense that ν2 = 1, we have a splitting

Cl8 = Cl+8 ⊕ Cl−8 ,

where νϕ = ±ϕ for ϕ ∈ Cl±8 . The Clifford algebra Cl8 is equipped with two
canonical involutions α : Cl8 → Cl8 and ()t : Cl8 → Cl8 , the latter being referred
to as the transpose, which are essentially described by

α(ϕ) = (−1)kϕ, ϕt = (−1)
k
2
(k−1)ϕ, α(ϕt) = (−1)

k
2
(k+1)ϕ, (3)

whenever ϕ belongs to Λk(V ) ⊂ Cl8 . The involution α is actually an automor-
phism of the Clifford algebra Cl8 whereas the transpose is an anti-automorphism,
that is

(ϕ1ϕ2)
t = ϕt

2ϕ
t
1,

for all ϕ1, ϕ2 in Cl8 . In view of subsequent computations it is convenient to record
that

α(ϕ)ν = νϕ,

for all ϕ in Cl8 . Moreover, there is a second direct sum splitting

Cl8 = Cl08 ⊕ Cl18,
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where the summands above are given by the ±-eigenspaces of α and thus consist
in forms of even and odd degrees, respectively. For later use we also note that (2)
may be rewritten as

v ϕ = −1
2
(v ϕ− α(ϕ) v), v ∧ ϕ = 1

2
(v ϕ+ α(ϕ) v). (4)

for all v in V and ϕ in Cl8 respectively.

To end this section we recall two more facts. The inner product on V
induces an inner product 〈·, ·〉 on Cl8 such that

〈ϕ1 ϕ2, ϕ〉 = 〈ϕ2, α(ϕt
1)ϕ〉 = 〈ϕ1, ϕ α(ϕt

2)〉 (5)

holds for any ϕ1, ϕ2, ϕ in Cl8 . Moreover the canonical decompositions of the
Clifford algebra presented above are orthogonal ones w.r.t. the inner product Cl8
has been equipped with. The operator L : Cl8 → Cl8 defined by

Lϕ =
8∑

i=1

eiϕei, (6)

for all ϕ in Cl8 and where {ei, 1 ≤ i ≤ 8} is some orthonormal basis, recovers the
pure degree components of a form in Λ∗(V ) ⊂ Cl8 , for

L = (−1)k(2k − 8)1Λk(V )

on Λk(V ) ⊂ Cl8, 0 ≤ k ≤ 8.

2.1. Spinor products.

We consider now the real spinor representation

µ : Cl8 → EndR(/S),

where the irreducible and finite dimensional Clifford left module /S is called the
space of spinors. Most of the time we shall write µϕ(ψ) = ϕψ for ϕ ∈ Cl8 and
ψ ∈ /S . The splitting of Cl8 into self-dual and anti-self-dual components carries
over to the space of spinors

/S = /S+ ⊕ /S−,

where νψ = ±ψ for ψ ∈ /S± . Note that this holds for any Clifford module,
regardless of irreducibility. Later on in this paper we shall use frequently the
following elementary observation, mainly when W = Cl8 or W = /S .

Lemma 2.1. Let W be any real Clifford module. The following stability con-
ditions hold:

ϕW± ⊆ W±, for all ϕ ∈ Cl08 ∩ Cl±8 ,

ϕW± = {0}, for all ϕ ∈ Cl08 ∩ Cl∓8 or Cl18 ∩ Cl±8 ,

ϕW± ⊆ W∓, for all ϕ ∈ Cl18 ∩ Cl∓8 .

Now, following [7, Thm. 13.17 & Table 13.19] there exists a Euclidean inner
product 〈·, ·〉 on /S such that

〈ϕψ1, ψ2〉 = 〈ψ1, α(ϕt)ψ2〉, (7)

whenever ψ1, ψ2 belong to /S and ϕ is an element in Cl8 . Moreover, we have the
following trace Lemma, to be used extensively in what follows. For the proof we
refer the reader to [7, Thm. 9.65] or [2, Lemma 2.3].
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Lemma 2.2. Let W be any real finite dimensional Cl8 -module. Then:

TrW (µϕ) = dimRW 〈ϕ, 1〉,

whenever ϕ belongs to Cl8 .

If the contrary is not specified, the Lemma above will be mostly used in
the case when W = /S . Of particular relevance in what follows is that the Clifford
multiplication µ : Cl8 → EndR(/S) is actually an isomorphism (see e.g. [7, Thm.
11.3]). In fact, using also the inner product on /S allows one to multiply spinors,
in the sense of the Definition below.

Definition 2.1. Let x and y be in /S . Then the spinor product x ⊗ y in Cl8
is defined by

(x⊗ y)ψ = 〈ψ, x〉 y,

for all ψ in /S . Accordingly the symmetric and skew-symmetric spinor products of
x and y are given by

x� y = x⊗ y + y ⊗ x
x ∧ y = x⊗ y − y ⊗ x.

For simplicity we have defined the symmetrised spinor product in Definition
2.1 without any combinatorial factor. The isomorphism /S ⊗ /S ∼= Λ∗(V ) actually
yields [12, Prop. 10.17]

Λ2(/S) =
⊕

k≡1,2 (mod 4)

Λk(V ), S2(/S) =
⊕

k≡0,3 (mod 4)

Λk(V ). (8)

Here Λ2(/S) is defined to be the linear span of {x∧y : x, y in /S} , and a completely
similar interpretation is made regarding the second symmetric tensor power S2(/S).
For self-dual spinors, we state the following

Lemma 2.3. Let (V 8, 〈·, ·〉) be an oriented Euclidean vector space. Then

Λ2(/S+) = (1 + ν)Λ2(V ).

Proof. From Definition 2.1 it follows that Λ2(/S+) = Λ2(/S) ∩ Cl+8 . But from
(8) we have that Λ2(/S+) = Λ2(V ) ⊕ Λ6(V ) and the claim follows now by using
that Λ6(V ) = νΛ2(V ).

This is very peculiar to the case of dimension 8, which prevents the occur-
rence of higher degrees in Λ2(/S+), as it appears from (8).

2.2. Model algebras in dimension 8.

We first recall that the Hodge star operator ∗ : Λk(V ) → Λ8−k(V ), 0 ≤ k ≤
8 can be alternatively viewed in the Clifford algebra as

∗ϕ = α(ϕt) ν = ν ϕt,
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for all ϕ in Cl8 . Therefore Λ4(V ) is stable under the Hodge star operator and
moreover ∗2 = id on Λ4(V ), allowing one to split

Λ4(V ) = Λ4
+(V )⊕ Λ4

−(V )

into the ±-eigenspaces of ∗ . Four forms in Λ4
±(V ) are called self-dual respectively

anti-self-dual, in analogy to the case of 2-forms in dimension 4.

Our aim in this paper is to obtain classification results for holonomy algebras
h∗T generated by T in Λ4

+(V ). To this extent we need to present a few preparatory
results. Let us define

A = {ϕ ∈ Cl8 : ϕt = −ϕ} (9)

and recall [2, Lemma 3.1] that this is a Lie subalgebra of (Cl8, [·, ·]), where the
commutator defined by

[ϕ1, ϕ2] = ϕ1ϕ2 − ϕ2ϕ1, (10)

for all ϕ1, ϕ2 in Cl8 , gives Cl8 the structure of a Lie algebra. A is preserved by
the involution α and therefore splits as

A = A0 ⊕ A1,

where α(ϕ) = ϕ for ϕ ∈ A0 and α(ϕ) = −ϕ for ϕ ∈ A1 . Moreover, it can be
easily seen that this splitting satisfies the relations

[A0, A0] ⊆ A0, [A0, A1] ⊆ A1 and [A1, A1] ⊆ A0. (11)

This is actually saying that A is an orthogonal symmetric Lie algebra in the sense
of [9, page 377]. The following is specialising Lemma 3.3 in [2] to the case of
dimension 8.

Lemma 2.4. The following hold:

(i) A is isomorphic to so(8, 8);

(ii) the adjoint representation of A0 on A1 is irreducible.

