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1. Introduction

Graded Lie algebrasgla) are commonly used in many areas of Mathematics and
Physics. One of the reasons is that they offer a very convenient framework for the
development of theories such as Cohomology Theory, Deformation Theory, among oth-
ers, very often avoiding heavy computations. The aim of this paper is to give some new
applications of classical well-knowgla related to Deformation Theory.

Let us start with some notationgy will be a complex vector space anlg
the Grassmann algebra gf that is, the algebra of skew multilinear forms gnwith
the wedge product. Whep is finite-dimensional, we have\ g = Ext(g*), where
Ext(g*) denotes the exterior algebra of the dual spate However, wheng is not
finite-dimensional, the strict inclusion Ext) C Ag holds. Aquadraticvector space
is a vector space endowed with a nondegenerate symmetric bilinear form. In the case
of a quadratic Lie algebrathis bilinear form has to be invariant. A theory of finite-
dimensional quadratic Lie algebras based on the notion of double extension, was de-
veloped in [8] in the solvable case, following Kac’s arguments [13], and in [18] in the
general case by Medina and Revoy. In this paper, we shall present another interpretation
based on the concept of super Poisson bracket.

The gla we shall use here are:

(1) Gerstenhaber’s graded Lie algebr#&(g), related to associative algebra struc-
tures ong (see Section 2).
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(2) Gerstenhaber-Nijenhuis’s graded Lie algebr#$(g), related to Lie algebra
structures ory (see Section 2).

(3) The graded Lie algebr&(g) of derivations of the Grassmann algebxg (often
calledW(n) whenn = dim(g), see Section 3).

(4) For finite-dimensionay, the graded Lie algebr# (g) of skew symmetric poly-
nomial multivectors org* with the Schouten bracket (see Section 4).

(5) Given a quadratic finite-dimensional spagethe super Poisson graded Lie alge-
bra structure on the Grassmann algefira (see Section 5)and the superalgebra
2 (g) of Hamiltonian derivations of\ g.

For (1) and (2), we refer to [11], for (3) to [20], for (4) to Koszul's presentation
[17] (though [11] could be convenient as well). For (5), though it is a known algebra,
we have no references, probably because of the lack of applications up to now (we shall
show, e.g. in Sections 6 to 9, that there are some natural and interesting ones). Since we
want to fix our conventions and notations, we give an introduction to all the ajlaye
recalling the main properties that will be used all along this paper.

Section 2 is a review of# (g) and .#,(g). We conclude the Section with a
notion of Generalized Lie Algebras structures, that we dalL2 algebras namely the
elementsF in .#Z2(g) that satisfy[F,F], = 0. Such structures are introduced in [9]
and many other papers (e.g. [3]), under various names.

In Section 3 we recall how to go from#5(g) to Z(g), an operation that can be
translated as going from a structure to its cohomology, as we shall now explain. The
argument is given by Proposition 3.1: there exists a one toglaehomomorphism
from #4(g)[1] to Z(g), which turns out to be an isomorphism whenis finite-
dimensional. So given ak2Lie algebra structure op, there is an associated derivation
D of Ag, and the (generalized) Jacobi identjfy, F]o = O is equivalent toD? = 0,
so thatD defines a cohomology complex (3.3). This is well-known for Lie algebras
since the corresponding complex is the Chevalley complex of trivial conomology. The
existence of a cohomology complex for &-Rie algebra was pointed out (without the
gla interpretation), e.g. in [3]. We then recall the definition and properties of the
Schouten bracket for a finite-dimensiogalAs in [3], we define &eneralized Poisson
Bracket(GPB) as an elemert/ of #%(g) satisfying W,W]g = 0 (Definition 3.4),
the obvious generalization of the classical definition of a Poisson bracket. We show
that there exists a one to og&a homomorphism fronZ(g) into # (g)[1] (Proposition
3.5), so that any -Lie algebra structure opg has an associated GPB, generalizing the
classical Lie-Kostant-Kirillov bracket associated to a Lie algebra.

We apply the results of Sections 2 and 3 to standard polynomials in Section
4. Standard polynomialsy, (k > 0) on an associative algebgg appear in the Pl
algebras theory (see [12]) and also in cohomology theory (for instance, the coho-
mology of gi(n) is Exta;,as,...,a,, ;] wherea, = Tr(<,), and the cohomology
of gl(») is Exfla;,as,...] [10]). There are two different structures on the space
o/ = span{.«, | k> 0}, both with interesting consequences. The first one comes from
the Gerstenhaber bracket of5(g): we compute explicitly[., <7,]a, and it results
that .7 is a subalgebra of thgla .#,(g) (Proposition 4.2). Sinced, .27, ]a = 0,
any even standard polynomial definele:l2e algebra structure op (Proposition 4.3).
Moreover, <, is a coboundary (an invariant one) of the adjoint conomology of the Lie
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algebrasz, defined by the associative algelraThe second product, denoted by is

the cup-product on#,(g). We find thates is an Abelian algebra fok , and in fact a
very simple one, sinces, = (gfl)x", vk (Corollary 4.5). For instance, far = gl(n),

o/ with its x -product is isomorphic t&[x]/x*", since.< = 0, ¥k > 2n (the Amitsur-
Levitzki theorem [1, 14]). From the identities in Corollary 4.5, we deduce some clas-
sical identities of standard polynomials (e.g7, = (;z%z)x'(, vk, usually proved by
hand). Wheng has a trace, we prove that (TF,G|,.) = 0, for all F, G € .Za(g)
(Corollary 4.8), and then (keeping the notatiap= Tr (<)), thata, = 0, Vk > 0,

and thata,, . , is an invariant Lie algebra cocycle (Proposition 4.10). To conclude Sec-
tion 4, we compute the cohomology of the Lie algelgraf finite-rank operators in

an infinite-dimensional space. Obvioushf(c) C g, but this inclusion is strict. Our
result isH*(g) = Ext[a,,a;,...| (Proposition 4.14), so the above inclusion induces an
iIsomorphism in cohomology.

The first part of Section 5 is devoted to the construction of the super Poisson
bracket defined o\ g, wheng is a finite-dimensional quadratic vector space. We fol-
low a deformation argument as in [15]: the Clifford algebra Cfiff can be seen as
a quantization of the algebraA g of skew polynomials, similarly to the Moyal quan-
tization of polynomials by the Weyl algebra. In 5.1, we introduce some formulas for
the construction of the Clifford algebra that are convenient since they easily provide a
transparent formula for the deformed product (Proposition 5.1), with leading term the
super Poisson bracket, explicitly computed in Proposition 5.4. The relation with the
superalgebreﬁ(n) [20] is given by Definition 5.3, and a Moyal type formula is ob-
tained in Proposition 5.5 (an equivalent formula without the super Poisson bracket can
be found in [15]). In the second part of Section 5, we useglae A\ g and the super
Poisson bracket to study quadratic Lie algebras. We obtain that quadratic Lie algebra
structures org with bilinear form B are in one to one correspondence with eleménts
in A\3g satisfying{l,1} = 0; more precisely| (X,Y,Z) = B([X,Y],Z), VX, Y, Z e g,
and the differentiald of Ag is d = —% ad,(1) (Propositions 5.11, 5.12). We prove
that any quadratic deformation of a quadratic Lie algebra is equivalent to a deformation
with unchanged invariant bilinear form (Proposition 5.10), and finally, we propge a
framework well-adapted to the deformation theory of quadratic Lie algebras (Remark
5.13).
We use the results of Section 5 in Section 6 to give a complete description of finite-
dimensional elementary quadratic Lie algebras, i.e. those with decomposable associated
elementl in \3g (Definition 6.3). We first give a simple characterization in Proposition
6.4: if g is a non Abelian quadratic Lie algebra, then djmg]) > 3, andg is elemen-
tary if and only if dim([g,g]) = 3. We then show that any non Abelian quadratic Lie
algebra reduces, up to a central factor, to a quadratic Lie algebra with totally isotropic
center (Proposition 6.7); the property of being elementary is preserved under the re-
duction. This reduces the problem of finding all non Abelian elementary quadratic Lie
algebras to algebras of dimension 3 to 6 (Corollary 6.8), that we completely describe
in 6.2 and Proposition 6.10. Some remarks: as we show in Proposition .55 &n
elementary quadratic Lie algebra, all coadjoint orbits have dimension at most 2. Now, a
classification of Lie algebras whose coadjoint orbits are of dimension at most 2, is given
in Arnal et al. [2], and the proof, using Lie algebra theory, is not at all trivial. With
some effort, the elementary quadratic algebras can be identified in their classification.
Our proof is completely different, based on basic properties of quadratic forms.

In Section 7 we study cyclic cohomology of quadratic Lie algebras. Given a
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quadratic vector spagg, we useg-valued cochains (rather thayi-valued, by analogy

to the associative case [7]) to define cyclic cochains (Definition 7.1) (both notions are
equivalent wheng is finite-dimensional). Thanks to this definition, we can use the
Gerstenhaber bracket o#,(g) and we show that cyclic cochains are well-behaved
with respect to this bracket: the spag(g) of cyclic cochains is a subalgebra of
the gla .#,(g) (Proposition 7.2) and ifg is a Lie algebra,4:(g) is a subcomplex

of the adjoint cohomology complex#,(g) (Proposition 7.4); we define the cyclic
cohomologyH¢i(g) as the cohomology of this subcomplex (Definition 7.5). There
is a natural one to one map frof(g) into Aqg = Ag/C (Proposition 7.2) which
induces a map fronH¢(g) into H(g) = H*(g)/C. When g is finite-dimensional,

/\Qg is a gla for the (quotient) Poisson bracket, isomorphic#5(g), and there is an
inducedgla structure ori—lg(g). We show that there is gla isomorphism fronts;(g)

onto Aqg (Proposition 7.7), and frorki(g) onto Ha(g) (Proposition 7.15). We also
introduce a wedge product o#c(g), and onHg(g) (Definition 7.12 and Proposition
7.13) which proves to be useful to descriHg(g) (Proposition 7.15). Wheig is not
finite-dimensional, the isomorphism betweki(g) and Hi(g) is no longer true: we

give an example where the natural map is neither one to one, nor onto (Propositions
7.18, 7.19). So the cyclic cohomolody; (g) can have its own life, independently of
the reduced cohomologi;y(g).

Section 8 starts with the study of invariant cyclic cochains in the case of a finite-
dimensional quadratic Lie algebra. We first prove that any invariant cyclic cochain is
a cocycle (Proposition 8.2). Whanis reductive, we demonstrate that the inclusion of
invariant cyclic cochains into cocycles induces an isomorphism in cohomology (Propo-
sition 8.2), so that{(g) ~ %c(g)?. Assuming thafg is a semisimple Lie algebra, we
prove in Proposition 8.3:

If1,1"e (Ag)?, then{l,lI'} =0

As a corollary, whery is semisimple, the Gerstenhaber bracket induces the null
bracket onHZ(g). Applying the preceding results, we give a complete description of
the super Poisson bracket {p\ )¢, and of thegla Hg(g), wheng = gl(n) (Example
8.8).

We develop in Section 9 the theory of quadraticlde algebra structures de-
fined from cyclic cochains on a semi-simple Lie algebrawe show that any invariant
even cyclic cochairF defines a quadratick2Lie algebra (Proposition 9.4) and that
(Ag)? =H*(g) is contained inH*(F). We also give an interpretation of some inter-
esting examples given in [3] ofk2Lie algebras in terms of the techniques developed in
the present paper, pointing out where these examples come from. Finally, we give some
examples of quadratick2Lie algebra structures ogi(n) (9.3).

