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1. Introduction

Graded Lie algebras (gla) are commonly used in many areas of Mathematics and
Physics. One of the reasons is that they offer a very convenient framework for the
development of theories such as Cohomology Theory, Deformation Theory, among oth-
ers, very often avoiding heavy computations. The aim of this paper is to give some new
applications of classical well-knowngla related to Deformation Theory.

Let us start with some notations:g will be a complex vector space and
∧

g

the Grassmann algebra ofg, that is, the algebra of skew multilinear forms ong, with
the wedge product. Wheng is finite-dimensional, we have

∧
g = Ext(g∗), where

Ext(g∗) denotes the exterior algebra of the dual spaceg∗ . However, wheng is not
finite-dimensional, the strict inclusion Ext(g∗) ⊂

∧
g holds. Aquadraticvector space

is a vector space endowed with a nondegenerate symmetric bilinear form. In the case
of a quadratic Lie algebrathis bilinear form has to be invariant. A theory of finite-
dimensional quadratic Lie algebras based on the notion of double extension, was de-
veloped in [8] in the solvable case, following Kac’s arguments [13], and in [18] in the
general case by Medina and Revoy. In this paper, we shall present another interpretation
based on the concept of super Poisson bracket.

The gla we shall use here are:

(1) Gerstenhaber’s graded Lie algebrasM (g), related to associative algebra struc-
tures ong (see Section 2).
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(2) Gerstenhaber-Nijenhuis’s graded Lie algebrasMa(g), related to Lie algebra
structures ong (see Section 2).

(3) The graded Lie algebraD(g) of derivations of the Grassmann algebra
∧

g (often
calledW(n) whenn = dim(g), see Section 3).

(4) For finite-dimensionalg, the graded Lie algebraW (g) of skew symmetric poly-
nomial multivectors ong∗ with the Schouten bracket (see Section 4).

(5) Given a quadratic finite-dimensional spaceg, the super Poisson graded Lie alge-
bra structure on the Grassmann algebra

∧
g (see Section 5)and the superalgebra

H (g) of Hamiltonian derivations of
∧

g.

For (1) and (2), we refer to [11], for (3) to [20], for (4) to Koszul’s presentation
[17] (though [11] could be convenient as well). For (5), though it is a known algebra,
we have no references, probably because of the lack of applications up to now (we shall
show, e.g. in Sections 6 to 9, that there are some natural and interesting ones). Since we
want to fix our conventions and notations, we give an introduction to all the abovegla,
recalling the main properties that will be used all along this paper.

Section 2 is a review ofM (g) and Ma(g). We conclude the Section with a
notion of Generalized Lie Algebras structures, that we call 2k-Lie algebras, namely the
elementsF in M 2k

a (g) that satisfy[F,F ]a = 0. Such structures are introduced in [9]
and many other papers (e.g. [3]), under various names.

In Section 3 we recall how to go fromMa(g) to D(g), an operation that can be
translated as going from a structure to its cohomology, as we shall now explain. The
argument is given by Proposition 3.1: there exists a one to onegla homomorphism
from Ma(g)[1] to D(g), which turns out to be an isomorphism wheng is finite-
dimensional. So given a 2k-Lie algebra structure ong, there is an associated derivation
D of

∧
g, and the (generalized) Jacobi identity[F,F ]a = 0 is equivalent toD2 = 0,

so thatD defines a cohomology complex (3.3). This is well-known for Lie algebras
since the corresponding complex is the Chevalley complex of trivial cohomology. The
existence of a cohomology complex for a 2k-Lie algebra was pointed out (without the
gla interpretation), e.g. in [3]. We then recall the definition and properties of the
Schouten bracket for a finite-dimensionalg. As in [3], we define aGeneralized Poisson
Bracket(GPB) as an elementW of W 2k(g) satisfying [W,W]S = 0 (Definition 3.4),
the obvious generalization of the classical definition of a Poisson bracket. We show
that there exists a one to onegla homomorphism fromD(g) into W (g)[1] (Proposition
3.5), so that any 2k-Lie algebra structure ong has an associated GPB, generalizing the
classical Lie-Kostant-Kirillov bracket associated to a Lie algebra.

We apply the results of Sections 2 and 3 to standard polynomials in Section
4. Standard polynomialsAk (k ≥ 0) on an associative algebrag, appear in the PI
algebras theory (see [12]) and also in cohomology theory (for instance, the coho-
mology of gl(n) is Ext[a1,a3, . . . ,a2n−1] where ak = Tr (Ak), and the cohomology
of gl(∞) is Ext[a1,a3, . . . ] [10]). There are two different structures on the space
A = span{Ak | k≥ 0} , both with interesting consequences. The first one comes from
the Gerstenhaber bracket ofMa(g): we compute explicitly[Ak,Ak′]a, and it results
that A is a subalgebra of thegla Ma(g) (Proposition 4.2). Since[A2k,A2k]a = 0,
any even standard polynomial define a 2k-Lie algebra structure ong (Proposition 4.3).
Moreover,A2k is a coboundary (an invariant one) of the adjoint cohomology of the Lie
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algebraA2 defined by the associative algebrag. The second product, denoted by×, is
the cup-product onMa(g). We find thatA is an Abelian algebra for×, and in fact a
very simple one, sinceAk = (A1)

×k , ∀k (Corollary 4.5). For instance, forg = gl(n),
A with its ×-product is isomorphic toC[x]/x2n, sinceAk = 0, ∀k≥ 2n (the Amitsur-
Levitzki theorem [1, 14]). From the identities in Corollary 4.5, we deduce some clas-
sical identities of standard polynomials (e.g.A2k = (A2)

×k , ∀k, usually proved by
hand). Wheng has a trace, we prove that Tr([F,G]×) = 0, for all F , G ∈ Ma(g)
(Corollary 4.8), and then (keeping the notationak = Tr (Ak)), that a2k = 0, ∀k > 0,
and thata2k+1 is an invariant Lie algebra cocycle (Proposition 4.10). To conclude Sec-
tion 4, we compute the cohomology of the Lie algebrag of finite-rank operators in
an infinite-dimensional space. Obviously,gl(∞) ⊂ g, but this inclusion is strict. Our
result isH?(g) = Ext[a1,a3, . . . ] (Proposition 4.14), so the above inclusion induces an
isomorphism in cohomology.

The first part of Section 5 is devoted to the construction of the super Poisson
bracket defined on

∧
g, wheng is a finite-dimensional quadratic vector space. We fol-

low a deformation argument as in [15]: the Clifford algebra Cliff(g∗) can be seen as
a quantization of the algebra

∧
g of skew polynomials, similarly to the Moyal quan-

tization of polynomials by the Weyl algebra. In 5.1, we introduce some formulas for
the construction of the Clifford algebra that are convenient since they easily provide a
transparent formula for the deformed product (Proposition 5.1), with leading term the
super Poisson bracket, explicitly computed in Proposition 5.4. The relation with the
superalgebrãH(n) [20] is given by Definition 5.3, and a Moyal type formula is ob-
tained in Proposition 5.5 (an equivalent formula without the super Poisson bracket can
be found in [15]). In the second part of Section 5, we use thegla

∧
g and the super

Poisson bracket to study quadratic Lie algebras. We obtain that quadratic Lie algebra
structures ong with bilinear formB are in one to one correspondence with elementsI
in
∧3g satisfying{I , I} = 0; more precisely,I(X,Y,Z) = B([X,Y],Z), ∀X , Y , Z ∈ g,

and the differential∂ of
∧

g is ∂ = −1
2 adP(I) (Propositions 5.11, 5.12). We prove

that any quadratic deformation of a quadratic Lie algebra is equivalent to a deformation
with unchanged invariant bilinear form (Proposition 5.10), and finally, we propose agla
framework well-adapted to the deformation theory of quadratic Lie algebras (Remark
5.13).
We use the results of Section 5 in Section 6 to give a complete description of finite-
dimensional elementary quadratic Lie algebras, i.e. those with decomposable associated
elementI in

∧3g (Definition 6.3). We first give a simple characterization in Proposition
6.4: if g is a non Abelian quadratic Lie algebra, then dim([g,g])≥ 3, andg is elemen-
tary if and only if dim([g,g]) = 3. We then show that any non Abelian quadratic Lie
algebra reduces, up to a central factor, to a quadratic Lie algebra with totally isotropic
center (Proposition 6.7); the property of being elementary is preserved under the re-
duction. This reduces the problem of finding all non Abelian elementary quadratic Lie
algebras to algebras of dimension 3 to 6 (Corollary 6.8), that we completely describe
in 6.2 and Proposition 6.10. Some remarks: as we show in Proposition 6.5, ifg is an
elementary quadratic Lie algebra, all coadjoint orbits have dimension at most 2. Now, a
classification of Lie algebras whose coadjoint orbits are of dimension at most 2, is given
in Arnal et al. [2], and the proof, using Lie algebra theory, is not at all trivial. With
some effort, the elementary quadratic algebras can be identified in their classification.
Our proof is completely different, based on basic properties of quadratic forms.

In Section 7 we study cyclic cohomology of quadratic Lie algebras. Given a
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quadratic vector spaceg, we useg-valued cochains (rather thang∗ -valued, by analogy
to the associative case [7]) to define cyclic cochains (Definition 7.1) (both notions are
equivalent wheng is finite-dimensional). Thanks to this definition, we can use the
Gerstenhaber bracket ofMa(g) and we show that cyclic cochains are well-behaved
with respect to this bracket: the spaceCc(g) of cyclic cochains is a subalgebra of
the gla Ma(g) (Proposition 7.2) and ifg is a Lie algebra,Cc(g) is a subcomplex
of the adjoint cohomology complexMa(g) (Proposition 7.4); we define the cyclic
cohomologyH∗

c (g) as the cohomology of this subcomplex (Definition 7.5). There
is a natural one to one map fromCc(g) into

∧
Qg =

∧
g/C (Proposition 7.2) which

induces a map fromH∗
c (g) into H∗

Q(g) = H∗(g)/C . When g is finite-dimensional,∧
Qg is a gla for the (quotient) Poisson bracket, isomorphic toH (g), and there is an

inducedgla structure onH∗
Q(g). We show that there is agla isomorphism fromCc(g)

onto
∧

Qg (Proposition 7.7), and fromH∗
c (g) onto H∗

Q(g) (Proposition 7.15). We also
introduce a wedge product onCc(g), and onH∗

c (g) (Definition 7.12 and Proposition
7.13) which proves to be useful to describeH∗

c (g) (Proposition 7.15). Wheng is not
finite-dimensional, the isomorphism betweenH∗

c (g) and H∗
Q(g) is no longer true: we

give an example where the natural map is neither one to one, nor onto (Propositions
7.18, 7.19). So the cyclic cohomologyH∗

c (g) can have its own life, independently of
the reduced cohomologyH∗

Q(g).
Section 8 starts with the study of invariant cyclic cochains in the case of a finite-

dimensional quadratic Lie algebra. We first prove that any invariant cyclic cochain is
a cocycle (Proposition 8.2). Wheng is reductive, we demonstrate that the inclusion of
invariant cyclic cochains into cocycles induces an isomorphism in cohomology (Propo-
sition 8.2), so thatH∗

c (g) ' Cc(g)g . Assuming thatg is a semisimple Lie algebra, we
prove in Proposition 8.3:

If I , I ′ ∈ (
∧

g)g , then{I , I ′}= 0
As a corollary, wheng is semisimple, the Gerstenhaber bracket induces the null

bracket onH∗
c (g). Applying the preceding results, we give a complete description of

the super Poisson bracket in(
∧

g)g , and of thegla H∗
c (g), wheng = gl(n) (Example

8.8).
We develop in Section 9 the theory of quadratic 2k-Lie algebra structures de-

fined from cyclic cochains on a semi-simple Lie algebrag : we show that any invariant
even cyclic cochainF defines a quadratic 2k-Lie algebra (Proposition 9.4) and that
(
∧

g)g = H?(g) is contained inH?(F). We also give an interpretation of some inter-
esting examples given in [3] of 2k-Lie algebras in terms of the techniques developed in
the present paper, pointing out where these examples come from. Finally, we give some
examples of quadratic 2k-Lie algebra structures ongl(n) (9.3).