Here the Lie algebra so(8, 8) arises as so(/S, β̂) where the split signature

scalar product β̂ keeps /S± orthogonal and equals ±〈·, ·〉 on /S± . An important
property of A0 is to be stable under multiplication with the volume form ν .
Therefore it can be split further as

A0 = A0
+ ⊕ A0

−,

where A0
± = A0 ∩ Cl±8 . It is easy to check that we have explicitly

A0
± = (1± ν)Λ2(V ) (12)

and also that A1 = Λ3(V ) ⊕ Λ7(V ). It should be noted that (12) holds only in
8-dimensions. We also notice, for further use, that

{ϕ ∈ Cl08 ∩ Cl+8 : ϕt = ϕ} = Λ4
+(V )⊕ R(1 + ν). (13)

Actually, A plays the rôle of a model algebra in the following sense.
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Proposition 2.1. [2, Prop. 3.1] For any T in Λ4
+(V ), the following hold:

(i) g∗T is a Lie sub-algebra of A, which is preserved by α;

(ii) we have a splitting g∗T = g∗,0T ⊕ g∗,1T where g∗,kT = g∗T ∩ Ak, k = 0, 1.

Let us recall now that for any form T in Λ∗(V ) one defines the set of spinors
fixed by T by

ZT = {ψ ∈ /S : (X T )ψ = 0, for all X ∈ V }. (14)

For any T in Cli8, i = 0, 1 the set ZT splits along /S = /S+ ⊕ /S− as

ZT = Z+
T ⊕ Z−T ,

where the obvious notations applies. Using Lemma 3.5 of [2] we also recall that

Z−T = {0} and ZT = {ψ ∈ /S+ : Tψ = 0}, (15)

for any non-zero T in Λ4
+(V ).

We end this section by presenting an embedding of the fix algebra of some
self-dual form in dimension 8, taking into account the set of spinors it fixes. For
some fixed T in Λ4

+(V ) we consider the splitting

/S+ = ZT ⊕ Z⊥T ,

w.r.t. the positive definite scalar product 〈·, ·〉 . Let us define β̂T to be the

restriction of β̂ to /S− ⊕ Z⊥T . From the definition of β̂ it follows that β̂T has
signature (8, 8− dimR ZT ) and moreover

Proposition 2.2. For any T in Λ4
+(V ) the Clifford multiplication

µ : g∗T → so(/S− ⊕ Z⊥T , β̂T ) ∼= so(8, 8− dimR ZT )

is a monomorphism of Lie algebras.

Proof. It is enough to show that µ(g∗T ) ⊆ so(/S− ⊕ Z⊥T , β̂T ). But from the
definition of ZT we have that g∗TZT = {0} and moreover from (7) we know that

µϕ , with ϕ in g∗T , is skew-symmetric with respect to β̂ therefore with respect

to β̂T . Now because µ : Cl8 → EndR(/S) is a faithful representation of algebras
it follows by using (10) that µ|A : A → Λ2(/S) is an injective morphism of Lie
algebras. Consequently, the restriction of µ to g∗T ⊆ A is an injective Lie algebra
morphism as well.
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3. The classification

3.1. Self-dual 4-forms.

Let us pick T 6= 0 in Λ4
+(V ). Using (15) we have that ZT = Z+

T and let us
consider the symmetric and traceless operator µT : /S+ → /S+ . Again from (15) one
obtains that ZT = Ker(µT ). Let σT = {λq, 1 ≤ q ≤ p} be the non-zero part of
the spectrum of µT where we assume the eigenvalues λq, 1 ≤ q ≤ p to be pairwise
distinct and where we denote their multiplicities by mq, 1 ≤ q ≤ p . Therefore we
obtain a splitting

/S+ = ZT ⊕ /S1 ⊕ . . . /Sp, (16)

where /Sq are the eigenspaces of µT corresponding to the eigenvalues λq, 1 ≤ q ≤ p .
Our aim here is to examine the splitting of Λ2(V ) induced by (16) and to relate
it directly to the form T . We need now to recall the following simple fact, which
essentially exploits the squaring isomorphism in 8-dimensions as introduced in
Definition 2.1.

Lemma 3.1. Let x, y belong to /S+ . The following hold:

(i) x ∧ y belongs to Cl08 ∩ Cl+8 and (x ∧ y)t = −x ∧ y .

(ii) If moreover Tx = λ1x and Ty = λ2y , where T belongs to Λ4
+(V ), then

T (x ∧ y)T = λ1λ2 x ∧ y, and T (x ∧ y) + (x ∧ y)T = (λ1 + λ2)x ∧ y.

(iii) Under the assumptions in (ii), if λ1 = λ2 then T (x∧y) = (x∧y)T = λ1x∧y .

(iv) If x′, y′ is another pair of spinors in /S+ , then

[x ∧ y, x′ ∧ y′] = 〈x, y′〉x′ ∧ y − 〈y, y′〉x′ ∧ x− 〈x, x′〉y′ ∧ y + 〈x′, y〉y′ ∧ x,

(v) and also
8〈x ∧ y, x′ ∧ y′〉 = 〈y, y′〉〈x, x′〉 − 〈x, y′〉〈y, x′〉.

Proof. (i) is elementary. We prove (ii) and (iii) at the same time. For any ψ
in /S we have

(x ∧ y)Tψ = 〈Tψ, x〉y − 〈Tψ, y〉x = 〈ψ, Tx〉y − 〈ψ, Ty〉x = λ1〈ψ, x〉y − λ2〈ψ, y〉x,

as 〈Tψ, x〉 = 〈ψ, Tx〉 = λ1〈ψ, x〉 and similarly 〈Tψ, y〉 = λ2〈ψ, y〉 . Moreover,

T (x ∧ y)ψ = 〈ψ, x〉Ty − 〈ψ, y〉Tx = λ2〈ψ, x〉y − λ1〈ψ, y〉x.

All claims in (ii) and (iii) follow now easily. The proof of (iv) is a straightforward
direct computation involving only the definition of the exterior product of spinors.
(v) A direct computation based on the definition of the wedge product of spinors
shows that the trace of the Clifford multiplication with (x ∧ y)(x′ ∧ y′) in Cl8 is
given by

−2
[
〈y, y′〉〈x, x′〉 − 〈x, y′〉〈y, x′〉

]
.

The claim follows now by using Lemma 2.2.
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For any 1 ≤ i, j, k ≤ p let us now define the spaces

Ek = {γ ∈ Λ2(V ) : TγT = 0, Tγ + γT = λk

2
(1 + ν)γ}

Fij = {γ ∈ Λ2(V ) : TγT =
λiλj

2
(1 + ν)γ, Tγ + γT =

λi+λj

2
(1 + ν)γ}

ι0T = {γ ∈ Λ2(V ) : γT = Tγ = 0}.

(17)

Obviously we have Fij = Fji . Moreover, the spaces ι0T , Ek and Fij with 1 ≤
i, j, k ≤ p are easily seen to stand in direct sum directly from their definition. For
notational convenience, we set

E =

p⊕
k=1

Ek, F =
⊕

1≤i≤j≤p

Fij.

Another related object is

Definition 3.1. The isotropy algebra ιT of T in Λ4(V ) is the subalgebra of
so(V ) given by

{γ ∈ so(V ) : [γ, T ] = 0}.

Here the Lie bracket is considered within the Lie algebra Cl8 .

For any two vector sub-spaces W1,W2 of /S+ we denote by W1⊗̂W2 the
linear span of {w1 ∧ w2 : wk ∈ Wk, k = 1, 2} . Note that W ⊗̂W = Λ2(W )
whenever W ⊆ /S+ . We can now explicitly relate the spaces defined in (17) to the
spectral decomposition of µT and show they induce a splitting of Λ2(V ).

Proposition 3.1. The following hold :

(i) There is an orthogonal direct sum decomposition Λ2(V ) = ι0T ⊕ E ⊕ F .

(ii) We have the following string of isomorphisms:

ι0T
∼= Λ2(ZT ), Ek

∼= ZT ⊗̂/Sk, Fkk
∼= Λ2(/Sk), Fij

∼= /Si⊗̂/Sj, i 6= j.

(iii) ιT ∼= ι0T ⊕
⊕p

k=1 Fkk .

Proof. We prove (i) and (ii) together. Letting now ι0T , Ek, Fij be the images
of Λ2(ZT ), ZT ⊗̂/Sk, /Si⊗̂/Sj under the inverse of the linear isomorphism

µ|
(1+ν)Λ2(V )

: (1 + ν)Λ2(V ) → Λ2(/S+)

proves our claims by making use of Lemma 3.1, (ii) and (iii).
(iii) Pick γ in ιT . Then Tγ = γT hence T 2γ + γT 2 = 2TγT . It is easy to

see that the operator {T 2, ·} − 2T · T equals 0 on ι0T ,
λ2

k

2
(1 + ν)1Ek

on Ek and
(λi−λj)

2

2
(1 + ν)1Eij

on Fij thus ιT ⊆ ι0T ⊕
⊕p

k=1 Fkk . The reverse inclusion and
therefore the equality follows from the construction of the spaces Fkk, 1 ≤ k ≤ p
and Lemma 3.1, (iii).
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In the Proposition above the fact that V is 8-dimensional, which implies
that A0

± = (1 ± ν)Λ2(V ), see (12), has been used in a crucial way. The block
structure of the isotropy algebra of a form T in Λ4

+(V ) has been already obtained
in [4] by a slightly different method and under the additional assumption that T
is a calibration on V . In this case, the work in [4] gives a complete geometric
description of the resulting orbits. In order to understand the structure of the
holonomy algebra of T we need to have a look at the Lie algebraic features of the
splitting above.