2. . (g), #a(g) and 2k-Lie algebra structures

This Section is essentially a review, except 2.3. For more details, see [11] and [19]. Let
g be a complex vector space. We denote.#(g) the space of multilinear mappings
from g to g. The space# (g) is graded as follows:

M) =Y #¥
(9) kgo (9)

where.#%(g) = g, .#*(g) = {F: g — g | F k-linear}, for k> 1.
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2.1. . The theory of associative algebra structuresgois conveniently described in
a graded Lie algebra framework as follows: first, considé(g) with shifted grading
AX1] = .#*(g) and denote it#[1]. Then define a graded Lie bracket o#[1] as
follows: for all F € .#P[1], G € .#9[1], then[F,G] € .#P+9[1] and

[F,GI(Xp - Xpygqr1) =
pt+1 i1
(—1)Pd Zl(—l)q : FOXp - X2 GOXGs - X ) X gt - Xprgen)
=
g+1 i1
- jzl(—l)'f’ : G(Xy, - X F X X p) X pias -0 Ko gqien)-
for X;,... . Xpiq11 €9

WhenX € .#~[1] = g, then[X, G| is defined by:

g+1

X, G(Xgs -, Xg) = — Zl(—l)i—l G(Xg, -, X1, X, X, Xg).
1=

Notice that whenF and G are in .#°[1] = End(g), then [F,G] is the usual
bracket of the two linear mags andG.
Any F ¢ .#*[1] defines a product op by:

X-Y=F(X,Y),VYX,Y €g.

This product is associative if and onlyfif,F|] = 0. In this case, the derivation
adF) of the graded Lie algebra#[1] satisfies(ad(F))? = 0, so it defines a complex
on . (g) which turns out to be the Hochschild cohomology complex of the associative
algebra defined by [11].

2.2. . In the remaining of the paper, we us®g,q to denote the set of al(p,q)-
unshufflesthat is, elements in the permutation grous,, 4 satisfyingo (1) <--- <
o(p) ando(p+1) <---<o(p+0).

The theory of Lie algebra structures gnis also conveniently described in a
graded Lie algebra framework. First, lef, = .#4(g) be the space of skew symmetric

elements in#(g). One has#a = % .#§ with .#2 = g and ./ = End(g). Then
K>0

consider.#, with shifted grading denoted hby#;[1], and define a graded Lie bracket

as follows: for allF € .#ZP[1], G € .#2[1], then[F,Gla € .#P9[1] and

[F,Gla (Xg.- . X5 1) 1=

(1P Y £(0) F(G(Xyyq) .- X

o1y Xo(gn) Xoqray - %o
cec

(p+q+1))
q+1,p

_ ebZ £(0) G(F (Ko Xo(pr1) Xaipray - Xatprass)
o

p+1,q

for X,..., X q11 € 8-
WhenX € .#51[1] = g, then

X,Gla (-, Xa) = ~G(X, Xy, .-, Xq) (= ~1(G)(Xy, -, Xq)).
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Moreover, wherF, G € .#2[1] = End(g), then [F,GJ, is the usual bracket of
the linear map$ andG.
Now, anyF € .#2[1] defines a bracket og by

X,Y]=F(X,Y),V X,Y € g.

The Jacobi identity is satisfied if and only JF,F]a = 0. In this case, the
derivation adF) of the graded Lie algebrazy[1] satisfies(adF))? = 0, so it defines
a complex on.#5 which turns out to be the Chevalley cohomology complex with
coefficients in the adjoint representation, of the Lie algebra structure defineéd by

At this point, let us quickly explain the relations between the two brackets de-
fined in 2.1 and 2.2. First, define tekew symmetrization majp: .#(g) — .#a(g):

AF) Xy %) = 3 &(0) F (X Xoge)

cES,

with F € .#%(g) andX,,...,X, € g. One has:

Proposition 2.1. Forall F, Ge .#(g), A([F,G]) = [A(F),A(G)]a.

Obviously, whenF ¢ .#*[1] is an associative product am, then AF) is a
Lie algebra structure og. However one should notice that from Proposition 2.1, Lie
algebra structures of type(K) can be obtained from a produgton g satisfying other
conditions than associativity, for instance:

Proposition 2.2.  Let F € .#1[1] such that there exists € G, satisfying.[F,F] =
—&(7) [F,F]. ThenA(F) defines a Lie algebra structure gn

2.3.. Letusintroduce a concept of generalized Lie algebra structurgs on

Definition 2.3.  An elementF € .#2<1[1] is a X-Lie algebra structure oy if
[F, F]a — O
We shall often use a bracket notation: #y,...,X,, € g,

Xy ey Xl = F(Xgs s X )-

The identity[F,F]5 = 0 can be seen as a generalized Jacobi identity (see [9, 3]).
Given a X-Lie algebra structur& on g, adF) is an odd derivation ofZ,[1]
and satisfiegadF))2 =0, so there is an associated conomology defined biakigF)) /
Im(ad(F)), which can be interpreted as a generalization of the Chevalley complex of
2.2.

3. 2(g), #(g), cohomology of2k-Lie algebras and GPB

In this Section, with exception made to 3.3 and 3.4, we recall classical material needed
in the paper.
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3.1.. We denote by = %(g) the space of (graded) derivations Afg. The space
7 is graded by? = S, 7 with D € 29 if D(APg) c AP*9g, for all p, and has a
graded Lie algebra structure with a bracket defined by:

[D,D']=DoD' —(-1)%9D'oD,yD e 2%,D' € 29 1)
We denote by, , X € g, the elements of7~1 defined by
1 (Q)(Y, .-, Y) = QXYL Y)Y Qe AMa XY, Y eg (k> 0),

andiy (1) = 0. Wheng is finite-dimensional, given a bas{¥,, ..., Xn} and its
dual basis{®,,...,wn}, any elemenD € Z can be written in a unique way:

n
r=1

where D, = D(wy). Moreover, ¥ is a simple Lie superalgebra (often denoted by
W(n), see [20]) and there exists a vector space isomorplilsm#;[1] — 2 defined
by D(Q®X) = —-QA1y, VQe Ag, X € g which turns out to be gla isomorphism.

Since we do not want to restrict ourselves to the finite-dimensional case, we give
a proof of the following result:

Proposition 3.1.  There exists a one to orgda homomorphisnD: .#3[1] — £ such
that
D(Q®X)=-QA1,,VQe Ag,Xeg.

Wheng is finite-dimensionalD is an isomorphism.

Proof. Given a basis{X | r € Z} of g, and the formsay, r € #, defined by
ax(Xs) = &s, VI,s, for F € ¥, let D(F) = — e Flor) A Iy - Itis easy to see
that though its indexes set is infinite, this sum, when applied to an elethent\" g,
gives:

DIF)@) M- Yigw-1) =

— Z e(o0)Q(F(Y Y

o(l)y " o-(k))’Ycr(k+l)""’Ycr
GGGK’Wil

(k+w—1) )’

forall vy,..., Y, 1 € 8. Itresults that our definition ob does not depend on
the basis ofg, and thatD(A® X) = —AA 1, Ac Afg, X € g. Keeping in mind the
remark about the sum definirig, we compute foiG € ///;‘/:
[D(F),D(G)] =

3 (tF (@) A1y, (B(@5) — (- RVKDG (o) Ay (F(@5))) Aty

IS

By a direct computation:

51 (TP (@) A1G(@9) = (~1)<VKIG () A by (F(@5))) (Vg Vi)

= s (Zaee 8<G)G(F(YG(1), e ,YG(k)),Yo(k+1), . ’Yo(k+k/71)) —

kK —1

(—1)(k+1)(k +1) ZGGGknk_l e(o)F (G(Yc(l), , c(k/))>Yc(k'+1)7 . >Yc(k+k’—1))>

LY
= —'[F, G(@s) (Yy, -, Y1)
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[D(F),D(G)] = — Y '[F,G](ws) A1y, = D([F,G])

S

In the sequel, giverr € .#4(g), we denote byD. the associated derivation of
Ag. If g isfinite-dimensional, foD € &, we denote byF, the associated element in
AM3(g). Here are some examples:

Example 3.2. If T € End(g) =.#2[1], then

p
DT(Q)(Y]." .. ,Yp) — _ZQ<Y1, e ,YI_:L,T(YI),YI_‘_]_,. .. ,Yp)
=
forall Q € APg,Y,,....YpEg.

Example 3.3. If F € .#}[1], then

p+1) = (2)

(—1)'* Q(F(Yi,Yj),Yl,...,Yi,...,Yj,...,YpH)

<

De(Q)(Y,, ... .

A

forall Q € APg, Yoo Yp1 €0

3.2.. LetF be aLie algebra structure @ thenF € .#2[1] and[F,F]a=0. Letd =
De, then[d,d] = 0 givesd? = 0 and formula (2) shows that the associated complex,
in the Grassmann algebyag, is exactly the Chevalley cohomology complex of trivial
cohomology ofg. One defineg, :

If {Xi|re %} is a basis ofg, consider the formsw,, r € #, defined by
oy (Xs) = &s, Vr,s. The map6 defines a Lie algebra representatiorydh A g and one
has: L

rez

Let us precise that this formula is well-known wheiis finite-dimensional (see
[16]), and that a proof in the infinite-dimensional case can be found in the proof of
Lemma 4.9 of the present paper. In any case, a very important consequence of formula
(3) is that any invariant irf A\ g)? is a cocycle.

3.3.. Let us now check how 3.2 can be extended koL algebra structures og.
Let F € .22 1[1]. Assume thafF,F], =0, and let

Yy, Yyl i= F (Y, Y (4)

for Y;,...,Y, € g. Denote byD = D, the associated derivation gfg. Using
Proposition 3.1, one concludd¥ = 0, so one can define an associated cohomology
H*(F) =ker(D)/Im(D). One has

Do (Yy,...,Yy) = —0(Yy, .., Yy)
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for w € g*, Y;,...,Y,, € g. We shall come back to cohomology ok-Zie algebras in
Section 9.

In the remaining of this Section, we will assume tlais a finite-dimensional
vector space with difg) = n. We now recall some properties of the Schouten bracket.
For more details, we refer to [17].

Let # = #(g) = £ ® \g, graded by#P = & @ \Pg, where & is the
symmetric algebra of* . Elements of#" act as skew symmetric multivectors c#A
as follows: forQ e APg, Pe 2, f,,....fpe 2,

(P@Q)(fy,....fp)e =P(@) Q((df))g,...,(dfp)e).

For instance, if{X,,...,Xp} is a basis ofy and {w,, ..., wp} its dual basis, one

has foralli=1,...,p:

w(f)= g;; vie 2.

There is a naturah -product on#, defined by: for allP,P' ¢ &2, Q. Q' € A g:
PRQAOAP2Q)=PP2(QAQ).
Eachf € &7 defines a derivation, of degree—1 of % by:

(PRQ)(f,... f 1) = ((p)l @M, (Q)((df)g,-..,(df,_1)e)
= P(e) Q((d f)(w(df)(pa 7(dfp—1)(P)‘

For instance, iV € #', one hasi; (V) = V(f). There is a graded Lie bracket
on #[1] called theSchouten brackeaind defined by: for aNV € #'P[1], W' € #9[1],
then [W,W']ge #P*9[1] and
WW g (fr,es foigia) =
(-DP Y e(o) WW/(T

ce6

f f L f

o1y G(Q+1))’ o(g+2)’ G(D+Q+1))

a+1,p

= (jz e(0) W W(f s forpin): foipray - foprarn)
cc

p+1,4q
for fy,....f g1 €7
ThenforallP,P' € 22, Qe APtg, Q' e N\%1g:

PRQ,PeQ = (—1)PPe (QA1p(Q) —P' @ (QA1(Q)).