2. M (g), Ma(g) and 2k-Lie algebra structures

This Section is essentially a review, except 2.3. For more details, see [11] and [19]. Let
g be a complex vector space. We denote byM (g) the space of multilinear mappings
from g to g. The spaceM (g) is graded as follows:

M (g) = ∑
k≥0

M k(g)

whereM 0(g) = g, M k(g) = {F : gk → g | F k-linear} , for k≥ 1.
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2.1. . The theory of associative algebra structures ong is conveniently described in
a graded Lie algebra framework as follows: first, considerM (g) with shifted grading
M k[1] = M k+1(g) and denote itM [1]. Then define a graded Lie bracket onM [1] as
follows: for all F ∈M p[1], G∈M q[1], then[F,G] ∈M p+q[1] and

[F,G](X1, . . . ,Xp+q+1) :=

(−1)pq
p+1

∑
j=1

(−1)q( j−1) F(X1, . . . ,Xj−1,G(Xj , . . . ,Xj+q),Xj+q+1, . . . ,Xp+q+1)

−
q+1

∑
j=1

(−1)p( j−1) G(X1, . . . ,Xj−1,F(Xj , . . . ,Xj+p),Xj+p+1, . . . ,Xp+q+1).

for X1, . . . ,Xp+q+1 ∈ g.

WhenX ∈M−1[1] = g, then[X,G] is defined by:

[X,G](X1, . . . ,Xq) =−
q+1

∑
j=1

(−1) j−1 G(X1, . . . ,Xj−1,X,Xj , . . . ,Xq).

Notice that whenF and G are in M 0[1] = End(g), then [F,G] is the usual
bracket of the two linear mapsF andG.

Any F ∈M 1[1] defines a product ong by:

X ·Y = F(X,Y),∀ X,Y ∈ g.

This product is associative if and only if[F,F ] = 0. In this case, the derivation
ad(F) of the graded Lie algebraM [1] satisfies(ad(F))2 = 0, so it defines a complex
on M (g) which turns out to be the Hochschild cohomology complex of the associative
algebra defined byF [11].

2.2. . In the remaining of the paper, we useSp,q to denote the set of all(p,q)-
unshuffles, that is, elementsσ in the permutation groupSp+q satisfyingσ(1) < · · ·<
σ(p) andσ(p+1) < · · ·< σ(p+q).

The theory of Lie algebra structures ong is also conveniently described in a
graded Lie algebra framework. First, letMa = Ma(g) be the space of skew symmetric
elements inM (g). One hasMa = ∑

k≥0

M k
a with M 0

a = g and M 1
a = End(g). Then

considerMa with shifted grading denoted byMa[1], and define a graded Lie bracket
as follows: for allF ∈M p

a [1], G∈M q
a [1], then[F,G]a ∈M p+q

a [1] and

[F,G]a (X1, . . . ,Xp+q+1) :=

(−1)pq ∑
σ∈Sq+1,p

ε(σ) F(G(X
σ(1), . . . ,Xσ(q+1)),Xσ(q+2), . . . ,Xσ(p+q+1))

− ∑
σ∈Sp+1,q

ε(σ) G(F(X
σ(1), . . . ,Xσ(p+1)),Xσ(p+2), . . . ,Xσ(p+q+1))

for X1, . . . ,Xp+q+1 ∈ g.

WhenX ∈M−1
a [1] = g, then

[X,G]a (X1, . . . ,Xq) =−G(X,X1, . . . ,Xq) (=−ιX(G)(X1, . . . ,Xq)).
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Moreover, whenF , G∈ M 0
a [1] = End(g), then [F,G]a is the usual bracket of

the linear mapsF andG.
Now, anyF ∈M 1

a [1] defines a bracket ong by

[X,Y] = F(X,Y),∀ X,Y ∈ g.

The Jacobi identity is satisfied if and only if[F,F ]a = 0. In this case, the
derivation ad(F) of the graded Lie algebraMa[1] satisfies(ad(F))2 = 0, so it defines
a complex onMa which turns out to be the Chevalley cohomology complex with
coefficients in the adjoint representation, of the Lie algebra structure defined byF .

At this point, let us quickly explain the relations between the two brackets de-
fined in 2.1 and 2.2. First, define theskew symmetrization mapA: M (g)→Ma(g):

A(F)(X1, . . . ,Xk) = ∑
σ∈Sk

ε(σ) F(X
σ(1), . . . ,Xσ(k))

with F ∈M k(g) andX1, . . . ,Xk ∈ g. One has:

Proposition 2.1. For all F , G∈M (g), A([F,G]) = [A(F),A(G)]a.

Obviously, whenF ∈ M 1[1] is an associative product ong, then A(F) is a
Lie algebra structure ong. However one should notice that from Proposition 2.1, Lie
algebra structures of type A(F) can be obtained from a productF on g satisfying other
conditions than associativity, for instance:

Proposition 2.2. Let F ∈M 1[1] such that there existsτ ∈S3 satisfyingτ.[F,F ] =
−ε(τ) [F,F ]. ThenA(F) defines a Lie algebra structure ong.

2.3. . Let us introduce a concept of generalized Lie algebra structures ong:

Definition 2.3. An elementF ∈M 2k−1
a [1] is a 2k-Lie algebra structure ong if

[F,F ]a = 0.

We shall often use a bracket notation: forX1, . . . ,X2k ∈ g,

[X1, . . . ,X2k] = F(X1, . . . ,X2k).

The identity[F,F ]a = 0 can be seen as a generalized Jacobi identity (see [9, 3]).
Given a 2k-Lie algebra structureF on g, ad(F) is an odd derivation ofMa[1]

and satisfies(ad(F))2 = 0, so there is an associated cohomology defined by ker(ad(F))/
Im(ad(F)), which can be interpreted as a generalization of the Chevalley complex of
2.2.

3. D(g), W (g), cohomology of2k-Lie algebras andGPB

In this Section, with exception made to 3.3 and 3.4, we recall classical material needed
in the paper.
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3.1. . We denote byD = D(g) the space of (graded) derivations of
∧

g. The space
D is graded byD = ∑n

k=−1Dk with D ∈Dd if D(
∧pg)⊂

∧p+d g, for all p, and has a
graded Lie algebra structure with a bracket defined by:

[D,D′] = D◦D′− (−1)dd′D′ ◦D,∀ D ∈Dd,D′ ∈Dd′. (1)

We denote byιX , X ∈ g, the elements ofD−1 defined by

ιX(Ω)(Y1, . . . ,Yk) := Ω(X,Y1, . . . ,Yk),∀ Ω ∈
∧

k+1g,X,Y1, . . . ,Yk ∈ g (k≥ 0),

and ιX(1) = 0. Wheng is finite-dimensional, given a basis{X1, . . . ,Xn} and its
dual basis{ω1, . . . ,ωn} , any elementD ∈D can be written in a unique way:

D =
n

∑
r=1

Dr ∧ ιXr

where Dr = D(ωr). Moreover, D is a simple Lie superalgebra (often denoted by
W(n), see [20]) and there exists a vector space isomorphismD : Ma[1] → D defined
by D(Ω⊗X) =−Ω∧ ιX , ∀ Ω ∈

∧
g, X ∈ g which turns out to be agla isomorphism.

Since we do not want to restrict ourselves to the finite-dimensional case, we give
a proof of the following result:

Proposition 3.1. There exists a one to onegla homomorphismD : Ma[1]→D such
that

D(Ω⊗X) =−Ω∧ ιX,∀ Ω ∈
∧

g,X ∈ g.

Wheng is finite-dimensional,D is an isomorphism.

Proof. Given a basis{Xr | r ∈ R} of g, and the formsωr , r ∈ R , defined by
ωr(Xs) = δrs , ∀r,s, for F ∈ M k

a , let D(F) = −∑r∈R
tF(ωr)∧ ιXr

. It is easy to see
that though its indexes set is infinite, this sum, when applied to an elementΩ ∈

∧wg,
gives:

D(F)(Ω)(Y1, . . . ,Yk+w−1) =

− ∑
σ∈Sk,w−1

ε(σ)Ω(F(Y
σ(1), . . . ,Yσ(k)),Yσ(k+1), . . . ,Yσ(k+w−1)),

for all Y1, . . . ,Yk+w−1 ∈ g. It results that our definition ofD does not depend on

the basis ofg, and thatD(A⊗X) = −A∧ ιX , A∈
∧kg, X ∈ g. Keeping in mind the

remark about the sum definingD, we compute forG∈M k′
a :

[D(F),D(G)] =

∑
r,s

(
tF(ωr)∧ ιXr

(tG(ωs))− (−1)(k+1)(k′+1)tG(ωr)∧ ιXr
(tF(ωs))

)
∧ ιXs

.

By a direct computation:

∑r

(
tF(ωr)∧ tG(ωs))− (−1)(k+1)(k′+1)tG(ωr)∧ ιXr

(tF(ωs))
)

(Y1, . . . ,Yk+k′−1)

= ωs

(
∑σ∈S

k,k′−1
ε(σ)G(F(Y

σ(1), . . . ,Yσ(k)),Yσ(k+1), . . . ,Yσ(k+k′−1)) −

(−1)(k+1)(k′+1) ∑σ∈S
k′,k−1

ε(σ)F(G(Y
σ(1), . . . ,Yσ(k′)),Yσ(k′+1), . . . ,Yσ(k+k′−1))

)
=−t [F,G](ωs)(Y1, . . . ,Yk+k′−1),
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Hence:

[D(F),D(G)] =−∑
s

t [F,G](ωs)∧ ιXs
= D([F,G])

In the sequel, givenF ∈Ma(g), we denote byDF the associated derivation of∧
g. If g is finite-dimensional, forD ∈D , we denote byFD the associated element in

Ma(g). Here are some examples:

Example 3.2. If T ∈ End(g) = M 0
a [1], then

DT(Ω)(Y1, . . . ,Yp) =−
p

∑
i=1

Ω(Y1, . . . ,Yi−1,T(Yi),Yi+1, . . . ,Yp)

for all Ω ∈
∧pg, Y1, . . . ,Yp ∈ g.

Example 3.3. If F ∈M 1
a [1], then

DF(Ω)(Y1, . . . ,Yp+1) = (2)

∑
i< j

(−1)i+ j Ω(F(Yi ,Yj),Y1, . . . ,Ŷi , . . . ,Ŷj , . . . ,Yp+1)

for all Ω ∈
∧pg, Y1, . . . ,Yp+1 ∈ g.

3.2. . Let F be a Lie algebra structure ong, thenF ∈M 1
a [1] and[F,F ]a = 0. Let ∂ =

DF , then [∂ ,∂ ] = 0 gives∂ 2 = 0 and formula (2) shows that the associated complex,
in the Grassmann algebra

∧
g, is exactly the Chevalley cohomology complex of trivial

cohomology ofg. One definesθX :

θX = [ιX,∂ ] = Dad(X).

If {Xr | r ∈ R} is a basis ofg, consider the formsωr , r ∈ R , defined by
ωr(Xs) = δrs , ∀r,s. The mapθ defines a Lie algebra representation ofg in

∧
g and one

has:

∂ =
1
2 ∑

r∈R

ωr ∧θXr
. (3)

Let us precise that this formula is well-known wheng is finite-dimensional (see
[16]), and that a proof in the infinite-dimensional case can be found in the proof of
Lemma 4.9 of the present paper. In any case, a very important consequence of formula
(3) is that any invariant in(

∧
g)g is a cocycle.