Corollary 3.1. Let T in Λ4
+(V ) be given. Then F is a Lie sub-algebra of

Λ2(V ) isomorphic to so(Z⊥T ).

Proof. From the construction of F the Clifford multiplication map gives an
isometry µ : (1 + ν)F → Λ2(Z⊥T ) by Lemma 3.1, (v). Moreover, this is a Lie
algebra isomorphism by (iv) of the same Lemma.

Lemma 3.2. Let T be in Λ4
+(V ). We have:

(i) [Fij, Fik] = Fjk if i, j, k are mutually distinct,

(ii) [Fij, Fij] = Fii ⊕ Fjj when i 6= j .

Moreover, if ZT 6= {0} the following hold:

(iii) [Ei, Ej] = Fij for i 6= j and [Ei, Ei] = Fii ⊕ ι0T .

Proof. (i) Let xi and x′i belong to /Si , whereas yj ∈ /Sj and zk ∈ /Sk . Then
from (iv) of Lemma 3.1 we get

[xi ∧ yj, x
′
i ∧ zk] = 〈xi, x

′
i〉yj ∧ zk.

Given that Fjk is spanned by all {yj ∧ zk : yj ∈ /Sj, zk ∈ /Sk} , 1 ≤ j, k ≤ p , (see
Proposition 3.1, (ii)) it follows that [Fij, Fik] ⊆ Fjk . Equality follows easily from
the above expression after choosing xi = x′i and |xi| = 1, because then

yj ∧ zk = [xi ∧ yj, xi ∧ zk],

for all yj ∧ zk ∈ Fjk .
(ii) That [Fij, Fij] ⊆ Fii⊕Fjj, i 6= j follows as in (i) by using Lemma 3.1, (iv) and
Proposition 3.1, (ii). To prove that equality holds, it is enough to observe that
Lemma 3.1, (iv) gives

[xi ∧ yj, xi ∧ y′j] = yj ∧ y′j,
whenever xi belongs to /Si with |xi| = 1 and yj, y

′
j are in /Sj . Similarly,

[xi ∧ yj, x
′
i ∧ yj] = xi ∧ x′i,

whenever xi, x
′
i belong to /Si and yj in /Sj satisfies |yj| = 1.

Point (iii) in Lemma 3.2 is peculiar to the case when ZT 6= {0} , for when
ZT = {0} we have ι0T = E = {0} by Proposition 3.1, (ii).

3.2. Structure of the commutators.

We shall give in this section a simplified expression, relying on the particular
dimension, for the generating space of the even part of the fix algebra g∗T , where
T belongs to Λ4

+(V ).
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Lemma 3.3. Let T belong to Cl08 ∩ Cl+8 satisfy T t = T . We have

−4[X T, Y T ] = 2TγT + 1
4
L(T 2γ + γT 2) + 4|T |2(1− ν)γ,

for all X, Y in V , where γ in Λ2(V ) is given as γ = X ∧ Y .

Proof. Let a : Λ2(V ) → Cl8 be defined by setting

a(γ) =
8∑

i=1

eiT
2(ei γ),

for some orthonormal frame {ei, 1 ≤ i ≤ 8} . From [2, Lemma 4.1] we get that

−4[X T, Y T ] = 2TγT + a(γ)

and we need only work out a simpler expression for the operator a . We compute

eiT
2(ei γ) = 1

2
ei(T

2γ)ei − 1
2
(eiT

2ei)γ,

leading to a(γ) = 1
2
L(T 2γ)− 1

2
L(T 2)γ . Using (13) it is easily checked that [T 2, γ]

belongs to Λ4
+(V )⊕ R(1 + ν) and moreover, since

〈[T 2, γ], 1 + ν〉 = 〈T 2γ − γT 2, 1 + ν〉
= 〈γ, T 2(1 + ν)− (1 + ν)T 2〉 = 0,

we actually get that [T 2, γ] is a 4-form. Since L vanishes on Λ4(V ) it follows that
L(T 2γ) = 1

2
L(T 2γ + γT 2). Similarly, one finds that L(T 2) = −8|T |2(1 − ν) and

the claim follows.

3.3. Computation of g∗,0T when ZT 6= {0}.
For a given T in Λ4

+(V ), we shall compute now the even part g∗,0T of its
holonomy algebra, which has been introduced in Proposition 2.1, (ii). The main
technical ingredient in this section is contained in the following observation.

Lemma 3.4. Let T be in Λ4
+(V ). Then g∗

T 2k+1 ⊆ g∗T for all k in N.

Proof. Let {ei, 1 ≤ i ≤ 8} be an orthonormal basis in V and consider the
partial Casimir operator CT : Cl8 → Cl8 given by

CT =
8∑

i=1

[ei T, [ei T, ·]].

Obviously, CT preserves the algebra g∗T , that is CT (g∗T ) ⊆ g∗T . A straightforward
computation actually shows that

CTϕ =
8∑

i=1

[
(ei T )2ϕ+ ϕ(ei T )2 − 2(ei T )ϕ(ei T )

]
,
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for all ϕ in Cl8 . We shall now compute CT (X ϕ) where ϕ belongs to Cl08 ∩Cl+8
is such that ϕt = ϕ that is ϕ is in Λ4

+(V )⊕R(1 + ν) by (13). We compute using
Lemma 2.1

−8(ei T )(X ϕ)(ei T ) = (eiT − Tei)(Xϕ− ϕX)(eiT − Tei)
= (−TeiXϕ− eiTϕX)(eiT − Tei)
= −eiTϕXeiT + TeiXϕTei

= eiTϕ(2〈ei, X〉+ eiX)T + T (−2〈ei, X〉 −Xei)ϕTei,

whenever X belongs to V . Hence after summation we get

4
8∑

i=1

(ei T )(X ϕ)(ei T ) = −[X,TϕT ]− 1
2
L(Tϕ)XT + 1

2
TXL(ϕT ).

Now

4
8∑

i=1

(ei T )2 =
8∑

i=1

(eiT − Tei)
2

= L(T )T − L(T 2) + 8T 2 + TL(T ) = 8T 2 + 8|T |2(1− ν)

as L(T ) = 0 and L(T 2) = −8|T |2(1− ν). A short computation using the stability
relations in Lemma 2.1 gives now

T 2(X ϕ) + (X ϕ)T 2 = −1
2
(−T 2ϕX +XϕT 2).

Hence in the end we obtain

4CT (Xyϕ) = −4(XϕT 2 − T 2ϕX) + 2[X,TϕT ]
+L(Tϕ)XT − TXL(ϕT ) + 16|T |2(X ϕ),

for all X in V and where ϕ belongs to Λ4
+(V ) ⊕ R(1 + ν). In particular, for

ϕ = T k, k in N this yields

XyT k+2 = CT (XyT k)− 8〈T k, T 〉X T − 4|T |2(X T k),

for all X in V , where we have used that

L(T k+1) = −8〈T k, T 〉(1− ν). (18)

By induction, given that CT preserves g∗T and that the latter contains {X T :
X ∈ V } we arrive at {X T 2k+1 : X ∈ V } ⊆ g∗T , for all k in N and our claim
follows.

The following Lemma provides a spectral characterisation of self-dual 4-
forms having 6 fixed spinors, which we shall need in our computations.

Lemma 3.5. Let λi where 1 ≤ i ≤ p belong to σT . If

8|T 2k+1|2 = λ
2(2k+1)
i

holds for all k in N then dimR ZT = 6 and σT = {λi,−λi} with multiplicities
(1, 1), provided that T 6= 0.
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Proof. By making use of Lemma 2.2 we have that

16|T 2k+1|2 =

p∑
q=1

mqλ
2(2k+1)
q . (19)

The equation we have to solve becomes

p∑
q=1

mqλ
2(2k+1)
q = 2λ

2(2k+1)
i , (20)

for all k in N . We now divide by λ
2(2k+1)
i and take the limit when k → ∞ . It

follows that |λq| ≤ |λi| for all 1 ≤ q ≤ p and also that
∑

|λq |=|λi|mq = 2. It follows

easily that mi = 1, otherwise we would have mi = 2 and further σT = {λi} by
making use of (20), which contradicts that µT is traceless. Therefore −λi belongs
to σT , with multiplicity 1 and our claim follows again from (20).