As a particular case, one hi, Q| =0, forall Q, Q' € Ag.

LetW € #[1], thenW defines a Poisson bracket oA by {P,P'} =W(P,P') if
and only ifW,W]s= 0. More generally, as proposed in [3], one can deGeaeralized
Poisson Bracket§GPB) as follows:

Definition 3.4.  An elementW € #2-1[1] is a GPB if\W,W]|g = 0.
(see [3] where these structures are introduced and applications are proposed).

3.4. . Let us now show that RLie algebras have associated GPB, exactly as Lie
algebras have associated Poisson brackets. This will be a consequence of the following
construction: define amay: 2 = %(g) — # by Vo =V (D) := —X®Q for D =

QN1 with Q € Ag, X € g. Then, itis easy to check that:
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Proposition 3.5. One has Yoo = Vo, Vpls for D, D' € 2. Moreover V is a one
to one graded Lie algebras homomorphism frérinto #/[1].
For example, given ak2Lie algebra structur& on g, denoted byY;,...,Y,,]

=F(Y, ... Yy ), VY,....Y, € g, let D be the associated derivation (see Proposition
3.1)in 2. Then one has:

VD(fl,..., fzk)<p = <§D|[(d f1)<pa SERR) (d fzk)¢]>a

and sincelF,F|; = 0 (by Proposition 3.1), one hda®,D] = 0 . Using Proposi-
tion 3.5 above |V, Vp|s= 0, soV, defines a GPB o”.

Finally, using 3.1 and Proposition 3.5, one deduces an inclusion of the simple
Lie superalgebrdV(n) into the graded Lie algebr#& [1], endowed with the Schouten
bracket which provides a natural realizationVigfn) .

4. Application to identities of standard polynomials, and cohomology

In this Section,g denotes an associative algebra, with product We also use the
notation: X.Y =m(X,Y), ¥V X,Y € g. We assume thah has a unitly, but this is not
really necessary.

We first define the iteratedh (k> 0) of m as:

My=1m, M =1dg, m=m,..., m(Yy,....Y ) =Y....Y,, VY;,....Y, €g,...

It is easy to check that:

Proposition 4.1. Forall k, kK > 0, one has:

My Myl = 0,
My My 4] = (2k=1) My, oy,
My 1Myl = 2(K=K) My g

Hence the space generated fow .k > 0} is a subalgebra of thgla .#(g) of
Section 2.
Now define thestandard polynomials, (k> 0) ong as:

= Am)

Using Propositions 2.1 and 4.1, one immediately obtains:

Proposition 4.2. Forall k, K > 0, one has:
(oo Popla =0,
(oo o yala = (2K=1) Ty 505
(S 1: e iala = 2(k= K) Dope 241
Let o7 be the subspace generated fy, .k > 0}. Hence« is a subalgebra

of the graded Lie algebraza(g) of Section 2. The standard polynomiad, is the Lie
algebra structure op associated tan. Since|.<, , %%, |a = 0, ¥k, we conclude:
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Proposition 4.3.  The standard polynomials, , k> 1 define2k-Lie algebra struc-
tures ong.

Remark thatw, is a g-invariant map fromgK to g for the Lie algebra structure.
Moreover the standard polynomiat,, is a coboundary of the adjoint representation of
the Lie algebray since [, o, ] = oy, .

Let us now define an associative producteh First consider the cup-product
oon.Z(g):

(FoG)(Yy, -, Ypiq) =F (Y-, Yp)-G(Ypi g, Ypig)s
forall F € .7P(g),Ge .#%g), Yy,---,Ypiq € 8-

Then define an associative producton .Z,(g) by:

(FXG)(Ypo Yprg) = 5 €(0) F(VyYorp) - Gy pinyYo(pig):

GGGp’q

forall F € .#f(9),G € .#}g), Y,...,Ypq € §- By a straightforward computation,
one has:

Proposition 4.4. Forall F, Ge #Za(g), A(FoG) =A(F) xA(G).
It is obvious thatm, =m, o---om,, so:
———

k times

Corollary 4.5. &} = o/ x---x o, forall k> 1 and @ x &, = &, X ) = 2

———
k times

o

forall k,7 > 0.

As a consequencey is a commutative algebra for the-product.
Any elementZ € g defines a super derivatiag of degree—1 of the x -product
of #a(g) by: forall F € .#(g). Yy,....Yy 1 €9,

lZ(F)(Y]_? te 7Yp_l) = F(Z,Yl, e 7Yp—1)’

Denote by Zg) the center of the algebrg. If Z € Z(g), one hasi,(<7,) = 0.
Hence using Corollary 4.5 and the derivation propertyofwe deduce:

Proposition 4.6. Assume that Z Z(g). Then for all k,
17(y) =0andiy (1) =Z . Ay

This Proposition expresses classical identities of standard polynomials, generally
written in the case = 1;,.
Let us now assume thgtis equipped with a trace, that is, a linear form Tg—
C satisfying:
Tr(X.Y) =Tr(Y.X), VXY € g.

Let Ag be the Grassmann algebra gf We extend the trace Tr to a map
Tr: #5(g) — A\ g defined by:

Tr(F)(Yy, -, Yp) = Tr(F(Yy, ..., Yp)),
forall F e . #P(g), Y;,....Yp € 9.
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Proposition 4.7.  One hasTr (F x G) = (—1)P4 Tr(G x F), for all F € .ZP(g),
Ge . #3(9).

Proof. LetF € .#P(g), Ge .#(9), Yy, Ypiq €0

THE X G) (Y, Ypiq) =

= T €0) TRy Yor) - iy Yorpra)
GEGp}q
= S €0) TGN, gy Yorpra) - F¥omyses Yorp)
GGGp}q

Giveno € Gpq, definet € Sqp ast(1) =o(p+1), ..., 7(q) = o(p+0q) and
7(q+1)=0(1), ..., 7(q+ p) = o(p). Then one has(t) = (—1)P% (o), so:

THF X G)(Yy, -, Ypiq) =
= ()P S &) THG(Yyqy Vo) - FVaqrny - Ve(prg)

TEGq’p

= (=D)PITHG X F)(Yy-.., Ypiq)-

Hence our extension of the trace has, in fact, the propertieg\gf-aalued super
trace on the graded algebfaz,(g), x). Denoting the super bracket associated to the
x -product on.#5(g) by:

[FaG]X =F XG_(_l)quX F7VF E’//a‘.)(g)aGe'%&?(g)a

one obtains
Corollary 4.8.  Tr([F,G],) =0.

Lemma4.9. Leth be a Lie algebra. Then any invariant cochain i\ h)" is a
cocycle.

Proof. If b is finite-dimensional, the result is well-known ([16]) and is a direct
consequence of the formufa= 3 5" ; & A 6x whered is the differential {Xy, ..., Xn}
a basis ofy and{w,, ..., wn} its dual basis.

For the sake of completeness, we give a proof in the general cage; léte | }
be a basis of), and{w, | i € 1} be the forms defined bgoi(X )= 6” , Vi,j. We claim
that the formulad = 55, @ A 6y is still valid. To prove this, leD = 55 @ A 6x .
Though its indexes set is infinite, this sum exists sincelfar APh andY,,... Ypi1 €
b, one has:

1 iLane N
=S o A6y (Q)(Y,,..., = )Y o YY)
2; I X 1 p+1 ZZ Z | p+1

Then

1Rt 1 -
D(Q)(Yy, -, Yp11) _Ez 1)1+ (sz Lo Y Y YY) +
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Proposition 4.10.  One hasTr (7, ) = 0 (k > 1) and Tr (<, ,) (k> 0) is an
invariant cocycle for the (trivial) cohnomology of the Lie algelya

Proof.  For the first claim, use«, , %%, ,|, =2 <, and apply Corollary 4.8. For the

second, we remark that, , is a g-invariant map fromg?* into g, so Tr(a, ) €
(Ag)? and itis a cocycle by Lemma 4.9. |

Now recall the well-known formula (e.g. [14]):

Proposition 4.11.  Forall Yy,...,Y, , €9,

This formula will be reinterpreted in Section 7 in terms of cyclic cohomology
of the Lie algebrag: <, is a cocycle of the adjoint action (actually a coboundary
since [, o, 4] = 4, ), and Proposition 4.11 tells that it is a cyclic cocycle, as will
be defined in Section 7.

Example 4.12. Assume thag = gl(n). ThenH*(g) can be completely described in
terms of standard polynomials (see e.g. [14] or [10]):

H*(g) = EXUTr(e/y), Tr(eA). .. Tr(cly )]
Moreover, by the Amitsur-Levitzki theorem ([1, 14]):
=0, if k>2n.
So dim.e7) = 2n. For the x -product,.e7 ~ C[X]/X?". For the graded bracket
of 2.2, the structure of7 is given by Proposition 4.2¢7, is the Lie algebra structure

on g and the standard polynomialg),..., <, , define X-Lie algebra structures on
g by Proposition 4.3.
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Example 4.13. More generally, letv be an infinite-dimensional vector space. Let
g be the space of finite-rank linear maps. &as an ideal of the associative algebra
EndV). There is a vector spaces isomorphignt V* @V defined by(o @ v)(V) =
o(V) v, forallv, vV eV, o € V*. So we can define the trace () whenX € g by
Tr(o®V) :=w(v), forall e V*, ve V. Itis easy to check that TfX,Y]) =0, for

all X, Y € g, so the preceding results apply. Moreover, the symmetric bilinear form
B defined ong by B(X,Y) = Tr (XY) is nondegenerate and invariant, therefgris a
quadratic Lie algebra. Singg(n) C g, V¥ n, by Example 4.12, we can conclude that

EXtTr(,), Tr(<h),. .., Tr(<y 4),...] C H*(g)

Proposition 4.14. Let &,, , = Tr (%

on +1). Then

H*(g) = EXt[a:L’a?)’ oo ,aer_l, .. ']'

Proof.  Recall that for any Lie algebrf, there is an isomorphist¥(f) ~ H.(h)*,
induced by the restrictio € ZX() — Q|Zk(h) where H, () is the homology off
defined adH, (h) = Z,(h)/B,(h) (with Z,(h) the cycles andB, (h) the boundaries).

Let us define” = {S= (W,W’) | W,W' complementary subspaces\6fwith
dim(W) <} and forS= (W,W') € ¥, gg={X € g| X(V) CW, X(W') ={0}}. Then
gg is a subalgebra of the (associative or Lie) algeprand one hagg ~ gl(dim(W)).
It is easy to check that giveKX,,, ..., X € g, there existsS € . such thatX; € gg,
Vi=1,...,r. Itresults that, ift € Ext(g), there existsS such thatc € Ext(gg), so that
Ext¢(g) = USeyEth(gS).

Set& = Ext[a,,as,..., 8,1, .--] C H*(g) and&* = £ NHX(g). Then din{£¥)
=t l with I, = {(i;) € {0,1}" | 3, .n(2] +1) i; =k}. We fix a basis{Q | i € 1,} of
&X.

