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Three Term Recursion Relation for Spherical Functions
Associated to the Complex Hyperbolic Plane

Inés Pacharoni and Juan Tirao∗
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Abstract. The symmetric space duality between the complex hyperbolic
plane H2(C) = SU(2, 1)/U(2) and the complex projective plane P2(C) =
SU(3)/U(2) also becomes apparent in the theory of matrix valued spherical func-
tions associated to both spaces. This is stressed in this paper by proving a three
term recursion relation for a family of matrix valued functions built up from the
spherical functions associated to H2(C).
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1. Introduction

The analogy between the spherical geometries and the hyperbolic geometries is a
special case of a general duality for symmetric spaces. This analogy reappears
in the function theory on these spaces, as the one between the trigonometric
functions and the hyperbolic functions, or between the Jacobi polynomials P

(α,β)
n

and the Jacobi functions F
(α,β)
u . These analogies become apparent once we recall

the expressions of the trigonometric and hyperbolic functions in terms of the
exponential function, and the ones of the Jacobi polynomials and the Jacobi
functions in terms of Gauss’ hypergeometric function. In particular the last
analogy, for α = n and β = 1, is an instance of a more general one found while
studying the irreducible spherical functions of any type, associated to the complex
projective plane P2(C) or to the complex hyperbolic plane H2(C) (see [4] and
[13]). These two are dual Hermitian symmetric spaces, and as such, the compact
one P2(C) contains the noncompact dual H2(C) as an open submanifold (see
Proposition 7.14, Ch.VII in [8]).

In [4] we obtain all irreducible spherical functions of any K -type associ-
ated to the complex projective plane P2(C) = SU(3)/S(U(2)× U(1)). In [16] and
[13] we carry out the same program for the complex hyperbolic plane H2(C) =
SU(2, 1)/S(U(2)× U(1)). These spherical functions are closely related with the
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matrix valued hypergeometric function, introduced in [20]. In [14], by tensoring
certain representations of SU(3) and decomposing them into irreducible repre-
sentations, we obtain a multiplication formula for spherical functions. From this
formula we derive a three term recursion relation for certain “packages” of spherical
functions. Restricting this to a one real variable (the variable that parameterizes a
section of the K -orbits in P2(C)), we obtain a three term recursion relation for a
sequence of matrix valued orthogonal polynomials, closely related with the spher-
ical functions. These results and the content of this paper, together with those on
matrix valued orthogonal polynomials of several authors (see for example [1], [2],
[6], [15], [12]), and the forthcoming paper [17] on the matrix spherical transform
and its inversion formula on a locally compact group, should be considered as part
of a large research project aimed at the analysis of matrix valued special functions.

In the present paper for G = SU(2, 1) and K = S(U(2)× U(1)) we con-
struct, out of several spherical functions of (G,K) of a given K -type πn,` , n ∈ Z
and ` ∈ N0 , a family parameterized by v ∈ C of (` + 1) × (` + 1)-matrix valued

functions H̃(t; v), t ≥ 1. One of the main purposes of this paper is to prove that,

as functions of the spectral parameter v the functions H̃(t; v) satisfy a three term
recursion relation of the form

tH̃(t; v) = AvH̃(t; v − 2) +BvH̃(t; v) + CvH̃(t; v + 2), (1)

where Av , Bv , Cv are matrices independent of t . On the other hand the functions
H̃(t; v) satisfy a differential equation of the form

DH̃(t; v)t = H̃(t; v)tΛ, (2)

where D is a second order differential operator in the variable t whose coefficients
depend on t and not on v , see [13] and [16]. Here Λ is a diagonal matrix with
entries that depend on v but not on t and the superscript denote transpose. Thus
the family H̃(t; v) is an instance of a solution of a matrix valued bispectral problem
in the variables t, v . For a discussion of the bispectral problem see [3] and [9].

For ` = 0 the function H̃(t; v) is scalar valued and it is given by

H̃(t; v) = 2F1

( −w,w+n+2
2 ; 1− t

)
,

where w = −(n + v + 2)/2. Then, by making the change of variables u = 1 − t ,
(1) comes down to the following three term recursion relation, in the spectral
parameter w , for the Jacobi functions:

u 2F1

( −w , w+n+2
2 ;u

)
= ãw 2F1

( −w+1 , w+n+1
2 ;u

)
+ b̃w 2F1

( −w , w+n+2
2 ;u

)
+ c̃w 2F1

( −w−1 , w+n+3
2 ;u

)
,

where ãw = −Av , b̃w = 1−Bv , c̃w = −Cv .

Inspired on [14] we construct a family parameterized by ν ∈ a∗C of matrix

valued functions Φ̃(g; ν) on G of size (`+ 1)2× (`+ 1) built up of `+ 1 spherical
functions of a given type (n, `). The three term recursion relation that constitutes
our main result, Theorem 5.1, is given by

φ(g)ψ(g)Φ̃(g; ν) = ÃνΦ̃(g; ν − ρ) + B̃νΦ̃(g; ν) + C̃νΦ̃(g; ν + ρ) (3)
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and this gives a highly nontrivial extension of (1). Here Ãν = Aν⊗I , B̃ν = Bν⊗I ,
C̃ν = Cν ⊗ I , where I denotes the (`+1)× (`+1) identity matrix and Aν , Bν , Cν

are the matrices appearing in (1) with v = ν(H0).

It is important to stress that this relation is valid on G , and not just on
a one dimensional submanifold of G . On the other hand from Proposition 2.1 it
follows that

[DΦ̃(· ; ν)](g) = Φ̃(g; ν)[DΦ̃(· ; ν)](e)
for any differential operator D on G left invariant under G and right invariant
under K . Thus the family Φ̃(g; ν) provides an extension to G of a matrix valued
version of the bispectral problem ([3], [9]) and to the best of our knowledge gives
the first instance of a bispectral situation where one of the variables ranges over a
set that is not one dimensional. Moreover the recursion relation (1) follows easily
from (3) by restriction, see Proposition 6.2.

The first step in the proof of (3) consists in establishing a three term
multiplication formula of (Theorem 4.4) for spherical functions, which is obtained
from an explicit decomposition Y σ,ν⊗W = Y1⊕Y2⊕Y3 into irreducible submodules
of the tensor product of the Harish-Chandra module Y σ,ν of the principal series
representation Uσ,ν and the standard module W = C3 . Here we use Kostant’s
results on the tensor product of a finite dimensional and an infinite dimensional
representation (see [11]). Then the closures Y i of Yi in Uσ,ν ⊗ W are linearly
independent SU(2, 1)-modules but Y 1⊕Y 2⊕Y 3 is not closed. Because of this the
proof of Theorem 4.4 is delicate. Concerning the equivalence of Y i with certain
principal series representations see Remark 3.19.

In this multiplication formula there appear spherical functions of types (n, `)
and (n− 1, `). To take care of this problem it is necessary to combine the multi-
plication formula with its dual, obtaining a multiplication formula involving seven
spherical functions of type (n, `). Then these spherical functions are appropriately

package into three (`+ 1)2 × (`+ 1) matrix valued function Φ̃(g; ν), Φ̃(g; ν + ρ),

Φ̃(g; ν − ρ), which yields (3).

In the last section, by restricting to the abelian Iwasawa subgroup A , we
derive the three term recursion relation (1) for the family of (`+1)×(`+1) matrix

valued functions H̃(t; v) closely related to the function Φ̃(g; ν), v = ν(H0).

It is a pleasure to thank the referee for comments which led to the addition
of Subsection 6.3.

2. Preliminaries

2.1. Spherical functions.

In this subsection we recall some facts on spherical functions which are useful to
understand the rest of the paper.

Let G be a locally compact unimodular group and let K be a compact
subgroup of G . Let K̂ denote the set of all equivalence classes of complex finite
dimensional irreducible representations of K ; for each δ ∈ K̂ , let ξδ denote
the character of δ , d(δ) the dimension of any representation in the class δ , and
χδ = d(δ)ξδ . We shall choose the Haar measure dk on K normalized by

∫
K
dk = 1.

We shall denote by V a finite dimensional vector space over C and by End(V )
the space of all linear transformations of V into V .
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A spherical function Φ on G of type δ ∈ K̂ is a continuous function on G
with values in End(V ) such that Φ(e) = I (I= identity transformation) and

Φ(x)Φ(y) =

∫
K

χδ(k
−1)Φ(xky) dk,

for all x, y ∈ G . See [19],[7].
If Φ : G −→ End(V ) is a spherical function of type δ then π : k 7→ Φ(k) is a
representation of K such that any irreducible subrepresentation belongs to δ . The
number of times that δ occurs in the representation π is called the height of Φ.

Spherical functions of type δ arise in a natural way upon considering rep-
resentations of G . If g 7→ U(g) is a continuous representation of G , say on a
complete, locally convex, Hausdorff topological vector space E , then

P (δ) =

∫
K

χδ(k
−1)U(k) dk

is a continuous projection of E onto P (δ)E = E(δ); E(δ) consists of those vectors
in E , the linear span of whose K -orbit is finite dimensional and splits into irre-
ducible K -subrepresentations of type δ . Whenever E(δ) is finite dimensional, the
function Φ : G −→ End(E(δ)) defined by Φ(g)a = P (δ)U(g)a , g ∈ G, a ∈ E(δ)
is a spherical function of type δ . If the representation g 7→ U(g) is topologically
irreducible (i.e. E admits no non-trivial closed G-invariant subspace) then the
associated spherical function Φ is also irreducible.

If a spherical function Φ is associated to a Banach representation of G then
it is quasi-bounded, in the sense that there exists a semi-norm ρ on G and M ∈ R
such that ‖Φ(g)‖ ≤ Mρ(g) for all g ∈ G . Conversely, if Φ is an irreducible
quasi-bounded spherical function on G , then it is associated to a topologically
completely irreducible (TCI) Banach representation of G (Godement, see [19]).
Thus if G is compact any ir reducible spherical function on G is associated to a
Banach representation of G , which is finite dimensional by Peter-Weyl theorem.

When G is a connected Lie group then it is not difficult to prove that any
spherical function Φ : G −→ End(V ) is differentiable (C∞ ), and moreover that
it is analytic. From the differential point of view a spherical function of type δ
can be characterized in the following way. Let D(G) denote the algebra of all left
invariant differential operators on G and let D(G)K denote the subalgebra of all
operators in D(G) which are invariant under all right translation by elements in
K . Let (V, π) be a finite dimensional representation of K such that any irreducible
subrepresentation belongs to the same class δ ∈ K̂ . Then we have

Proposition 2.1. ([19],[7]) A function Φ : G −→ End(V ) is a spherical
function of type δ if and only if
i) Φ is analytic.
ii) Φ(k1gk2) = π(k1)Φ(g)π(k2), for all k1, k2 ∈ K , g ∈ G, and Φ(e) = I .
iii) [DΦ](g) = Φ(g)[DΦ](e), for all D ∈ D(G)K , g ∈ G.

Proposition 2.2. ([19]) Let Φ,Ψ : G −→ End(V ) be two spherical functions
on a connected Lie group G such that Φ(k) = Ψ(k) for all k ∈ K . Then Φ = Ψ
if and only if [DΦ](e) = [DΨ](e) for all D ∈ D(G)K .
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If G is a noncompact connected semisimple Lie group with finite center, and
K is a maximal compact subgroup of G , then, from the Subquotient Theorem of
Harish-Chandra (see [21] Theorem 5.5.1.5) or from Casselman’s Subrepresentation
Theorem (see [10] p. 238), we know that any TCI Banach representation of G is
infinitesimally equivalent to a subquotient, respectively to a subrepresentation,
of a nonunitary principal series Uσ,ν . Thus, if Φ is a quasi-bounded irreducible
spherical function on G of type δ ∈ K̂ , there exists (σ, ν) and a K -projection
Q(δ), of Uσ,ν onto the δ -isotypic component of an irreducible subrepresentation
of Uσ,ν , such that Φ is equivalent to Q(δ)Uσ,νQ(δ). This follows from Proposition
2.2. In particular when D(G)K is abelian Φ is equivalent to Φσ,ν

δ = P (δ)Uσ,νP (δ),
because in such a case the multiplicity of δ in Uσ,ν is one. For our group
G = SU(2, 1) we know that all irreducible spherical functions on G are quasi-
bounded since all appear associated to a principal series representation. (See [13]
and [16]).

The group G = SU(2, 1) consists of all 3× 3 complex matrices of determi-
nant one that preserve the Hermitian form q(z) = z1z1 + z2z2 − z3z3. The group
G acts naturally in P2(C). The G-orbit of the point (0, 0, 1) is the set

B = {(x, y, 1) ∈ P2(C) : |x|2 + |y|2 < 1},

and the corresponding isotropy subgroup is K = S(U(2)× U(1)). Thus H2(C) =
G/K can be identified with B , the open ball of radius one centered at the origin
in C2 .

The set K̂ can be identified with the set Z × Z≥0 . If k = ( A 0
0 a ), with

A ∈ U(2) and a = (detA)−1 , then

π(k) = πn,`(A) = (detA)nA`, (4)

where A` denotes the `-symmetric power of A , defines an irreducible representa-
tion of K in the class (n, `) ∈ Z× Z≥0 .

The representation πn,` of U(2) extends to a unique holomorphic repre-
sentation of GL(2,C) into End(Vπ), which we still denote by πn,` . For any
g ∈ SU(2, 1), we denote by A(g) the left upper 2 × 2 block of g . It is easy
to see that detA(g) 6= 0.

For any π = π(n,`) let Φπ : G −→ End(Vπ) be defined by

Φπ(g) = Φn,`(g) = πn,`(A(g)).