In the situation where the set of spinors fixed by some self-dual 4-form is
not reduced to zero we shall conclude, with one exception, that:

Proposition 3.2. Let T belong to Λ4
+(V ) with dimR ZT 6= 0, 6. Then:

g∗,0T = (1 + ν)F ⊕ (1− ν)Λ2(V ).

Proof. We shall prove first that one has

(1 + ν)F ⊕ (1− ν)Λ2(V ) ⊆ g∗,0T . (21)

Indeed, making use of Lemma 3.3 we have that g∗,0T contains the set

{2TγT + 1
4
L(T 2γ + γT 2) + 4|T |2(1− ν)γ : γ ∈ Λ2(V )} (22)

as this is just spanned by double commutators of elements in its generating set.
For further use, let us note that (22) remains valid when dimR ZT = 0, 6.
From (22) we find that (1− ν)ι0T is contained in g∗,0T . Actually, by using Lemma
3.4 we have that X T 2k+1 belongs to g∗T and therefore, after taking double
commutators of such elements and using again Lemma 3.3 we get that

2T 2k+1γT 2k+1 + 1
4
L(T 2(2k+1)γ + γT 2(2k+1)) + 4|T 2k+1|2(1− ν)γ (23)

belongs to g∗,0T for any γ in Λ2(V ). Now if γ is in Ei , for some 1 ≤ i ≤ p , we
have TγT = 0 and an easy computation by induction shows

T 2(2k+1)γ + γT 2(2k+1) = 1
2
λ

2(2k+1)
i (1 + ν)γ,

for all k in N . We are led eventually to having

(4|T 2k+1|2 − 1
2
λ

2(2k+1)
i )(1− ν)Ei

contained in g∗,0T for all 1 ≤ i ≤ p and all k in N .
Now since σT has not the form in Lemma 3.5, in other words dimR ZT 6= 6, for
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each 1 ≤ i ≤ p the factor above will be non-vanishing for some k in N whence
(1 − ν)Ei ⊆ g∗,0T whenever 1 ≤ i ≤ p . Now taking commutators and using (iii)
of Lemma 3.2 it follows that (1− ν)Λ2(V ) ⊆ g∗,0T . But L(T 2γ + γT 2) belongs to
(1− ν)Λ2(V ) for all γ in Λ2(V ) hence we get from (22) that {TγT : γ ∈ Λ2(V )}
is contained in g∗,0T . Making use of the splitting in Proposition 3.1 this actually
says that (1 + ν)F ⊆ g∗,0T and we have showed that

(1 + ν)F ⊕ (1− ν)Λ2(V ) ⊆ g∗,0T ,

in other words (21) holds. Therefore it is enough to see that

g∗,0T ⊆ (1 + ν)F ⊕ (1− ν)Λ2(V )

and this will be achieved by showing that g∗,0T is orthogonal to (1 + ν)(ιT0 ⊕ E),
since one knows that g∗,0T ⊆ A0 = (1 − ν)Λ2(V ) ⊕ (1 + ν)Λ2(V ), see Proposition
2.1, (ii) and (12).
Indeed, by the definition of ZT we have (X T )ZT = 0 for all X in V , therefore
g∗TZT = {0} . We now pick ϕ in g∗,0T , x in ZT and y in /S+ . From the definition
of x ∧ y and ϕx = 0 follows that

ϕ(x ∧ y)ψ = 〈x, ψ〉ϕy
(x ∧ y)ϕψ = −〈ϕψ, y〉x = 〈ψ, ϕy〉x,

for all ψ in /S+ , where we used that ϕt = ϕ by Proposition 2.1, (i). Since
ϕ(x ∧ y) + (x ∧ y)ϕ is a symmetric element in Cl08 after taking the trace we
get

Tr(µϕ(x∧y)+(x∧y)ϕ) = 2〈ϕy, x〉 = −2〈y, ϕx〉 = 0.

Now using Lemma 2.2 it follows that 〈ϕ(x ∧ y) + (x ∧ y)ϕ, 1〉 = 0 and since
α(ϕt) = −ϕ we arrive at 〈ϕ, x ∧ y〉 = 0. Because {x ∧ y : x ∈ ZT , y ∈ /S} spans
(1+ν)(ι0T ⊕E) it follows that g∗,0T is orthogonal to (1+ν)(ι0T ⊕E), hence contained
in (1 + ν)F and the claim follows.

We leave out now the case when dimR ZT = 6, to be treated further on,
and consider the situation when there are no non-zero fixed spinors.

3.4. The case when ZT = {0}.
We will first treat two particular cases in the following Lemma. We shall

show later on that it is possible to actually reduce the classification problem in the
present case of interest to these two cases only.

Lemma 3.6. Let T in Λ4
+(V ) with ZT = {0} be such that its spectrum is of

the form

(i) σT = {λ1, λ2, λ3} where λ2 = −λ1 and |λ1| 6= |λ3|

or

(ii) σT = {λ1, λ2, λ3, λ4} where λ2 = −λ1, λ4 = −λ3 and |λ1| 6= |λ3|.

Then we must have g∗,0T = A0 .
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Proof. Using Lemma 3.4 we have that [X T 2k+1, Y T 2k+1] belongs to g∗,0T

for all X,Y in V and any natural number k . Now Lemma 3.3 implies that

2T 2k+1γT 2k+1 + 1
4
L(T 2(2k+1)γ + γT 2(2k+1)) + 4|T 2k+1|2(1− ν)γ

belongs to g∗,0T for any γ in Λ2(V ) and any k in N . Let us pick now γ in Fij and
k in N . An easy computation by induction based on (17) gives

T 2k+1γT 2k+1 = 1
2
(λiλj)

2k+1(1 + ν)γ

T 2(2k+1)γ + γT 2(2k+1) = 1
2
(λ

2(2k+1)
i + λ

2(2k+1)
j )(1 + ν)γ.

Hence G
(k)
ij , defined by

G
(k)
ij = (λiλj)

2k+1(1 + ν)γ +
[
4|T 2k+1|2 − 1

2
(λ

2(2k+1)
i + λ

2(2k+1)
j )

]
(1− ν)γ, (24)

belongs to g∗,0T for all γ in Fij and all k in N .
We shall show that in both cases (i) and (ii) we have (1±ν)F ⊆ g∗,0T , from which
we conclude by Proposition 3.1 and the fact that ZT = {0} that (1±ν)Λ2(V ) ⊆ g∗,0T

and hence A0 ⊆ g∗,0T . Consequently, by Proposition 2.1, we have that g∗,0T = A0 .
(i) In this case, by use of (19), we get for |T 2k+1|2

4|T 2k+1|2 =
1

4

3∑
q=1

mqλ
2(2k+1)
q =

m1 +m2

4
λ

2(2k+1)
1 +

m3

4
λ

2(2k+1)
3 .

Using this we compute G
(k)
13 and get

G
(k)
13 = (λ1λ3)

2k+1(1 + ν)γ +
1

2

(m1 +m2 − 2

2
λ

2(2k+1)
1 +

m3 − 2

2
λ

2(2k+1)
3

)
(1− ν)γ.

(a) Let us assume that |λ1| < |λ3| , then

lim
k→∞

G
(k)
13

λ
2(2k+1)
3

=
m3 − 2

4
(1− ν)γ.

That is, (1− ν)F13 and consequently, since λ1λ3 6= 0, (1 + ν)F13 are contained in
g∗,0T , unless m3 = 2. If m3 = 2 we have

G
(k)
13

λ2k+1
1

= λ2k+1
3 (1 + ν)γ +

m1 +m2 − 2

4
λ2k+1

1 (1− ν)γ,

where we take the limit

lim
k→∞

G
(k)
13

λ2k+1
1 |λ3|2k+1

= (1 + ν)γ.

Hence (1 + ν)F13 ⊂ g∗,0T and so is (1 − ν)F13 , unless m1 + m2 = 2. But this
impossible since we must have m1 +m2 +m3 = 8. Consequently (1± ν)F13 is, in
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all cases, contained in g∗,0T .
(b) Let us assume that |λ1| > |λ3| , then

lim
k→∞

G
(k)
13

λ
2(2k+1)
1

=
m1 +m2 − 2

4
(1− ν)γ.