Givenc e Z, (g), denote byt its class inH, (g) . Let us assume thd®;(c) =0,
Vi € l,. TakeSe€ . such thatc € Ext“(gg), then by (4.12){Q; | i € 1,} generates
HX(gg) = H.(g5)* and sincec € Z, (gg), it results thatc € B, (g5) C B, (g), therefore
c=0. So,{Q |i€l} is free inH(g)" and N, ker(Q;) = {0}. It results that
dim(H,(g)) =t I,. Since H¥(g) = H,(g)*, one has dirtHX(g)) = ¢ I, and since
&% c HK(g), one obtainss® = HK(g). m

Remark 4.15. FromH?(g) = C Tr, we deduce thalg, g] = ker(Tr). FromH?(g) =
{0}, we deduce thag has no (non trivial) central extension.

5. Super Poisson brackets and quadratic Lie algebras

The canonical Poisson bracket 68" appears as the leading term of a quantization of
the algebra of polynomial functions by the Weyl algebra: Mmyal product We will
develop a similar formalism, replacing polynomials (i.e. commuting variables) by skew
multilinear forms (i.e. skew commuting variables) and the Weyl algebra by the Clifford
algebra. The leading term of the deformation will be shiper Poisson bracket

5.1.. Letus give a definition of the Clifford algebra that is well-adapted to the realiza-
tion of this algebra as a deformation of the exterior algebra. Denot& by < C, the
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associative algebra with basfs,,| € Z5} and product defined by

Q
2

where Q is the bilinear form associated to the mat(i; ){';_; with a; =1 if i > ]
and O otherwise.

Takel; = (j,) € Z3, with j; =1 and 0 otherwise. S& =g ,i=1,...,nand
V =spar{e,,...,en}. Whent =0, one obtainsg, = Ext(V). Whent # 0, ¢; is the
Clifford algebra The following relations hold:

&€=t Vi, gxe+e+g=01i#],
G *E x X =G NG A-AG ifi, <i, <---<ip
So that%; is the quotient algebra of the tensor alge®i@&/) by the relations:
vav=t.B(vv). LveV,

where B is the bilinear formB(g;, ;) = §;, for all i, j, and we recover the usual

ij o
definition of the Clifford algebra.
But we are mainly interested in realizirtgj as a deformation of EX¥). Using:

=04t § +t° S o+ -

this deformation becomes transparent:

Proposition 5.1. One has
n
k=1

where Q(g,6y) = &, (-D Vg _ ;.

13,k
Symmetry properties of the coefficients are resumed in:

Proposition 5.2.  Forall Q € Ext"(V), Q' € Ext" (V),

D;(Q.Q) = (-1 (-1)"'D;(Q', Q).

We insist on the fact thak; is not aZ-graded, but only &.,-graded algebra.
The associated Lie superalgebra has bracket:

[Q7 Q/]* =2 Zo t2p+1 D2p+1(Qv Q/)
p=>

Definition 5.3.  We define thesuper Poisson brackein Ext{V) by:

{Q,Q'}=2D,(Q,Q'), VQ,Q € Ext(V).
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Since [.,.], satisfies the super Jacobi identity, so dges}. Moreover, since
ad (Q) is derivation of the%;-product, ad(Q) := {Q,.} is a derivation of theA-
product (actually of degreev—2) if Q € Ext¥(V)).

Finally, by a straightforward computation, one gets:

VA AVp WAL A W} =2 (—1)Px (5)
Z (=1)" BV, W) Vi A AT A AV AW A AW A AW,
_7 7p

j=1..q9

forall v;,...,vp, Wy,...,Wg € V.

Comparing with the formulas given in [20], we conclude that the Lie super-
algebra ExtV)/C is isomorphic to the simple Lie superalgeldfgn). Notice that
Ext(V)/C ~ ad,(Ext(V)) C Der(Ext(V)) = 2(V*), so we obtain the classical inclu-
sion H(n) c W(n) ([20]).

5.2.. Let us modify slightly the formalism in 5.1 in order to apply it to Lie algebras
deformation theory. We begin withradimensional vector spageand we seV = g*.

We assume thaj is a quadratic space with bilinear forB. Denote by{X,,..., X}

an orthonormal basis of and by {®,,..., @} the dual basis we definB on g* by
B(w,, ®;) = ;. Applying the construction in 5.1 witle, = @, i = 1,...,n, we get a
super P0|sson bracket g\g and it is easy to check that:

Proposition 5.4. Forall Q e A\Wg, Q' € Ag, one has
{Q,Q}=2( le& ) Aty (Q).

This formula is valid in any orthonormal basis gfand it is enough for our
purpose in Section 5, but a general formula can be found in Lemma 6.9. There is a
Moyal type formula which gives the Clifford product in terms of the super Poisson
bracket: letm, be the product fromAg® Ag — Ag, and defineZ: Ag Ag —

ANg® Ag by

F@EQ)= (1" 3 1)1 (@)
=

forall Qe AVg, Q' € Ag. Then:

Proposition 5.5.
QxQ =m, oexp—t7)(Qx Q).

Proof.  As in the beginning of 5.2, leg = @, and letd, = g, i=1...,n. As
in 5.1, for | = (iy,...,in) € Z5, let g = eill/\---/\e"nn and d) = 811o---oar‘]n. For

I=(jg,...jn) €23, letI' = ji.. jin. One has))(e)) = (-1)%IJ'e ;. Since all
@
d, ® o, commute, and)? = 0, one has:

(Z 3 ® ai> k: K “gkal ©0,
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For k > 0, one has:
m, o FX(er® &)

k
(~LR(-yR (—1)R-k (za.® ) (exes)

k(k—1)

— ()R- K 5 DR(-1)?IIRS e pre g
I

@ )

This vanishes, except K = |RS, and in that case, the only remaining term in
the sum is when = RS We compute this term:

k(k—1)
m, o.% (eR® eS) ( 1>k|R\ (_1) 7kl (_1)Q(RSR)+Q(RSS) (_1)Q(RS+R,RS+S)eR+S
@)

But one ha€2(A,B) + Q(B,A) = |A||B| — |AB|, so:

k(k—1)

Q(RSR) +Q(RSS) =KR—k and Q(RSRY=——

So finally, we have proved that

my o (g @eg) = (—1)"kI (=1)*F9 0 rg kER+S
@

On the other hand, by Proposition 5.1, one has
n
erx e =g A eg+ (—1)2RS S Srai€r:s
K=1 2

so the result follows. n

Remark 5.6. An equivalent formula is given in [15].

5.3. . A derivation D € Z is Hamiltonianif it belongs to ag(Ag). Actually, the
space of Hamiltonian derivations is a subalgebr&othat we denote by#’(g), which
IS isomorphic tO/\Qg = Ag/C and therefore, by (5), isomorphic to the simple Lie

superalgebrﬂ(n). Here is a simple characterization of Hamiltonian derivations:

Proposition 5.7.  Aderivation D=3, Dy A1, is Hamiltonian if and only ifiy (Ds) +
lXS(Dr) =0,Vr,s.

Proof. ~ When the condition is satisfied, one Has- ad,(Q) whereQ = ﬁ S Dr Aoy
andw=degD)+2. |

Remark 5.8. A Hamiltonian derivation is a derivation of the-product and also of
the super Poisson bracket.

In fact, one has:
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Proposition 5.9. Let De 2. Then D is Hamiltonian if and only if D is a derivation
of the super Poisson bracket.

Proof. LetD=7y,D; A1, with D€ A%g, thenD; = D(e). Since{ay,ws} € C,
assuming thab is a derivation of the super Poisson bracket, one has:

0= D({ar, @s}) =2 (~1)** (1, (Ds) + 1,(Or) )
and the result follows by Proposition 5.7. ]

5.4. . We now want to apply super Poisson brackets to the theory of quadratic Lie
algebras, in a deformation framework that we will set up. Given a quadratic Lie algebra
(99, Bp) with bilinear form B, and product.,.], adeformation(g;, B;) of (gy,B,) is:

(1) a deformatiory; of g in the usual sense, so:

X, Y]e = X, Y]+tC, (X, Y) +...,V X,Y € g,

(2) aformal bilinear formB; = B, +tB,; +... such that

Bi([X,Y],2) = =B(Y,[X,Z};),V X,Y,Z € g,

Two deformations(g;,B;) and (g;,B{) with respective brackets,.; and[.,.];
areequivalenif there existsT; = Id 4-tT, +... such that:

XY =T (MO, T(Y))  and B{(X,Y) = B(T(X). T(Y)),¥ X,Y € g.

Proposition 5.10.  Any deformation(g;,B;) of (g,,B,) is equivalent to a deforma-
tion with unchanged bilinear form.

Proof.  Fix an orthonormal basige;,...,en} of g with respect toB,. By a Gram-
Schmidt type strategy, one can constrfief(t),...,en(t)} such that:

et) =AM)et)+---+A,_,(t)e,_4(t)+e,v/<n,

with 4;(t) € t C[[t]], and B(e/(t),em(t)) = 0, for all £, m < n. Since
[Bi(e,(t), &, (t))]i_g =By(es€) =1,VL<n, B(elt),elt)) is invertible, and
)= —————— et
(Bi(e(t), (1))

does satisfyB; (€)(t), € (t)) = &, V¢, m.
Now if we defineT; by Ti(e,) = €)(t), V¢ < n, and a new deformation

XY= T ([T (X), Te(V)]e), vX,Y € g,

with bilinear form B{(X,Y) = B (T;(X), T (Y)) = By(X,Y), VX, Y € g, we ob-
tain a deformation that is equivalent to the initial one. ]
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So if one wants to study quadratic Lie algebras in terms of deformation theory,
one can restrict to quadratic Lie algebras with a specified bilinear form, and that is what
we shall do next.

5.5. . The construction of the super Poisson bracket made at the beginning of this
section can now be applied as follows: given a finite-dimensional quadratic Lie algebra
g with bilinear formB, let d be the corresponding derivation pfg (i.e. the differential

of the trivial cohomology complex af,, see 3.2), we define:

[(X,Y,Z):=B([X,Y],2), VX,Y,Z€g
Then one has:

Proposition 5.11.

(1) 1€ (A3g)".
(2) 9 =—1ad.(1).
(3) {I,1} =0.

Proof.  The assertion (1) is obvious. To show (2), {&{;,...,X,} be an orthonormal
basis ofg and{w,,...,wn} the dual basis. Thenforafl, Z € g:

__adp( ) (o (le ) At (@ ) (¥,2) = -B([%,Y],2) =
=—B(X,[Y,Z]) = —oy([,Z]) = doy(Y,2)
Hence,d = —3ad(1).

Finally ad({l,1}) = [ad,(I),ad(1)] = 4[d,d] = 892 =0. So{l,1} =0 and
that proves (3). [ ]

Note thatd, 1, and 6y = [1y,d], V X € g are all Hamiltonian derivations.