This function Φπ is always an irreducible spherical function on G of type π . Since
D(G)K is commutative all irreducible spherical functions on G are of height one
(see [7], [19]). Thus such functions of type π are functions on G with values in
End(Vπ). To determine them we define a function H by

H(g) = Φ(g) Φπ(g)−1, (5)

where Φ is supposed to be a spherical function of type π . Then H satisfies
i) H(e) = I .
ii) H(gk) = H(g), for all g ∈ A, k ∈ K .
iii) H(kg) = π(k)H(g)π(k−1), for all g ∈ A, k ∈ K .
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Property ii) says that H may be considered as a function on B , and
moreover from iii) it follows that H is determined by the function H : r 7→ H(r, 0)
on the interval [0, 1). Let M be the closed subgroup of K of all diagonal matrices
of the form ∆(eiθ, e−2iθ, eiθ), θ ∈ R . Then M fixes all points (r, 0) ∈ B . Therefore
iii) also implies that H(r) = π(m)H(r)π(m−1) for all m ∈M . Since any Vπ as an
M -module is multiplicity free, it follows that there exists a basis of Vπ such that
H(r) is simultaneously represented by a diagonal matrix for all 0 ≤ r < 1. Thus
we can identify H(r) ∈ End(Vπ) with a vector H(r) = (h0(r), . . . , h`(r)) ∈ C`+1 .
In this case the algebra D(G)K is isomorphic to D(G)G ⊗D(K)K . The algebras
D(G)G and D(K)K are polynomial algebras (Harish-Chandra’s theorem) in two
algebraically independent generators. A particular choice of two algebraically
independent generators ∆2 and ∆3 of D(G)G is given in Proposition 3.1 of [4] and
rewritten in this paper in (6). The fact that a spherical function is a simultaneous
eigenfunction of ∆2 and ∆3 implies that the function H is an eigenfunction of
certain ordinary second order differential operators D and E given in [16] and in
[13]. For an explicit expression of the functions H in terms of the matrix valued
hypergeometric function introduced in [20] see Theorems 5.1 and 5.2 in [16].

2.2. The principal series of SU(2, 1). The Lie algebra of G is g = {X ∈
gl(3,C) : JXJ = −X∗, trX = 0}. Its complexification is gC = sl(3,C).

Let hC be the compact Cartan subalgebra of gC of all diagonal matrices. We
denote by α, β, γ the positive roots given by α(x1E11 + x2E22 + x3E33) = x1− x2 ,
β(x1E11 +x2E22 +x3E33) = x2−x3 and γ = α+β . The corresponding root space
decomposition is given by

Xα = E12, X−α = E21, Xβ = E23, X−β = E32, Xγ = E13, X−γ = E31,

Hα = E11 − E22, Hβ = E22 − E33, Hγ = E11 − E33.

We observe that Z = Hα +2Hβ belongs to the center of kC . In [4] we have proved
the following proposition:

Proposition 2.3. D(G)G as a polynomial algebra is generated by

∆2 = −H2
α − 1

3
Z2 − 2Hα − 2Z − 4X−αXα − 4X−βXβ − 4X−γXγ

and

∆3 = 2
9
H3

α − 2
9
H3

β + 1
3
H2

αHβ − 1
3
HαH

2
β + 2H2

α +HαHβ + 4Hα + 2Hβ

+X−αXαHα + 2X−αXαHβ + 6X−αXα + 3X−βXβ + 3X−γXγ

−X−βXβ H̃1 −X−γXγ H̃2 + 3X−βXγX−α + 3X−γXβXα.

Let g = k + p be the Cartan decomposition of g associated to the Cartan
involution θ(X) = −X∗ . Then

k =

{(
k 0
0 y

)
: k ∈ u(2), y = − tr(k)

}
and p =

{
{
(

0 b

b
t

0

)
: b ∈ C2

}
.

Let H0 = E13 + E31 and T = Hα − Hβ . Thus a = RH0 is a maximal abelian
subspace of p , m = RiT0 is the centralizer of a in k and h̃ = m ⊕ a is a split
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Cartan subalgebra of g . The root space decomposition of gC with respect to h̃C
is given by

α̃(H0) = 1, α̃(T ) = 3, β̃(H0) = 1, β̃(T ) = −3, γ̃(H0) = 2, γ̃(T ) = 0,

and the corresponding root vectors are

Xα̃ = E12 + E32, X−α̃ = E21 + E23, Xβ̃ = E21 − E23, X−β̃ = E12 − E32,

Xγ̃ = E13 − E31 − E11 + E33, X−γ̃ = E31 − E13 − E11 + E33.

In this new basis, the differential operators ∆2 and ∆3 are given by

∆2 = −H2
0 − 1

3
T 2 + 4H0 − 2Xα̃X−α̃ − 2Xβ̃X−β̃ −Xγ̃X−γ̃,

4∆3 = −1
9
T 3 + T 2 + 4T + 3H2

0 + TH2
0 − 4H0T − 12H0 −Xα̃TX−α̃

−Xβ̃TX−β̃ +Xγ̃TX−γ̃ + 3Xα̃H0X−α̃ − 3Xβ̃H0X−β̃

− 3Xβ̃Xα̃X−γ̃ − 3Xγ̃X−α̃X−β̃ + 12Xβ̃X−β̃ + 6Xγ̃X−γ̃.

(6)

Let λ ∈ a∗ be the restricted root defined by λ(H0) = 1 and let n = gλ +g2λ

be the sum of the corresponding restricted root subspaces of g . Then g = k⊕a⊕n

is an Iwasawa decomposition.

Let N be the analytic subgroup of G with Lie algebra n , and observe that
M is the centralizer of A in K . Then MAN is a minimal parabolic subgroup of
G , and

M =

{
mθ =

(
eiθ 0 0
0 e−2iθ 0
0 0 eiθ

)}
, A =

{
at =

(
cosh t 0 sinh t

0 1 0
sinh t 0 cosh t

)}
.

For r ∈ Z and v ∈ C we define σ ∈ M̂ and ν ∈ a∗C by

σ(mθ) = eirθ and ν(tH0) = vt. (7)

Then man 7→ eν(log a)σ(m) is a one dimensional representation of MAN , and it
is this representation that we induce to G to construct its generalized principal
series representation. Thus we put Uσ,ν = IndG

MAN .

There are different “pictures” or realizations of these representations which
have different uses and advantages. We choose the compact picture. In this case
a dense subspace of the representation space of U r,v is

{F : K −→ C continuous : F (km) = σ(m)−1F (k); k ∈ K,m ∈M},

with norm

||F ||2 =

∫
K

|F (k)|2 dk.

If g decomposes under G = KAN as g = κ(g) exp(H(g))n , then the action is

U r,v(g)F (k) = e−(ν+ρ)H(g−1k)F (κ(g−1k)).

The actual Hilbert space and representation are then obtain by completion. We
recall that ρ ∈ a∗ is the half-sum of the positive restricted roots counted with
multiplicities. In this case it is given by ρ(H0) = 2.

Let Y r,v be the Harish-Chandra module of all K -finite vectors in U r,v .
Then U r,v admits an infinitesimal character since any element in D(G)G reduces
to an scalar operator on Y r,v (see Proposition 8.22 of [10]). Then using the induced
picture and the expressions (6) it is easy to prove the following proposition.
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Proposition 2.4. The infinitesimal character χr,v of the principal series U r,v

is given by

χr,v(∆2) = −v2 + 4− 1
3
r2

χr,v(∆3) = 1
4

(
−1

9
r3 + r2 + rv2 + 3v2 − 12

)
.

We observe that U r,v and U r,−v have the same infinitesimal character. This is
an instance of the general invariance of the infinitesimal character of the principal
series representations under the restricted Weyl group.

Now we want to describe the structure of Y r,v as a K -module. Since K is
a compact group, by the Peter-Weyl theorem we know that we have the following
unitary direct sum:

L2(K) = ⊕π∈K̂Vπ ⊗ V ∗
π ,

where the identification of Vπ ⊗ V ∗
π as a subspace of L2(K) is given by (v⊗ λ) 7→

(v ⊗ λ)(k) = (k · λ)(v). The restrictions to Vπ ⊗ V ∗
π of the left and right regular

representations of K are, respectively, L|Vπ⊗V ∗
π

= π ⊗ 1 and R|Vπ⊗V ∗
π

= 1⊗ π∗.

If π = πn,` there exists a basis {v(n,`)
j }`

j=0 of Vπ , unique up to a multiplica-
tive constant, such that

π̇(Hα)v
(n,`)
j = (`− 2j)v

(n,`)
j , π̇(Z)v

(n,`)
j = (2n+ `)v

(n,`)
j ,

π̇(Xα)v
(n,`)
j = j v

(n,`)
j−1 , π̇(X−α)v

(n,`)
j = (`− j) v

(n,`)
j+1 .

(8)

Let us consider a U(2) invariant inner product on V(n,`) . In Lemma 3.1 of [14] we

proved that the basis {v(n,`)
j }`

j=0 is an orthogonal basis such that

‖v(n,`)
j ‖2 =

(
`

j

)−1

‖v(n,`)
0 ‖2. (9)

Let {λ(n,`)
j }`

j=0 be the dual basis of {v(n,`)
j }`

j=0 .

Proposition 2.5. The Harish-Chandra module Y r,v as a K -module decom-
poses in the following way

Y r,v =
∞⊕

`=0

⊕̀
j=0

(
V(−r+`−3j,`) ⊗ Cλ(−r+`−3j,`)

j

)
.

Proof. We first note that

Y r,v =
{
F ∈

⊕
π∈K̂

Vπ ⊗ V ∗
π : R(mθ)F = e−irθF,mθ ∈M

}
.

From T = (3Hα − Z)/2 it follows that π̇(T )vj = (` − n − 3j)vj, and π̇∗(T )λj =
−(`− n− 3j)λj.
Let us consider the representation of M in

⊕
π∈K̂ Vπ ⊗ V ∗

π defined by mθ 7→
eirθR(mθ). Then

Y r,v =
(⊕

π∈K̂

Vπ ⊗ V ∗
π

)M

=
⊕
π∈K̂

Vπ ⊗
(
V ∗

π

)M
:

If π = πn,` we have that
(
V ∗

π

)M
= Cλj if r = `−n−3j and

(
V ∗

π

)M
= 0 otherwise.

This completes the proof of the proposition.
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3. On the structure of Y r,v ⊗W

As we shall see in the next section, a multiplication formula for the spherical
functions associated to our pair (G,K) arises from a direct sum decomposition
of Y r,v ⊗W into D(G)-modules which admit infinitesimal characters. It is well
known that even if Y r,v is irreducible Y r,v⊗W does not need to have such a direct
sum decomposition. Nevertheless it always has a finite composition series, but we
were not able to derive a multiplication formula in this general case.

We shall start considering the D(G)-module Y r,v⊗W , taking into account
Kostant’s contribution [11] on the tensor product of a finite and an infinite di-
mensional representation. To quote what it is needed we introduce the following
notation.

Let gC be a finite dimensional complex semisimple Lie algebra, U(gC) be its
universal enveloping algebra and Z(gC) be the center of U(gC). Let V be a Harish-
Chandra module with infinitesimal character χξ and let Vλ be an irreducible finite
dimensional representation with highest weight λ . Let ∆λ = {µ1, . . . , µk} be the
set of all the distinct weights of Vλ . Now consider the sequence of k characters
χξ+µ1 , . . . , χξ+µk

and put

Yi = {y ∈ V ⊗ Vλ : u y = χξ+µi
(u) y for all u ∈ Z(gC)}.

Then the following is the content of Corollary 5.5 of [11].

Theorem 3.1. If the characters χξ+µi
, i = 1, . . . , k are distinct and Yi is not

zero, then Yi is the maximal submodule of V ⊗ Vλ which admits the infinitesimal
character χξ+µi

, and
V ⊗ Vλ = Y1 ⊕ · · · ⊕ Yk.

Now we consider the standard irreducible representation of gC on W = C3

and let {e1, e2, e3} denote the canonical basis of C3 . Then e1 + e3, e2, e1 − e3 are
weight vectors with respect to h̃C of weights µ1, µ2, µ3 , respectively, given by

µ1(H0) = 1, µ2(H0) = 0, µ3(H0) = −1

µ1(T ) = 1, µ2(T ) = −2, µ3(T ) = 1.

We observe that λ = µ1 is the highest weight of W . In terms of the dual basis of
{H0, T} we have µ1 = (1, 1), µ2 = (0,−2) and µ3 = (−1, 1).

Lemma 3.2. The infinitesimal character χξ = χr,v of the Harish-Chandra
module Y r,v is given by ξ = (−v − 2, r).

Proof. We first recall the definition of the character χξ of Z(gC) for ξ ∈ h̃∗C . We
know that given u ∈ Z(gC) there exists a unique fu ∈ U(h̃C) such that u− fu ∈
U(gC)g+

C . Then χξ(u) = fu(ξ). By using the isomorphism D(G)G ' Z(gC),
obtained by restricting the canonical isomorphism between D(G) and U(gC), from
Proposition 2.4 we can compute χξ(∆2) and χξ(∆3). But first we need to rewrite
these operators in such a way that the positive root vectors appear on the right.
To do this we use the transpose anti-automorphism of U(g) defined by: if X ∈ g

then X ′ = −X , thus

(X1 · · ·Xr)
′ = (−1)rXr · · ·X1, for any Xi ∈ g.
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Then ∆′
2 = ∆2 , since ∆2 is the Casimir operator of gC , and furthermore we have

that ∆′
3 = −∆3 − 6∆2 . Thus from (6), we get f∆2 = −(H2

0 + 1
3
T 2 + 4H0), and

f∆3 = −1
9
T 3 +T 2 +4T +3H2

0 +4H0T +TH2
0 +12H0. Now it is easy to check that

f∆2(−v − 2, r) = χr,v(∆2) and f∆3(−v − 2, r) = χr,v(∆3).

This completes the proof of the proposition.

Theorem 3.3. Let r ∈ Z and v ∈ C. If v(v + r)(v − r) 6= 0 then

Y r,v ⊗W = Y1 ⊕ Y2 ⊕ Y3,

where Y1, Y2, Y3 are Harish-Chandra modules with infinitesimal characters
χr+1,v−1 , χr−2,v , χr+1,v+1 , respectively. Moreover for i = 1, 2, 3

Yi = {y ∈ Y r,v ⊗W : ∆2 y = ci y},

where c1 = χr+1,v−1(∆2), c2 = χr−2,v(∆2), c3 = χr+1,v+1(∆2).

Proof. By Theorem 3.1 we just need to understand when χξ+µi
= χξ+µj

for
i 6= j and ξ = (−v − 2, r) (Lemma 3.2).

We know that in general χλ = χλ′ (λ, λ′ ∈ h̃∗C ) if and only if there exists
and element w̃ in the translated Weyl group W̃ such that w̃(λ) = λ′ (see Section
2.1 of [11]). We recall that for w in the Weyl group W we have

w̃(λ) = w(λ+ ρ)− ρ.