3.3. . Let us now check how 3.2 can be extended to 2k-Lie algebra structures ong.
Let F ∈M 2k−1

a [1]. Assume that[F,F ]a = 0, and let

[Y1, . . . ,Y2k] := F(Y1, . . . ,Y2k) (4)

for Y1, . . . ,Y2k ∈ g. Denote byD = DF the associated derivation of
∧

g. Using
Proposition 3.1, one concludesD2 = 0, so one can define an associated cohomology
H?(F) = ker(D)/Im(D). One has

Dω(Y1, . . . ,Y2k) =−ω([Y1, . . . ,Y2k])
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for ω ∈ g∗ , Y1, . . . ,Y2k ∈ g. We shall come back to cohomology of 2k-Lie algebras in
Section 9.

In the remaining of this Section, we will assume thatg is a finite-dimensional
vector space with dim(g) = n. We now recall some properties of the Schouten bracket.
For more details, we refer to [17].

Let W = W (g) = P ⊗
∧

g, graded byW p = P ⊗
∧pg, where P is the

symmetric algebra ofg∗ . Elements ofW act as skew symmetric multivectors onP
as follows: forΩ ∈

∧pg, P∈P , f1, . . . , fp ∈P ,

(P⊗Ω)( f1, . . . , fp)ϕ = P(ϕ) Ω((d f1)ϕ , . . . ,(d fp)ϕ).

For instance, if{X1, . . . ,Xp} is a basis ofg and{ω1, . . . ,ωp} its dual basis, one
has for alli = 1, . . . , p:

ωi( f ) =
∂ f
∂Xi

,∀ f ∈P.

There is a natural∧-product onW , defined by: for allP,P′ ∈P , Ω,Ω′ ∈
∧

g:

(P⊗Ω)∧ (P′⊗Ω′) = PP′⊗ (Ω∧Ω′).

Each f ∈P defines a derivationι f of degree−1 of W by:

ι f (P⊗Ω)( f1, . . . , fp−1)ϕ = P(ϕ) ι(d f)ϕ
(Ω)((d f1)ϕ , . . . ,(d fp−1)ϕ)

= P(ϕ) Ω((d f)ϕ ,(d f1)ϕ , . . . ,(d fp−1)ϕ).

For instance, ifV ∈W 1, one hasι f (V) = V( f ). There is a graded Lie bracket
on W [1] called theSchouten bracket, and defined by: for allW ∈W p[1], W′ ∈W q[1],
then [W,W′]S∈W p+q[1] and

[W,W′]S ( f1, . . . , fp+q+1) =

(−1)pq ∑
σ∈Sq+1,p

ε(σ) W(W′( f
σ(1), . . . , f

σ(q+1)), f
σ(q+2), . . . , f

σ(p+q+1))

− ∑
σ∈Sp+1,q

ε(σ) W′(W( f
σ(1), . . . , f

σ(p+1)), f
σ(p+2), . . . , f

σ(p+q+1))

for f1, . . . , fp+q+1 ∈P .

Then for allP,P′ ∈P , Ω ∈
∧p+1g, Ω′ ∈

∧q+1g:

[P⊗Ω,P′⊗Ω′]S = (−1)pqP⊗ (Ω′∧ ιP′(Ω))−P′⊗ (Ω∧ ιP(Ω′)).

As a particular case, one has[Ω,Ω′]S = 0, for all Ω , Ω′ ∈
∧

g.
Let W∈W 1[1], thenW defines a Poisson bracket onP by {P,P′}=W(P,P′) if

and only if [W,W]S= 0. More generally, as proposed in [3], one can defineGeneralized
Poisson Brackets(GPB) as follows:

Definition 3.4. An elementW ∈W 2k−1[1] is a GPB if [W,W]S = 0.

(see [3] where these structures are introduced and applications are proposed).

3.4. . Let us now show that 2k-Lie algebras have associated GPB, exactly as Lie
algebras have associated Poisson brackets. This will be a consequence of the following
construction: define a mapV : D = D(g) → W by VD = V(D) := −X⊗Ω for D =
Ω∧ ιX with Ω ∈

∧
g, X ∈ g. Then, it is easy to check that:
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Proposition 3.5. One has V[D,D′] = [VD,VD′]S, for D, D′ ∈D . Moreover V is a one

to one graded Lie algebras homomorphism fromD into W [1].

For example, given a 2k-Lie algebra structureF on g, denoted by[Y1, . . . ,Y2k]
= F(Y1, . . . ,Y2k), ∀ Y1, . . . ,Y2k ∈ g, let D be the associated derivation (see Proposition
3.1) in D . Then one has:

VD( f1, . . . , f2k)ϕ = 〈ϕ|[(d f1)ϕ , . . . ,(d f2k)ϕ ]〉,

and since[F,F ]a = 0 (by Proposition 3.1), one has[D,D] = 0 . Using Proposi-
tion 3.5 above,[VD,VD]S = 0, soVD defines a GPB onP .

Finally, using 3.1 and Proposition 3.5, one deduces an inclusion of the simple
Lie superalgebraW(n) into the graded Lie algebraW [1], endowed with the Schouten
bracket which provides a natural realization ofW(n).

4. Application to identities of standard polynomials, and cohomology

In this Section,g denotes an associative algebra, with productm. We also use the
notation: X.Y = m(X,Y), ∀ X,Y ∈ g. We assume thatm has a unit1m, but this is not
really necessary.

We first define the iteratedmk (k≥ 0) of m as:

m0 = 1m, m1 = Idg, m2 = m, . . . , mk(Y1, . . . ,Yk) = Y1. . . . .Yk, ∀Y1, . . . ,Yk ∈ g, . . .

It is easy to check that:

Proposition 4.1. For all k, k′ ≥ 0, one has:

[m2k,m2k′] = 0,

[m2k,m2k′+1] = (2k−1) m2k+2k′,

[m2k+1,m2k′+1] = 2(k−k′) m2k+2k′+1.

Hence the space generated by{mk,k≥ 0} is a subalgebra of thegla M (g) of
Section 2.

Now define thestandard polynomialsAk (k≥ 0) on g as:

Ak := A(mk)

Using Propositions 2.1 and 4.1, one immediately obtains:

Proposition 4.2. For all k, k′ ≥ 0, one has:

[A2k,A2k′]a = 0,

[A2k,A2k′+1]a = (2k−1) A2k+2k′,

[A2k+1,A2k′+1]a = 2(k−k′) A2k+2k′+1.

Let A be the subspace generated by{Ak,k ≥ 0}. HenceA is a subalgebra
of the graded Lie algebraMa(g) of Section 2. The standard polynomialA2 is the Lie
algebra structure ong associated tom. Since[A2k,A2k]a = 0, ∀k, we conclude:
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Proposition 4.3. The standard polynomialsA2k , k≥ 1 define2k-Lie algebra struc-
tures ong.

Remark thatAk is a g-invariant map fromgk to g for the Lie algebra structure.
Moreover the standard polynomialA2k is a coboundary of the adjoint representation of
the Lie algebrag since[A2,A2k−1] = A2k .

Let us now define an associative product onA . First consider the cup-product
◦ on M (g):

(F ◦G)(Y1, . . . ,Yp+q) = F(Y1, . . . ,Yp).G(Yp+1, . . . ,Yp+q),

for all F ∈M p(g),G∈M q(g), Y1, . . . ,Yp+q ∈ g.
Then define an associative product× on Ma(g) by:

(F×G)(Y1, . . . ,Yp+q) = ∑
σ∈Sp,q

ε(σ) F(Y
σ(1), . . . ,Yσ(p)) . G(Y

σ(p+1), . . . ,Yσ(p+q)),

for all F ∈ M p
a (g),G ∈ M q

a (g), Y1, . . . ,Yp+q ∈ g. By a straightforward computation,
one has:

Proposition 4.4. For all F , G∈Ma(g), A(F ◦G) = A(F)×A(G).

It is obvious thatmk = m1◦ · · · ◦m1︸ ︷︷ ︸
k times

, so:

Corollary 4.5. Ak = A1×·· ·×A1︸ ︷︷ ︸
k times

, for all k≥ 1 and Ak×A` = A`×Ak = Ak+` ,

for all k, `≥ 0.

As a consequence,A is a commutative algebra for the×-product.
Any elementZ∈ g defines a super derivationιZ of degree−1 of the×-product

of Ma(g) by: for all F ∈M p
a (g), Y1, . . . ,Yp−1 ∈ g,

ιZ(F)(Y1, . . . ,Yp−1) := F(Z,Y1, . . . ,Yp−1),

Denote by Z(g) the center of the algebrag. If Z ∈ Z(g), one hasιZ(A2) = 0.
Hence using Corollary 4.5 and the derivation property ofιZ , we deduce:

Proposition 4.6. Assume that Z∈ Z(g). Then for all k ,

ιZ(A2k) = 0 andιZ(A2k+1) = Z . A2k.

This Proposition expresses classical identities of standard polynomials, generally
written in the caseZ = 1m.

Let us now assume thatg is equipped with a trace, that is, a linear form Tr :g→
C satisfying:

Tr(X.Y) = Tr(Y.X), ∀ X,Y ∈ g.

Let
∧

g be the Grassmann algebra ofg. We extend the trace Tr to a map
Tr : Ma(g)→

∧
g defined by:

Tr(F)(Y1, . . . ,Yp) = Tr(F(Y1, . . . ,Yp)),

for all F ∈M p
a (g), Y1, . . . ,Yp ∈ g.
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Proposition 4.7. One hasTr (F ×G) = (−1)pq Tr (G× F), for all F ∈ M p
a (g),

G∈M q
a (g).

Proof. Let F ∈M p
a (g), G∈M q

a (g), Y1, . . . ,Yp+q ∈ g:

Tr(F×G)(Y1, . . . ,Yp+q) =

= ∑
σ∈Sp,q

ε(σ) Tr(F(Y
σ(1), . . . ,Yσ(p)) . G(Y

σ(p+1), . . . ,Yσ(p+q)))

= ∑
σ∈Sp,q

ε(σ) Tr(G(Y
σ(p+1), . . . ,Yσ(p+q)) . F(Y

σ(1), . . . ,Yσ(p)))

Given σ ∈Sp,q, defineτ ∈Sq,p asτ(1) = σ(p+1), . . . , τ(q) = σ(p+q) and
τ(q+1) = σ(1), . . . , τ(q+ p) = σ(p). Then one hasε(τ) = (−1)pqε(σ), so:

Tr(F×G)(Y1, . . . ,Yp+q) =

= (−1)pq ∑
τ∈Sq,p

ε(τ) Tr(G(Y
τ(1), . . . ,Yτ(q)) . F(Y

τ(q+1), . . . ,Yτ(p+q)))

= (−1)pqTr(G×F)(Y1, . . . ,Yp+q).

Hence our extension of the trace has, in fact, the properties of a
∧

g-valued super
trace on the graded algebra(Ma(g),×). Denoting the super bracket associated to the
×-product onMa(g) by:

[F,G]× = F×G− (−1)pqG×F,∀ F ∈M p
a (g),G∈M q

a (g),

one obtains

Corollary 4.8. Tr ([F,G]×) = 0.

Lemma 4.9. Let h be a Lie algebra. Then any invariant cochain in(
∧

h)h is a
cocycle.

Proof. If h is finite-dimensional, the result is well-known ([16]) and is a direct
consequence of the formula∂ = 1

2 ∑n
i=1ωi∧θXi

where∂ is the differential,{X1, . . . ,Xn}
a basis ofh and{ω1, . . . ,ωn} its dual basis.