5.6. . Conversely, assume thagtis a finite-dimensional quadratic vector space. Fix
| € A%g and defined = —%aqa(l). Then the formula

ad, ({Q,Q'}) = [ad(Q),ad(Q)],¥ Q,Q" € A g

leads to
[d,d] =0ifand only if{I,1} =0. (6)

Let F =F, be the structure o associated t@ (see 3.1 and 3.2), then from
(6), it follows:

Proposition 5.12.  F is a Lie algebra structure if and only ifl, 1} = 0. In that case,
with the notation[X,Y] = F(X,Y), one has:

1(X,Y,Z) =B([X,Y],Z), VX,Y,Z € g,

the form B is invariant angy is a quadratic Lie algebra.
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Proof. ~We have to prove that iF is a Lie algebra structure, ther(X,Y,Z) =
B([X,Y],Z2), VX,Y,Z e g.
Let {X;,...,Xn} be an orthonormal basis, theh= — klxk(| Aly s SO F=
X

)
zkzxk(l)@@xk, and thereforeB([X;, X;], X, ) = lxk(l)(Xi,Xj) =1(X, X, %), forall i, j,
K. |

Remark 5.13. Using 5.4, 5.5 and 5.6, it appears thafg[2] with super Poisson
bracket is agla associated to deformation theory of finite-dimensional quadratic Lie
algebras: by 5.4, one can assume tBadoes not change, then quadratic Lie algebra
structures with the samB are in one to one correspondence with elemérgsA3g
such that{l,I} = 0 (5.5, 5.6). An equivalent description can be given in terms of
Hamiltonian derivations, i.e. of thgla 7 (g) = ad,(Ag) ~ Ag/C = No8-

Let us note that in this picture, one has to redefine equivalence: a priori, one
might think that equivalence should be defined as Lie algebras isomorphism ké&eping
fixed. But this is too restrictive, sinde .| and A (t)[.,.], with A(t) = 1+t(...) will not
be equivalent in that sense as they should be. So one has rather to work with the notion
of a conformal equivalence, i.e. an equivalence defined by a Lie algebras isomorphism
T(t) = Id+t(...)satisfying B(T;(X), T,(Y)) = u(t)B(X,Y), with u(t) =1+t(...).

This will change the correspondirgia : one can consider the subalgel@tR® .77 (g)

of Z(g) (WhereR= 3w A I is the super radial vector fielg rather thans#(g).

Hence, there are some adaptations to carry out, which will not be developed here since
they are somewhat standard. Let us only indicate that in this framewdgk, B, is the

initial quadratic Lie algebra with associatgpc /\3(9) , then the obstruction to triviality

of a quadratic deformation will lie itd3(g)/C 1,. For instance, ifg, is semisimple, it

is shown in [16] thalH3(go) and the space of symmetric invariant bilinear formsggn

are isomorphic, the isomorphism beiBg— Iz wherelg(X,Y,Z) = B([X,Y],Z), V X,

Y, Z € g. Itresults that whem,, is simple, it is rigid in quadratic deformation theory.

6. Elementary quadratic Lie algebras

Let us recall two results:

Proposition 6.1. LetV be a finite-dimensional vector space and | a k-form‘frv.
Denote by Vthe orthogonal subspace in"\of the subspacé¢X €V | 1, (1) =0}. Then
dim(V,) > k and if | is nonzero, | is decomposable if and onlgiifn(V,) = k. In this
case, if{w,,...,w,} isabasis of ¥, one has k= o 0, \--- Ao, for somea € C ([4]).

Proposition 6.2. Let V be a finite-dimensional quadratic vector space with a non-
degenerate symmetric bilinear form B. For a subspace W of V, denote-bytsV
orthogonal subspace in V with respect to B and Wts orthogonal in /. Let ¢ be
the isomorphism from V onto*Vinduced by B. Thenp\wL is an isomorphism from
W+ onto W-, sodim(W+) = dim(V) — dim(W). One has V=W @ W if and only
if WNW-+, = {0} and in this case the restriction of B to W orWs nondegenerate.

In the rest of this Sectiong will denote a finite-dimensional quadratic Lie
algebra with bilinear fornB. Denote by Zg) the center ofg and byl the element of
A3g defined byly(X,Y,Z) = B([X,Y],2), VX, Y, Z€g.
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Definition 6.3.  We say thafg is anelementaryjuadratic Lie algebra if; is decom-
posable.

Remark that the obvious identity(g)* = [g, g] holds here. As a consequence,

Proposition 6.4. Let g be a non Abelian quadratic Lie algebra. Thdim(|[g,g]) >
3. Moreover,g is elementary if and only if the equality holds.

Proof.  Since Zg)* = [g,g] and Vi, = Z(g)*+", the result follows directly from
Proposition 6.1. |

Corollary 6.5. Let g be an elementary quadratic Lie algebra. Then all coadjoint
orbits have dimension at most 2.

Proof. Letw € g* andX, € g such thatw = ¢(X,). Then adg)(w) = ¢([g, X)) C
¢([g,9]), so dimadg)(w)) < 3. Since all coadjoint orbits have even dimension, the
result follows. n

Remark 6.6. Suppose thag is a finite-dimensional quadratic vector space and let
be a decomposable 3-form ji*g. Thenitis easy to check that, |} = O for the super
Poisson bracket. So by Proposition 5.12 there is an elementary quadratic Lie algebra
structure ong such thatl (X,Y,Z) = B([X,Y],Z2),V X, Y, Z€g.

In the sequel, we classify all non Abelian elementary quadratic Lie algebras.
This will be done in two steps: first, in 6.1, we show a result on quadratic Lie algebras
that reduces the classification problem to small dimensions, namely between 3 and 6.
Then in 6.2, we proceed by classifying these small dimensional elementary quadratic
algebras. Explicit commutators in a canonical basis with respeBtdace computed as
well.

6.1.. Hereis the reduction result on quadratic Lie algebras:

Proposition 6.7. Letg be a non Abelian quadratic Lie algebra with bilinear form B.
Then there exist a central idegland an ideall # {0} such that:

(1) g=39!,and[ and 3 are orthogonal with respectto B.

(2) 3 and I are quadratic (with bilinear forms induced by the restriction of B) dnd
is non Abelian. Moreovel, is elementary if and only i§ is elementary.

(3) the centeiZ(I) is totally isotropic and

dim(z(1)) < %dim([) < dim([1,1).

Proof.  Let 35 =Z(g)N[g,g]. Fix any subspacg such that Zg) = 3,® 3. Since
Z(g)* = [g.9], one hasB(3,,3) = {0} and3N3* = {0}. It results from Proposition 6.2
thatg =3 @ [ wherel = 3.

Since B([g,g],3) = {0}, one has[g,g] C [, so [ # {0}. Itis easy to check
that Z(I) = 35, so ZI) is totally isotropic; moreover the restriction & to 3 and
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Is nondegenerate, das quadratic and clearly non Abelian singés central ing. If g
is elementary| is a fortiori elementary. Iff is elementary, let, = o; A 0, A @5, @,
®,, 0 € [*, extend thew, to g by w,|; = 0. Sincel4(X,Y,Z) =0,vX€3,Y,Zcg,
one concludes, = @, A ®, A @y, henceg is elementary. Finally Z) c [1,1] = Z(1)*
implies dim() —dim([l,[]) < dim([(,1]) and the last inequality follows. m

Corollary 6.8.  Let [ be a nonzero elementary quadratic Lie algebra such &}
is totally isotropic. Then one has

3<dim(l) <6.
Proof.  Use Propositions 6.7(3) and 6.4. ]

6.2. . We shall now finish the classification of non Abelian elementary quadratic Lie
algebras. This classification is reduced, by Proposition 6.7 and Corollary 6.8, to the
case of nonzero elementary quadrdtiwith a totally isotropic center @). Applying
Proposition 6.8 one has 8 dim() < 6. Note that if dinfl) = 3, one hasl = L, ]
(Proposition 6.4), sé ~ s[(2) and B is the Killing form up to a scalar. So we have to
consider dinfl) > 4 (therefore diniZ(l)) > 1).

We need the following Lemma:

Lemma6.9. LetV be a quadratic vector space with bilinear form B. Define B on
V* by Blw,®') :=B(¢ Y w),¢ (@), ¥ @, ® €V* (¢ as in Proposition 6.2). Let
{o,,...,0n} be abasis of V, {X,...,Xn} its dual basis andY,,..., Yy} the basis of

g defined by Y= <p‘1(a>,). Then the super Poisson bracket Ay is given by

{Q, 0} =2( WHZB /\lX(Q'),Qe/\Wg,Q'E/\g.

Proof.  Using Proposition 5.4, one has
{Q,QV=2( W+1Za”1x )Alxj(Q’),

Qe A"g, Q' €Ag and oy = 3{®;,;}. But from 5.1, one hagw;, 0} =

2B(w;, ;) = 2B(Y,,Y,). n

Proposition 6.10. Let [ be an elementary quadratic Lie algebra with nonzero totally
isotropic centerZ(l). Then:

(1) If dim(f) = 6, there exists a basi§Z,,Z,,Z;, X;,X,, X5} of [ such that:
() {Z,,Z,,Z3} is a basis ofZ(1).

(i) B(Z.Z;) =B(%,X) =0, B(Z,X;) =8, Vi,j.

(i) (X, X, =23, X, %3] =23, [X3,X,] = Z, and the other brackets vanish.

(2) If dim(l) =5, there exists a basi§Z,,Z,,X;,X,, T} of [ such that:
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(i) {Z,,Z,} is abasis ofZ().
(i) B(Z,Z;) =B(%, X)) =0, B(Z,X;) =§;, Vi,j, B(T,Z)=B(T,X) =0,
B(T,T) =1.
(i) (X, T]=-2Z,, [X,T]=2;, [X{,X] =T and the other brackets vanish.

(3) If dim(f) = 4, thendim(Z(I)) = 1 and there exist totally isotropic subspaces
with basis{Z,P} and i with basis{X,Q} such thatZ(l) cicC [L[], =iV
and :

(i) Z()=CZ, BZ,X)=B(P,Q) =1, B(Z,Q) =B(X,P) =0.
(i) [X,P]=P,[X,Q]=-Q, [P,Q] =Z and the other brackets vanish.

Proof.

(1) Assuming that dirfi) = 6, one has diffZ(l)) = 3, so ZI) = [I,[] = Z()*. Using
[4], there is a totally isotropic subspafesuch that = Z([) 1'. With the notation
of Proposition 6.2, since|,, is an isomorphism front’ onto Z([)*, we can find a
_lla_ﬁsis{zl,zz,zs} of Z(I) and a basi{X;,X,,X;} of ' such thatB(Z;, X;) = §; .
en
Z([)L* = Spar{Xik,X;,Xék} = Spar{‘P(Zl)v (P(ZZ)? ¢(Z3)}

Letl, =B([X,Y],2),VX,Y,Zc. Since\/h =Z(I)*", it results from Proposition
6.1 thatl, = a X; AX3 AXS, o € C. ReplacingX; by £X; andZ; by az,, we
can assume that = 1. Using Proposition 5.11 and Lemma 60+ —%adp(l) =
3 (X AXSAXG) Ay, s0 by 3.2 and 3.1[X,Y] = $ ;1 (X A X5 A
X3)(X,Y) Z, VX, Y €[ and the commutation rules follow.

(2) Assuming dinfl) = 5, one has dirtZ(l)) = 2. Using [4], there is a totally
isotropic subspace and a one-dimensional subspd¢such that =Z () o' p1”
and B(Z(I) & ',I") = {0}.Then one can find a basiZ,,Z,} of Z(I), a basis
{X, X} of [ and a basis{T} of [ such that: B(Z,X;) = §;, Vi, j and

B(T,T) = 1. Therefore

Z([)L* = spar{Xf,Xf,T*} = Spar{¢(zl>7 ¢(ZQ>7 ¢(T)}

Sol,=a X; AX;AT*, a € C. ReplacingX, by 2X, and Z; by oz, we
can assume that = 1. By Proposition 5.11 and Lemma 6.9, one obtains
—3aG(1) = =321t T AXG AT )N —1x(X{AXGAT*) Aty so by 3.2 and
3.1, XY = S0 S AXSATHXY) Zi+ i G AXSATH) T,V X, Y el
and the commutation rules follow.