That is, (1 − ν)F13 and, since λ1λ3 6= 0, (1 + ν)F13 are contained in g∗,0T , unless
m1 +m2 = 2. In the case of m1 +m2 = 2 we have

G
(k)
13

λ2k+1
3

= λ2k+1
1 (1 + ν)γ +

m3 − 2

4
λ2k+1

3 (1− ν)γ,

where we take the limit

lim
k→∞

G
(k)
13

λ2k+1
3 |λ1|2k+1

= (1 + ν)γ,

by which (1 + ν)F13 ⊆ g∗,0T and thus (1 − ν)F13 ⊆ g∗,0T , unless also m3 = 2. The
case of m1 +m2 = m3 = 2 cannot occur by the same argument as in (a).

Since λ1 = −λ2 we can treat G
(k)
23 in complete analogy, it yields that (1 ± ν)F23

is contained in g∗,0T . Now, by Lemma 3.2, (ii) we have

(1± ν)[F13, F13] = (1± ν)(F11 ⊕ F33)
(1± ν)[F23, F23] = (1± ν)(F22 ⊕ F33),

whereas by (i) of the same Lemma we have (1± ν)[F13, F23] = (1± ν)F12 . Hence
(1± ν)F ⊆ g∗,0T .
(ii) In this case, by use of (19), we have for |T 2k+1|2

4|T 2k+1|2 =
1

4

4∑
q=1

mqλ
2(2k+1)
q =

m1 +m2

4
λ

2(2k+1)
1 +

m3 +m4

4
λ

2(2k+1)
3 .

Let us again compute G
(k)
13 . We have

G
(k)
13 = (λ1λ3)

2k+1(1+ν)γ+
1

2

(m1 +m2 − 2

2
λ

2(2k+1)
1 +

m3 +m4 − 2

2
λ

2(2k+1)
3

)
(1−ν)γ.

Let us assume that |λ1| < |λ3| , then

lim
k→∞

G
(k)
13

λ
2(2k+1)
3

=
m3 +m4 − 2

4
(1− ν)γ.

That is, (1 − ν)F13 ⊆ g∗,0T and, since λ1λ3 6= 0, (1 + ν)F13 ⊆ g∗,0T , unless
m3 +m4 = 2. If m3 +m4 = 2, then we have

G
(k)
13

λ2k+1
1

= λ2k+1
3 (1 + ν)γ +

m1 +m2 − 2

4
λ2k+1

1 (1− ν)γ,
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and we take the limit

lim
k→∞

G
(k)
13

λ2k+1
1 |λ3|2k+1

= (1 + ν)γ.

That is, (1 + ν)F13 ⊆ g∗,0T and (1 − ν)F13 ⊆ g∗,0T , unless also m1 + m2 = 2.
If m3 + m4 = 2 and m1 + m2 = 2, then we get again a contradiction with
m1 +m2 +m3 +m4 = 8. Consequently, in all cases, (1± ν)F13 ⊆ g∗,0T .
The case of |λ1| > |λ3| can be treated in complete analogy, yielding again that
(1± ν)F13 ⊆ g∗,0T . Moreover it is evident that, since λ2 = −λ1 and λ4 = −λ3 , in
the same manner we get that (1± ν)F14, (1± ν)F23 and (1± ν)F24 are contained
in g∗,0T .
Now, by Lemma 3.2, (i) we get (1±ν)[F13, F23] = (1±ν)F12 and (1±ν)[F14, F13] =
(1±ν)F34 , hence (1±ν)F12 and (1±ν)F34 are in g∗,0T as well. By (ii) of the same
Lemma we get that (1± ν)[F12, F12] = (1± ν)(F11 ⊕ F22) and (1± ν)[F34, F34] =
(1± ν)(F33 ⊕ F44), hence (1± ν)F ⊆ g∗,0T and the proof is finished.

As a consequence of the arguments in the proof above we obtain the fol-
lowing simple maximality criterion, based on the classification in Proposition 3.2,
completed in the previous section.

Corollary 3.2. Let T belong to Λ4
+(V ), such that ZT = {0}. Then:

(i) If (1− ν)Λ2(V ) ⊆ g∗,0T , we must have g∗T = A.

(ii) If there exists a ϕ in Λ4
+(V ), such that g∗ϕ ⊆ g∗T and dimR Zϕ 6= 0, 6 hold,

then g∗T = A.

Proof. (i) From (24) used for k = 0, and the assumption that (1−ν)Λ2(V ) ⊆
g∗,0T it follows that λiλj(1+ ν)γ belongs to g∗,0T , whenever γ is in Fij, 1 ≤ i, j ≤ p .
Given that ZT = {0} we get (1 + ν)Λ2(V ) ⊆ g∗,0T hence A0 ⊆ g∗,0T by means of
(12). By Proposition 2.1, (ii), it follows that equality holds and since the adjoint
representation of A0 on A1 is irreducible, as asserted in Lemma 2.4, (ii), we obtain
that g∗,1T = A1 , and the claim follows.
(ii) From Proposition 3.2 it follows that (1−ν)Λ2(V ) ⊆ g∗,0ϕ ⊆ g∗,0T where we have
used the first assumption for the second inclusion. We conclude using (i).

Another useful observation for what follows is contained in:

Lemma 3.7. Let T belong to Λ4
+(V ). If Λ2(V ) ⊆ g∗,0T then g∗T is maximal,

that is g∗T = A.

Proof. Since [g∗,0T , g∗,1T ] ⊆ g∗,1T , which follows easily from (11), it follows that
g∗,1T ⊆ A1 is an invariant subspace under the action of Λ2(V ) ∼= so(V ). But the
only proper invariant subspaces of A1 = Λ3(V ) ⊕ Λ7(V ) are Λ3(V ) and Λ7(V ).
Since g∗,1T contains 3-forms it follows that either g∗,1T = A1 or g∗,1T = Λ3(V ) so that
Λ3(V ) ⊆ g∗,1T . It follows that [Λ3(V ),Λ3(V )] ⊆ g∗,0T . Now, the Clifford product of
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the forms ω1 and ω2 of arbitrary degree is a linear combination of elements of the
form ∑

I

(eI ω1) ∧ (eI ω2),

where eI = ei1 ∧ ...∧ ei|I| and 0 ≤ |I| ≤ deg(ω1)+deg(ω2), see e.g. [14, Thm. 9.2].

It is then straightforward to see that [Λ3(V ),Λ3(V )] = Λ2(V ) ⊕ Λ6(V ), whence
A0 ⊆ g∗,0T . In particular ZT = {0} since any spinor fixed by Λ2(V ) must vanish
(one may use that ei ∧ ej, 1 ≤ i 6= j ≤ 8 are in the group of invertible elements of
Cl8 ). Thus g∗,0T = A0 and therefore (i) in Corollary 3.2 yields g∗,1T = A1 , and the
claim follows.

We now need some additional information concerning our self-dual 4-form
T with ZT = {0} . We split µT : /S+ → /S+ as

µT =

p∑
q=1

λqΠq, (25)

where Πq is the orthogonal projection on the space /Sq, 1 ≤ q ≤ p . Using Definition
2.1 one obtains immediately that Πq = µTq , where we define

Tq =

mq∑
i=1

xi ⊗ xi,

for some orthonormal basis {xi, 1 ≤ i ≤ mq} in /Sq, 1 ≤ q ≤ p . By construction,
Tq belongs to Λ4

+(V ) ⊕ R(1 + ν), see also (13), and moreover the component on
R(1 + ν) is determined from

16〈Tq, 1〉 = TrµTq = TrΠq = mq, (26)

for all 1 ≤ q ≤ p , by making use of Lemma 2.2. We also have

p∑
q=1

Tq = 1
2
(1 + ν) (27)

as a straightforward consequence of
∑p

q=1 Πq = 1/S+ . Since Πk ◦Πq = δkqΠk , for all
1 ≤ k, q ≤ p , where δ is the Kronecker symbol, it follows by using the injectivity
of µ : Cl08 ∩ Cl+8 → End(/S+) that

TkTq = 0, k 6= p and T 2
k = Tk, (28)

in Cl8 , for all 1 ≤ k, q ≤ p .

Using that Πq = µTq , 1 ≤ q ≤ p , in (25) and since µ : Cl08∩Cl+8 → End(/S+)
is injective we get that

T =

p∑
q=1

λqTq,

and further

T 2k+1 =

p∑
q=1

λ2k+1
q Tq, (29)
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for all k in N , after making use of (28).