For the sake of completeness, we give a proof in the general case, let{Xi | i ∈ I}
be a basis ofh , and{ωi | i ∈ I} be the forms defined byωi(Xj) = δi j , ∀ i, j . We claim

that the formula∂ = 1
2 ∑i∈I ωi ∧θXi

is still valid. To prove this, letD = 1
2 ∑i∈I ωi ∧θXi

.
Though its indexes set is infinite, this sum exists since forΩ ∈

∧ph andY1, . . . ,Yp+1 ∈
h , one has:

1
2∑

i∈I
ωi ∧θXi

(Ω)(Y1, . . . ,Yp+1) =
1
2

p+1

∑
j=1

(−1) j+1∑
i∈I

ωi(Yj)θXi
(Ω)(Y1, . . . ,Ŷj , . . . ,Yp+1)

Then

D(Ω)(Y1, . . . ,Yp+1) =−1
2

p+1

∑
j=1

(−1) j+1

(
j−1

∑
k=1

Ω(Y1, . . . , [Yj ,Yk], . . . ,Ŷj , . . . ,Yp+1) +
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p+1

∑
k= j+1

Ω(Y1, . . . ,Ŷj , . . . , [Yj ,Yk], . . . ,Yp+1)

)

=
1
2

p+1

∑
j=1

(−1) j

(
∑
k< j

(−1)k+1Ω([Yj ,Yk],Y1, . . . ,Ŷk, . . . ,Ŷj , . . . ,Yp+1)+

∑
j<k

(−1)kΩ([Yj ,Yk],Y1, . . . ,Ŷj , . . . ,Ŷk, . . . ,Yp+1)

)
= ∑

j<k

(−1) j+kΩ([Yj ,Yk],Y1, . . . ,Ŷj , . . . ,Ŷk, . . . ,Yp+1) = ∂ (Ω)(Y1, . . . ,Yp+1)

Proposition 4.10. One hasTr (A2k) = 0 (k ≥ 1) and Tr (A2k+1) (k ≥ 0) is an
invariant cocycle for the (trivial) cohomology of the Lie algebrag.

Proof. For the first claim, use[A1,A2k−1]× = 2A2k and apply Corollary 4.8. For the
second, we remark thatA2k+1 is a g-invariant map fromg2k+1 into g, so Tr(A2k+1) ∈
(
∧

g)g and it is a cocycle by Lemma 4.9.

Now recall the well-known formula (e.g. [14]):

Proposition 4.11. For all Y1, . . . ,Y2k+1 ∈ g,

Tr(A2k+1(Y1, . . . ,Y2k+1)) = (2k+1)Tr(A2k(Y1, . . . ,Y2k).Y2k+1).

This formula will be reinterpreted in Section 7 in terms of cyclic cohomology
of the Lie algebrag: A2k is a cocycle of the adjoint action (actually a coboundary
since [A2,A2k−1] = A2k), and Proposition 4.11 tells that it is a cyclic cocycle, as will
be defined in Section 7.

Example 4.12. Assume thatg = gl(n). ThenH?(g) can be completely described in
terms of standard polynomials (see e.g. [14] or [10]):

H?(g) = Ext[Tr(A1),Tr(A3), . . . ,Tr(A2n−1)].

Moreover, by the Amitsur-Levitzki theorem ([1, 14]):

Ak = 0, if k≥ 2n.

So dim(A ) = 2n. For the×-product,A ' C[X]/X2n. For the graded bracket
of 2.2, the structure ofA is given by Proposition 4.2,A2 is the Lie algebra structure
on g and the standard polynomialsA4, . . . ,A2n−2 define 2k-Lie algebra structures on
g by Proposition 4.3.
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Example 4.13. More generally, letV be an infinite-dimensional vector space. Let
g be the space of finite-rank linear maps. Sog is an ideal of the associative algebra
End(V). There is a vector spaces isomorphismg ' V∗⊗V defined by(ω ⊗ v)(v′) =
ω(v′) v, for all v, v′ ∈V , ω ∈V∗ . So we can define the trace Tr(X) when X ∈ g by
Tr (ω ⊗v) := ω(v), for all ω ∈V∗ , v∈V . It is easy to check that Tr([X,Y]) = 0, for
all X , Y ∈ g, so the preceding results apply. Moreover, the symmetric bilinear form
B defined ong by B(X,Y) = Tr (XY) is nondegenerate and invariant, thereforeg is a
quadratic Lie algebra. Sincegl(n)⊂ g, ∀ n, by Example 4.12, we can conclude that

Ext[Tr(A1),Tr(A3), . . . ,Tr(A2n−1), . . . ]⊂ H?(g)

Proposition 4.14. Let a2n+1 = Tr (A2n+1). Then

H?(g) = Ext[a1,a3, . . . ,a2n+1, . . . ].

Proof. Recall that for any Lie algebrah , there is an isomorphismHk(h) ' Hk(h)∗ ,
induced by the restrictionΩ ∈ Zk(h) 7→ Ω|Zk(h) where Hk(h) is the homology ofh

defined asHk(h) = Zk(h)/Bk(h) (with Zk(h) the cycles andBk(h) the boundaries).
Let us defineS = {S= (W,W′) |W,W′ complementary subspaces ofV with

dim(W) < ∞} and forS= (W,W′)∈S , gS= {X ∈ g |X(V)⊂W, X(W′) = {0}}. Then
gS is a subalgebra of the (associative or Lie) algebrag and one hasgS' gl(dim(W)).
It is easy to check that givenX1,, . . . , Xr ∈ g, there existsS∈ S such thatXi ∈ gS,
∀i = 1, . . . , r . It results that, ifc∈Extk(g), there existsS such thatc∈Extk(gS), so that
Extk(g) = ∪S∈S Extk(gS).

SetE = Ext[a1,a3, . . . ,a2n+1, . . . ]⊂H?(g) andE k = E ∩Hk(g). Then dim(E k)
= ] Ik with Ik = {(i j) ∈ {0,1}N | ∑ j∈N(2 j +1) i j = k} . We fix a basis{Ωi | i ∈ Ik} of

E k .
Given c∈ Zk(g), denote byc its class inHk(g). Let us assume thatΩi(c) = 0,

∀i ∈ Ik . Take S∈ S such thatc ∈ Extk(gS), then by (4.12),{Ωi | i ∈ Ik} generates
Hk(gS) = Hk(gS)

∗ and sincec ∈ Zk(gS), it results thatc ∈ Bk(gS) ⊂ Bk(g), therefore
c = 0. So, {Ωi | i ∈ Ik} is free in Hk(g)∗ and ∩i∈Ik

ker(Ωi) = {0} . It results that

dim(Hk(g)) = ] Ik . Since Hk(g) = Hk(g)∗ , one has dim(Hk(g)) = ] Ik and since
E k ⊂ Hk(g), one obtainsE k = Hk(g).

Remark 4.15. From H1(g) = C Tr, we deduce that[g,g] = ker(Tr). FromH2(g) =
{0} , we deduce thatg has no (non trivial) central extension.

5. Super Poisson brackets and quadratic Lie algebras

The canonical Poisson bracket onC2n appears as the leading term of a quantization of
the algebra of polynomial functions by the Weyl algebra: theMoyal product. We will
develop a similar formalism, replacing polynomials (i.e. commuting variables) by skew
multilinear forms (i.e. skew commuting variables) and the Weyl algebra by the Clifford
algebra. The leading term of the deformation will be thesuper Poisson bracket.

5.1. . Let us give a definition of the Clifford algebra that is well-adapted to the realiza-
tion of this algebra as a deformation of the exterior algebra. Denote byCt , t ∈ C , the
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associative algebra with basis{eI , I ∈ Zn
2} and product defined by

eI ?eJ = (−1)Ω(I ,J) t |IJ| eI +
(2)

J

whereΩ is the bilinear form associated to the matrix(ai j )
n
i, j=1 with ai j = 1 if i > j

and 0 otherwise.
Take Ii = ( jk) ∈ Zn

2, with j i = 1 and 0 otherwise. Setei = eIi
, i = 1, . . . ,n and

V = span{e1, . . . ,en} . When t = 0, one obtainsC0 = Ext(V). When t 6= 0, Ct is the
Clifford algebra. The following relations hold:

e2
i = t, ∀ i, ei ?ej +ej ?ei = 0, i 6= j,

ei1
?ei2

? · · ·?eip
= ei1

∧ei2
∧·· ·∧eip

, if i1 < i2 < · · ·< ip

So thatCt is the quotient algebra of the tensor algebraT(V) by the relations:

v⊗v = t. B(v,v). 1,v∈V,

where B is the bilinear formB(ei ,ej) = δi j , for all i , j , and we recover the usual
definition of the Clifford algebra.

But we are mainly interested in realizingCt as a deformation of Ext(V). Using:

tk = 0k + t δk,1 + t2
δk,2 + . . . .

this deformation becomes transparent:

Proposition 5.1. One has

eI ?eJ = eI ∧eJ +
n

∑
k=1

tk Dk(eI ,eJ)

where Dk(eI ,eJ) = δ|IJ|,k (−1)Ω(I ,J) eI +
(2)

J .

Symmetry properties of the coefficients are resumed in:

Proposition 5.2. For all Ω ∈ Extw(V), Ω′ ∈ Extw
′
(V),

D j(Ω,Ω′) = (−1) j(−1)ww′D j(Ω
′,Ω).

We insist on the fact thatCt is not aZ-graded, but only aZ2-graded algebra.
The associated Lie superalgebra has bracket:

[Ω,Ω′]? = 2 ∑
p≥0

t2p+1 D2p+1(Ω,Ω′).

Definition 5.3. We define thesuper Poisson bracketon Ext(V) by:

{Ω,Ω′}= 2 D1(Ω,Ω′), ∀ Ω,Ω′ ∈ Ext(V).



648 PINCZON AND USHIROBIRA

Since [., .]? satisfies the super Jacobi identity, so does{., .}. Moreover, since
ad?(Ω) is derivation of theCt -product, adP(Ω) := {Ω, .} is a derivation of the∧-
product (actually of degree(w−2) if Ω ∈ Extw(V)).

Finally, by a straightforward computation, one gets:

{v1∧·· ·∧vp,w1∧ . . . ∧ wq}= 2 (−1)p+1× (5)

∑
i=1,...,p
j=1,...,q

(−1)i+ j B(vi ,w j) v1 ∧·· ·∧ v̂i ∧·· ·∧vp∧w1∧·· ·∧ ŵ j ∧·· ·∧wq,

for all v1, . . . ,vp, w1, . . . ,wq ∈V .
Comparing with the formulas given in [20], we conclude that the Lie super-

algebra Ext(V)/C is isomorphic to the simple Lie superalgebrãH(n). Notice that
Ext(V)/C ' adP(Ext(V)) ⊂ Der(Ext(V)) = D(V∗), so we obtain the classical inclu-
sion H̃(n)⊂W(n) ([20]).

5.2. . Let us modify slightly the formalism in 5.1 in order to apply it to Lie algebras
deformation theory. We begin with an-dimensional vector spaceg and we setV = g∗ .
We assume thatg is a quadratic space with bilinear formB. Denote by{X1, . . . ,Xn}
an orthonormal basis ofg and by{ω1, . . . ,ωn} the dual basis; we defineB on g∗ by
B(ωi ,ω j) = δi j . Applying the construction in 5.1 withei = ωi , i = 1, . . . ,n, we get a
super Poisson bracket on

∧
g and it is easy to check that:

Proposition 5.4. For all Ω ∈
∧wg, Ω′ ∈

∧
g, one has

{Ω,Ω′}= 2 (−1)w+1
n

∑
j=1

ιXj
(Ω)∧ ιXj

(Ω′).

This formula is valid in any orthonormal basis ofg and it is enough for our
purpose in Section 5, but a general formula can be found in Lemma 6.9. There is a
Moyal type formula which gives the Clifford product in terms of the super Poisson
bracket: letm∧ be the product from

∧
g⊗

∧
g →

∧
g, and defineF :

∧
g⊗

∧
g →∧

g⊗
∧

g by

F (Ω⊗Ω′) = (−1)w
n

∑
j=1

ιXj
(Ω)⊗ ιXj

(Ω′)

for all Ω ∈
∧wg, Ω′ ∈

∧
g. Then:

Proposition 5.5.
Ω?Ω′ = m∧ ◦exp(−tF )(Ω⊗Ω′).