If λ = (λ1, λ2), in terms of the dual basis of {H0, T} , then

s̃α̃(λ) = 1
2
(λ1 − λ2,−3λ1 − λ2),

s̃β̃(λ) = 1
2
(λ1 + λ2 − 2, 3λ1 − λ2 + 6),

s̃γ̃(λ) = (−λ1 − 4, λ2).

If ξ = (−v − 2, r) we have ξ + µ1 = (−v − 1, r + 1), ξ + µ2 = (−v − 2, r− 2) and
ξ + µ3 = (−v − 3, r + 1). Then it is easy to see that

s̃α̃(ξ + µ1) = ξ + µ2, if and only if v = r,

s̃β̃(ξ + µ2) = ξ + µ3, if and only if v = −r,
s̃γ̃(ξ + µ1) = ξ + µ3, if and only if v = 0,

and that no further identifications under W̃ occur in {ξ + µj : j = 1, 2, 3} .

From Lemma 3.2 it follows that χξ+µ1 = χr+1,v−1 , χξ+µ2 = χr−2,v , χξ+µ3 =
χr+1,v+1 , which completes the proof of the first assertion.

Now let
Ỹi = {y ∈ Y r,v ⊗W : ∆2 y = ci y}.

Since ∆2 ∈ D(G)G it follows that Ỹi is a D(G)-submodule of Y r,v ⊗ W such
that Yi ⊂ Ỹi . On the other hand it is easy to verify, under the hypothesis
v(v + r)(v − r) 6= 0, that all c1, c2, c3 are different. Therefore Ỹ1 , Ỹ2 , Ỹ3 are
direct summands of Y r,v ⊗W . Thus

Y r,v ⊗W = Y1 ⊕ Y2 ⊕ Y3 ⊂ Ỹ1 ⊕ Ỹ2 ⊕ Ỹ3,

which implies that Yi = Ỹi for i = 1, 2, 3, completing the proof of the theorem.
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Theorem 3.4. Let r ∈ Z and v ∈ C. If v(v + r)(v − r) 6= 0 then

Y r,v ⊗W ∗ = Z1 ⊕ Z2 ⊕ Z3,

where Z1, Z2, Z3 are Harish-Chandra modules with infinitesimal characters
χr−1,v−1 , χr+2,v , χr−1,v+1 , respectively. Moreover for i = 1, 2, 3

Zi = {y ∈ Y r,v ⊗W : ∆2 y = di y},

where d1 = χr−1,v−1(∆2), d2 = χr+2,v(∆2), d3 = χr−1,v+1(∆2).

Proof. The theorem follows from Theorem 3.3 by duality. First of all we
recall that the dual G-module of U r,v is isomorphic to U−r,−v . In fact 〈f, h〉 =∫

K
f(k)h(k) dk defines a pairing between U r,v and U−r,−v which is G-invariant

because

〈U r,v(g)f, U−r,−v(g)h〉 =

∫
K

e−2ρH(g−1k)f(κ(g−1k))h(κ(g−1k)) dk

=

∫
K

f(k)h(k) dk = 〈f, h〉.

The second equality is a known integral identity (see [21] Section 5.5.1). Moreover
this pairing is nonsingular because an f is in the representation space of U r,v if
and only if f̄ is in the representation space of U−r,−v .

On the other hand if a Harish-Chandra module Y has infinitesimal charac-
ter χ then its K -finite dual Y ∗ is a Harish-Chandra module Y with infinitesimal
character χ∗ given by χ∗(D) = χ(D′), D ∈ D(G)G . Then using Proposition 2.4
it follows that χ∗r,v = χ−r,v .

Now from Theorem 3.3 we get Y −r,−v ⊗ W ∗ = Y ∗
1 ⊕ Y ∗

2 ⊕ Y ∗
3 . Then by

taking Z1 = Y ∗
3 , Z2 = Y ∗

2 , Z3 = Y ∗
1 and changing signs the theorem follows.

3.1. Explicit decomposition of the tensor product. The aim of this subsec-
tion is to obtain an explicit description of the D(G) modules Y1 , Y2 , Y3 appearing
in Theorem 3.3.

From now on we shall choose a particular basis {aj,`
s : 0 ≤ s ≤ `} of weight

vectors of V(−r+`−3j,`) such that (8) holds.

We realize the K -module V(−r+`−3j,`) as the `-symmetric power of C2 (see
(4)) and take aj,`

s = e`−s
1 es

2 . The weight of aj,`
s with respect to the diagonal Cartan

subalgebra hC of kC is (−r + 2`− 3j − s)x1 + (−r + `− 3j + s)x2 .

We shall identify aj,`
s ∈ V(−r+`−3j,`) with a function on K : If {λj,`

s } denotes
the dual basis of {aj,`

s } then we put

vj,`
s (k) = λj,`

j (k−1aj,`
s ). (10)

In this way V(−r+`−3j,`) ' V(−r+`−3j,`) ⊗ Cλj,`
j ⊂ Y r,v and

Y r,v =
⊕

0≤j≤`

〈vj,`
0 〉K , (11)
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in accordance with Proposition 2.5. Explicitly, if

k =

 a b 0
−be−iθ ae−iθ 0

0 0 eiθ

 , k−1 =

a −beiθ 0
b aeiθ 0
0 0 e−iθ

 ,

then
vj,`

s (k) = eiθ(−r+`−3j)λj,`
j

(
(ae1 + be2)

`−s(−beiθe1 + aeiθe2)
s
)
. (12)

Then we know that {vj,`
s }s is an orthogonal basis of V(−r+`−3j,`) ⊂ Y r,v such that

Hα v
j,`
s = (`− 2s)vj,`

s , Z vj,`
s = (−2r + 3`− 6j)vj,`

s ,

Xα v
j,`
s = s vj,`

s−1, X−α v
j,`
s = (`− s)vj,`

s+1.
(13)

The following lemma is a consequence of the so called Pieri’s formula, see
[22] §77.

Lemma 3.5. The following decomposition of K -modules holds

Y r,v ⊗W '
∞⊕

`=0

⊕̀
j=0

V(−r+`−3j,`+1) ⊕ V(−r+`−3j+1,`−1) ⊕ V(−r+`−3j−1,`).

Moreover for 0 ≤ j ≤ ` let

uj,`
0 = vj,`

1 ⊗ e1 − vj,`
0 ⊗ e2 ∈ V(−r+`+1−3j,`−1)

zj,`
0 = vj,`

0 ⊗ e3 ∈ V(−r+`−3j−1,`)

wj,`
0 = vj,`

0 ⊗ e1 ∈ V(−r+`−3j,`+1).

Then the elements uj,`
0 , z

j−1,`−1
0 , wj−1,`−2

0 are dominant vectors of weight

µj,` = (−r + 2`− 3j)x1 + (−r + `− 3j + 1)x2.

Now we notice that the standard G-module W realizes in the principal
series U1,−3 in the following way: let λ 6= 0 be a dominant weight vector in
W ∗ with respect to the Cartan subalgebra h̃C of gC , and for any w in W let
hw(k) = λ(k−1w) for k ∈ K .

Lemma 3.6. The map w 7→ hw defines an injective homomorphism of G-
modules from W into U1,−3 .

Proof. It is convenient to use the induced picture to realize U1,−3 . We extend
our function hw to G by hw(g) = λ(g−1w) for g ∈ G . Then we only need to prove
that

hw(gmθan) = e−(ν+ρ) log aσ(mθ)
−1hw(g),

for mθ ∈M,a ∈ A, n ∈ N , where ν(H0) = −3, σ(mθ) = eirθ .
If X ∈ g then

[Xhw](g) =
( d
dt

)
t=0
λ((g exp tX)−1w)

=
( d
dt

)
t=0

(exp tX λ)(g−1w) = [Xλ](g−1w).
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Since Xλ = 0 for any X ∈ n it follows that hw is right invariant under
N . In terms of the dual basis {λi}3

i=1 of the canonical basis {ei}3
i=1 of W , λ is

a nonzero multiple of λ1 − λ3 . Then H0λ = λ and Tλ = −λ . Thus H0hw = hw

and iThw = −ihw . Therefore

hw(g exp tH0) = ethw(g) and hw(g exp(θiT )) = e−iθhw(g),

which are the required properties for A and M . The lemma is proved.

If M is abelian we have a G-morphism from Uσ,ν ⊗Uσ′,ν′ into Uσ+σ′,ν+ν′+ρ

defined by the multiplication of functions. In particular we consider the G-
morphism defined by

P : U r,v ⊗W −→ U r+1,v−1, f ⊗ w 7−→ fhw.

Proposition 3.7. The G-morphism P : U r,v ⊗W −→ U r+1,v−1 is surjective
and the Harish-Chandra module of ker(P ) is given by

⊕
`≥0

⊕̀
j=0

〈uj,`
0 + zj−1,`−1

0 , (`− 1)wj−1,`−2
0 + (`− j)zj−1,`−1

0 〉,

where 〈u, v〉 denotes the K -module generated by {u, v}.

Proof. We recall that hw(k) = λ(k−1w) and we may assume that λ = λ1−λ3 ∈
W ∗ . If

k−1 =

(
a −beiθ 0
b aeiθ 0
0 0 e−iθ

)
then

he1(k) = a, he2(k) = −beiθ, he3(k) = −e−iθ.

On the other hand, by (12) we have

vj,`
0 (k) =

(
`
j

)
(eiθ)−r+`−3ja`−jbj

vj,`
1 (k) = (eiθ)−r+`−3j+1a`−j−1bj−1

(
|a|2
(

`−1
j−1

)
− |b|2

(
`−1
j

))
.

(14)

Therefore

P (uj,`
0 )(k) = vj,`

1 (k)he1(k)− vj,`
0 (k)he2(k)

= (eiθ)−r+`−3j+1a`−jbj−1
(
|a|2
(

`−1
j−1

)
− |b|2

(
`−1
j

)
+ |b|2

(
`
j

))
= (eiθ)−r+`−3j+1a`−jbj−1

(
|a|2
(

`−1
j−1

)
+ |b|2

(
`−1
j−1

))
=
(

`−1
j−1

)
(eiθ)−r+`−3j+1a`−jbj−1.

In particular we note that P (uj,`
0 ) = vj−1,`−1

0 ∈ U r+1,v−1 , proving that P is
surjective. In a similar way we compute

P (zj−1,`−1
0 )(k) = vj−1,`−1

0 (k)he3(k) = −
(

`−1
j−1

)
(eiθ)−r+`−3j+1a`−jbj−1

and
P (wj−1,`−2

0 )(k) = vj−1,`−2
0 (k)he1(k) =

(
`−2
j−1

)
(eiθ)−r+`−3j+1a`−jbj−1.
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To prove the statement about the kernel of P it is enough to find the K -dominant
vectors in ker(P ). Now it is easy to see that uj,`

0 +zj−1,`−1
0 and (`−1)wj−1,`−2

0 +(`−
j)zj−1,`−1

0 are in ker(P ). Moreover if v ∈ ker(P ) is a K -dominant vector of weight
µj,` it follows that it must be a linear combination of (`−1)wj−1,`−2

0 +(`−j)zj−1,`−1
0

and uj,`
0 + zj−1,`−1

0 . The proposition is proved.

Lemma 3.8. The Iwasawa decomposition g = κ(g)a(g)n(g) of an element
g = (gij) ∈ SU(2, 1) is given by

a(g) =

cosh s 0 sinh s
0 1 0

sinh s 0 cosh s

 , κ(g) =

 a b 0
−be−iθ ae−iθ 0

0 0 eiθ

 ,

with

a =
g11 + g13

|g31 + g33|
, b = −(g21 + g23)(g31 + g33)

|g31 + g33|2
,

es = |g31 + g33|, eiθ =
g31 + g33

|g31 + g33|
.

Proof. Evaluating both sides of g = κ(g)a(g)n(g) at e1 + e3 we getg11 + g13

g21 + g23

g31 + g33

 = κ(g)a(g)

1
0
1

 = (cosh s+ sinh s)

 a
−be−iθ

eiθ

 ,

because e1 + e3 is left fixed by N . Then, from the third row it follows that
es = |g31 + g33| and that eiθ = (g31 + g33)/|g31 + g33| . Now from the first and the
second rows we obtain the expressions for a and b .

Proposition 3.9. For any 0 ≤ s ≤ ` we have

i) Xβ v
j,`
s = (`−j+1)(−r+v+2`−2j+2)

2(`+1)
vj,`+1

s+1 + (`−s)(r−v+2j)
2(`+1)

vj−1,`−1
s .

ii) X−β v
j,`
s = − (j+1)(r+v+2j+2)

2(`+1)
vj+1,`+1

s + s(r+v−2`+2j)
2(`+1)

vj,`−1
s−1 .

Proof. We start by computing Xβ v
j,`
0 . Let Xβ = 1

2
(Y5−iY6), where Y5, Y6 ∈ g .

We point out that from (12) we get

vj,`
0 (k) =

(
`
j

)
eiθ(−r+`−3j)a`−jbj,

where

k =

 a b 0
−be−iθ ae−iθ 0

0 0 eiθ

 .

Now

(Y5 v
j,`
0 )(k) =

( d
dt

)
t=0

(
e−(ν+ρ)(H(exp(−tY5)k))vj,`

0 (κ(exp(−tY5)k))
)
.
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We have

exp(−tY5)k =

 a b 0
−be−iθ cosh t ae−iθ cosh t −eiθ sinh t
be−iθ sinh t −ae−iθ sinh t eiθ cosh t

 .

From Lemma 3.8 we obtain

H(exp(−tY5)k) = log |∆(t)|H0

and

κ(exp(−tY5)k) =

 α β 0
−βe−iϕ αe−iϕ 0

0 0 eiϕ

 ,

where

α =
a

∆(t)
, β =

∆(t)(be−iθ cosh t+ eiθ sinh t)

|∆(t)|2
,

eiϕ =
∆(t)

|∆(t)|
, ∆(t) = be−iθ sinh t+ eiθ cosh t.

Then

Y5 v
j,`
0 (k) =

(
`
j

)( d
dt

)
t=0

(
∆(t)−r+`−2j

|∆(t)|−r+2`−2j+v+2a
`−j(be−iθ cosh t+ eiθ sinh t)j

)
.