(3) Assuming dinfl) = 4, one has ditZ(l)) = 1. Using [4], there is a totally
isotropic 2-dimensional subspacesuch that ZI) C i. Since ZI)* = [I,1], one
hasi C [(,1]. Using [4] once more, there exists a totally isotroficsuch that
[=i®i. Letus writei =spaqZ,P}, i/ = spaqX,Q} with Z(I) = C Z and
B(Z,X)=B(PQ) =1, B(Z,Q) =B(X,P) =0. Therefore

Z(* = spar{P*,Q*, X"} = spar{¢(Q),#(P),¢(Z)}.



656 RNCzZON AND USHIROBIRA

Sol,=a P"AQ"AX*, a € C. ReplacingP by %P and Q by aQ, we can
assume thatx = 1. Using Proposition 5.11, Lemma 6.9, 3.2 and 3.1 as above,
one finds[AB] = [1p(P* A Q" AX*) Q+ 15(P* AQ AX") P+ 14 (P*AQ" A

X*) Z](A,B), ¥V A, B € [ and the commutation rules follow.

As afinal remark, the bracketsin (1), (2) and (3) do satisfy Jacobi identity thanks
to Remark 6.6. ]

Remark 6.11. In the Proposition above, cases (1) and (2) are nilpotent Lie algebras
and case (3) is a solvable, non-nilpotent Lie algebra, with derived algebra the Heisenberg
algebra.

7. Cyclic cochains and cohomology of quadratic Lie algebras

7.1. . First we fix some notationg will be a n-dimensional quadratic vector space
with bilinear form B and A, g will denote the associative algebra without unit
Zk>1/\k9- If g is a quadratic Lie algebra, we denote Byits bracket (i.e.F,(X,Y) =
X,Y], X,Y€g),byd= DFO (see 3.2) the differential of, g, by H*(g) the correspond-
ing cohomology, and byd (g) the restricted cohomology, i.eH} (g) = Zk>1Hk(9)
which is an algebra without unit (for the induced wedge product).

When g is a n-dimensional quadratic vector spagkg is a gla for the super
Poisson bracket with gradind g[2]. Denote by/\Qg the quotientgla No8 = Ng/C,
and by[., ] its bracket. The map ad A g — Z(g) is agla homomorphism, and we
define thegla .77 (g) of Hamiltonian derivations to be the imag#’(g) = ad.(Ag),
as in 5.3. There is an obviougla isomorphism from/\Qg onto J#(g), and since
Ao~ H(n) (see 5.3), thegla \qg, #(g) andH(n) are isomorphic. Moreover, if
g Is a quadratic Lie algebra, sinek is Hamiltonian (see Proposition 5.11), the super
Poisson bracket inducesgga structure orH*(g) and also orHg(g) = H*(g)/C.

GivenC € .ZX(g) (see 2.2.), we defin€ by:

if k=0, Ceg, C(Y):=B(C,Y),VY €g,
Definition 7.1.  C is acyclic cochainif
C(Yy Y1) = (=1 C(Ye 1, Yps oo ),V Yoo Yy € 6

We denote bys:(g) the space of cyclic cochains.

Proposition 7.2.

(1) C is a cyclic cochain if and only &€ € A, g. The mapO from %¢(g) into A\, g
defined by®(C) = C, is one to one.

(2) Wheng is finite-dimensional, the ma@: ¢¢(g) — A, g is an isomorphism.

(3) ¢c(g) is a subalgebra of thgla .#Z5(g).
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Proof.

(1) Let 7 be the cycletr=(12 ... k+1) € §,,,. Givenoc € G, ,, let /=
o Y(k+1), theno’ = cot! € &,. If Cis cyclic, one hag1.C=¢(1) C. So
6.C= (0’01 !).C=¢(0)C and therefore ¢ A, g. SinceB is nondegenerate,
O is clearly one to one.

(2) GivenQ e A\ g, defineD e .#ZX(g) by

QY- YY) =B(D(Yy,. ., Y),Y), WYy, Y, Y € g.

ThenQ =D.
(3) LetF € .#P(g), andG € .#2(g), from (1) we have to prove that:

),Y,

B([F,Gla(Yy,...,Y, orq) =B(F.Gla(Yy, .Yy g2 Ypra): Yorq1):

p+o-1

forall Y, ..., Yy, q € g. Using the formulas in 2.1, we can write the left hand side

as a sum of four terms3([F, Gla(Yy, ..., Yy, q-1), Ypirq) = @+ B + v+ where:

o = (—1)P-Da-D > (..) and B = (—1)P-Da-D > ()

GGGq,p_l c€6q7p_l
o(p+gq-1)=p+q o(q)=p+q-1
Y=— Z (...) and o0=-— Z (...)
0€6,4-1 0€6,4-1
o(p+a-1)=p+g-1 o(p)=p+q-1

In &, we can commute, up to a S|gYip+q_l andYp, 4. In 0, we commute, up to

a sign,F(YG(l), . ’Yc(p—l)’Yp—i-q—l) andYy, 4 to obtain:

o0 = Z g(o)
cre(‘Bp‘(k1
o(p)=p+a-1
B(G(YD+Q’Y6(p+1)""’Yo(p+qfl))’F(Yc(l)""’Yc(pfl)’Yerqfl))
Now commute, up to a sing(Yerq,YG(pH), . ’Yc(p+qfl)) ande+q71 to ob-
tain:
6§ = - % ¢(0)
6€6p7q_1
o(p)=p+a-1
B(F(Yo(l)""’Yc(pfl)’G(Ypﬁ-q?Yo(pqu)""’Yo(p+q71)>)’Yp+qfl)
= (DT Y k(o)
GGGp’q_l
o(p)=p+a-1
B(F(G(Yc(pﬂ),...,Ya(erq_l),qu),YG(l),...,YG(p_l)),Yp+q_1)
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LetZ =Y,i=1...,p+q—-2andZ, , ; =Ypq, then:
F (G(Yc(pﬂ)’ ’Ya(p+q—1)’Yp+q)’Y6(1>’ o ’Ycr(p—l))
= F(G(Zsp11) - Zoipra-1)Zpra-1)Zo) 1 Zo(p-1)
= F(G(Z, 1) Zyg) Zoigrry 2 Zn(pra-1)

wheret(1) = o(p+1), ..., 7(q—1) =o(p+q—1), 7(@) = p+q—1=0c(p),
7(9+1)=0(1), ..., 1(q+ p—1) = o(p—1). Comparing the inversions af
with the inversions o, it is easy to check that

£() = (~1P Y (-1)* 1 (-1 PV Ve (o),

Finally
§ = —(—1)P- DY Z e(1)
TEGq‘p_l
t(@)=p+a-1
BF(CZowy -+ Ze(@) Zetarry+ Zoipra-1) Ypra-1)
Then
a+6 = —(—1)P-Ba-D z e(1)
TEGq’pil
BIF(G(Zea)r- -1 Ze(q) Zefgrny++ Ze(pra-1) Yora-1)

Using similar arguments to compufe+ y, one obtains the required identity.

Remark 7.3. Wheng is finite-dimensional, there is a direct proof of (7.2)(3) (avoid-
ing computations) that we shall give in the proof of Proposition 7.9, in Remark 7.10.

We assume now thai is a quadratic Lie algebra.

Proposition 7.4.  (%¢(g),d) is a subcomplex of the adjoint cohomology complex
(.#a(g).d) of g.

Proof. Itis enough to check that(%:(g)) C ¢c(g), but this is obvious from Propo-
sition 7.2(3) because = ad(F,) andF, € ¢c(g) sinceg is quadratic. |

Definition 7.5.  The cohomology of the comple¥:(g),d) is called thecyclic coho-
mologyof g, and denoted by (g).

Remark 7.6.  Sinced = ad(F,), the Gerstenhaber bracket inducegia structure on
He (g).
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Proposition 7.7.  The map0®: %c(g) — A, g is a homomorphism of complexes.
Moreover, © induces a maP*: Hg(g) — Hi(g), which is an isomorphism whem
is finite-dimensional.

Proof. By an easy computation, one h@sd = d o © and the two first claims follow.
For the third claim, use Proposition 7.2. [ ]

Example 7.8. Assume thaf is the Lie algebra associated to an associative algebra
with a trace such that the bilinear form (XY) := XY, VX, Y € g is nondegenerate
(e.g. g is the Lie algebra of finite-rank operators on a given vector space, see Examples
4.12 and 4.13). Consider the standard polynomig|sfor k > 0 if g had a unit, or for
k>0, if g has no unit. Sincé¢e,, .27, ]a = 0 by Proposition 4.2, eacly, is a cocycle,

then by Proposition 4.11, itis a cyclic cocycle, and one ®@as7,, ) = Tﬁrl Tr (A1)

7.2. . We assume now thgj is a n-dimensional quadratic vector space. Using the
super Poisson bracket, we shall now go further into the structurg @f). We need to
renormalize the ma@, defining® := —%G). We denote by the canonical map from
/g onto A\qg, and by¥ the map¥ = p1 o ® from %c(g) into No8-

Proposition 7.9.

(1) If Ce %¢(g), one hasD(C) = ad,(P(C)).
(2) The restriction mapi = D|%(g) is a gla isomorphism fron%¢(g)[1] onto s (g).

(3) W is aglaisomorphism fron¥c(g)[1] onto /\Qg[Z] :

Proof.  Fix an orthonormal basi$X,,...,Xa} of g and{w,,...,wn} the dual basis.
GivenC € 6c(g), Y1,---,Yp € 9,

ad,(®(C))(wy)(Yy, --. ,Yp)

— 2(-1)P (z iy (P(C)) mxr(w,)> (Y-, Yp)

= (-D)PHB(C (Xk Y- Ypo1):Yp)
B(C(Yy,.-, p 1 %) Yp)
—B(C(Yy,- -, Yp_1,Yp), %)
= —o(C(Y a--wa)) = —D(C)(a)(Yy,-..,Yp)

by a formula given in 3.3, and this proves (1). From (1), we deduceDhagaps
%c(g) into 2 (g).

To prove (2), we remark that ad @ is onto by Proposition 7.2 (2), dbis onto,
one to one and gla homomorphism by Proposition 3.1 and this proves (2).

To prove (3), we use thgla isomorphismv: N8 — (g) defined from
ad,: Ag— (g), so one hasy (u(Q)) = an( ), Q € Ag, and thenv (¥(C)) =
ad,(®(C)) =H(C), YC € %c(g), soW=v1o H. u
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Remark 7.10. Let us give a direct proof of 7.2 (2): give@, C' € %¢(g), from
the preceding results, we can assume @at F(ad,(Q)), C' = F(ad,(Q')), with Q,
Q' e A\, g. Then:

[C.C'la=[F(ad:(Q)),F(adh(Q))]a = F ([ad:(Q),ad(Q')]) = F (ad:({Q, Q'}))

Corollary 7.11.  Thegla %;(g) is isomorphic tas#(g), and toH (n).
Using @, we can pull back the\-product of A | g on %¢(g) defining:

Definition 7.12.
CAC =0 1 (P(C)AD(C')),V¥C,C € %elg).

Hence%.(g) becomes an associative algebra (without unit), gradeddy)[—1]. To
describe the\-product of ¢¢(g), we define a naturgh g-module structure onZ;(g)

by:
Q- (a@X):=(QAr)oX,VQ,ac g, Xeg

Proposition 7.13.  If C € ¥X(g), C' € ¥X(g), then CAC' € €¥*K+1(g), and one
has:
CAC =(C)-C + (-1, DKy . C.