Proof. As in the beginning of 5.2, letei = ωi and let ∂i = ιXi
, i = 1, . . . ,n. As

in 5.1, for I = (i1, . . . , in) ∈ Zn
2, let eI = ei1

1
∧ ·· · ∧ ein

n and ∂I = ∂
i1
1
◦ · · · ◦ ∂ in

n . For

J = ( j1, . . . , jn) ∈ Zn
2, let JI = j i1

1
. . . j inn . One has∂I (eJ) = (−1)Ω(I ,J)JIeI +

(2)
J . Since all

∂i ⊗∂i commute, and∂ 2
i = 0, one has:(

∑
i

∂i ⊗∂i

)k

= k! ∑
|I |=k

∂I ⊗∂I
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For k > 0, one has:

m∧ ◦F k(eR⊗eS)

= (−1)|R|(−1)|R|−1 . . .(−1)|R|−(k−1)m∧ ◦

(
∑
i

∂i ⊗∂i

)k

(eR⊗eS)

= (−1)k|R|(−1)
k(k−1)

2 k! ∑
|I |=k

(−1)Ω(I ,R)(−1)Ω(I ,S)RISI eI +
(2)

R∧eI +
(2)

S

This vanishes, except ifk = |RS|, and in that case, the only remaining term in
the sum is whenI = RS. We compute this term:

m∧ ◦F k(eR⊗eS) = (−1)k|R|(−1)
k(k−1)

2 k!(−1)Ω(RS,R)+Ω(RS,S)(−1)Ω(RS+R,RS+S)eR+
(2)

S

But one hasΩ(A,B)+Ω(B,A) = |A||B|− |AB|, so:

Ω(RS,R)+Ω(RS,S) = k|R|−k, and Ω(RS,RS) =
k(k−1)

2
.

So finally, we have proved that

m∧ ◦F k(eR⊗eS) = (−1)kk!(−1)Ω(R,S)
δ|RS|,keR+

(2)
S

On the other hand, by Proposition 5.1, one has

eR?eS = eR∧eS+(−1)Ω(R,S)
n

∑
k=1

δ|RS|,keR+
(2)

S

so the result follows.

Remark 5.6. An equivalent formula is given in [15].

5.3. . A derivation D ∈ D is Hamiltonian if it belongs to adP(
∧

g). Actually, the
space of Hamiltonian derivations is a subalgebra ofD , that we denote byH (g), which
is isomorphic to

∧
Qg =

∧
g/C and therefore, by (5), isomorphic to the simple Lie

superalgebrãH(n). Here is a simple characterization of Hamiltonian derivations:

Proposition 5.7. A derivation D= ∑r Dr∧ιXr
is Hamiltonian if and only ifιXr

(Ds)+
ιXs

(Dr) = 0, ∀ r,s.

Proof. When the condition is satisfied, one hasD = adP(Ω) whereΩ = 1
2w ∑r Dr∧ωr

andw = deg(D)+2.

Remark 5.8. A Hamiltonian derivation is a derivation of the∧-product and also of
the super Poisson bracket.

In fact, one has:
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Proposition 5.9. Let D∈D . Then D is Hamiltonian if and only if D is a derivation
of the super Poisson bracket.

Proof. Let D = ∑r Dr ∧ ιXr
with D ∈

∧d g, thenDr = D(ωr). Since{ωr ,ωs} ∈ C ,
assuming thatD is a derivation of the super Poisson bracket, one has:

0 = D({ωr ,ωs}) = 2 (−1)d+1
(

ιXr
(Ds)+ ιXs

(Dr)
)

and the result follows by Proposition 5.7.

5.4. . We now want to apply super Poisson brackets to the theory of quadratic Lie
algebras, in a deformation framework that we will set up. Given a quadratic Lie algebra
(g0,B0) with bilinear formB0 and product[., .], adeformation(gt ,Bt) of (g0,B0) is:

(1) a deformationgt of g in the usual sense, so:

[X,Y]t = [X,Y]+ tC1(X,Y)+ . . . ,∀ X,Y ∈ g,

(2) a formal bilinear formBt = B0 + tB1 + . . . such that

Bt([X,Y]t ,Z) =−Bt(Y, [X,Z]t),∀ X,Y,Z ∈ g,

Two deformations(gt ,Bt) and (g′t ,B
′
t) with respective brackets[., .]t and [., .]′t

areequivalentif there existsTt = Id+ tT1 + . . . such that:

[X,Y]′t = T−1
t ([Tt(X),Tt(Y)]) and B′t(X,Y) = Bt(Tt(X),Tt(Y)),∀ X,Y ∈ g.

Proposition 5.10. Any deformation(gt ,Bt) of (g0,B0) is equivalent to a deforma-
tion with unchanged bilinear form.

Proof. Fix an orthonormal basis{e1, . . . ,en} of g with respect toB0. By a Gram-
Schmidt type strategy, one can construct{e1(t), . . . ,en(t)} such that:

è (t) = λ1(t)e1(t)+ · · ·+λ`−1(t)è −1(t)+ è ,∀`≤ n,

with λ j(t) ∈ t C[[t]], and Bt(è (t),em(t)) = 0, for all `,m ≤ n. Since
[Bt(è (t), è (t))]t=0 = B0(è , è ) = 1, ∀`≤ n, Bt(è (t), è (t)) is invertible, and

e′`(t) =
1(

Bt(è (t), è (t))
) 1

2

è (t)

does satisfyBt(e′`(t),e
′
m(t)) = δ`m, ∀`,m.

Now if we defineTt by Tt(è ) = e′`(t), ∀`≤ n, and a new deformation

[X,Y]t = Tt([Tt(X),Tt(Y)]t), ∀X,Y ∈ g,

with bilinear formB′t(X,Y) = Bt(Tt(X),Tt(Y)) = B0(X,Y), ∀X , Y ∈ g, we ob-
tain a deformation that is equivalent to the initial one.
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So if one wants to study quadratic Lie algebras in terms of deformation theory,
one can restrict to quadratic Lie algebras with a specified bilinear form, and that is what
we shall do next.

5.5. . The construction of the super Poisson bracket made at the beginning of this
section can now be applied as follows: given a finite-dimensional quadratic Lie algebra
g with bilinear formB, let ∂ be the corresponding derivation of

∧
g (i.e. the differential

of the trivial cohomology complex ofg, see 3.2), we define:

I(X,Y,Z) := B([X,Y],Z), ∀ X,Y,Z ∈ g

Then one has:

Proposition 5.11.

(1) I ∈ (
∧3g)g .

(2) ∂ =−1
2adP(I).

(3) {I , I}= 0.

Proof. The assertion (1) is obvious. To show (2), let{X1, . . . ,Xn} be an orthonormal
basis ofg and{ω1, . . . ,ωn} the dual basis. Then for allY , Z ∈ g:

−1
2

adP(I)(ωi)(Y,Z) =−

(
∑

j
ιXj

(I)∧ ιXj
(ωi)

)
(Y,Z) =−B([Xi ,Y],Z) =

=−B(Xi , [Y,Z]) =−ωi([Y,Z]) = ∂ωi(Y,Z)

Hence,∂ =−1
2adP(I).

Finally adP({I , I}) = [adP(I),adP(I)] = 4[∂ ,∂ ] = 8∂ 2 = 0. So {I , I} = 0 and
that proves (3).

Note that∂ , ιX andθX = [ιX,∂ ], ∀ X ∈ g are all Hamiltonian derivations.

5.6. . Conversely, assume thatg is a finite-dimensional quadratic vector space. Fix
I ∈

∧3g and define∂ =−1
2adP(I). Then the formula

adP
(
{Ω,Ω′}

)
= [adP(Ω),adP(Ω

′)],∀ Ω,Ω′ ∈
∧

g

leads to
[∂ ,∂ ] = 0 if and only if{I , I}= 0. (6)

Let F = F
∂

be the structure ong associated to∂ (see 3.1 and 3.2), then from
(6), it follows:

Proposition 5.12. F is a Lie algebra structure if and only if{I , I}= 0. In that case,
with the notation[X,Y] = F(X,Y), one has:

I(X,Y,Z) = B([X,Y],Z), ∀ X,Y,Z ∈ g,

the form B is invariant andg is a quadratic Lie algebra.
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Proof. We have to prove that ifF is a Lie algebra structure, thenI(X,Y,Z) =
B([X,Y],Z), ∀ X,Y,Z ∈ g.

Let {X1, . . . ,Xn} be an orthonormal basis, then∂ = −∑k ιXk
(I)∧ ιXk

, so F =
∑k ιXk

(I)⊗Xk , and thereforeB([Xi ,Xj ],Xk) = ιXk
(I)(Xi ,Xj) = I(Xi ,Xj ,Xk), for all i , j ,

k.

Remark 5.13. Using 5.4, 5.5 and 5.6, it appears that
∧

g[2] with super Poisson
bracket is agla associated to deformation theory of finite-dimensional quadratic Lie
algebras: by 5.4, one can assume thatB does not change, then quadratic Lie algebra
structures with the sameB are in one to one correspondence with elementsI ∈

∧3g

such that{I , I} = 0 (5.5, 5.6). An equivalent description can be given in terms of
Hamiltonian derivations, i.e. of thegla H (g) = adP(

∧
g)'

∧
g/C =

∧
Qg.

Let us note that in this picture, one has to redefine equivalence: a priori, one
might think that equivalence should be defined as Lie algebras isomorphism keepingB
fixed. But this is too restrictive, since[., .] andλ (t)[., .], with λ (t) = 1+ t(. . .) will not
be equivalent in that sense as they should be. So one has rather to work with the notion
of a conformal equivalence, i.e. an equivalence defined by a Lie algebras isomorphism
T(t) = Id + t(. . .)satisfying B(Tt(X),Tt(Y)) = µ(t)B(X,Y), with µ(t) = 1+ t(. . .).
This will change the correspondinggla : one can consider the subalgebraCR⊕H (g)
of D(g) (where R = ∑i ωi ∧ ιXi

is the super radial vector field), rather thanH (g).
Hence, there are some adaptations to carry out, which will not be developed here since
they are somewhat standard. Let us only indicate that in this framework, if(g0,B0) is the
initial quadratic Lie algebra with associatedI0∈

∧3(g), then the obstruction to triviality
of a quadratic deformation will lie inH3(g)/C I0. For instance, ifg0 is semisimple, it
is shown in [16] thatH3(g0) and the space of symmetric invariant bilinear forms ong0
are isomorphic, the isomorphism beingB 7→ IB whereIB(X,Y,Z) = B([X,Y],Z), ∀ X ,
Y , Z ∈ g. It results that wheng0 is simple, it is rigid in quadratic deformation theory.

6. Elementary quadratic Lie algebras

Let us recall two results:

Proposition 6.1. Let V be a finite-dimensional vector space and I a k-form in
∧kV .

Denote by VI the orthogonal subspace in V∗ of the subspace{X ∈V | ιX(I) = 0} . Then
dim(VI ) ≥ k and if I is nonzero, I is decomposable if and only ifdim(VI ) = k. In this
case, if{ω1, . . . ,ωk} is a basis of VI , one has I= α ω1∧·· ·∧ωk , for someα ∈C ([4]).

Proposition 6.2. Let V be a finite-dimensional quadratic vector space with a non-
degenerate symmetric bilinear form B. For a subspace W of V , denote by W⊥ its
orthogonal subspace in V with respect to B and W⊥∗

its orthogonal in V∗ . Let φ be
the isomorphism from V onto V∗ induced by B. Thenφ |

W⊥ is an isomorphism from

W⊥ onto W⊥∗
, so dim(W⊥) = dim(V)−dim(W). One has V= W⊕W⊥ if and only

if W ∩W⊥ = {0} and in this case the restriction of B to W or W⊥ is nondegenerate.

In the rest of this Section,g will denote a finite-dimensional quadratic Lie
algebra with bilinear formB. Denote by Z(g) the center ofg and byIg the element of∧3g defined byIg(X,Y,Z) = B([X,Y],Z), ∀ X , Y , Z ∈ g.
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Definition 6.3. We say thatg is anelementaryquadratic Lie algebra ifIg is decom-
posable.