We observe that( d
dt

)
t=0

(
(be−iθ cosh t+ eiθ sinh t)j

)
= jbj−1eiθ(−j+2),( d

dt

)
t=0

(
∆(t)−r+`−2j

|∆(t)|−r+2`−2j+v+2

)
= (−r + `− 2j)beiθ(−r+`−2j−2)

− (−r + v + 2`− 2j + 2) Re(be2iθ)eiθ(−r+`−2j).

Therefore

Y5 v
j,`
0 (k) =

(
`
j

)
(−r + `− 2j)eiθ(−r+`−3j−2)a`−jbj+1

−
(

`
j

)
(−r + v + 2`− 2j + 2)eiθ(−r+`−3j)a`−jbj Re(be2iθ)

+
(

`
j

)
j eiθ(−r+`−3j+2)a`−jbj−1.

Similarly for Y6 we obtain

Y6 v
j,`
0 (k) = −i

(
`
j

)
(−r + `− 2j)eiθ(−r+`−3j−2)a`−jbj+1

+
(

`
j

)
(−r + v + 2`− 2j + 2)eiθ(−r+`−3j)a`−jbj Im(be2iθ)

+ i
(

`
j

)
j eiθ(−r+`−3j+2)a`−jbj−1.

Therefore

Xβ v
j,`
0 = 1

2
(Y5 − iY6)v

j,`
0 =

(
`
j

)
eiθ(−r+`−3j+2)a`−jbj−1

(
− (−r+v+2`−2j+2)

2
|b|2 + j

)
.
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On the other hand, by (14), we have that

vj−1,`−1
0 (k) =

(
`−1
j−1

)
eiθ(−r+`−3j+2)a`−jbj−1,

vj,`+1
1 (k) = eiθ(−r+`−3j+2)a`−jbj−1

((
`

j−1

)
|a|2 −

(
`
j

)
|b|2
)

= eiθ(−r+`−3j+2)a`−jbj−1
(
−
(

`+1
j

)
|b|2 +

(
`

j−1

))
.

Then it is easy to verify that

Xβ v
j,`
0 = (`−j+1)(−r+v+2`−2j+2)

2(`+1)
vj,`+1

1 + ` (r−v+2j)
2(`+1)

vj−1,`−1
0 .

Now by using that Xs
−α and Xβ commute and the fact that

Xs
−α v

j,`
0 = `(`− 1) . . . (`− s+ 1)vj,`

s , Xs
−α v

j,`
1 = (`− 1) . . . (`− s)vj,`

s+1

(see (13)) we prove that

Xβ v
j,`
s = (`−j+1)(−r+v+2`−2j+2)

2(`+1)
vj,`+1

s+1 + (`−s) (r−v+2j)
2(`+1)

vj−1,`−1
s .

This completes the proof of i). In the same way ii) follows.

Corollary 3.10. The following relations hold

X−β u
j,`
0 = − (j+1)(r+v+2j+2)

2(`+1)
uj+1,`+1

0 − zj,`
0 + (r+v+2j−2`)

2(`+1)
wj,`−1

0 ,

X−β z
j−1,`−1
0 = − j(r+v+2j)

2`
zj,`
0 ,

X−β w
j−1,`−2
0 = − j(r+v+2j)

2(`−1)
wj,`−1

0 .

Proof. These are straightforward consequences of the definitions given in Le-
mma 3.5 and the previous proposition.

Corollary 3.11. We have

Xβ(X`−1
−α (uj,`

0 )) = (`−j+1)(−r+v+2`−2j+2)
2`(`+1)

X`
−α(uj,`+1

0 )

+ (−r+v−2j)
2`(`+1)

X`
−α(wj−1,`−1

0 ),

Xβ(X`−1
−α (zj−1,`−1

0 )) = (`−j+1)(−r+v+2`−2j+2)
2`2

X`
−α(zj−1,`

0 )+ 1
`
X`
−α(wj−1,`−1

0 ),

Xβ(X`−1
−α (wj−1,`−2

0 )) = (`−j)(−r+v+2`−2j)
2`(`−1)

X`
−α(wj−1,`−1

0 ).

Proof. First by induction on k we establish the following relations for k =
1, . . . , `− 1

Xk
−α(uj,`

0 ) = (`− 1) . . . (`− k)
(
vj,`

k+1 ⊗ e1 − vj,`
k ⊗ e2

)
,

Xk
−α(zj−1,`−1

0 ) = (`− 1) . . . (`− k)
(
vj−1,`−1

k ⊗ e3

)
,

Xk
−α(wj−1,`−2

0 ) = (`− 2) . . . (`− k)
(
(`− k − 1)vj−1,`−2

k ⊗ e1

+ kvj−1,`−2
k−1 ⊗ e2

)
.

Then the corollary is a direct consequence of Proposition 3.9.
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We recall that (Theorem 3.3) Y r,v ⊗W = Y1 ⊕ Y2 ⊕ Y3 where

Y1 = {f ∈ Y r,v ⊗W : ∆2 f = χr+1,v−1(∆2)f},
Y2 = {f ∈ Y r,v ⊗W : ∆2 f = χr−2,v(∆2)f},
Y3 = {f ∈ Y r,v ⊗W : ∆2 f = χr+1,v+1(∆2)f}.

Proposition 3.12. If v(r + v)(r − v) 6= 0, then the Harish-Chandra modules
Y1, Y2, Y3 are cyclic D(G)-modules, in fact they are generated by the minimal K -
type dominant vectors given below

i) Y1 = 〈(r + v + 2)u1,1
0 + (r − v + 2)z0,0

0 〉,

ii) Y2 = 〈u0,1
0 〉,

iii) Y3 = 〈u1,1
0 + z0,0

0 〉.

Proof. The elements u0,1
0 , u1,1

0 and z0,0
0 are K -dominant vectors of minimal

type in U r,v ⊗ C3 , see Lemma 3.5. In fact u1,1
0 and z0,0

0 are of type (−r − 1, 0)
and the type of u0,1

0 is (−r+ 2, 0). Moreover, through a careful calculation, using
Propositions 2.3, 3.9 and the normalization (13) one can verify that,

∆2(u
0,1
0 ) = (−v2 + 4− 1

3
(r − 2)2)u0,1

0 ,

∆2(u
1,1
0 ) = (−v2 + 4− 1

3
r2 + 4

3
r + 8

3
)u1,1

0 + 2(r − v + 2)z0,0
0 ,

∆2(z
0,0
0 ) = (−v2 + 4− 1

3
r2 − 8

3
r − 16

3
)z0,0

0 − 2(r + v + 2)u1,1
0 .

From the last two identities we obtain the following eigenvectors of ∆2 :

∆2(u
1,1
0 + z0,0

0 ) = (−(v + 1)2 + 4− 1
3
(r + 1)2)(u1,1

0 + z0,0
0 ),

∆2((r + v + 2)u1,1
0 + (r − v + 2)z0,0

0 )

= (−(v − 1)2 + 4− 1
3
(r + 1)2)((r + v + 2)u1,1

0 + (r − v + 2)z0,0
0 ).

The first eigenvector u0,1
0 is of weight µ0,1 , the second and the third, u1,1

0 + z0,0
0

and (r+ v+ 2)u1,1
0 + (r− v+ 2)z0,0

0 , are of weight µ1,1 . It is worth to observe that
the eigenvalues are respectively: χr−2,v(∆2), χr+1,v−1(∆2) and χr+1,v+1(∆2), see
Proposition 2.4. Therefore

〈(r + v + 2)u1,1
0 + (r − v + 2)z0,0

0 〉 ⊆ Y1, 〈u0,1
0 〉 ⊆ Y2, 〈u1,1

0 + z0,0
0 〉 ⊆ Y3.

The D(G)-module structure of Y r,v⊗W can be visualized in the following diagram
of all the highest weights of its K -submodules.

µ0,1 Xβ−−−→ µ0,2 Xβ−−−→ µ0,3 Xβ−−−→ · · ·

X−β

y X−β

y X−β

y
µ1,1 Xβ−−−→ µ1,2 Xβ−−−→ µ1,3 Xβ−−−→ µ1,4 Xβ−−−→ · · ·

X−β

y X−β

y X−β

y X−β

y
µ2,2 Xβ−−−→ µ2,3 Xβ−−−→ µ2,4 Xβ−−−→ µ2,5 Xβ−−−→ · · ·

X−β

y X−β

y X−β

y X−β

y
...

...
...

...
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Over each µj,` , with 0 ≤ j ≤ ` we place the irreducible K -submodules of
that highest weight contained, respectively, in Y1 , Y2 and Y3 . In each place of the
first row there is only one K -module of highest weight µ0,` contained in Y2 , and
on the first column there are two irreducible K -modules of highest weight µ`,` ,
one contained in Y1 and the other in Y3 .

Let f j,`
0 ∈ Y r,v ⊗ W be a K -dominant vector of weight µj,` and let f j,`

`

be a corresponding lowest weight vector. Then X−β(f j,`
0 ) is a dominant vector of

weight µj+1,`+1 , and Xβ(f j,`
` ) is a lowest weight vector in a K -module of highest

weight µj,`+1 . This follows from [X−β, Xα] = 0 and [Xβ, X−α] = 0.
In particular, by induction on ` ≥ 1 and on k ≥ 1 it is not difficult to prove the
following:

X`−1
β (u0,1

0 ) = 1
(`−1)!

(−r+v+4
2

)
`−1

X`−1
−α (u0,`

0 ),

Xk
−β(u0,`

0 ) = (−1)k k!
(`)k+1

(
r+v+2

2

)
k−1

(
1
2
(r + v + 2k)`uk,`+k

0

+ `(`+ k)zk−1,`+k−1
0 − 1

2
(r + v − 2`)(`+ k − 1)wk−1,`+k−2

0

)
.

From the first equality and the hypothesis we see that u0,`
0 ∈ Y2 for all ` ≥ 1.

Now using the second one we get that the vector

Dj,`
2 = (r + v + 2j)(`− j)uj,`

0 + 2`(`− j)zj−1,`−1
0

− (r + v − 2`+ 2j)(`− 1)wj−1,`−2
0

(15)

is a dominant weight vector in Y2 of highest weight µj,` . We observe that Dj,`
2 6= 0

if and only if j 6= ` .
In a similar way for ` ≥ 1 and k ≥ 0 one establishes that

X`−1
−β (u1,1

0 + z0,0
0 ) = (−1)`−1

(
r+v+4

2

)
`−1

(u`,`
0 + z`−1,`−1

0 ),

Xk
β(X`−1

−α (u`,`
0 + z`−1,`−1

0 )) = k!
(`)k(`)k+1

(−r+v+2
2

)
k
X`+k−1
−α

(
`u`,`+k

0

+(`+ k)z`−1,`+k−1
0 + (`+ k − 1)w`−1,`+k−2

0

)
.

From the first equality and the hypothesis we see that uk+1,k+1
0 + zk,k

0 ∈ Y3 for all
k ≥ 0. Now using the second one we get that the vector

Dj,`
3 = juj,`

0 + `zj−1,`−1
0 + (`− 1)wj−1,`−2

0 (16)

is a dominant weight vector in Y3 of highest weight µj,` , moreover it is nonzero if
j 6= 0.

Similarly for ` ≥ 1 and k ≥ 1 one can prove that

X`−1
−β

(
(r + v + 2)u1,1

0 + (r − v + 2)z0,0
0

)
= (−1)`−1

(
r+v+2

2

)
`−1

×
(
(r + v + 2`)u`,`

0 + (r − v + 2`)z`−1,`−1
0

)
,

Xk
β

(
X`−1
−α

(
(r + v + 2`)u`,`

0 + (r − v + 2`)z`−1,`−1
0

))
= 1

2
k!

(`)k(`)k+1

(−r+v+2
2

)
k−1

X`+k−1
−α

(
`(r + v + 2`)(−r + v + 2k)u`,`+k

0

+ (`+ k)(r − v + 2`)(−r + v + 2k)z`−1,`+k−1
0

− (`+ k − 1)(r − v + 2`)(r + v − 2k)w`−1,`+k−2
0

)
.
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From the first equality and the hypothesis we see that (r + v + 2`)u`,`
0 + (r− v +

2`)z`−1,`−1
0 ∈ Y1 for all k ≥ 0. Now using the second one we get that the vector

Dj,`
1 = j(r + v + 2j)(−r + v + 2`− 2j)uj,`

0

+ `(r − v + 2j)(−r + v + 2`− 2j)zj−1,`−1
0

− (`− 1)(r − v + 2j)(r + v − 2`+ 2j)wj−1,`−2
0

(17)

is a dominant weight vector in Y1 of highest weight µj,` . It is easy to prove that
Dj,`

1 6= 0 if j 6= 0 and v(r + v)(r − v) 6= 0.

Finally, since Y r,v ⊗W = Y1 ⊕ Y2 ⊕ Y3 and as a K -module is the direct
sum of all the K -modules generated by

{Dj,`
1 }0<j≤` ∪ {Dj,`

2 }0≤j<` ∪ {Dj,`
3 }0<j≤`

the proposition follows.

In the following theorem we generalize a bit the previous proposition and
we exhibit the K -module structure of Y1 , Y2 and Y3 .

Theorem 3.13. Let v(v+ r)(v− r) 6= 0 and let Dj,`
1 , Dj,`

2 and Dj,`
3 be defined

respectively by (17), (15) and (16). Then they are K - dominant vectors of highest
weight µj,` and

Y1 =
⊕

0<j≤`

〈Dj,`
1 〉K , Y2 =

⊕
0≤j<`

〈Dj,`
2 〉K , Y3 =

⊕
0<j≤`

〈Dj,`
3 〉K .

Moreover
Y r,v ⊗W = Y1 ⊕ Y2 ⊕ Y3.

We used above 〈Dj,`
i 〉K to denote the K -module generated by Dj,`

i .

Proof. That Dj,`
i is K -dominant and of highest weight µj,` follows from (17),

(15) and (16). Through a careful and long calculation, using Propositions 2.3, 3.9
and the normalization (13) one can verify that Dj,`

i ∈ Yi for i = 1, 2, 3. Finally,
since Y r,v ⊗W = Y1 ⊕ Y2 ⊕ Y3 and as a K -module is the direct sum of all the
K -modules generated by

{Dj,`
1 }0≤j≤` ∪ {Dj,`

2 }0<j≤` ∪ {Dj,`
3 }0≤j≤`,

the theorem follows.