We are now in position to prove our first structure result concerning holon-
omy algebras of self-dual 4-forms without fixed spinors. Our arguments mainly
consist in making use of Lemma 3.4 and working on various linear combinations
of the elements {Ti, 1 ≤ i ≤ d} of Cl8 to see that either the hypothesis in the
maximality criterion in Corollary 3.2, (ii) are satisfied for the generating form T
in Λ4

+(V ), or its spectrum has the special form given in Lemma 3.6, (i) or (ii).
By recalling the isomorphism A ∼= so(8, 8) from Lemma 2.4 we can now make the
following.

Theorem 3.1. Let T belong to Λ4
+(V ) such that ZT = {0}. Then either

(i) g∗T = A ∼= so(8, 8), or

(ii) g∗T
∼= so(8, 1),

where the latter case occurs when T is proportional to a unipotent element of Cl+8 ,
in the sense that T 2 = λ(1 + ν) for some λ > 0. In both cases the fix algebra is
perfect, that is h∗T = g∗T .

Proof. The use of Lemma 3.4 combined with (29) leads to

p∑
q=1

λ2k+1
q X Tq ∈ g∗T (30)

for all k in N and all X in V .
Let now σs

T = {λ ∈ σT : −λ ∈ σT} be the symmetric part of the spectrum of µT .
We shall label the eigenvalues in σs

T by λi, 1 ≤ i ≤ 2d where λj+d = −λj, 1 ≤ j ≤
d , and moreover |λi| 6= |λj| for 1 ≤ i, j ≤ d . The remaining part of the spectrum
will be denoted by σr

T = σT\σs
T . From (31) it follows that

d∑
q=1

λ2k+1
q X (Tq − Tq+d) +

p∑
q=2d+1

λ2k+1
q X Tq (31)

belongs to g∗T , for all k in N and all X in V . Let M in Mp−d(R) be the matrix
given by

M = V (λ2
1, ..., λ

2
d, λ

2
2d+1, ..., λ

2
p) diag(λ1, ..., λd, λ2d+1, ..., λp),

where V (λ2
1, ..., λ

2
d, λ

2
2d+1, ..., λ

2
p) is the Vandermonde-type matrix in the formerly

listed entries. Hence

det(M) =
∏
i<j

(λ2
i − λ2

j)
∏

k

λk,

where i, j, k take values from 1 to d and from 2d + 1 to p . It follows that M
is invertible as a consequence of the fact that λ2

1, ..., λ
2
d, λ

2
2d+1, ..., λ

2
p are mutually

distinct by construction and 0 /∈ σT .
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Taking k = 0, ..., p−d−1 in (31) and formally multiplying the resulting g∗T -valued
vector with M−1 we find easily that

g∗Tq−Tq+d
⊆ g∗T , 1 ≤ q ≤ d,

g∗Tq
⊆ g∗T , 2d+ 1 ≤ q ≤ p.

(32)

We shall now split the proof into several cases. These essentially amount to
counting the maximal number of eigenvalues in σs

T and σr
T which do not yield,

a priori, the maximality of g∗T . Each time when Corollary 3.2, (ii) is invoked we
keep in mind that (32) implies that the fix algebra of any linear combination of
the forms

Tq − Tq+d, Ts,

where 1 ≤ q ≤ d and 2d+ 1 ≤ s ≤ p is contained in g∗T .
• The case when d ≥ 2: In this case σT contains at least two pairs of symmetric
eigenvalues, say λ1 = −λd+1 and λ2 = −λd+2 with |λ1| 6= |λ2| . Then T̂ , defined
by

T̂ = (m2 −md+2)(T1 − Td+1)− (m1 −md+1)(T2 − Td+2),

belongs to Λ4
+(V ) by (26). Several subcases enter now naturally the discussion.

(i) T̂ 6= 0: From the definition of the forms Ti, 1 ≤ i ≤ p we have that ZT̂ is given
by

(/S1 ⊕ /S1+d)
⊥, if m1 = m1+d

(/S2 ⊕ /S2+d)
⊥, if m2 = m2+d

(/S1 ⊕ /S1+d ⊕ /S2 ⊕ /S2+d)
⊥, if (m1 −m1+d)(m2 −m2+d) 6= 0.

1. (m1 − m1+d)(m2 − m2+d) 6= 0: Clearly ZT̂ = {0} if and only if d = 2, in
other words the spectrum of T has the form in (ii) of Lemma 3.6, which
can then be used together with Corollary 3.2, (i) to conclude that g∗T = A .
Otherwise ZT̂ cannot be 6-dimensional because /S1 ⊕ /S1+d ⊕ /S2 ⊕ /S2+d is at
least 4-dimensional. It follows that dimR ZT̂ 6= 0, 6 and given that g∗

T̂
⊆ g∗T

by (32), we use Corollary 3.2, (ii) to conclude that g∗T = A .

2. m1 = m1+d : Let us recall that here we must have m2 6= m2+d since T̂ 6= 0.
Since µT is tracefree we must have #σT ≥ 5. Suppose now that there exists
another pair of symmetric eigenvalues, say λ3, λ3+d = −λ3 . The form

Ť = (m3 −m3+d)(T2 − T2+d)− (m2 −m2+d)(T3 − T3+d)

in Λ4
+(V ) is actually non-vanishing and enables us to obtain the desired

conclusion, by making use of Case (1), unless m3 = m3+d . If this is the case,
one constructs the form

T̃ = T1 − T1+d + T3 − T3+d

in Λ4
+(V ), which satisfies

ZT̃ = (/S1 ⊕ /S1+d ⊕ /S3 ⊕ /S3+d)
⊥.

This cannot be 6-dimensional and if it vanishes the spectrum of T is of the
form given in (ii) of Lemma 3.6 leading to the maximality of g∗T by Corollary
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3.2, (i). If dimR ZT̃ 6= 0 we conclude again by Corollary 3.2, (ii) that g∗T is
maximal, when m3 = m3+d .
Suppose now that σT contains an eigenvalue, say λ3 , in σr

T . Then the self-
dual 4-form

T = m3(T2 − T2+d)− (m2 −m2+d)T3

cannot vanish and has

ZT = (/S2 ⊕ /S2+d ⊕ /S3)
⊥.

It is easily seen that this cannot be of dimension 6. If ZT = {0} the spectrum
of T is of the form in (i) of Lemma 3.6 and the maximality of g∗T follows from
Corollary 3.2, (i). Otherwise the same conclusion is obtained from Corollary
3.2, (ii).

3. m2 = m2+d : This can be treated in complete analogy with case (2) above
and it is therefore left to the reader.

(ii) T̂ = 0: Since {Ti, 1 ≤ i ≤ p} are linearly independent, as it follows from (28),
we must have that mk −md+k = 0, k = 1, 2. Then, again by (26), the forms

T̂k = Tk − Tk+d, k = 1, 2

belong to Λ4
+(V ). Any linear combination kT̂1 + T̂2, |k| 6= 1 is easily seen to satisfy

dimR ZkT̂1+T̂2
6= 6 and moreover g∗

kT̂1+T̂2
⊆ g∗T , by (32), thus the maximality of the

fix algebra of T follows from Corollary 3.2, (ii), provided that dimR ZkT̂1+T̂2
6= 0.

On the other hand, if dimR ZkT̂1+T̂2
= 0, the spectrum of µkT̂1+T̂2

has again the
form given in (ii) of Lemma 3.6 and the maximality of the fix algebra of T follows
as above.
• The case when d = 1:
(i) #σr

T ≥ 1: To fix ideas, let us suppose that λ3 belongs to σr
T and consider the

form
T̃ = m3(T1 − T2)− (m1 −m2)T3

in Λ4
+(V ). As before this is not zero and from the definition of Ti, 1 ≤ i ≤ d we

have

ZT̃ =

{
(/S1 ⊕ /S2 ⊕ /S3)

⊥, if m1 6= m2

(/S1 ⊕ /S2)
⊥, if m1 = m2.

1. m1 6= m2 : A direct verification shows that dimR ZT̃ 6= 6. If ZT̃ = {0}
we conclude by using Lemma 3.6 and Corollary 3.2, (i) for the spectrum
of T must have the form given in case (i) of the above mentioned Lemma.
It remains to consider the situation when dimR ZT̃ 6= 0, 6, where one uses
Corollary 3.2, (ii) to get the maximality of g∗T .