Remark that the obvious identity Z(g)⊥ = [g,g] holds here. As a consequence,

Proposition 6.4. Let g be a non Abelian quadratic Lie algebra. Thendim([g,g]) ≥
3. Moreover,g is elementary if and only if the equality holds.

Proof. Since Z(g)⊥ = [g,g] and VIg
= Z(g)⊥

∗
, the result follows directly from

Proposition 6.1.

Corollary 6.5. Let g be an elementary quadratic Lie algebra. Then all coadjoint
orbits have dimension at most 2.

Proof. Let ω ∈ g∗ andXω ∈ g such thatω = φ(Xω). Then ad(g)(ω) = φ([g,Xω ])⊂
φ([g,g]), so dim(ad(g)(ω)) ≤ 3. Since all coadjoint orbits have even dimension, the
result follows.

Remark 6.6. Suppose thatg is a finite-dimensional quadratic vector space and letI
be a decomposable 3-form in

∧3g. Then it is easy to check that{I , I}= 0 for the super
Poisson bracket. So by Proposition 5.12 there is an elementary quadratic Lie algebra
structure ong such thatI(X,Y,Z) = B([X,Y],Z), ∀ X , Y , Z ∈ g.

In the sequel, we classify all non Abelian elementary quadratic Lie algebras.
This will be done in two steps: first, in 6.1, we show a result on quadratic Lie algebras
that reduces the classification problem to small dimensions, namely between 3 and 6.
Then in 6.2, we proceed by classifying these small dimensional elementary quadratic
algebras. Explicit commutators in a canonical basis with respect toB are computed as
well.

6.1. . Here is the reduction result on quadratic Lie algebras:

Proposition 6.7. Let g be a non Abelian quadratic Lie algebra with bilinear form B.
Then there exist a central idealz and an ideall 6= {0} such that:

(1) g = z⊕ l, and l and z are orthogonal with respect to B.

(2) z and l are quadratic (with bilinear forms induced by the restriction of B) andl

is non Abelian. Moreover,l is elementary if and only ifg is elementary.

(3) the centerZ(l) is totally isotropic and

dim(Z(l))≤ 1
2

dim(l)≤ dim([l, l]).

Proof. Let z0 = Z(g)∩ [g,g]. Fix any subspacez such that Z(g) = z0⊕ z. Since
Z(g)⊥ = [g,g], one hasB(z0,z) = {0} andz∩ z⊥ = {0}. It results from Proposition 6.2
that g = z⊕ l wherel = z⊥ .

Since B([g,g],z) = {0} , one has[g,g] ⊂ l, so l 6= {0} . It is easy to check
that Z(l) = z0, so Z(l) is totally isotropic; moreover the restriction ofB to z and l
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is nondegenerate, sol is quadratic and clearly non Abelian sincez is central ing. If g

is elementary,l is a fortiori elementary. Ifl is elementary, letIl = ω1∧ω2∧ω3, ω1,
ω2, ω3 ∈ l∗ , extend theωi to g by ωi |z = 0. SinceIg(X,Y,Z) = 0, ∀X ∈ z, Y , Z ∈ g,
one concludesIg = ω1∧ω2∧ω3, henceg is elementary. Finally Z(l) ⊂ [l, l] = Z(l)⊥

implies dim(l)−dim([l, l])≤ dim([l, l]) and the last inequality follows.

Corollary 6.8. Let l be a nonzero elementary quadratic Lie algebra such thatZ(l)
is totally isotropic. Then one has

3≤ dim(l)≤ 6.

Proof. Use Propositions 6.7(3) and 6.4.

6.2. . We shall now finish the classification of non Abelian elementary quadratic Lie
algebras. This classification is reduced, by Proposition 6.7 and Corollary 6.8, to the
case of nonzero elementary quadraticl with a totally isotropic center Z(l). Applying
Proposition 6.8 one has 3≤ dim(l) ≤ 6. Note that if dim(l) = 3, one hasl = [l, l]
(Proposition 6.4), sol ' sl(2) and B is the Killing form up to a scalar. So we have to
consider dim(l)≥ 4 (therefore dim(Z(l))≥ 1).

We need the following Lemma:

Lemma 6.9. Let V be a quadratic vector space with bilinear form B. Define B on
V∗ by B(ω,ω ′) := B(φ−1(ω),φ−1(ω ′)), ∀ ω , ω ′ ∈V∗ (φ as in Proposition 6.2). Let
{ω1, . . . ,ωn} be a basis of V∗ , {X1, . . . ,Xn} its dual basis and{Y1, . . . ,Yn} the basis of
g defined by Yi = φ−1(ωi). Then the super Poisson bracket on

∧
g is given by

{Ω,Ω′}= 2 (−1)w+1∑
i, j

B(Yi ,Yj)ιXi
(Ω)∧ ιXj

(Ω′), Ω ∈
∧

wg,Ω′ ∈
∧

g.

Proof. Using Proposition 5.4, one has

{Ω,Ω′}= 2 (−1)w+1∑
i, j

αi j ιXi
(Ω)∧ ιXj

(Ω′),

Ω ∈
∧wg, Ω′ ∈

∧
g and αi j = 1

2{ωi ,ω j} . But from 5.1, one has{ωi ,ω j} =
2B(ωi ,ω j) = 2B(Yi ,Yj).

Proposition 6.10. Let l be an elementary quadratic Lie algebra with nonzero totally
isotropic centerZ(l). Then:

(1) If dim(l) = 6, there exists a basis{Z1,Z2,Z3,X1,X2,X3} of l such that:

(i) {Z1,Z2,Z3} is a basis ofZ(l).

(ii) B(Zi ,Z j) = B(Xi ,Xj) = 0, B(Zi ,Xj) = δi j , ∀ i, j .

(iii) [X1,X2] = Z3, [X2,X3] = Z1, [X3,X1] = Z2 and the other brackets vanish.

(2) If dim(l) = 5, there exists a basis{Z1,Z2,X1,X2,T} of l such that:
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(i) {Z1,Z2} is a basis ofZ(l).

(ii) B(Zi ,Z j) = B(Xi ,Xj) = 0, B(Zi ,Xj) = δi j , ∀ i, j , B(T,Zi) = B(T,Xi) = 0,
B(T,T) = 1.

(iii) [X1,T] =−Z2, [X2,T] = Z1, [X1,X2] = T and the other brackets vanish.

(3) If dim(l) = 4, then dim(Z(l)) = 1 and there exist totally isotropic subspacesi

with basis{Z,P} and i′ with basis{X,Q} such thatZ(l) ⊂ i ⊂ [l, l], l = i⊕ i′

and :

(i) Z(l) = C Z, B(Z,X) = B(P,Q) = 1, B(Z,Q) = B(X,P) = 0.

(ii) [X,P] = P, [X,Q] =−Q, [P,Q] = Z and the other brackets vanish.

Proof.

(1) Assuming that dim(l) = 6, one has dim(Z(l)) = 3, so Z(l) = [l, l] = Z(l)⊥ . Using
[4], there is a totally isotropic subspacel′ such thatl = Z(l)⊕ l′ . With the notation
of Proposition 6.2, sinceφ |l′ is an isomorphism froml′ onto Z(l)∗ , we can find a
basis{Z1,Z2,Z3} of Z(l) and a basis{X1,X2,X3} of l′ such thatB(Zi ,Xj) = δi j .
Then

Z(l)⊥
∗
= span{X∗

1 ,X∗
2 ,X∗

3}= span{φ(Z1),φ(Z2),φ(Z3)}.

Let Il = B([X,Y],Z), ∀ X,Y,Z∈ l. SinceVIl
= Z(l)⊥

∗
, it results from Proposition

6.1 thatIl = α X∗
1 ∧X∗

2 ∧X∗
3 , α ∈ C . ReplacingX1 by 1

α
X1 andZ1 by αZ1, we

can assume thatα = 1. Using Proposition 5.11 and Lemma 6.9,∂ =−1
2adP(I) =

−∑3
i=1 ιXi

(X∗
1 ∧X∗

2 ∧X∗
3 )∧ ιZi

, so by 3.2 and 3.1,[X,Y] = ∑3
i=1 ιXi

(X∗
1 ∧X∗

2 ∧
X∗

3 )(X,Y) Zi , ∀ X , Y ∈ l and the commutation rules follow.

(2) Assuming dim(l) = 5, one has dim(Z(l)) = 2. Using [4], there is a totally
isotropic subspacel′ and a one-dimensional subspacel′′ such thatl = Z(l)⊕ l′⊕ l′′

and B(Z(l)⊕ l′, l′′) = {0} .Then one can find a basis{Z1,Z2} of Z(l), a basis
{X1,X2} of l and a basis{T} of l′′ such that: B(Zi ,Xj) = δi j , ∀ i , j and
B(T,T) = 1. Therefore

Z(l)⊥
∗
= span{X∗

1 ,X∗
2 ,T∗}= span{φ(Z1),φ(Z2),φ(T)}.

So Il = α X∗
1 ∧X∗

2 ∧T∗ , α ∈ C . ReplacingX1 by 1
α

X1 and Z1 by αZ1, we
can assume thatα = 1. By Proposition 5.11 and Lemma 6.9, one obtains∂ =
−1

2adP(I) =−∑2
i=1 ιXi

(X∗
1 ∧X∗

2 ∧T∗)∧ ιZi
−ιT(X∗

1 ∧X∗
2 ∧T∗)∧ ιT , so by 3.2 and

3.1, [X,Y] = ∑2
i=1 ιXi

(X∗
1 ∧X∗

2 ∧T∗)(X,Y) Zi + ιT(X∗
1 ∧X∗

2 ∧T∗) T , ∀ X , Y ∈ l

and the commutation rules follow.

(3) Assuming dim(l) = 4, one has dim(Z(l)) = 1. Using [4], there is a totally
isotropic 2-dimensional subspacei such that Z(l) ⊂ i . Since Z(l)⊥ = [l, l], one
has i ⊂ [l, l]. Using [4] once more, there exists a totally isotropici′ such that
l = i⊕ i′ . Let us write i = span{Z,P} , i′ = span{X,Q} with Z(l) = C Z and
B(Z,X) = B(P,Q) = 1, B(Z,Q) = B(X,P) = 0. Therefore

Z(l)⊥
∗
= span{P∗,Q∗,X∗}= span{φ(Q),φ(P),φ(Z)}.
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So Il = α P∗ ∧Q∗ ∧X∗ , α ∈ C . ReplacingP by 1
α

P and Q by αQ, we can
assume thatα = 1. Using Proposition 5.11, Lemma 6.9, 3.2 and 3.1 as above,
one finds [A,B] = [ιP(P∗ ∧Q∗ ∧ X∗) Q+ ιQ(P∗ ∧Q∗ ∧ X∗) P+ ιX(P∗ ∧Q∗ ∧
X∗) Z](A,B), ∀ A, B∈ l and the commutation rules follow.

As a final remark, the brackets in (1), (2) and (3) do satisfy Jacobi identity thanks
to Remark 6.6.

Remark 6.11. In the Proposition above, cases (1) and (2) are nilpotent Lie algebras
and case (3) is a solvable, non-nilpotent Lie algebra, with derived algebra the Heisenberg
algebra.

7. Cyclic cochains and cohomology of quadratic Lie algebras

7.1. . First we fix some notation:g will be a n-dimensional quadratic vector space
with bilinear form B and

∧
+ g will denote the associative algebra without unit

∑k≥1
∧kg. If g is a quadratic Lie algebra, we denote byF0 its bracket (i.e.F0(X,Y) =

[X,Y], X , Y∈ g), by ∂ = DF0
(see 3.2) the differential of

∧
g, by H∗(g) the correspond-

ing cohomology, and byH∗
+(g) the restricted cohomology, i.e.H∗

+(g) = ∑k≥1Hk(g)
which is an algebra without unit (for the induced wedge product).