We consider in U r,v ⊗W the Hilbert structure given by tensoring the inner
product of L2(K) with the standard inner product of C3 . Then the closure Y i of
Yi (i=1,2,3) in U r,v ⊗W is a G module, because G is connected. But it is worth
to observe that Y 1 , Y 2 and Y 3 are not orthogonal subspaces.

Remark 3.14. If v(r+v)(r−v) 6= 0 then Y 1 , Y 2 , Y 3 are linearly independent
but Y 1 ⊕ Y 2 ⊕ Y 3 is not closed in U r,v ⊗W .

In fact, if Y 1∩Y 2 were not zero then Y 1 and Y 2 would contain a common
K -irreducible submodule which would imply that Y1 ∩ Y2 6= {0} , which is a
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contradiction. Similarly if (Y 1 ⊕ Y 2) ∩ Y 3 6= {0} then (Y1 ⊕ Y2) ∩ Y3 6= {0}
which is also a contradiction. Thus Y 1 , Y 2 and Y 3 are linearly independent.

For the second assertion in the remark we recall that one may have closed
linearly independent subspaces M1 and M2 in a Hilbert space such that M1⊕M2

is not closed. But the following is true (see [18], 4.8): If X is a Banach space
and M1 and M2 are closed linearly independent subspaces of X then M1 ⊕M2

is closed if and only if there exists d > 0 such that ‖x1 − x2‖ ≥ d whenever
x1 ∈M1, x2 ∈M2 and ‖x1‖ = ‖x2‖ = 1.

In our case if we let

y` = ‖Dj,`
2 ‖−1Dj,`

2 and z` = ‖Dj,`
3 ‖−1Dj,`

3 ,

one can verify, by using Lemma 3.22, that

‖y` − z`‖2 = 2− 2

(
8j(`− j)

|r + v|2 + 8j(`− j)

)1/2

.

If we fix 0 < j < ` then lim`→∞ ‖y`−z`‖ = 0. Therefore Y 2⊕Y 3 and Y 2⊕Y 1 ⊕ Y 3

are not closed in U r,v ⊗W . Therefore

U r,v ⊗W ) Y 2 ⊕ Y 1 ⊕ Y 3 ⊃ Y 1 ⊕ Y 2 ⊕ Y 3,

which implies that Y 1 ⊕ Y 2 ⊕ Y 3 is not closed, since Y1 ⊕ Y2 ⊕ Y3 is dense in
U r,v ⊗W .

The following lemmas are consequences of Proposition 3.9.

Lemma 3.15. We have

Xβ(Dj,`
1 ) = (`−j+1)(−r+v+2`−2j)

2`(`+1)
X−α(Dj,`+1

1 ) + (r−v+2j)
2

Dj−1,`−1
1 ,

Xβ(Dj,`
2 ) = (`−j)(−r+v+2`−2j+2)

2`(`+1)
X−α(Dj,`+1

2 ) + (r−v+2j−2)
2

Dj−1,`−1
2 ,

Xβ(Dj,`
3 ) = (`−j+1)(−r+v+2`−2j+2)

2`(`+1)
X−α(Dj,`+1

3 ) + (r−v+2j+2)
2

Dj−1,`−1
3 .

Lemma 3.16. We have

X−β(X`−1
−α (Dj,`

1 ))

= − j(r+v+2j)
2`(`+1)

X`−1
−α (Dj+1,`+1

1 ) + (`−1)(r+v−2`+2j)
2

X`−2
−α (Dj,`−1

1 ),

X−β(X`−1
−α (Dj,`

2 ))

= − (j+1)(r+v+2j)
2`(`+1)

X`−1
−α (Dj+1,`+1

2 ) + (`−1)(r+v−2`+2j)
2

X`−2
−α (Dj,`−1

2 ),

X−β(X`−1
−α (Dj,`

3 ))

= − j(r+v+2j+2)
2`(`+1)

X`−1
−α (Dj+1,`+1

3 ) + (`−1)(r+v−2`+2j+2)
2

X`−2
−α (Dj,`−1

3 ).

Proposition 3.17. If v(v + r)(v − r) 6= 0 then

Y1 ' Y r+1,v−1, Y2 ' Y r−2,v, Y3 ' Y r+1,v+1

as (gC, K)-modules.
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Proof. From (11) and Theorem 3.13 we have

Y r+1,v−1 =
⊕

0≤j≤`

〈vj,`
0 〉K , and Y1 =

⊕
0<j≤`

〈Dj,`
1 〉K ,

where vj,`
0 and Dj,`

1 are K -dominant vectors of highest weights µj+1,`+1 and
µj,` , respectively. Thus an isomorphism of K -modules η : Y r+1,v−1 −→ Y1 is
characterized by

η(vj,`
0 ) = cj,`D

j+1,`+1
1 , cj,` 6= 0, 0 ≤ j ≤ `.

Since gC is generated by kC and X±β , to say that η is a gC -morphism is equivalent
to require that η commutes with X±β . This in turn is equivalent to

Xβ(η(vj,`
0 )) = η(Xβ(vj,`

0 )), X−β(η(vj,`
` )) = η(X−β(vj,`

` )),

for 0 ≤ j ≤ ` , because [Xα, X−β] = [X−α, Xβ] = 0.
From Lemma 3.15 we obtain

Xβ(η(vj,`
0 )) = cj,`Xβ(Dj+1,`+1

1 )

= cj,`
(`−j+1)(−r+v+2`−2j)

2(`+1)(`+2)
X−α(Dj+1,`+2

1 ) + cj,`
(r−v+2j+2)

2
Dj,`

1 .

On the other hand from Proposition 3.9, changing r by r+1 and v by v− 1, and
using (13) we get

Xβ v
j,`
0 = (`−j+1)(−r+v+2`−2j)

2(`+1)
vj,`+1

1 + `(r−v+2j+2)
2(`+1)

vj−1,`−1
0

= (`−j+1)(−r+v+2`−2j)
2(`+1)2

X−α(vj,`+1
0 ) + `(r−v+2j+2)

2(`+1)
vj−1,`−1

0 .

Then

η(Xβ(vj,`
0 )) = cj,`+1

(`−j+1)(−r+v+2`−2j)
2(`+1)2

X−α(Dj+1,`+2
1 ) + cj−1,`−1

`(r−v+2j+2)
2(`+1)

Dj,`
1 .

Now Xβ(η(vj,`
0 )) = η(Xβ(vj,`

0 )) if and only if

(`+ 1)cj,` = (`+ 2)cj,`+1 = `cj−1,`−1, (18)

since X−α(Dj+1,`+2
1 ) and Dj,`

1 are linearly independent.

Similarly one gets that X−β(η(vj,`
` )) = η(X−β(vj,`

` )) if and only if

(`+ 1)cj,` = (`+ 2)cj+1,`+1 = `cj,`−1. (19)

From (18) and (19) we get

cj,`+1 = cj+1,`+1 and (`+ 1)cj,` = (`+ 2)cj,`+1.

Now it follows that cj,` = c0,0/(`+ 1). This proves that

η1 : Y r+1,v−1 −→ Y1, η1(v
j,`
0 ) = 1

`+1
Dj+1,`+1

1 , (20)

is the unique isomorphism of (gC, K)-module, up to a nonzero constant, from
Y r+1,v−1 onto Y1 .

In a similar way we can prove that, up to a non zero constant,

η2 : Y r−2,v −→ Y2, η2(v
j,`
0 ) = 1

`+1
Dj,`+1

2 (21)

and
η3 : Y r+1,v+1 −→ Y3, η3(v

j,`
0 ) = 1

`+1
Dj+1,`+1

3 (22)

are, respectively the unique isomorphisms of (gC, K)-modules.
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Remark 3.18. If v(r + v)(r − v) 6= 0 the (gC, K) isomorphisms η1 and η2

defined in (20) and (21) are not continuous while η3 defined in (22) is bicontinuous.

In fact, by using Lemmas 3.20, 3.22 below it follows that

‖η1(v
j,`
0 )‖2

‖vj,`
0 ‖2

=
j! (`− j)!

(`+ 1)!
‖Dj+1,`+1

1 ‖2

= |r − v + 2j + 2|2|r − v − 2`+ 2j|2

+ |r − v + 2j + 2|2|r + v − 2`+ 2j|2

+ 8 Re(v)
(
|v|2 − (r + 2j + 2)2 + 2(`+ 1)(r + 2j + 2)

)
,

and
‖η2(v

j,`
0 )‖2

‖vj,`
0 ‖2

=
j! (`− j)!

(`+ 1)!
‖Dj,`+1

2 ‖2 = |r + v|2 + 8j(`− j + 1),

which implies that the left hand sides go to infinite when ` → ∞ . But η3 is
bicontinuous since on one hand we have

‖η3(X
s
−αv

j,`
0 )‖2

‖Xs
−αv

j,`
0 ‖2

=
‖Xs

−α(η3(v
j,`
0 ))‖2

‖Xs
−αv

j,`
0 ‖2

=
‖η3(v

j,`
0 )‖2

‖vj,`
0 ‖2

=
j! (`− j)!

(`+ 1)!
‖Dj+1,`+1

3 ‖2 = 2,

and on the other hand {Xs
−αv

j,`
0 } and {η3(X

s
−αv

j,`
0 )} are, respectively, orthogonal

basis of Y r+1,v+1 and Y3 . Therefore ‖η3‖ =
√

2.

Remark 3.19. The pairs of G-modules U r+1,v−1 and Y 1 and U r−2,v and Y 2

are infinitesimally equivalent, but not equivalent, while U r+1,v+1 and Y 3 are
equivalent.
This is a consequence of the following facts proved in Proposition 3.17

dim Hom(gC,K)(Y
r+1,v−1, Y1) = dim Hom(gC,K)(Y

r−2,v, Y2) = 1.

We close this section with the following lemmas that were used in the
previous remarks.

Lemma 3.20. If vj,`
s , 0 ≤ s ≤ `, are the functions defined in (12) then we

have

‖vj,`
s ‖2 =

1

`+ 1

(
`

s

)−1(
`

j

)
.

Proof. If V is an irreducible unitary K -module, then the following orthogo-
nality relations are well known:

∫
K
〈k ·v, v′〉〈k · w,w′〉 dk = (dimV )−1〈v, w〉〈v′, w′〉.

for all v, v′, w, w′ ∈ V . From (10) we have

vj,`
s (k) = λj,`

j (k−1aj,`
s ) =

〈k−1 · aj,`
s , a

j,`
j 〉

‖aj,`
j ‖4

.

Then, by using (9), we get ‖vj,`
s ‖2 = ‖aj,`

s ‖2

(`+1)‖aj,`
j ‖2

= 1
`+1

(
`
s

)−1(`
j

)
.

The following lemma is a direct consequence of the definitions given in
Lemma 3.5 and the lemma above.
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Lemma 3.21. We have

‖uj,`
0 ‖2 = 1

`

(
`
j

)
, ‖zj−1,`−1

0 ‖2 = 1
`

(
`−1
j−1

)
, ‖wj−1,`−2

0 ‖2 = 1
`−1

(
`−2
j−1

)
.

The next lemma follows from the definitions (17), (15) and (16) and Lemma 3.21.

Lemma 3.22. We have

‖Dj,`
1 ‖2 = `

(
`−1
j−1

)(
|r − v + 2j|2|r − v − 2`+ 2j|2 + |r − v + 2j|2|r + v − 2`+ 2j|2

+ 8j Re(v)
(
|v|2 − (r + 2j)2 + 2`(r + 2j)

) )
,

‖Dj,`
2 ‖2 = (`− j)

(
`
j

)
(|r + v|2 + 8j(`− j)) ,

‖Dj,`
3 ‖2 = 2`

(
`−1
j−1

)
.

4. Multiplication formulas

In this section we shall establish two three term multiplication formulas, one dual of
the other, for matrix valued irreducible spherical functions, obtained from Theorem
3.13.

Proposition 4.1. Let v(r + v)(r − v) 6= 0. Then

vj,`
0 ⊗ e3 = 1

2(`+1)v(r−v)
Dj+1,`+1

1 − 2(j+1)
(`+1)(r+v)(r−v)

Dj+1,`+1
2

+ (r+v+2j+2)(r+v−2`+2j)
2(`+1)v(r+v)

Dj+1,`+1
3 .

Proof. Since vj,`
0 ⊗ e3 = zj,`

0 is a K -dominant vector of weight µj+1,`+1 it is a
linear combination of Dj+1,`+1

1 , Dj+1,`+1
2 and Dj+1,`+1

3 . The elements uj+1,`+1
0 , zj,`

0

and wj,`−1
0 are linear independent, hence it is straightforward to verify, using

(15),(16) and (17) that the identity in the statement follows.

We recall that (see (8)) given an irreducible K -module V of type (n, `)
there exists a basis {vk}`

k=0 of V , unique up to a multiplicative constant, such
that

Hα vk = (`− 2k) vk, Z vk = (2n+ `) vk

Xα vk = k vk−1, X−α vk = (`− k) vk+1.
(23)

Therefore the matrix of a linear map T : V −→ V associated to any basis of V
satisfying (23) is the same for all these bases.

Let V be a K -isotypic component of a representation of G in a Hilbert
space U and let P : U −→ V be the orthogonal projection. Let {vi}`

i=0 be a basis
of V satisfying (23), and let {λi}`

i=0 be its dual basis. Then the matrix coefficients
of the spherical function Φ associated to (U, V ) in the basis {vi}`

i=0 are given by

Φ(g)ik = λi(P (g vk)). (24)

Lemma 4.2. Let v(r + v)(r − v) 6= 0 and let {vj,`
i }`

i=0 be a basis of the K -
module V(−r+`−3j,`) ⊂ U r,v such that (23) holds. Let

vj,`
i ⊗ e3 = w

(1)
i + w

(2)
i + w

(3)
i ∈ Y 1 ⊕ Y 2 ⊕ Y 3.

For p = 1, 2, 3, if w
(p)
0 6= 0 then {w(p)

i }`
i=0 is a basis of the K irreducible module

of Y p of type (n, `) = (−r + `− 3j − 1, `), such that (23) holds.
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Proof. We have that each w
(p)
0 is a K dominant vector of weight µj+1,`+1 . On

the other hand, for 0 ≤ i ≤ ` we have

X i
−α(w

(1)
0 ) +X i

−α(w
(2)
0 ) +X i

−α(w
(3)
0 ) = X i

−α(v0 ⊗ e3) = ` !
(`−i)!

vi ⊗ e3

= ` !
(`−i)!