2. m1 = m2 : Here we use that µT is tracefree to conclude that actually
#σr

T ≥ 2. To fix ideas let us suppose that λ4 belongs to σr
T and note

that T1 − T2 is in Λ4
+(V ). This time we construct a 4-form in Λ4

+(V ) by
setting

T = T1 − T2 +m4T3 −m3T4.
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We have that
ZT = (/S1 ⊕ /S2 ⊕ /S3 ⊕ /S4)

⊥,

since m3m4 6= 0. Since σT contains at least 4 eigenvalues ZT is never 6-
dimensional. Hence if ZT 6= 0 we use Corollary 3.2, (ii) to find that g∗T is
maximal.
If ZT = {0} , in other words if /S+ = /S1⊕/S2⊕/S3⊕/S4 we will use the self-dual
4-form

Ť = m4T3 −m3T4,

having ZŤ = (/S3⊕/S4)
⊥ . This cannot be of dimension 6 for that would imply

m3 = m4 = 1 hence λ3 + λ4 = 0 since µT is trace free, which contradicts
that λ3 is not in σs

T . Neither can ZŤ vanish, so again (ii) in Corollary 3.2
yields that g∗T = A .

(ii) σr
T = {0} : This corresponds to the case when T is proportional to a unipotent

element. The computation of g∗T has been done in [2, Thm. 4.1].
• The case when d = 0: In this case, from (32) we know that X Ti belong to
g∗T , for all X in V and all 1 ≤ i ≤ 8. In particular

X

8∑
i=1

Ti = X 1
2
(1 + ν) = 1

2
X ν

is an element of g∗T for all X in V , after using (27). But

[X ν, Y ν] = −2X ∧ Y,
for all X, Y in V (see for instance the proof of Proposition 3.5 in [2]). Therefore
Λ2(V ) is contained in g∗T and we conclude by Lemma 3.7.
We have finished to prove that g∗T is either isomorphic to so(8, 8) or to so(8, 1),
which are semisimple, thus perfect (see [11, page 59]). Hence g∗T is perfect as well
and the proof of the theorem is now complete.

Theorem 1.1 in the introduction is now proved in the case of self-dual four
forms without fixed spinors.

3.5. The full holonomy algebra when ZT 6= {0}.
In order to have a complete description of holonomy algebras of self-dual

4-forms in 8-dimensions it remains to understand the odd part g∗,1T of g∗T for
some T in Λ4

+(V ) when ZT 6= {0} . We recall that in this situation g∗,0T has been
computed in Proposition 3.2, provided that also dimR ZT 6= 6. Let us now define

Q = {ϕ ∈ A1 : Tϕ+ ϕT = 0}.
To study the space Q we shall make use of the symmetric tensor product of spinors,
as defined in Definition 2.1.

Lemma 3.8. Let T belong to Λ4
+(V ). The following hold:

(i) Q = {ϕ ∈ A1 : Tϕ = ϕT = 0};

(ii) the Clifford multiplication provides an isomorphism /S− ⊗ ZT → Q defined
by (x, y) → x� y for all x in /S− and all y in ZT ;

(iii) the Clifford multiplication provides an isomorphism /S− ⊗ Z⊥T → Q⊥ defined
by (x, y) → x� y for all x in /S− and all y in Z⊥T .
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Proof. (i) If Tϕ + ϕT = 0 with ϕ in A1 , left multiplication with ν gives
Tϕ− ϕT = 0, hence our claim, while using that νT = T and νϕ+ ϕν = 0.
(ii) It is easy to see from (i) that for any ϕ in Q the map µϕ is a symmetric
endomorphism of /S such that µϕ/S

− ⊆ ZT . An elementary observation is that
x� y ∈ Cl18 for all x in /S+ and for all y in /S− . Moreover it is easy to check that
α(x� y)t = x� y for all x, y in /S hence x� y ∈ A1 whenever (x, y) ∈ /S+ × /S− .
To see that µ is surjective we first observe that directly from the definition of the
spinor product the following hold

T (x1 ⊗ x2) = Tx1 ⊗ x2

(x1 ⊗ x2)T = x1 ⊗ Tx2

for all x1, x2 in /S . After symmetrisation of the formulae above it is easy to conclude
that

T (x� y) + (x� y)T = 0,

for all x in /S− and for all y in ZT , hence x� y is in Q . But by construction of
the spinor product {µx�y : x ∈ /S−, y ∈ ZT} spans /S− ⊗ ZT and the surjectivity
of µ : Q→ /S− ⊗ ZT follows. Moreover the restriction of ν to Q is injective since
µ : Cl8 → /S ⊗ /S is injective.
(iii) Since µ : A1 → /S− ⊗ /S+ is self-adjoint and the orthogonal complement of
/S− ⊗ ZT in /S+ ⊗ /S− is /S− ⊗ Z⊥T the claim follows from (ii).

Proposition 3.3. Let T belong to Λ4
+(V ) with ZT 6= {0}. We have that

g∗,1T = Q⊥ .

Proof. A direct computation shows that

−[(1− ν)γ,X T ] = (γ ∧X)T + T (γ ∧X) + [X γ, T ],

for all γ in Λ2(V ) and all X in V . Given that (1−ν)Λ2(V ) ⊆ g∗,0T it follows easily
that Tϕ + ϕT belongs to g∗,1T for all ϕ in Λ3(V ) and further that this actually
holds for all ϕ in A1 = Λ3(V ) ⊕ Λ7(V ). This is because TΛ7(V ) + Λ7(V )T just
gives the generating set of g∗T since Λ7(V ) = νΛ1(V ).
Therefore g∗,1T contains the image of the symmetric operator {T, ·} : A1 → A1

hence Q⊥ . To show that g∗,1T ⊆ Q⊥ it is enough to see, by using Lemma 3.8, (ii)
that 〈ϕ, x�y〉 = 0 for all x in /S− and for all y in ZT . But an argument similar to
that in the last part of the proof of Proposition 3.2 gives 〈ϕ, x� y〉 = 1

8
〈ϕy, x〉 = 0

because ϕZT = 0, from the definition of the set of fixed spinors (14). The promised
inclusion and hence the claim follow now easily.

Therefore our main result on holonomy algebras of self-dual 4-forms with
fixed spinors from this section is

Theorem 3.2. Let T be in Λ4
+(V ) with dimR ZT 6= 0, 6. Then the Clifford

multiplication realises a Lie algebra isomorphism

µ : g∗T → so(8, 8− dimR ZT ).

In particular, we must have h∗T = g∗T .
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Proof. From Proposition 2.2 we know that the Clifford multiplication

µ : g∗T → so(/S− ⊕ Z⊥T , β̂T ) ∼= so(8, 8− k)

is a Lie algebra monomorphism. Using this we shall prove the claim by counting
dimensions. Let us set k = dimR ZT . From Proposition 3.2, (i) we get that the
dimension of g∗,0T equals

dimR F + 28 =
(8− k)(7− k)

2
+ 28,

after using the isomorphism between F and so(Z⊥T ) in Corollary 3.1. Now since
by Proposition 3.3 we have g∗,1T = Q⊥ and the latter is isomorphic to /S−⊗Z⊥T by
Lemma 3.8, (iii), it follows that the dimension of g∗,1T is 8(8 − k). Therefore the
dimension of g∗T is

(8− k)(7− k)

2
+ 28 + 8(8− k) =

(16− k)(15− k)

2
= dimR so(8, 8− k).

It follows that µ is surjective as well, therefore an isomorphism. The equality of
g∗T and h∗T follows from the fact that the Lie algebras so(8, 8− k), 0 ≤ k ≤ 8 are
semisimple, thus perfect (see [11, page 59]).

The proof of the Theorem 1.1 in the introduction is now complete (see also
Theorem 3.1), except for the case when the space of fixed spinors is 6-dimensional.

4. The case when dimR ZT = 6

In this section we shall continue to work on an 8-dimensional Euclidean vector
space (V 8, 〈·, ·〉) which is furthermore supposed to be oriented, with orientation
form given by ν in Λ8(V ). We will assume that T in Λ4

+(V ) satisfies dimR ZT = 6,
and our primary aim will be to compute the algebra g∗T . As we have seen
this situation cannot be covered only by the previous methods so we need more
information about the structure of such forms. Let therefore σT = {λ1, λ2} be the
non-zero part of the spectrum of µT : /S+ → /S+ with multiplicities (1, 1) and let
us also recall that λ1 + λ2 = 0. We equally recall that in this case the splitting of
Λ2(V ) from Proposition 3.1 becomes

Λ2(V ) = ι0T ⊕ E1 ⊕ E2 ⊕ F12 (33)

and in particular F is reduced to the 1-dimensional component F12 . In what
follows we shall use the normalisation λ1 = 1 as it is clear that rescaling the
generating form leaves a holonomy algebra unchanged.