When g is a n-dimensional quadratic vector space,
∧

g is a gla for the super
Poisson bracket with grading

∧
g[2]. Denote by

∧
Qg the quotientgla

∧
Qg =

∧
g/C ,

and by[., .]Q its bracket. The map adP :
∧

g→ D(g) is a gla homomorphism, and we
define thegla H (g) of Hamiltonian derivations to be the imageH (g) = adP(

∧
g),

as in 5.3. There is an obviousgla isomorphism from
∧

Qg onto H (g), and since∧
Qg ' H̃(n) (see 5.3), thegla

∧
Qg, H (g) and H̃(n) are isomorphic. Moreover, if

g is a quadratic Lie algebra, since∂ is Hamiltonian (see Proposition 5.11), the super
Poisson bracket induces agla structure onH∗(g) and also onH∗

Q(g) = H∗(g)/C .

GivenC∈M k
a (g) (see 2.2.), we definêC by:

if k = 0, C∈ g, Ĉ(Y) := B(C,Y),∀Y ∈ g,

if k > 0, Ĉ(Y1, . . . ,Yk+1) := B(C(Y1, . . . ,Yk),Yk+1), ∀Y1, . . . ,Yk+1 ∈ g.

Definition 7.1. C is acyclic cochainif

Ĉ(Y1, . . . ,Yk+1) = (−1)kĈ(Yk+1,Y1, . . . ,Yk),∀Y1, . . . ,Yk+1 ∈ g.

We denote byCc(g) the space of cyclic cochains.

Proposition 7.2.

(1) C is a cyclic cochain if and only if̂C∈
∧

+ g. The mapΘ from Cc(g) into
∧

+ g

defined byΘ(C) = Ĉ , is one to one.

(2) Wheng is finite-dimensional, the mapΘ : Cc(g)→
∧

+ g is an isomorphism.

(3) Cc(g) is a subalgebra of thegla Ma(g).
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Proof.

(1) Let τ be the cycleτ = (1 2 . . . k + 1) ∈ Sk+1. Given σ ∈ Sk+1, let ` =
σ−1(k+1), thenσ ′ = σ ◦ τ` ∈Sk . If C is cyclic, one hasτ−1.Ĉ = ε(τ) Ĉ. So
σ .Ĉ = (σ ′ ◦ τ−`).Ĉ = ε(σ)Ĉ and thereforêC∈

∧
+ g. SinceB is nondegenerate,

Θ is clearly one to one.

(2) GivenΩ ∈
∧k+1g, defineD ∈M k

a (g) by

Ω(Y1, . . . ,Yk,Y) = B(D(Y1, . . . ,Yk),Y),∀Y1, . . . ,Yk,Y ∈ g.

ThenΩ = D̂.

(3) Let F ∈M p
a (g), andG∈M q

a (g), from (1) we have to prove that:

B([F,G]a(Y1, . . . ,Yp+q−1),Yp+q) = B([F,G]a(Y1, . . . ,Yp+q−2,Yp+q),Yp+q−1),

for all Y1, . . . ,Yp+q ∈ g. Using the formulas in 2.1, we can write the left hand side
as a sum of four terms,B([F,G]a(Y1, . . . ,Yp+q−1),Yp+q) = α +β + γ +δ where:

α = (−1)(p−1)(q−1) ∑
σ∈Sq,p−1

σ(p+q−1)=p+q

(. . .) and β = (−1)(p−1)(q−1) ∑
σ∈Sq,p−1
σ(q)=p+q−1

(. . .)

γ =− ∑
σ∈Sp,q−1

σ(p+q−1)=p+q−1

(. . .) and δ =− ∑
σ∈Sp,q−1
σ(p)=p+q−1

(. . .)

In α , we can commute, up to a sign,Yp+q−1 andYp+q. In δ , we commute, up to
a sign,F(Y

σ(1), . . . ,Yσ(p−1),Yp+q−1) andYp+q to obtain:

δ = ∑
σ∈Sp,q−1
σ(p)=p+q−1

ε(σ)

B(G(Yp+q,Yσ(p+1), . . . ,Yσ(p+q−1)),F(Y
σ(1), . . . ,Yσ(p−1),Yp+q−1))

Now commute, up to a sign,G(Yp+q,Yσ(p+1), . . . ,Yσ(p+q−1)) andYp+q−1 to ob-
tain:

δ = − ∑
σ∈Sp,q−1
σ(p)=p+q−1

ε(σ)

B(F(Y
σ(1), . . . ,Yσ(p−1),G(Yp+q,Yσ(p+1), . . . ,Yσ(p+q−1))),Yp+q−1)

= −(−1)p−1(−1)q−1 ∑
σ∈Sp,q−1
σ(p)=p+q−1

ε(σ)

B(F(G(Y
σ(p+1), . . . ,Yσ(p+q−1),Yp+q),Yσ(1), . . . ,Yσ(p−1)),Yp+q−1)
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Let Zi = Yi , i = 1, . . . , p+q−2 andZp+q−1 = Yp+q, then:

F(G(Y
σ(p+1), . . . ,Y

σ(p+q−1),Yp+q),Yσ(1), . . . ,Yσ(p−1))

= F(G(Z
σ(p+1), . . . ,Zσ(p+q−1),Zp+q−1),Zσ(1), . . . ,Zσ(p−1))

= F(G(Z
τ(1), . . . ,Zτ(q)),Zτ(q+1), . . . ,Zτ(p+q−1))

whereτ(1) = σ(p+1), . . . , τ(q−1) = σ(p+q−1), τ(q) = p+q−1 = σ(p),
τ(q+ 1) = σ(1), . . . , τ(q+ p−1) = σ(p−1). Comparing the inversions ofτ
with the inversions ofσ , it is easy to check that

ε(τ) = (−1)p−1(−1)q−1(−1)(p−1)(q−1)
ε(σ).

Finally

δ = −(−1)(p−1)(q−1) ∑
τ∈Sq,p−1
τ(q)=p+q−1

ε(τ)

B(F(G(Z
τ(1), . . . ,Zτ(q)),Zτ(q+1), . . . ,Zτ(p+q−1)),Yp+q−1)

Then

α +δ = −(−1)(p−1)(q−1) ∑
τ∈Sq,p−1

ε(τ)

B(F(G(Z
τ(1), . . . ,Zτ(q)),Zτ(q+1), . . . ,Zτ(p+q−1)),Yp+q−1)

Using similar arguments to computeβ + γ , one obtains the required identity.

Remark 7.3. Wheng is finite-dimensional, there is a direct proof of (7.2)(3) (avoid-
ing computations) that we shall give in the proof of Proposition 7.9, in Remark 7.10.

We assume now thatg is a quadratic Lie algebra.

Proposition 7.4. (Cc(g),d) is a subcomplex of the adjoint cohomology complex
(Ma(g),d) of g.

Proof. It is enough to check thatd(Cc(g))⊂ Cc(g), but this is obvious from Propo-
sition 7.2(3) becaused = ad(F0) andF0 ∈ Cc(g) sinceg is quadratic.

Definition 7.5. The cohomology of the complex(Cc(g),d) is called thecyclic coho-
mologyof g, and denoted byH∗

c (g).

Remark 7.6. Sinced = ad(F0), the Gerstenhaber bracket induces agla structure on
H∗

c (g).
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Proposition 7.7. The mapΘ : Cc(g) →
∧

+ g is a homomorphism of complexes.
Moreover, Θ induces a mapΘ∗ : H∗

c (g) → H∗
+(g), which is an isomorphism wheng

is finite-dimensional.

Proof. By an easy computation, one hasΘ◦d = ∂ ◦Θ and the two first claims follow.
For the third claim, use Proposition 7.2.

Example 7.8. Assume thatg is the Lie algebra associated to an associative algebra
with a trace such that the bilinear form Tr(XY) := XY, ∀X , Y ∈ g is nondegenerate
(e.g. g is the Lie algebra of finite-rank operators on a given vector space, see Examples
4.12 and 4.13). Consider the standard polynomialsAk , for k≥ 0 if g had a unit, or for
k > 0, if g has no unit. Since[A2,A2k]a = 0 by Proposition 4.2, eachA2k is a cocycle,
then by Proposition 4.11, it is a cyclic cocycle, and one hasΘ(A2k) = 1

2k+1 Tr (A2k+1).

7.2. . We assume now thatg is a n-dimensional quadratic vector space. Using the
super Poisson bracket, we shall now go further into the structure ofCc(g). We need to
renormalize the mapΘ, definingΦ :=−1

2Θ. We denote byµ the canonical map from∧
g onto

∧
Qg, and byΨ the mapΨ = µ ◦Φ from Cc(g) into

∧
Qg.

Proposition 7.9.

(1) If C∈ Cc(g), one hasD(C) = adP(Φ(C)).

(2) The restriction mapH= D|Cc(g) is a gla isomorphism fromCc(g)[1] ontoH (g).

(3) Ψ is a gla isomorphism fromCc(g)[1] onto
∧

Qg[2].

Proof. Fix an orthonormal basis{X1, . . . ,Xn} of g and{ω1, . . . ,ωn} the dual basis.
GivenC∈ Cc(g), Y1, . . . ,Yp ∈ g,

adP(Φ(C))(ωk)(Y1, . . . ,Yp)

= 2(−1)p

(
n

∑
r=1

ιXr
(Φ(C))∧ ιXr

(ωr)

)
(Y1, . . . ,Yp)

= (−1)p+1B(C(Xk,Y1, . . . ,Yp−1),Yp)

= B(C(Y1, . . . ,Yp−1,Xk),Yp)

= −B(C(Y1, . . . ,Yp−1,Yp),Xk)

= −ωk(C(Y1, . . . ,Yp)) =−D(C)(ωk)(Y1, . . . ,Yp)

by a formula given in 3.3, and this proves (1). From (1), we deduce thatD maps
Cc(g) into H (g).

To prove (2), we remark that adP ◦ Φ is onto by Proposition 7.2 (2), soH is onto,
one to one and agla homomorphism by Proposition 3.1 and this proves (2).

To prove (3), we use thegla isomorphismν :
∧

Qg → H (g) defined from
adP :

∧
g → H (g), so one hasν (µ(Ω)) = adP(Ω), Ω ∈

∧
g, and thenν (Ψ(C)) =

adP(Φ(C)) = H(C), ∀C∈ Cc(g), so Ψ = ν−1◦ H.
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Remark 7.10. Let us give a direct proof of 7.2 (2): givenC, C′ ∈ Cc(g), from
the preceding results, we can assume thatC = F(adP(Ω)), C′ = F(adP(Ω′)), with Ω,
Ω′ ∈

∧
+ g. Then:

[C,C′]a = [F(adP(Ω)),F(adP(Ω
′))]a = F

(
[adP(Ω),adP(Ω

′)]
)

= F
(
adP({Ω,Ω′})

)
Corollary 7.11. Thegla Cc(g) is isomorphic toH (g), and toH̃(n).

Using Φ, we can pull back the∧-product of
∧

+ g on Cc(g) defining:

Definition 7.12.

C∧C′ := Φ−1(Φ(C)∧Φ(C′)
)
,∀C,C′ ∈ Cc(g).

HenceCc(g) becomes an associative algebra (without unit), graded byCc(g)[−1]. To
describe the∧-product ofCc(g), we define a natural

∧
g-module structure onMa(g)

by:
Ω · (α ⊗X) := (Ω∧α)⊗X,∀ Ω,α ∈

∧
g, X ∈ g

Proposition 7.13. If C ∈ C k
c (g), C′ ∈ C k′

c (g), then C∧C′ ∈ C k+k′+1
c (g), and one

has:
C∧C′ = Φ(C) ·C′+(−1)(k+1)(k′+1)Φ(C′) ·C.