(
w

(1)
i + w

(2)
i + w

(2)
i

)
.

Therefore X i
−α(w

(p)
0 ) = ` !

(`−i)!
w

(p)
i for p = 1, 2, 3. This completes the proof of the

lemma.

Remark 4.3. When v(r+ v)(r− v) 6= 0, from Proposition 4.1, and the defini-
tions (15), (16) and (17) it follows that

w
(1)
0 = 1

2(`+1)v(r−v)
Dj+1,`+1

1 6= 0,

w
(2)
0 = −2(j+1)

(`+1)(r+v)(r−v)
Dj+1,`+1

2 6= 0, if j 6= `,

and if (r + v + 2j + 2)(r + v − 2`+ 2j) 6= 0, we have

w
(3)
0 = (r+v+2j+2)(r+v−2`+2j)

2(`+1)v(r+v)
Dj+1,`+1

3 6= 0.

Theorem 4.4. Let v(r + v)(r − v) 6= 0 and let Φr,v
(−r+`−3j,`) be the irreducible

matrix valued spherical function associated to the G-module U r,v and to the K -
submodule V(−r+`−3j,`) . Let φ be the spherical function of type (−1, 0) associated
to the G module W . Then

φ(g)Φr,v
(−r+`−3j,`)(g) = a1 Φr+1,v−1

(−r+`−3j−1,`)(g) + a2 Φr−2,v
(−r+`−3j−1,`)(g)

+ a3 Φr+1,v+1
(−r+`−3j−1,`)(g),

(25)

where

a1 = a1(r, v, j, `) = (r−v+2j+2)(−r+v+2`−2j)
2v(r−v)

a2 = a2(r, v, j, `) = −4(j+1)(`−j)
(r+v)(r−v)

a3 = a3(r, v, j, `) = (r+v+2j+2)(r+v−2`+2j)
2v(r+v)

(26)

Proof. Let us consider the basis {vj,`
i }`

i=0 of V(−r+`−3j,`) ⊂ U r,v introduced in
(10) and let {λi}`

i=0 be its dual basis. Also let {µi}3
i=1 be the dual basis of the

canonical basis {ei}3
i=1 of C3 .

Let Dp = 〈Dj+1,`+1
p 〉K for p = 1, 2, 3. From Lemma 4.2 we have

vj,`
i ⊗ e3 = w

(1)
i + w

(2)
i + w

(3)
i ∈ D1 ⊕D2 ⊕D3,

where {w(p)
i }`

i=0 is a basis of Dp satisfying (23). As it was pointed out in Remark

4.3, w
(p)
0 may be zero. In such a case Dp = 0 and the corresponding coefficient

ap = 0, and everything is all right.
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Let {χ(p)
i }`

i=0 be the dual basis of {w(p)
i }`

i=0 . We consider χ
(p)
i ∈ (D1 ⊕D2 ⊕D3)

∗

by using the canonical isomorphism

(D1 ⊕D2 ⊕D3)
∗ ' D∗

1 ⊕D∗
2 ⊕D∗

3.

We also consider λi ⊗ µ3 ∈ (D1 ⊕D2 ⊕D3)
∗ by setting λi ⊗ µ3 equal to zero on

the orthogonal complement of V(−r+`−3j,`) ⊗ Ce3 in D1 ⊕D2 ⊕D3 . Now let

λi ⊗ µ3 = ν
(1)
i + ν

(2)
i + ν

(3)
i ∈ D∗

1 ⊕D∗
2 ⊕D∗

3. (27)

Since λi⊗µ3 is of weight −(`−2i) with respect to Hα it follows that ν
(p)
i = a

(p)
i χ

(p)
i

where

a
(p)
i = ν

(p)
i (w

(p)
i ) = (λi ⊗ µ3)(w

(p)
i ) for p = 1, 2, 3. (28)

Now we observe that a
(p)
i does not depend on i , that is

(λi ⊗ µ3)(w
(p)
i ) = (λ0 ⊗ µ3)(w

(p)
0 ). (29)

Because {vj,`
i }`

i=0 satisfies (23) we have vj,`
i = (`−i)!

` !
X i
−α(vj,`

0 ), which implies that

X i
−α(λi) = (−1)i` !

(`−i)!
λ0 . Also from Lemma 4.2 we get that w

(p)
i = (`−i)!

` !
X i
−α(w

(p)
0 ).

Then

(λi ⊗ µ3)(w
(p)
i ) = (`−i)!

` !
(λi ⊗ µ3)(X

i
−αw

(p)
0 )

= (−1)i(`−i)!
` !

(
X i
−α(λi)⊗ µ3

)
(w

(p)
0 ) = (λ0 ⊗ µ3)(w

(p)
0 ).

Thus from (27) we obtain

λi ⊗ µ3 = a1χ
(1)
i + a2χ

(2)
i + a3χ

(3)
i (30)

where ap = (λ0 ⊗ µ3)(w
(p)
0 ).

From Proposition 4.1 we have vj,`
0 ⊗ e3 = w

(1)
0 + w

(2)
0 + w

(3)
0 , with

w
(1)
0 = 1

2 (`+1) v(r−v)
Dj+1,`+1

1 , w
(2)
0 = − 2(j+1)

(`+1) (r+v)(r−v)
Dj+1,`+1

2

w
(3)
0 = (r+v+2j+2)(r+v−2`+2j)

2 (`+1) v(r+v)
Dj+1,`+1

3 .

From (15), (16), (17) and recalling that uj+1,`+1
0 = vj+1,`+1

1 ⊗ e1 − vj+1,`+1
0 ⊗ e2 ,

zj,`
0 = vj,`

0 ⊗ e3 , wj,`−1
0 = vj,`−1

0 ⊗ e1 , we get

a1 = (λ0 ⊗ µ3)(w
(1)
0 ) = 1

2 (`+1) v(r−v)
(λ0 ⊗ µ3)(D

j+1,`+1
1 )

= (r−v+2j+2)(−r+v+2`−2j)
2v(r−v)

a2 = (λ0 ⊗ µ3)(w
(2)
0 ) = − 2(j+1)

(`+1) (r+v)(r−v)
(λ0 ⊗ µ3)(D

j+1,`+1
2 )

= −4(j+1)(`−j)
(r+v)(r−v)

a3 = (λ0 ⊗ µ3)(w
(3)
0 ) = (r+v+2j+2)(r+v−2`+2j)

2 (`+1) v(r+v)
(λ0 ⊗ µ3)(D

j+1,`+1
3 )

= (r+v+2j+2)(r+v−2`+2j)
2v(r+v)

.

(31)
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Let Q be the orthogonal projection of U r,v onto V(−r+`−3j,`) , the isotypic
component of type (−r+`−3j, `)), and let Q3 be the orthogonal projection of W
onto Ce3 . Also let P be the orthogonal projection of U r,v⊗W onto D1⊕D2⊕D3 ,
the K -isotypic component of type (−r + `− 3j − 1, `).

We claim that

(λi ⊗ µ3) ◦ (Q⊗Q3) = (λi ⊗ µ3) ◦ P. (32)

Since Im(Q ⊗ Q3) = V(−r+`−3j,`) ⊗ Ce3 ⊂ D1 ⊕ D2 ⊕ D3 = Im(P ) it follows that
ker(Q⊗Q3) ⊃ kerP . Therefore to prove (32) it is enough to see that

((λi ⊗ µ3) ◦ (Q⊗Q3)) |D1⊕D2⊕D3 = (λi ⊗ µ3)|D1⊕D2⊕D3 . (33)

We notice that D1 ⊕D2 ⊕D3 = 〈uj+1,`+1
0 〉K ⊕ 〈zj,`

0 〉K ⊕ 〈wj,`−1
0 〉K (see (15), (16)

and (17)).

From Lemma 3.5 it is clear that

ker
(
(Q⊗Q3) |D1⊕D2⊕D3

)
= 〈uj+1,`+1

0 〉K ⊕ 〈wj,`−1
0 〉K = ker

(
(λi ⊗ µ3)|D1⊕D2⊕D3

)
.

Moreover, since 〈zj,`
0 〉K = Im(Q ⊗ Q3) the identity (33) follows, hence (32) is

proved.

Now we are ready to prove the theorem. For g ∈ G we apply the left hand
side of (32) to g(vj,`

k ⊗ e3) and using (24) we obtain

(λi ⊗ µ3)
(
(Q⊗Q3)(g (vj,`

k ⊗ e3))
)

= (λi ⊗ µ3)
(
Q(g vj,`

k )⊗Q3(g e3)
)

= λi(Q(g vj,`
k ))µ3(Q3(g e3))

= φ(g) (Φ(g))ik ,

where Φ is the spherical function of type (−r + ` − 3j, `) associated to the G-
module U r,v .
Let Pi be the orthogonal projection of Y i onto Di . Then P |Y 1⊕Y 2⊕Y 3

= P1⊕P2⊕
P3 . In fact Pi(D

⊥
i ∩ Y i) = 0 because P is the projection of U r,v ⊗W onto the

isotypic component D1 ⊕ D2 ⊕ D3 and D⊥
i ∩ Y i does not contain such K -type.

Thus P |Y i
= Pi .

Now we apply the right hand side of (32) to g(vj,`
k ⊗ e3) and using Lemma 4.2 and

(30) we obtain

(λi ⊗ µ3)P (g(vj,`
k ⊗ e3)) = (λi ⊗ µ3)P (g w

(1)
k + g w

(2)
k + g w

(3)
k )

= (λi ⊗ µ3)(P1(g w
(1)
k ) + P2(g w

(2)
k ) + P3(g w

(3)
k ))

= a1χ
(1)
i (P1(g w

(1)
k )) + a2χ

(2)
i (P2(g w

(2)
k )) + a3χ

(3)
i (P3(g w

(3)
k ))

= a1 (Φ1(g))ik + a2 (Φ2(g))ik + a3 (Φ3(g))ik

where Φp is the spherical function of type (−r + ` − 3j − 1, `) associated to the
G-module Y p .
Since Y 1 and U r+1,v−1 , Y 2 and U r−2,v , Y 3 and U r+1,v+1 are infinitesimally equiv-
alent (see Proposition 3.17) and taking into account the remark below Proposition
2.2 the theorem follows.
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If Φ : G −→ End(Vπ) is an irreducible spherical function of type δ ∈ K̂
then the function Φ∗ : G −→ End(V ∗

π ) defined by Φ∗(g) = Φ(g−1)t is a spherical
function of type δ∗ , where δ∗ denotes the equivalence class of the contragradient
representation π∗ (see [4]). If π is of type (n, `) then it is easy to verify that π∗

is of type (−n− `, `).

We recall that (U r,v)∗ ' U−r,−v , see the proof of Theorem 3.4. Therefore if
Φr,v

(−r+`−3j,`) denotes the irreducible spherical function associated to the G-module

U r,v of type (−r + `− 3j, `), then(
Φr,v

(−r+`−3j,`)

)∗
= Φ−r,−v

(r+`−3(`−j),`). (34)

Theorem 4.5. Let v(r + v)(r − v) 6= 0 and let Φr,v
(−r+`−3j,`) be the irreducible

matrix valued spherical function associated to the G-module U r,v and to the K -
submodule V(−r+`−3j,`) . Let ψ be the spherical function of type (1, 0) associated to
the G module W ∗ . Then

ψ(g)Φr,v
(−r+`−3j,`)(g) = b1 Φr−1,v+1

(−r+`−3j+1,`)(g) + b2 Φr+2,v
(−r+`−3j+1,`)(g)

+ b3 Φr−1,v−1
(−r+`−3j+1,`)(g),

(35)

where

b1 = b1(r, v, j, `) = (r−v+2j)(−r+v+2`−2j+2)
2v(r−v)

b2 = b2(r, v, j, `) = − 4j(`−j+1)
(r+v)(r−v)

b3 = b3(r, v, j, `) = (r+v+2j)(r+v−2`+2j−2)
2v(r+v)

(36)

Proof. We start from the following identity established in Theorem 4.4

φ(g)Φr,v
(−r+`−3j,`)(g) = a1 Φr+1,v−1

(−r+`−3j−1,`)(g) + a2 Φr−2,v
(−r+`−3j−1,`)(g)

+ a3 Φr+1,v+1
(−r+`−3j−1,`)(g),

(37)

If we take * on both sides of (37), and we use (34) we obtain

φ(g)∗Φ−r,−v
(r+`−3(`−j),`)(g) = a1 Φ−r−1,−v+1

(r+`−3(`−j)+1,`)(g) + a2 Φ−r+2,−v
(r+`−3(`−j)+1,`)(g)

+ a3 Φ−r−1,−v−1
(r+`−3(`−j)+1,`)(g).

We note that ψ(g) = φ∗(g), because both spherical functions are associated to the
same G module and are of the same K - type. Now if we change r by −r , v by
−v , and j by `− j , then we obtain that

ψ(g)Φr,v
(−r+`−3j,`)(g) = b1 Φr−1,v+1

(−r+`−3j+1,`)(g) + b2 Φr+2,v
(−r+`−3j+1,`)(g)

+ b3 Φr−1,v−1
(−r+`−3j+1,`)(g),

with
bi = bi(r, v, j, `) = ai(−r,−v, `− j, `). (38)

Now the explicit expressions for bj(r, v, j, `) follow from Theorem 4.4 and this
completes the proof of the theorem.
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5. Three term recursion relation

Let (v + i)(r + v + 2i)(r − v + 2i) 6= 0 for i = −1, 0, 1. If we apply successively
Theorems 4.4 and 4.5 and we set n = −r + `− 3j we get

ψ(g)ϕ(g)Φr,v
(n,`)(g) = ψ(g)

(
a1Φ

r+1,v−1
(n−1,`) (g) + a2Φ

r−2,v
(n−1,`)(g) + a3 Φr+1,v+1

(n−1,`) (g)
)

= a1

(
b1(r + 1, v − 1, j, `) Φr,v

(n,`)(g) + b2(r + 1, v − 1, j, `) Φr+3,v−1
(n,`) (g)

+ b3(r + 1, v − 1, j, `) Φr,v−2
(n,`) (g)

)
+ a2

(
b1(r − 2, v, j + 1, `) Φr−3,v+1

(n,`) (g) + b2(r − 2, v, j + 1, `) Φr,v
(n,`)(g)

+ b3(r − 2, v, j + 1, `) Φr−3,v−1
(n,`) (g)

)
+ a3

(
b1(r + 1, v + 1, j, `) Φr,v+2

(n,`) (g) + b2(r + 1, v + 1, j, `) Φr+3,v+1
(n,`) (g)

+ b3(r + 1, v + 1, j, `) Φr,v
(n,`)(g)

)
.