4.1. Spinor 2-planes. We start by recalling the following

Definition 4.1. Let (V 8, 〈·, ·〉) be a Euclidean vector space. An almost Hermi-
tian structure consists in a linear almost complex structure J which is orthogonal
w.r.t. the scalar product 〈·, ·〉. If moreover V is oriented, with orientation given
by ν in Λ8(V ), J is positive if ω4 = λν for some λ > 0 where ω = 〈J ·, ·〉 is the
so-called Kähler form of (〈·, ·〉, J).

In what follows we shall keep all previous notations and also recall the
following well known fact, see [8] for instance.
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Proposition 4.1. Let L ⊂ /S+ be any oriented 2-dimensional sub-space of
positive spinors. Then L determines a unique positive almost Hermitian structure,
say J , on V .

For later use, and by sending again the reader to [8, page119], we mention
that J is constructed such that (1 + ν)ω = x1 ∧ x2 for any oriented orthogonal
basis {x1, x2} in L with the convention that |x1|2 = |x2|2 = 2, where ω = 〈J ·, ·〉 .
Note that here one uses the isomorphism in Lemma 2.3. It is not difficult to see
that the converse of Proposition 4.1 also holds, in the sense that any compatible
almost Hermitian structure J defines a 2-dimensional sub-space L of /S+ which
is explicitly given as L = Ker(µ2

ω + 16). For any compatible almost Hermitian
structure J we denote by λ4 the underlying real bundle of the canonical line bundle
of J . Explicitly, λ4 = {T ∈ Λ4(V ) : T (J ·, J ·, ·, ·) = −T} and if moreover J is
positive λ4 is contained in Λ4

+(V ) (see [13, page 112]). Note that if the contrary
is not specified all forms are real valued in this setting. We also recall that in
presence of an almost Hermitian structure Λ2(V ) = Λ2

0(V ) ⊕ Rω , an orthogonal
direct sum and that λ1,1 denotes the space of J -invariant 2-forms on V .

Lemma 4.1. Let L ⊂ /S+ be two dimensional and oriented and let J be the
complex structure determined by L. Then T in Λ2(V ) satisfies TL = 0 iff T
belongs to λ1,1

0 (V ).

Proof. This is an easy exercise taking into account that from the construction
of J it follows

JY x1 = −Y x2, JY x2 = Y x1, (34)

for all Y in V , where {x1, x2} is an oriented orthonormal basis in L .

This essentially leads to having ι0T = λ1,1
0 fact to be used later on and

which encodes the well-known special isomorphism su(4) ∼= so(6) [12, Theorem
8.1]. Moving within the same circle of arguments we have:

Proposition 4.2. Given any 2-dimensional sub-space L ⊂ /S+ , the map (x, y) →
x� y induces an isomorphism S2

0(L) → λ4 .

This is proved by considering an oriented, orthogonal basis {x1, x2} in L as before.
Then ωx1 = 4x2, ωx2 = −4x1 and the proof follows by a short computation on the
generators of S2

0(L), when taking into account that λ4 ⊆ Λ4
+(V ) is characterised

as

{ϕ ∈ Λ4
+(V ) : ad2

ωϕ = −16ϕ}.

Here adω : Cl8 → Cl8 is given by adω = [ω, ·] .

Proposition 4.3. Any 4-form T in Λ4
+(V ) with dimR ZT = 6 determines

uniquely an SU(4)-structure. That is, there exists a unique compatible and positive
almost Hermitian structure J on V such that T belongs to λ4 . The isotropy
algebra of T is isomorphic to su(4).
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Proof. Let L = Z⊥T be the orthogonal complement of ZT in /S+ . Since this is
2-dimensional we get a positive almost Hermitian structure J on V . Now µT is
completely determined by its restriction to L which gives an element in S2

0(L) and
the fact that T belongs to λ4 follows from Proposition 4.2. The claim concerning
the isotropy algebra follows from Proposition 3.1, (iii) by making use of the above
mentioned special isomorphism su(4) ∼= so(6).

This shows how to construct examples of self-dual 4-forms T such that
ZT is of dimension 6. Similarly, from the classification of self-dual 4-forms on
R8 obtained in [4] one can easily give a geometric description of the cases when
ZT has smaller dimension, but for considerations of time and space we shall not
present those here.

4.2. The holonomy algebra.

As a convenient intermediary object, we shall make use of the Lie sub-
algebra g∗,2T of g∗,0T ⊆ A0 generated by the subset

{[X T, Y T ] : X, Y ∈ V }

of A0 . We point out that the even part of h∗T is a priori not equal to g∗,2T .

Lemma 4.2. We have

g∗,2T = (3 + ν)F ⊕ (1− ν)ι0T .

Proof. Follows by a straightforward computation based on the fact that g∗,2T

is generated by the set given in (22) and on the equations (17) defining the spaces
E and F .

For notational convenience let us set Q1
T = {X T : X ∈ V } and also

Q2
T = {X (Tγ12) : X ∈ V } , where γ12 is the generator of F12 with the convention

that |γ12| = 2. Given that Tγ12 + γ12T = 0 is easily seen that Tγ12 belongs to
Λ4

+(V ) and hence Qk
T , k = 1, 2 are both contained in Λ3(V ).

Lemma 4.3. The following hold:

(i) [(1− ν)ι0T , Q
1
T ] = Q1

T ,

(ii) [(3 + ν)F12, Q
1
T ] ⊆ Q1

T ⊕Q2
T ,

(iii) [Q1
T , Q

2
T ] = g∗,2T .

Proof. (i) If γ belongs to ι0T and X is in V , an easy computation using
essentially that Tγ = γT = 0 and the self-duality of T yields

[(1− ν)γ,X T ] = −2[X γ, T ].

(ii) Recall that Tγ12 + γ12T = 0 and again using the self-duality of T we obtain
after a short computation

[(3 + ν)γ12, X T ] = 3[X,Tγ12]− 2[X γ12, T ],
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for all X in V .
(iii) Because we also have Tγ12T = −1

2
(1 + ν)γ12 it follows that T 2γ12 = γ12T

2 =
1
2
(1 + ν)γ12 . Therefore, by using mainly the stability relations in Lemma 2.1 and

that T is self-dual, we arrive after computing at some length at

−4[X T, Y (Tγ12)] = (TXY T )γ12 + γ12(TY XT ) + 1
2
(1− ν)(Xγ12Y + Y γ12X),

whenever X, Y belong to V . Now using (33) it is easily seen that [TγT, γ12] = 0
for all γ in Λ2(V ) hence our commutator becomes

−4[X T, Y (Tγ12)] = −〈X,Y 〉(1 + ν)γ12 + 1
2
(1− ν)(Xγ12Y + Y γ12X),

for all X, Y in V . On the other hand, given that γ12 induces a compatible almost
complex structure J on V such that γ12 = 〈J ·, ·〉 we actually have

Xγ12Y + Y γ12X = 2(X ∧ (Y γ12) + Y ∧ (X γ12))− 2〈X, Y 〉γ12

= 2(X ∧ JY + Y ∧ JX)0 − 〈X, Y 〉γ12,

where the subscript indicates orthogonal projection onto Λ2
0(V ). Hence, our

commutator reads finally

−4[X T, Y (Tγ12)] = −1
2
〈X, Y 〉(3 + ν)γ12 + (1− ν)(X ∧ JY + Y ∧ JX)0,

for all X, Y in V . Obviously, (X ∧ JY + Y ∧ JX)0 belongs to λ1,1
0 = ι0T hence

[Q1
T , Q

2
T ] ⊆ g∗,2T and the equality follows at once when using the linear isomorphism

S2
0 → λ1,1

0 , S → SJ .

Theorem 4.1. Let T belong to Λ4
+(V ) satisfy dimR ZT = 6. Then g∗T is

isomorphic to so(6, 2) and moreover h∗T = g∗T .

Proof. It now easy to infer from the above that g∗T = g∗,2T ⊕Q1
T ⊕Q2

T , therefore
the claim on g∗T follows. The proof is completed when recalling that the Lie algebra
so(6, 2) has trivial center.

The proof of Theorem 1.1 is now complete, by putting together results in
Theorems 3.1, 3.2 and 4.1.

We end this section by pointing out that in the case above the Clifford
multiplication map µ : g∗T → Hom(Z⊥T , /S

−) is no longer surjective.
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