Proof. LetC’=®(C)-C + (—1)*DK+Da(C').C. Then

OC") Yy, Yies e 12) =
; €(0)P(C)(Yg(q)»- - ’Yo(k+1))cb(cl)((Yo(k+2)’ oo Yo (k1) Yiak+2) T
oc

K+1.K
(_1)(k+1)(k/+1)
P £(0)P(C) (Yoray-- - Yoo 1) PO Va2 Yorkinray Yirkr2)-
0O 11k

In the first term of the right hand side, for eachdefine t by (i) = o(i),
| <k+Kk+1, andr(k+K +2) =k+Kk +2. Inthe second term, for each define
thy (1) =oc(K+2), t(k) = o(k+K+1), t(k+1) =k+K +2, 1(k+2) = 5(1),
t(k+3)=0(2), ..., 1(k+K +2) = (K +1), thene(r) = (—1)kDK+Dg(5), and
one has:

OC) (Y, Vriesn) =
> @O Yyyyr Yoo ) PN Yoy Yeprios) +

1’-€6k+1,k’+1
T(k+K +2)=k+k'+2

S EOOO Yy Vi) PC) Yoz Viirrs) =

166k+1.k’+1
7(k+1)=k+k'+2

O(C)ADC) (Yo, Y1 2)-
|

One has to be careful that @) (C € %c(g)) is generally not a derivation of the
A-product of 6¢(g), so the following result is of interest:
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Proposition 7.14.  If C € €X(g), C' € €X(g), C" € %¢(g), with k> 1, then:
adC)(C' AC") = ad(C)(C') AC" + (—1)*H DK+’ A adC)(C”).

This means that whe@ € X(g)[1] with k > 1, then adC) is a derivation of
degreek of the graded algebré&;(g)[—1] with the A-product.

Proof. One has
u(®([C,Cla)) = W(C,CN)=[W(C),W(C)g=[1(PC)),u(P(C))]q
= p({®(C),»(C)})

Since ag(P(C)) (Ag) C A, g, itfollows thatd(adC)(C')) = ad,(®(C)) (®(C')), and
the result is obtained using the fact that,@d(C)) is a derivation of degre& — 1 of
A g, and the definition of the\-product of¢¢(g) . |

Using the Proposition above, amt= ad(F,) with F, € €2(g), it results that
the A-product of é:(g) induces aA-product onHg(g) and ¢* = —%9* is clearly
an isomorphism of graded algebras fradf(g) onto Hi(g). From the definition
of the gla bracket onH{(g), denoting byu* the canonical map froniH*(g) onto
H5(g) = H*(g)/C, the mapW¥* = u*o @* is a gla isomorphism fromH¢(g) onto
H5(g). We summarize in:

Proposition 7.15.  As a graded associative algebra ) is isomorphic to H (g)
and as agla , H¢(g) is isomorphic to K(g).

Example 7.16. Let g = gl(n). ThenH}(g) = Ext, [a;,a;,...,8,, 4], Wherea, =
Tr (<), k>0 (e.g. [10]). One ha®(4,) = ﬁ Tr (o, 1) (Example 7.8), so by
Proposition 7.15H¢ (g) = EXt, (o, 4, ..., %, _,|. Thegla bracket will be computed
in9.3.

Remark 7.17.  When g is not finite-dimensional, the ma@* of Proposition 7.7 is
no longer an isomorphism, as shown with the following exampleVIéte an infinite-
dimensional vector space, agdbe the quadratic Lie algebra of finite-rank operators
of V, as defined in Example 4.13. Recall that the invariant bilinear forB(}Y) =
Tr(XY), X, Y € g. Notice thatB(X,Y) is well-defined wherX € g andY € EndV).
Moreover, the formuldB([X,Y],Z) = —B(Y,[X,Z]) is valid if at least one argument is
in g. By Remark 4.15H2(g) = Z(g) = {0} andH(g) = C Tr, so:

Proposition 7.18.  The map@*: H(g) — H(g) is not onto.
Moreover,

Proposition 7.19.  The map®*: H(g) — H?(g) is not one to one.

Proof. Fix U € EndV) such thatU ¢ g C Id,, and consider the skew symmetric
derivationD of g defined byD = adU)|,. The derivationD is a cyclic cocycle but
D =adY) with Y € g cannot be true becauself € EndV) commutes withg, then

U’ must be a multiple of Ig. SoD is not a cyclic coboundary. On the other hand,
D(X,Y) =B(D(X),Y) = dw(X,Y) wherew € A\g is defined byo(X) = —B(U, X),
Xeg. HenceD is a coboundary, and if we denote Bythe class oD in H:(g), we
get®*(D) =0, andD # 0. ]
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8. The case of reductive and semisimple Lie algebras

Let g be an-dimensional quadratic Lie algebra with bilinear foien We recall the
naturalg-module structures op\ g and.#,(g) defined by:

6 (Q)(Yp. - Yp) = = QYpo o X K], V), VXY, Yp € 0.0 € AP
|

Ly (Q®Y) =6,(Q) @Y +Q®[X,Y], VX,Y €g,Q € A g.

Using the notation in 7.2, it is easy to check that
q)ol_x :OXOCD, VX Gg.

So we have:

Proposition 8.1.  %c(g) is a g-submodule of thgg-module.#,(g) and the isomor-
phism® (of 7.2) is ag-module isomorphism frorec(g) onto A, g.

It is well-known that any element dfA g)¢ is a cocycle, and ify is reductive,
thatH*(g) = (A g)? [16]. Using Propositions 7.7, 7.15 and 8.1, we deduce:

Proposition 8.2.  Any invariant cyclic cochain is a cocycle. {f is reductive, any
cyclic cohomology class contains one, and only one invariant cyclic cocycle (for in-
stance, the only invariant cyclic coboundaryds

Hence, wheryg is reductive, we can identif{i(g) and ¢.(g)?. This identifi-
cation is valid for the corresponding-products (actually isomorphic to the-product
of (A, 9)% ~HZ(g)) and for the corresponding graded Lie bracket induced by the Ger-

stenhaber bracket (actually isomorphic#(g)? and </\Qg>g ).

In the remaining of this Section, we assume thas a semisimple Lie algebra
with invariant bilinear formB (not necessarily the Killing form).

Proposition 8.3. If I and I’ € (Ag)?, then{l,I'} =0.
As a consequence of this Proposition and of Proposition 7.15, one has:

Corollary 8.4.  The Gerstenhaber bracket induces the null bracket on
He (g) ~ 6c(g)®.

To prove Proposition 8.3, we need several lemmas: first) le¢ a Lie algebra
andl € (/\p“h)b. Define a ma2: h — APh by Q(X) =1,(1),V X € h. Then since

| is invariant, one has:

Lemma8.5. Q is a morphism ofj-modules from(h,ad) into (AP5,6).

Proof. Forall X,Y andZ € g, we have:

Ox (Q(Y)) = 6y (1y (1)) = [0, ty](1) + 1y (B¢ (1)) = 11 v (1) = Q([X, Y]).

As a second argument for the proof of Proposition 8.3:
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Lemma 8.6. Assuming thap is a perfect Lie algebra (i.e = [h, h]), there exists a
mapo: h — AP1h such thatQ = d o o (2 is the differential of the trivial cohomology
of h). Moreover, ifh is semisimple, there exist a-homomorphismoe such that

Q=Jdou.

Proof. If X b, we can findZ, T, € h such thatX = 3,[Z,T,]. Then, Q(X) =
S GZi(Q(Ti)) by Lemma 8.5. Buv(Q(T,)) = 8(1Ti(l)) = OTi(I) - lTi(a(l)) = 0 since
| is an invariant. Butf, mapsZP(h) into BP(h), so Q(X) € BP(h). To constructe,

fix a sectiono of the mapd: AP 1h — BP(h), i.e. o: BP(h) — AP~ 1h such that
doo = IdBp(h) and then setx = 6 0 Q. Wheng is semisimple, one can fix a section
which is ag-homomorphism. [ ]

Proof.  (of Proposition 8.3)

Fix an orthonormal basigX,,...,X,} of g with respect toB. Givenl, I’ €
(Ag)®, let Qr =1y (1), Q =1 (I'), @, & the g-homomorphisms given by Lemma
8.6 and finallyay = a (X)), o = /(%) sothatQ; =9 o andQ; = d of . With these
notations, in order to finish the proof, we need to show §ya®, A Q; = 0. But:

AN =Sduwndaf =d(Y axr Nday) =0
3 9004 = 3 90 =3(F o3
sincey, oy Adoy € (Ag)*. ]

Remark 8.7.  Proposition 8.3 can be directly deduced from a deep result of Kostant
[15] about the structure of Cliff*)? seen as a deformation df\ g)?: by the Hopf-
Koszul-Samelson theoreni/ g)? is an exterior algebra Ej;,...,a;] with rank(g)

=r anday,...,a primitive (odd) invariants. Kostant shows that Qliff )¢ is a Clifford
algebra constructed oay,...,a,. Since the deformation fromf\g to Cliff(g*) has
leading term the Poisson bracket, it results t{"&;taj} =0, Vi, ], and then Proposition

8.3 follows.

Example 8.8. Using the results in Section 5 and Corollary 8.4, we will describe
H(s) andHZ(g) whens = sl(n) and g = gl(n), both equipped with the bilinear form
B(X,Y) =Tr(XY), ¥ X,Y. Let 1, be the identity matrix.

One has\s = {Q € Ag | llg(Q) =0} and #Za(s) = {F € #a(g) | llg(F) =
0 andF(gP) C s(F € .#P(g))}. By Propositions 4.6 and 4.107,, € .#a(s). More-
over, leta, = Tr (#,) (k> 0), then by Proposition 4.1@, . ; € (Ag)?, Vk>0, and
by Proposition 4.6a,,,; € (As)°, V k> 0.

(1) It is well-known thatH*(g) = (A g)? is the exterior algebra generated by the
invariant cocycles, a;, ..., a,,_4,i.e. (\g)? = Extla;,a,,...,a,, 4] andthat
H*(s) = (A\s)° is the exterior algebra generated by the invariant cocyajes.,
oy By 1. €. (A\8)° = Extlag,ag,...,a,, 4] (see [15, 14, 10]).

(2) We need to compute the super Poisson brackéf\an?. Note that{Q,Q'} =0,
v Q,Q" € (As)® by Proposition 8.3. Using! = C 1,, an adapted orthonormal
basis, and the formula in Proposition 5.4, one finds §&ta,;} = 2n. Then,



664 RNCzZON AND USHIROBIRA

since any element if/\ g)* decomposes 8@+ Q' Aa,, with Q, Q' € (As)°, we
have only to compute the following brackets:

{Q,Q'ra}=0VQ,Q € Ext"‘/[ag, - P
{Qra, @ Aat=2n(-1)" QAQ,
VQeExta,,...,a,, 4,Q € ExtV [@g,. .., 8 4]

(3) Use the isomorphisr#* of Proposition 7.15 to findH (s) = %¢(s)* andH¢ (g) =
%c(9)?. One has|,,<,] =0 by Proposition 4.2, s67,, is a cocycle, obvi-
ously g-invariant. By Proposition 4.11, it is a cyclic cocycle, add.<,, ) =

1
30k D) B2k 1 It results that

He(s) = EXt, [y, ... ] AN (@) = XY [, ..., ).