(39)

Now we want to package these spherical functions in larger matrices to obtain in
such a way a three term recursion relation for these matrices.

We fix the type (n, `) and we take r = ` − n and v ∈ C . We define the
(` + 1)2 × (` + 1) matrix valued function Φ̃(g; v) of ` + 1 spherical functions of
type (n, `) as follows

Φ̃(g; v) = Φ̃(n,`)(g; v) =
(
Φr,v

(n,`)(g), . . . ,Φ
r−3j,v+j
(n,`) (g), . . . ,Φr−3`,v+`

(n,`) (g)
)t

.

If we write (39) replacing r by r− 3j = `−n− 3j and v by v− j with 0 ≤ j ≤ `
we obtain

ψ(g)ϕ(g)Φr−3j,v−j
(n,`) (g) = Bj,j Φr−3j,v−j

(n,`) (g) + Aj,j−1 Φr−3j+3,v−j−1
(n,`) (g)

+ Aj,j Φr−3j,v−j−2
(n,`) (g) + Cj,j+1 Φr−3j−3,v−j+1

(n,`) (g)

+Bj,j+1 Φr−3j−3,v−j−1
(n,`) (g) + Cj,j Φr−3j,v−j+2

(n,`) (g)

+Bj,j−1 Φr−3j+3,v−j+1
(n,`) (g),

(40)

where

Aj,j−1 = a1(r − 3j, v − j, j, `)b2(r − 3j + 1, v − j − 1, j, `),

Aj,j = a1(r − 3j, v − j, j, `)b3(r − 3j + 1, v − j − 1, j, `),

Bj,j−1 = a3(r − 3j, v − j, j, `)b2(r − 3j + 1, v − j + 1, j, `),

Bj,j = a1(r − 3j, v − j, j, `)b1(r − 3j + 1, v − j − 1, j, `),

+ a2(r − 3j, v − j, j, `)b2(r − 3j − 2, v − j, j + 1, `),

+ a3(r − 3j, v − j, j, `)b3(r − 3j + 1, v − j + 1, j, `),

Bj,j+1 = a2(r − 3j, v − j, j, `)b3(r − 3j − 2, v − j, j + 1, `),

Cj,j = a3(r − 3j, v − j, j, `)b1(r − 3j + 1, v − j + 1, j, `),

Cj,j+1 = a2(r − 3j, v − j, j, `)b1(r − 3j − 2, v − j, j + 1, `).

(41)
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Taking into account the expressions of the coefficients ai and bi given in (26) and
(36) we get

Aj,j−1 =
2j(`− j + 1)(r − v + 2)(r − v − 2`)

(v − j)(r + v − 4j)(r − v − 2j)(r − v − 2j + 2)
,

Aj,j = −(r + v − 2j)(r + v − 2`− 2j − 2)(r − v + 2)(r − v − 2`)

4(v − j)(v − j − 1)(r + v − 4j)(r − v − 2j)
,

Bj,j−1 = − 2j(`− j + 1)(r + v − 2j + 2)(r + v − 2`− 2j)

(v − j)(r + v − 4j)(r + v − 4j + 2)(r − v − 2j)
,

Bj,j =
(r − v + 2)2(r − v − 2`)2

4(v − j)(v − j − 1)(r − v − 2j)(r − v − 2j + 2)

+
16(j + 1)2(`− j)2

(r + v − 4j)(r + v − 4j − 2)(r − v − 2j)(r − v − 2j − 2)

+
(r + v − 2j + 2)2(r + v − 2`− 2j)2

4(v − j)(v − j + 1)(r + v − 4j)(r + v − 4j + 2)
,

Bj,j+1 = −2(j + 1)(`− j)(r + v − 2j)(r + v − 2`− 2j − 2)

(v − j)(r + v − 4j)(r + v − 4j − 2)(r − v − 2j)
,

Cj,j = −(r − v)(r + v − 2j + 2)(r + v − 2`− 2j)(r − v − 2`− 2)

4(v − j)(v − j + 1)(r + v − 4j)(r − v − 2j)
,

Cj,j+1 =
2(j + 1)(`− j)(r − v)(r − v − 2`− 2)

4(v − j)(r + v − 4j)(r − v − 2j)(r − v − 2j − 2)
.

Now we consider the following (`+ 1)× (`+ 1) matrices

Av =
∑̀
k=1

Ak,k−1Ek,k−1 +
∑̀
k=0

Ak,kEk,k,

Bv =
∑̀
k=1

Bk,k−1Ek,k−1 +
∑̀
k=0

Bk,kEk,k +
`−1∑
k=0

Bk,k+1Ek,k+1,

Cv =
∑̀
k=0

Ck,kEk,k +
`−1∑
k=0

Ck,k+1Ek,k+1.

(42)

We recall that given two square matrices M and P the tensor product
matrix M ⊗ P is the matrix obtained by blowing up each entry Mij of M to the
matrix MijP . Let

Ãv = Av ⊗ I, B̃v = Bv ⊗ I, C̃v = Cv ⊗ I,

where I denotes the (`+ 1)× (`+ 1) identity matrix.

Theorem 5.1. For each K -type (n, `) if (v − k)(` − n − v − 2k) 6= 0 for
−1 ≤ k ≤ `+1 and `−n+ v− 2k 6= 0 for 0 ≤ k ≤ 2`+1, then the matrix valued
function

Φ̃(g; v) = Φ̃(n,`)(g; v) =
(
Φr,v

(n,`)(g), . . . ,Φ
r−3j,v−j
(n,`) (g), . . . ,Φr−3`,v−`

(n,`) (g)
)t

,

with r = `− n, satisfies the following three term recursion relation

φ(g)ψ(g)Φ̃(g; v) = ÃvΦ̃(g; v − 2) + B̃vΦ̃(g; v) + C̃vΦ̃(g; v + 2), (43)

for all g ∈ G.
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Remark 5.2. If instead of the parameter v ∈ C we use ν ∈ a∗C , see (7), then
(43) can be written as

φ(g)ψ(g)Φ̃(g; ν) = ÃνΦ̃(g; ν − ρ) + B̃νΦ̃(g; ν) + C̃νΦ̃(g; ν + ρ).

Proof. An (`+1)2× (`+1) matrix V will be seen as an (`+1)-column vector
V = (V0, . . . , V`)

t of (`+ 1)× (`+ 1) matrices Vk .

If M is an (`+ 1)× (`+ 1) matrix and M̃ = M ⊗ I , then

(M̃ Φ̃(g; v))k =
∑̀
j=0

MkjΦ
r−3j,v−j
(n,`) (g).

Thus

(ÃvΦ̃(g; v − 2))k = Ak,k−1Φ
r−3k+3,v−k−1
(n,`) (g) + Ak,kΦ

r−3k,v−k−2
(n,`) (g),

(B̃vΦ̃(g; v))k = Bk,k−1Φ
r−3k+3,v−k+1
(n,`) (g)+Bk,kΦ

r−3k,v−k
(n,`) (g)

+Bk,k+1Φ
r−3k−3,v−k−1
(n,`) (g),

(C̃vΦ̃(g; v + 2))k = Ck,kΦ
r−3k,v−k+2
(n,`) (g) + Ck,k+1Φ

r−3k−3,v−k+1
(n,`) (g).

Therefore, from the identities (40) with j = k and 0 ≤ k ≤ ` , we obtain

φ(g)ψ(g)Φ̃(g; v)k = (ÃvΦ̃(g; v − 2))k + (B̃vΦ̃(g; v))k + (C̃vΦ̃(g; v + 2))k,

which proves the theorem.

6. Reduction to one variable

It is of interest to see how we can write the above theorem when we restrict the
spherical functions to the abelian subgroup A of G of all matrices of the form

as =
(

cosh s 0 sinh s
0 1 0

sinh s 0 cosh s

)
,

for any s ∈ R . Recall that the centralizer of A in K is the subgroup M of all

elements of the form mθ =

(
eiθ 0 0
0 e−2iθ 0
0 0 eiθ

)
, for any θ ∈ R .

If Φ is a spherical function on G of type π = π(n,`) ∈ K̂ then Φ(as)
commutes with π(m) for all m ∈ M . On the other hand we observed that in

a basis {v(n,`)
i }`

i=0 satisfying (8) we have mθ v
(n,`)
k = eiθ(`−2k−n)vk , k = 0, . . . , ` .

Therefore we have that Φ(as) diagonalizes in such a basis for each s ∈ R . We
denote by Φk(as) the k -th diagonal entry of the matrix Φ(as).

In the open subset {as ∈ A : s > 0} of A we introduce the coordinate
t = cosh2(s) and define the vector valued function

F (t) = (Φ0(as), . . . ,Φ`(as))

associated to the spherical function Φ. If Φ(g) = Φr,v
(n,`)(g) then we shall also

denote F (t) = F r,v
(n,`)(t), t ≥ 1. In a similar way, corresponding to the function
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Φ̃(g; v) we consider the (` + 1) × (` + 1) matrix valued function F̃ (t; v) whose
j -th row is given by the vector F r−3j,v−j

(n,`) (t), with r = `− n , for 0 ≤ j ≤ ` . More
explicitly

F̃ (t; v) = (Fjk(t; v)) with Fjk(t; v) =
(
Φ−n+`−3j,v−j

(n,`) (as)
)

k
.

Proposition 6.1. For each K -type (n, `) if both (v − k)(` − n − v − 2k) 6= 0
for −1 ≤ k ≤ ` + 1 and ` − n + v − 2k 6= 0 for 0 ≤ k ≤ 2` + 1, then the matrix
valued function F̃ (t; v) satisfies the following three term recursion relation

tF̃ (t; v) = AvF̃ (t; v − 2) +BvF̃ (t; v) + CvF̃ (t; v + 2), (44)

for all t ≥ 1.

Proof. We recall that φ(g) is the spherical function of type (−1, 0) associated
to the G-module W = C3 and that ψ(g) is the spherical function of type (1, 0)
associated to W ∗ . Then a direct computation gives

φ(a(s)) = cosh s = t1/2 and ψ(a(s)) = φ∗(a(s)) = t1/2.

Therefore from the identity (40), for g = as , we obtain the following vector identity

tF r−3j,v+j
n,` (t) = Aj,j−1F

r−3j+3,v−j−1
n,` (t) + Aj,jF

r−3j,v−j−2
n,` (t)

+Bj,j−1F
r−3j+3,v−j+1
n,` (t) +Bj,jF

r−3j,v−j
n,` (t) +Bj,j+1F

r−3j−3,v−j−1
n,` (t)

+ Cj,jF
r−3j,v−j+2
n,` (t) + Cj,j+1F

r−3j−3,v−j+1
n,` (t).

This is nothing else that the equality of the j -th rows of the identity (44).

In Section 2 we consider the function H(g) = Φ(g)Φπ(g)−1 (see (5)),
associated to a spherical function Φ(g) of type π = πn,` ∈ K̂ , and its restriction
H(t) = H(a(s)) where t = cosh2(s). We view the diagonal matrix H(t) as a
column vector. Then it is easy to verify that the functions H and F are related
by the identity

F (t) = tn/2H(t)
t (

t1/2 0
0 1

)`
,

where the exponent ` denotes the `-th symmetric power of the matrix. Explicitly(
t1/2 0
0 1

)`
is a diagonal matrix whose j -th entry is t(`−j)/2 , with 0 ≤ j ≤ ` .

If Φ(g) = Φ`−n−3j,v
(n,`) (g) we denote H(t) = H(t; v, j). Corresponding to the

function F̃ (t; v), we also consider the (` + 1) × (` + 1) matrix valued function

H̃(t; v) whose j -th row is the vector H(t; v − j, j), for 0 ≤ j ≤ ` . Then

F̃ (t; v) = tn/2H̃(t; v)
(

t1/2 0
0 1

)`
.

Then from (44) we obtain

Proposition 6.2. For each K -type (n, `) if both (v − k)(` − n − v − 2k) 6= 0
for −1 ≤ k ≤ ` + 1 and ` − n + v − 2k 6= 0 for 0 ≤ k ≤ 2` + 1, then the matrix
valued function H̃(t; v) satisfies the following three term recursion relation

tH̃(t; v) = AvH̃(t; v − 2) +BvH̃(t; v) + CvH̃(t; v + 2), (45)

where the matrices Av, Bv and Cv are defined in (42).
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Remark 6.3. If we fix (n, `) ∈ K̂ , then the map (v, j) 7→ Φ−n+`−3j,v
(n,`) is a

surjective map from {(v, j) , v ∈ C, 0 ≤ j ≤ `} onto the set of all equivalence
classes of matrix valued spherical functions of type (n, `). In order to relate (45)
with the three term recursion relation established at the end of Section 5 in [14],
we introduce a new parameter w = w(v, j) by

w = −(v+n+`+2+j)
2

,

and we define the function h(t;w, j) = H(t; v, j). The matrix function H̃(t; v)
whose j -th row is H(t; v − j, j) corresponds to the function h̃(t;w) whose j -th
row is h(t;w(v − j, j), j). Observe that w(v − j, j) = w(v, 0).

Given v ∈ C we set w = −(v+n+`+2)
2

, then the function H̃(t; v) associated
to the matrix function

Φ̃(g; v) =
(
Φr,v

(n,`)(g), . . . ,Φ
r−3j,v−j
(n,`) (g), . . . ,Φr−3`,v−`

(n,`) (g)
)t

,

corresponds, for the parameter w , to the matrix function

h̃(t;w) = (h(t;w, 0), . . . , h(t;w, j), . . . , h(t;w, `))t .

Then we have that the function h̃(t;w) satisfies the following three term recursion
relation

t h̃(t;w) = A′w h̃(t;w − 1) +B′
w h̃(t;w) + C ′

w h̃(t;w + 1), (46)

with
A′w = Cv, B′

w = Bv and C ′
w = Av,

because the functions H̃(t; v− 2) and H̃(t; v+2) correspond with h̃(t, w+1) and
h̃(t, w − 1), respectively.

With this choice of the parameter w we get exactly the same three term
recursion relation that the one obtained in [14], when w is an integer such that
w ≥ 0 and w + n ≥ 0. This can be explained in the following way: the functions
h(t;w) associated to the spherical functions of (SU(3),U(2)), are polynomial
eigenfunctions of D and E and h(1;w) = (1, . . . , 1)t . Therefore H(t; v) = h(t;w)
is the function associated to a spherical function of (SU(2, 1),U(2)).

6.1. The case ` = 0. In this subsection we shall display the results obtained
in Proposition 6.2 when ` = 0 and n arbitrary. In these cases the spherical
functions are complex valued, and for n = 0 they are the zonal or classical spherical
functions.

As we mentioned in the introduction of this paper, the irreducible spherical
function Φ−n,v

(n,0) of type (n, 0) corresponds precisely to the complex valued functions

h(t) = h(t; v) which are: eigenfunctions of D , analytic in the interval [1,∞) and
h(1) = 1. In this case the differential operator E is a scalar multiple of D . Then
h(t) satisfies

t(1− t)h′′(t) + (n+ 1− (n+ 3)t)h′(t)− λh(t) = 0,

with λ = 1
4
(n+ 2 + v)(n+ 2− v). This is a hypergeometric equation with

a = n+2+v
2

, b = n+2−v
2

, c = n+ 1.
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Therefore the analytic solution on [1,∞) with h(1) = 1 is

h(t) = t−(n+2+v)/2
2F1

(
1
2
(n+2+v) ,

1
2
(−n+2+v)

2
; 1− 1

t

)
. (47)

The matrices Av , Bv and Cv in this case are the following numbers

av = (v+n−2)(v−n−2)
4v(v−1)

, bv = n2+v2−2
2(v−1)(v+1)

, cv = (v+n+2)(v−n+2)
4v(v+1)

.

In the parameter w = −(v+n+2)
2

introduced before, we have

h(t) = h(t;w) = tw2F1

(
−w,−w−n

2 ; 1− 1

t

)
t > 1,

and

a′w = w(w+n)
(2w+n+2)(2w+n+1)

, c′w = (w+2)(w+n+2)
(2w+n+2)(2w+n+3)

,

b′w = (w+1)(w+2)
(2w+n+2)(2w+n+3)

+ (w+n)(w+n+1)
(2w+n+2)(2w+n+1)

= 2w(w+n+2)+(n+1)2

(2w+n+1)(2w+n+3)
.

By using the Pfaff’s identity we have that

h(t) = tw2F1

(
−w,−w−n

2 ; 1− 1

t

)
= 2F1

( −w,w+n+2
2 ; 1− t

)
.

We observe that h(t) is a polynomial precisely when w is an integer and w ≥ 0
or w ≤ −n− 2. Then Proposition 6.2 for ` = 0 gives

t 2F1

( −w , w+n+2
2 ; 1− t

)
= a′w 2F1

( −w+1 , w+n+1
2 ; 1− t

)
+ b′w 2F1

( −w , w+n+2
2 ; 1− t

)
+ c′w 2F1

( −w−1 , w+n+3
2 ; 1− t

)
.

By making the change of variables u = 1 − t we obtain the three term recursion
relation, in the spectral parameter w , for the Jacobi functions

u 2F1

( −w , w+n+2
2 ;u

)
= ãw 2F1

( −w+1 , w+n+1
2 ;u

)
+ b̃w 2F1

( −w , w+n+2
2 ;u

)
+ c̃w 2F1

( −w−1 , w+n+3
2 ;u

)
,

where ãw = −a′w , b̃w = 1− b′w , c̃w = −c′w .

6.2. The case ` = 1. Any irreducible spherical function of type (n, 1) is
equivalent to Φ1−n−3j,v

(n,1) for some v ∈ C and j = 0, 1. The corresponding functions

H(t; v, j) = (H0(t; v, j), H1(t; v, j))
t are eigenfunctions of D and E with respective

eigenvalues λj(v) and µj(v). In [13] we prove that

λj(v) = 1
4
(n+ 3− j + v)(n+ 3− j − v) + j(2− j)

µj(v) = λj(n+ 3j − 1)− 3j(2− j)(n+ j + 1),

and that

H0(t; v, 0) = t−(n+3+v)/2
3F2

(
(n+3+v)

2
,
(−n+1+v)

2
,
2(n−v)
n+1−v

3 ,
n−1−v
n+1−v

; 1− 1

t

)
,
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H1(t; v, 0) = t−(n+3+v)/2
2F1

(
(n+3+v)

2
,
(−n+3+v)

2
3

; 1− 1

t

)
,

H0(t; v, 1) = t−(n+4+v)/2
2F1

(
(n+4+v)

2
,
(−n+2+v)

2
3

; 1− 1

t

)
,

H1(t; v, 1) = t−(n+2+v)/2
3F2

(
(n+2+v)

2
,
(−n+2+v)

2
,
2(n+v+1)

n+v

3 ,
n+2+v

n+v

; 1− 1

t

)
.

The first row of the matrix function H̃(t; v) is H(t; v, 0) and the second one is
H(t; v − 1, 1). Then

H̃(t; v) =

(
F11 F12

F21 F22

)
,

with

F11 = t−(n+3+v)/2
3F2

(
(n+3+v)

2
,
(−n+1+v)

2
,
2(n−v)
n+1−v

3 ,
n−1−v
n+1−v

; 1− 1

t

)
,

F12 = t−(n+3+v)/2
2F1

(
(n+3+v)

2
,
(−n+3+v)

2
3

; 1− 1

t

)
,

F21 = t−(n+3+v)/2
2F1

(
(n+3+v)

2
,
(−n+1+v)

2
3

; 1− 1

t

)
,

F22 = t−(n+1+v)/2
3F2

(
(n+1+v)

2
,
(−n+1+v)

2
,
2(n+v)
n−1+v

3 ,
n+1+v
n−1+v

; 1− 1

t

)
.

The matrices Av , Bv and Cv are

Av =

(
(v+n+1)(v+n−3)(v−n−3)

4v(v−1)(v+n−1)
0

2(v+n−3)
(v−1)(v+n−1)(v−n−3)

(v+n−3)(v+n−1)(v−n−5)
4(v−1)(v−2)(v−n−3)

)
,

Bv =

(
v4−n4−4n3+16n−6v2+21

2(v+1)(v−1)(v+n−1)(v−n−1)
2(v−n−3)

v(v+n−1)(v−n−1)
2(v−n−1)

(v−1)(v+n+1)(v−n−1)
v4−4v3+8v+3+6n2−n4−8n
2v(v−2)(v+n−1)(v−n−1)

)
,

Cv =

(
(v+n+3)(v−n−3)(v−n−3)

4v(v+1)(v−n+1)
2(v+n+3)

v(v+n+1)(v−n−1)

0 (v+n−1)(v+n+3)(v−n−1)
4v(v−1)(v+n+1)

)
.

6.3. The general case. If we use infinite matrices the three term recursion
relation (46) can be written, for any w ∈ C− 1

2
Z , in the following way:

t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

·
·
·

h̃w−1

h̃w

h̃w+1

·
·
·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· 0 A′w−1 B′

w−1 C ′
w−1 0 · · ·

· · 0 A′w B′
w C ′

w 0 · ·
· · · 0 A′w+1 B′

w+1 C ′
w+1 0 ·

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

·
·
·

h̃w−1

h̃w

h̃w+1

·
·
·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (48)



Pacharoni and Tirao 825

Also it is of interest to point out that if w = max{0,−n} then (46) implies
that

t



h̃w

h̃w+1

h̃w+2

·
·
·


=



B′
w C ′

w 0 · · ·
A′w+1 B′

w+1 C ′
w+1 0 · ·

0 A′w+2 B′
w+2 C ′

w+2 0 ·
· · · · · ·
· · · · · ·
· · · · · ·





h̃w

h̃w+1

h̃w+2

·
·
·


. (49)

This is precisely the three term recursion relation obtained in the case of the
complex projective plane, see [14].

The coefficient matrices appearing in (48) and (49) have the following
interesting property: the sum of all the matrix elements in any row is equal to
one. See the next proposition. Moreover all the entries of the coefficient matrix in
(49) are nonnegative real numbers. This may have important applications in the
modeling of some stochastic phenomena.

Proposition 6.4. If 2w = −v− n− `− 2 and (v− k)(`− n− v− 2k) 6= 0 for
−1 ≤ k ≤ `+ 1 and `− n+ v − 2k 6= 0 for 0 ≤ k ≤ 2`+ 1, then∑

j

(A′w)i,j +
∑

j

(B′
w)i,j +

∑
j

(C ′
w)i,j = 1. (50)

Proof. We refer the reader to (46). Then (50) is equivalent to,∑
j

(Av)i,j +
∑

j

(Bv)i,j +
∑

j

(Cv)i,j = 1. (51)

Taking into account the definitions of Av, Bv and Cv given in (42) the above
equation becomes

(Av)j,j−1 + (Av)j,j + (Bv)j,j−1 + (Bv)j,j + (Bv)j,j+1 + (Cv)j,j + (Cv)j,j+1 = 1. (52)

Using (41) and writing a1 = a1(r − 3j, v − j, j, `), a2 = a2(r − 3j, v − j, j, `) and
a3 = a3(r − 3j, v − j, j, `) we have to check that

a1

(
b2(r − 3j + 1, v − j − 1, j, `) + b3(r − 3j + 1, v − j − 1, j, `)

+ b1(r − 3j + 1, v − j − 1, j, `)
)

+a2

(
b2(r − 3j − 2, v − j, j + 1, `) + b3(r − 3j − 2, v − j, j + 1, `)

+ b1(r − 3j − 2, v − j, j + 1, `)
)

+a3

(
b2(r − 3j + 1, v − j + 1, j, `) + b3(r − 3j + 1, v − j + 1, j, `)

+ b1(r − 3j + 1, v − j + 1, j, `)
)

= 1,

(53)

where r = ` − n . The proof will be completed once we established the following
lemma.

Lemma 6.5. If v ∈ C and v(r − v)(r + v) 6= 0 then

i) a1(r, v, j, `) + a2(r, v, j, `) + a3(r, v, j, `) = 1,

ii) b1(r, v, j, `) + b2(r, v, j, `) + b3(r, v, j, `) = 1.
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Proof. i) From (26) we get

a1 = (r−v+2j+2)(−r+v+2`−2j)
2v(r−v)

, a2 = −4(j+1)(`−j)
(r+v)(r−v)

, a3 = (r+v+2j+2)(r+v−2`+2j)
2v(r+v)

.

Now it is a simple matter to check (i).

ii) It is a straightforward consequence of (i) since

bi(r, v, j, `) = ai(−r.− v.`− j, `), i = 1, 2, 3,

see (38). This completes the proof of the lemma.

In [16] an explicit expression of the irreducible spherical functions asso-
ciated to the complex hyperbolic plane is given in terms of the matrix valued
hypergeometric functions introduced in [20].

For the reader’s benefit we recall the main facts. If Φ is an irreducible
spherical function of type (n, `) then ∆2Φ = λ̃Φ and ∆3Φ = µ̃Φ and moreover,
up to equivalence, Φ is determined by the pair (λ̃, µ̃). Then for a particular
irreducible spherical function Φπ of type (n, `), which is nonsingular everywhere,
the function H(g) = Φ(g)Φπ(g)−1 is introduced. Now H(as) is a diagonal matrix
identified with the vector (H0(as), . . . , H`(as))

t ∈ C`+1 . If we make the change of
variables u = 1− cosh2(s) then H̄(u) = H(as) is analytic in the interval (−∞, 0]
and it is an eigenfunction of the following differential operators given in (3.1) and
(3.2) of [16]

D̄H̄ = u(1− u)H̄ ′′ + (2− uA1)H̄
′ +

1

u
(B0 −B1 + uB1)H̄,

ĒH̄ = u(1− u)MH̄ ′′ + (C1 − C0 − uC1)H̄
′ +

1

u
(D0 +D1 − uD1)H̄,

(54)

for u ∈ (−∞, 0). The corresponding eigenvalues are, respectively,

λ = 1
4
λ̃+ 1

3
(`2 + n`+ n2) + `+ n,

µ = µ̃+ 3λ− 1
9
(`− n)(2`2 + 5`n+ 2n2)− (`+ 2)(2`+ n).

(55)

Then the matrix valued polynomial function ψ of degree ` defined by ψ(u) =
XT (u), where X is the Pascal matrix given by Xi,j =

(
i
j

)
and T (u) is the

diagonal matrix such that T (u)i,i = ui , has the interesting property that the
function F (u) = ψ(u)−1H̄(u) satisfies

u(1− u)F ′′ + (C − uU)F ′ − (λ+ V )F = 0, (56)

(1− u)(Q0 + uQ1)F
′′ + (P0 + uP1)F

′ − (µ−R)F = 0, (57)

where the coefficient matrices are given in Lemmas 3.4 and 4.1 of [16].

Since the eigenvalues of C are not 0,−1,−2, . . . and F is a solution of (56)
analytic at u = 0 it follows that

F (u) = 2H1(U ;V + λ;C;u)F (0), (58)

where 2H1 is the matrix hypergeometric function introduced in [20]. Moreover F
satisfies (57) if and only if F (0) is the unique µ-eigenvector of the matrix M(λ),
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introduced in (4.1) of [16], normalized by F (0) = (1, x1, . . . , x`)
t .

Any irreducible spherical function of type (n, `) is equivalent to Φ`−n−3j,v
(n,`) for

some v ∈ C , and j ∈ Z , 0 ≤ j ≤ ` . The corresponding function H̄(u; v, j) is an
eigenfunction of D̄ and Ē with eigenvalues, respectively,

λj(v) = 1
4
(`+ n+ 2− j + v)(`+ n+ 2− j − v) + j(`+ 1− j),

µj(v) = λj(v)(n+ 3j − `)− 3j(`+ 1− j)(n+ j + 1),
(59)

as can be deduced from (55) replacing r = ` − n − 3j , λ̃ = −v2 + 4 − 1
3
r2 and

µ̃ = 1
4

(
−1

9
r3 + r2 + rv2 + 3v2 − 12

)
, see Proposition 2.4. Thus

H̄(u) = ψ(u) 2H1(U ;V + λj(v);C;u)Fj(v),

where Fj(v) is the unique µj(v)-eigenvector of the matrix M(λj(v)) normalized
by Fj(v) = (1, x1, . . . , x`)

t .
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