(4) Now we compute the Gerstenhaber bracket. Hp(s), by Corollary 8.4, the
Gerstenhaber bracket vanishes. ti(g), we use the isomorphisi* (see
Proposition 7.15) combined with 8.8 (3) and the commutation rulell‘ifyg)
computed in 8.8 (2) from which the commutation rulesi§(g) = H*(g)/C are
deduced. Finally the result is the following:

[F.F'la=0Y F,F' € EXt, [e,..., o 5,

[, Fla=0,¥ F € Ext, [%,% +“on-al;

[F,F' Adlpla= 0¥ F,F' € EXt, [oy, o), ..., oy 5,
[

o F' N gla= (1) F V' € BXtY [y 8y, 5,

[F A, F' A oHy)a ~1)"EAF,

:§<
VF € EX, [y, ), ..., oo o), F € EXU [y, ...ty 5,

Remark that for the last result, one uses:Fif Exti[%,%,...,g{m_z] N
%P (g), then f' = p' + 1 mod 2 andd(F’) e AP g,

9. Quadratic 2k-Lie algebras and cyclic cochains

9.1.. Let g be afinite-dimensional quadratic vector space with bilinear fBrrsiven
D e 2%-1 k> 1 denote byF = Fp the associated (even) structure g see Sections
2 and 3), 3.), that we also denote by a bracket notation:

[Yl"7Y2k] — |:(Y17 ,sz),le’.,sz c g.

Definition 9.1. The bilinear formB is F-invariant (or F is a quadratic structure
with bilinear form B) if B([Y;,...,Y, 1,Y],Z) = —B(Y,[Y;,....Yy 1,Z]), V Y, .,
Yo 1. Y, ZEg.

We introduce the linear mapsqad 80 by:

.....

ad{17/Y2k_1<Y> — [Y17 cee 7Y2k717Y:|7 \V/ Y17 e 7Y2k717Y c g.

It is obvious that
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Proposition 9.2.  The bilinear form B is F-invariant if and only iiald{leZI(il €
o(B),VYy,....,Y, ;€9.
The next Proposition results directly from Propositions 7.2 and 7.9.

Proposition 9.3.

(1) F is quadratic if and only if it is a cyclic cochain.

(2) F is quadratic if and only if there existsd A% g such that D= —Jad, (1) and
in that case, one has(Yy, ..., Yy 1) = B([Yy, -, Yol Yo 1) V Yy, oos Yo q €
4g.

9.2. . Keeping the notation of Proposition 9.3, a quadraiowill define a X-Lie
algebra structure op (namely a quadratick2Lie algebra) if and only if:

[F,F]la=0 or [D,D]=0 wor {l,1}=0. (7)

Examples of quadratick2Lie algebras can be directly deduced from Proposition
8.3: let us assume in the remaining of 9.2, tigais a semisimple Lie algebra with
bilinear formB (not necessarily the Killing form). Then one has:

Proposition 9.4.  Any invariant even cyclic cochain inZa(g) defines a quadratic
2k-Lie algebra ong.

These examples were introduced for the first time in [3], in the case of primitive
elements in(A g)? (we shall come back to the construction in [3] later in this Section).
Let F be an invariant even cyclic cochain, denote by:

[Yl,.7Y2k]:F(Y1,.7Y2k),VY1,.7Y2k€g
the associated quadrati&-bracket ong. Let us introduce, as in 9.1.:
I ([Y17 e ,Y2k+l) = B([Yl7 e 7Y2k],Y2k+l), le, e ’Y2k+l E g,

and the associated derivati@h= —%adp(l) of Ag. Since[D,D] = 2D? =0,
we can define the associated cohomology\anby

H*(F) =Z(D)/B(D)

whereZ(D) = ker(D) andB(D) = Im(D).
The following Lemma has to be compared with Formula 3 of 3.2:

Proposition 9.5.  Let {X,...,X,} be an orthonormal basis of with respect to B.
Then there exisB,,...,pBn € A%~1g such that:

1
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Proof.  Let {®,,...,on} be the dual basis ofXy,...,Xn}. One hasfy (ws)(Y) =
B([Xr,Xs],Y) forall Y € g. So 6y (ws) = -6y (ax) forall r, s. Define Q(X) = 1, (1),
X € g. By Lemma 8.6, there existsgghomomorphismot: g — A% g such thatQ =
do o. Definea; = a(X), then6y (o) = a([X%r, Xs]), so one ha®y (o) = —0y ().
DefineQ, = Q(X/) = da, the one has:

SoD(ar) = —do;. Then usingd = %sts/\ 6y, ([16]), one has:

1 1
0y = 2 ws /A By (o) = -3 <9xr(ZwSA as)—ZOXr(ws)Aas).
But Y wsA as is g-invariant, so :
9o =% 6 . 6 1 0
ocr—ig xr(wS)AO‘s——§ZO‘SA . (Os _EZ%A v

Therefore, sinc® andy sasA 9xs are derivations of\ g, one ha®D = —% Y sOs /A GXS,
and if we setBs = —as, the Proposition is proved. [

From Proposition 9.5, we deduce:

Proposition 9.6. One has(Ag)? C Z(D).

From the fact that € (A g)?, D is a g-homomorphism of thg;-module A g,
which is semisimple. By standard arguments ([16]), one deduces:

Proposition 9.7.  One has(Ag)? Cc H*(F).

WhenF is the Lie algebra structure gf, it is well-known thatH*(F) = (A g)®
([16)).

Let us now place the constructions in [3] in our context. We assumegthat
is a semisimple Lie algebra of rank and fix a non degenerate symmetric bilinear
form B (not necessarily Killing) ong. Let Sg) = Sym(g*). Using Chevalley’s
theorem, there exist homogeneous invaria@is...,Q; with g, = degQ,) such that
S(g)? = C[Qq,...,Q]. Lett: S(g)® — (Ag)? be the Cartan-Chevalley transgression
operator ([5], [6]). By the Hopf-Koszul-Samelson theorem ([5], [6], [15]), one has
(Ag)8 = Ext[t(Qy),...,t(Qr)] and dedt(Q,)) = 20, — 1. By (7) and Proposition 8.3,
any odd element in (Ag)? defines a quadratick2Lie algebra structure og (and
corresponding generalized Poisson brackegon As a particular case, this works for
t(Q;), i=1,...,r which define a(2g; — 2)-Lie algebra structure og and a GPB on
g*, and these are exactly the examples given in [3], though in these papers there are no
citations, neither to Chevalley [6], nor to Cartan [5]. Let us insist that not only primitive
invariants (as sometimes claimed in [3]), but actually all odd invariants do deifihée?
algebra structures og (Propositions 9.3 and 9.4).

9.3.. Using the notation and the results of Example 8.8, let us consider the case of
g = gl(n), with bilinear formB(X,Y) = Tr (XY), ¥X,Y € g. ConsidelC = F +F' A .«
with F, F' € Ext, [, 97,,...,9,, ,|. In order to haveC an even element ofZa(g),
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we have to assume thBte Ext0%er,, o7, ..., o, ,| andF’ € ExtNar,, ..., ol )
(see the last remark in Example 8.8 (4)). Moreover, we have to assumé thatl
F’ A o7, have the same degree i#5(g), say X. Then, from commutation rules in
8.8 (4), C defines a R-Lie algebra structure o if and only if F"AF’ = 0. This
last condition is obviously satisfied F’ is decomposable. For instance,nf> 3,
adg+ By Ny Aoty a, B € C, defines a 8-Lie algebra structure gnif n> 4,
oy + By Ny N g, o, B € C, defines a 14-Lie algebra structure gn

[1]
2]
[3]

[4]
[5]
[6]
[7]
[8]
[9]
[10]

[11]

[12]
[13]
[14]

[15]

[16]

References

Amitsur, A. S., and J. LevitzkiMinimal identities for algebrasProc. Amer.
Math. Soc.1 (1950), 449-463.

Arnal, D., M. Cahen, and J. Ludwid,ie groups whose coadjoint orbits are of
dimension smaller or equal to twbett. Math. Phys33(1995), 183-186.

de Azarraga, J. A., J. M. Izquierdo, and J. GcrBz BuenoAn introduction

to some novel applications of Lie algebra cohomology in mathematics and
physics RACSAM Rev. R. Acad. Cienc. Exactadsk Nat. Ser. A Mat95
(2001), 225-248.

Bourbaki, N., “Algebre,” Chapitre 9-Formes sesqudaires et formes quadra-
tiques, Paris, 1958.

Cartan, H.,La transgression dans un groupe de Lie et dans un espace fibr
principal, Coll. Topologie, C. B. R. M. Bruxelles (1950), 57—71.

Chevalley, C.,The Betti numbers of the exceptional Lie groupsoc. Intern.
Congress of Mathll (1950), 21-24.

Connes, A.,Noncommutative differential geometiyst. HautesEtudes Sci.
Publ. Math.62 (1985), 257-360.

Favre, G., and L. Santharoubar®&;mmetric, invariant, non-degenerate bilin-
ear form on a Lie algebral. Algebral05(1987), 451-464.

Filippov, V. T., n-Lie algebras(Russian) Sibirsk. Mat. ZI26 (1985), 126—140
(English translation: Siberian Math.2J6 (1985), 879-891).

Fuks, D. B., “ Cohomology of infinite-dimensional Lie algebras,” Contempo-
rary Soviet Mathematics, Consultants Bureau, New York, 1986.
Gerstenhaber, M., and S.D. Schack, “Algebraic cohomology and deformation
theory,” Deformation theory of algebras and structures and applications (Il
Ciocco, 1986), 11-264, NATO Adv. Sci. Inst. Ser. C Math. Phys. 34,
Kluwer Acad. Publ., Dordrecht, 1988.

Jacobson, N., “ Pl-algebras. An introduction,” Lecture Notes in Mathematics
441, Springer-Verlag, Berlin-New York, 1975.

Kac, V. G., “ Infinite dimensional Lie algebras” Cambridge University Press,
1990.

Kostant, B.,A theorem of Frobenius, a theorem of Amitsur-Levitzki and coho-
mology theoryJ. Math. and Mech? (1958), 237-264.

—, Clifford analogue of the Hopf-Koszul-Samelson theorem ptkalecompo-
sition C(g) = Endv, ® C(P) and theg-module structure of\ g, Adv. in Math.
125(1997), 275-350.

Koszul, J.-L.,Homologie et cohomologie des alyes de LieBull. Soc. Math.

Fr. 78 (1950), 65-127.



668

[17]
[18]
[19]

[20]

RANCzON AND USHIROBIRA

—, Crochet de Schouten-Nijenhuis et cohomolpglee mathematical heritage
of Elie Cartan (Lyon, 1984), Aétisque 1985, Nu@aro Hors ®rie, 257-271.
Medina, A., and P. Revoylgebres de Lie et produit scalaire invarignAnn.

Sci. Ecole Norm. Sup. (4)8 (1985), 553-561.

Nijenhuis, A., and R. W. Richardson, JEohomology and deformations in
graded Lie algebrasBull. Amer. Math. Soc72(1966), 1-29.

Scheunert, M., “The theory of Lie superalgebras. An introduction,” Lecture
Notes in Mathematics/16, Springer-Verlag Berlin-Heidelberg-New York,
1979.

G. Pinczon and R. Ushirobira
Institut de Mathématiques
de Bourgogne

Université de Bourgogne
B.P. 47870
F-21078 Dijon Cedex, France

gpinczon, rosane@u-bourgogne.fr

Received November 28, 2005
and in final form July 5, 2007