Proof. Let C′′ = Φ(C) ·C′+(−1)(k+1)(k′+1)Φ(C′) ·C. Then

Φ(C′′)(Y1, . . . ,Yk+k′+2) =

∑
σ∈S

k+1,k′

ε(σ)Φ(C)(Y
σ(1), . . . ,Yσ(k+1))Φ(C′)((Y

σ(k+2), . . . ,Yσ(k+k′+1),Yk+k′+2)+

(−1)(k+1)(k′+1)

∑
σ∈S

k′+1,k

ε(σ)Φ(C′)(Y
σ(1), . . . ,Yσ(k′+1))Φ(C)((Y

σ(k′+2), . . . ,Yσ(k+k′+1),Yk+k′+2).

In the first term of the right hand side, for eachσ define τ by τ(i) = σ(i),
i ≤ k+ k′ + 1, andτ(k+ k′ + 2) = k+ k′ + 2. In the second term, for eachσ define
τ by τ(1) = σ(k′+2), τ(k) = σ(k+k′+1), τ(k+1) = k+k′+2, τ(k+2) = σ(1),
τ(k+3) = σ(2), . . . , τ(k+k′+2) = σ(k′+1), thenε(τ) = (−1)(k+1)(k′+1)ε(σ), and
one has:

Φ(C′′)(Y1, . . . ,Yk+k′+2) =

∑
τ∈S

k+1,k′+1
τ(k+k′+2)=k+k′+2

ε(τ)Φ(C)(Y
τ(1), . . . ,Yτ(k+1))Φ(C′)((Y

τ(k+2), . . . ,Yτ(k+k′+2))+

∑
τ∈S

k+1,k′+1
τ(k+1)=k+k′+2

ε(τ)Φ(C)(Y
τ(1), . . . ,Yτ(k+1))Φ(C′)((Y

τ(k+2), . . . ,Yτ(k+k′+2)) =

Φ(C)∧Φ(C′)(Y1, . . . ,Yk+k′+2).

One has to be careful that ad(C) (C∈ Cc(g)) is generally not a derivation of the
∧-product ofCc(g), so the following result is of interest:
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Proposition 7.14. If C ∈ C k
c (g), C′ ∈ C k′

c (g), C′′ ∈ Cc(g), with k≥ 1, then:

ad(C)(C′∧C′′) = ad(C)(C′)∧C′′+(−1)(k+1)(k′+1)C′∧ad(C)(C′′).

This means that whenC ∈ C k
c (g)[1] with k≥ 1, then ad(C) is a derivation of

degreek of the graded algebraCc(g)[−1] with the∧-product.

Proof. One has

µ
(
Φ([C,C′]a)

)
= Ψ([C,C′]) = [Ψ(C),Ψ(C′)]Q = [µ (Φ(C)) ,µ

(
Φ(C′)

)
]Q

= µ
(
{Φ(C),Φ(C′)}

)
Since adP(Φ(C))(

∧
g)⊂

∧
+ g, it follows thatΦ(ad(C)(C′)) = adP(Φ(C))(Φ(C′)), and

the result is obtained using the fact that adP(Φ(C)) is a derivation of degreek−1 of∧
g, and the definition of the∧-product ofCc(g).

Using the Proposition above, andd = ad(F0) with F0 ∈ C 2
c (g), it results that

the ∧-product of Cc(g) induces a∧-product onH∗
c (g) and φ∗ = −1

2θ ∗ is clearly
an isomorphism of graded algebras fromH∗

c (g) onto H∗
+(g). From the definition

of the gla bracket onH∗
c (g), denoting byµ∗ the canonical map fromH∗(g) onto

H∗
Q(g) = H∗(g)/C , the mapΨ∗ = µ∗ ◦ Φ∗ is a gla isomorphism fromH∗

c (g) onto
H∗

Q(g). We summarize in:

Proposition 7.15. As a graded associative algebra, H∗c (g) is isomorphic to H∗+(g)
and as agla , H∗

c (g) is isomorphic to H∗Q(g).

Example 7.16. Let g = gl(n). Then H∗
+(g) = Ext+[a1,a3, . . . ,a2n−1], whereak =

Tr (Ak), k≥ 0 (e.g. [10]). One hasΘ(A2k) = 1
2k+1 Tr (A2k+1) (Example 7.8), so by

Proposition 7.15,H∗
c (g) = Ext+[A0,A2, . . . ,A2n−2]. Thegla bracket will be computed

in 9.3.

Remark 7.17. When g is not finite-dimensional, the mapΘ∗ of Proposition 7.7 is
no longer an isomorphism, as shown with the following example: letV be an infinite-
dimensional vector space, andg be the quadratic Lie algebra of finite-rank operators
of V , as defined in Example 4.13. Recall that the invariant bilinear form isB(X,Y) =
Tr (XY), X , Y ∈ g. Notice thatB(X,Y) is well-defined whenX ∈ g andY ∈ End(V).
Moreover, the formulaB([X,Y],Z) = −B(Y, [X,Z]) is valid if at least one argument is
in g. By Remark 4.15,H0

c (g) = Z(g) = {0} andH1(g) = C Tr, so:

Proposition 7.18. The mapΘ∗ : H0
c (g)→ H1(g) is not onto.

Moreover,

Proposition 7.19. The mapΘ∗ : H1
c (g)→ H2(g) is not one to one.

Proof. Fix U ∈ End(V) such thatU /∈ g⊕C IdV and consider the skew symmetric
derivationD of g defined byD = ad(U)|g . The derivationD is a cyclic cocycle but
D = ad(Y) with Y ∈ g cannot be true because ifU ′ ∈ End(V) commutes withg, then
U ′ must be a multiple of IdV . So D is not a cyclic coboundary. On the other hand,
D̂(X,Y) = B(D(X),Y) = ∂ω(X,Y) whereω ∈

∧1g is defined byω(X) = −B(U,X),
X ∈ g. HenceD̂ is a coboundary, and if we denote byD the class ofD in H∗

c (g), we
get Θ∗(D) = 0, andD 6= 0.
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8. The case of reductive and semisimple Lie algebras

Let g be a n-dimensional quadratic Lie algebra with bilinear formB. We recall the
naturalg-module structures on

∧
g andMa(g) defined by:

θX(Ω)(Y1, . . . ,Yp) =−∑
i

Ω(Y1, . . . , [X,Yi ], . . . ,Yp), ∀ X,Y1, . . . ,Yp ∈ g,Ω ∈
∧

pg.

LX(Ω⊗Y) = θX(Ω)⊗Y +Ω⊗ [X,Y], ∀X,Y ∈ g,Ω ∈
∧

g.

Using the notation in 7.2, it is easy to check that

Φ◦LX = θX ◦Φ, ∀ X ∈ g.

So we have:

Proposition 8.1. Cc(g) is a g-submodule of theg-moduleMa(g) and the isomor-
phismΦ (of 7.2) is ag-module isomorphism fromCc(g) onto

∧
+ g.

It is well-known that any element of(
∧

g)g is a cocycle, and ifg is reductive,
that H?(g) = (

∧
g)g [16]. Using Propositions 7.7, 7.15 and 8.1, we deduce:

Proposition 8.2. Any invariant cyclic cochain is a cocycle. Ifg is reductive, any
cyclic cohomology class contains one, and only one invariant cyclic cocycle (for in-
stance, the only invariant cyclic coboundary is0).

Hence, wheng is reductive, we can identifyH∗
c (g) and Cc(g)g . This identifi-

cation is valid for the corresponding∧-products (actually isomorphic to the∧-product
of (

∧
+ g)g 'H?

+(g)) and for the corresponding graded Lie bracket induced by the Ger-

stenhaber bracket (actually isomorphic toH (g)g and
(∧

Qg
)g

).

In the remaining of this Section, we assume thatg is a semisimple Lie algebra
with invariant bilinear formB (not necessarily the Killing form).

Proposition 8.3. If I and I′ ∈ (
∧

g)g , then{I , I ′}= 0.

As a consequence of this Proposition and of Proposition 7.15, one has:

Corollary 8.4. The Gerstenhaber bracket induces the null bracket on

H∗
c (g)' Cc(g)g.

To prove Proposition 8.3, we need several lemmas: first, leth be a Lie algebra

and I ∈
(∧p+1h

)h
. Define a mapΩ : h→

∧ph by Ω(X) = ιX(I),∀ X ∈ h . Then since
I is invariant, one has:

Lemma 8.5. Ω is a morphism ofh-modules from(h,ad) into (
∧ph,θ).

Proof. For all X , Y andZ ∈ g, we have:

θX(Ω(Y)) = θX(ιY(I)) = [θX, ιY](I)+ ιY(θX(I)) = ι[X,Y](I) = Ω([X,Y]).

As a second argument for the proof of Proposition 8.3:
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Lemma 8.6. Assuming thath is a perfect Lie algebra (i.e.h = [h,h]), there exists a
mapα : h→

∧p−1h such thatΩ = ∂ ◦α (∂ is the differential of the trivial cohomology
of h). Moreover, if h is semisimple, there exist anh-homomorphismα such that
Ω = ∂ ◦α .

Proof. If X ∈ h , we can findZi , Ti ∈ h such thatX = ∑i [Zi ,Ti ]. Then, Ω(X) =
∑i θZi

(Ω(Ti)) by Lemma 8.5. But∂ (Ω(Ti)) = ∂ (ιTi
(I)) = θTi

(I)− ιTi
(∂ (I)) = 0 since

I is an invariant. ButθZi
mapsZp(h) into Bp(h), so Ω(X) ∈ Bp(h). To constructα ,

fix a sectionσ of the map∂ :
∧p−1h → Bp(h), i.e. σ : Bp(h) →

∧p−1h such that
∂ ◦σ = IdBp(h) and then setα = σ ◦Ω. Wheng is semisimple, one can fix a sectionσ

which is ag-homomorphism.

Proof. (of Proposition 8.3)
Fix an orthonormal basis{X1, . . . ,Xn} of g with respect toB. Given I , I ′ ∈

(
∧

g)g , let Ωr = ιXr
(I), Ω′

r = ιXr
(I ′), α , α ′ the g-homomorphisms given by Lemma

8.6 and finallyαr = α(Xr), α ′
r = α ′(Xr) so thatΩr = ∂ αr andΩ′

r = ∂ α ′
r . With these

notations, in order to finish the proof, we need to show that∑r Ωr ∧Ω′
r = 0. But:

∑
r

Ωr ∧Ω′
r = ∑

r
∂αr ∧∂α

′
r = ∂ (∑

r
αr ∧∂α

′
r) = 0

since∑r αr ∧∂α ′
r ∈ (

∧
g)g .

Remark 8.7. Proposition 8.3 can be directly deduced from a deep result of Kostant
[15] about the structure of Cliff(g∗)g seen as a deformation of(

∧
g)g : by the Hopf-

Koszul-Samelson theorem,(
∧

g)g is an exterior algebra Ext[a1, . . . ,ar ] with rank(g)
= r anda1, . . . ,ar primitive (odd) invariants. Kostant shows that Cliff(g∗)g is a Clifford
algebra constructed ona1, . . . ,ar . Since the deformation from

∧
g to Cliff(g∗) has

leading term the Poisson bracket, it results that{ai ,a j}= 0, ∀ i, j , and then Proposition
8.3 follows.

Example 8.8. Using the results in Section 5 and Corollary 8.4, we will describe
H∗

c (s) andH∗
c (g) whens = sl(n) andg = gl(n), both equipped with the bilinear form

B(X,Y) = Tr (XY), ∀ X,Y . Let 1g be the identity matrix.
One has

∧
s = {Ω ∈

∧
g | ι1g

(Ω) = 0} and Ma(s) = {F ∈ Ma(g) | ι1g
(F) =

0 andF(gp) ⊂ s(F ∈ M p
a (g))} . By Propositions 4.6 and 4.10,A2k ∈ Ma(s). More-

over, letak = Tr (Ak) (k≥ 0), then by Proposition 4.10,a2k+1 ∈ (
∧

g)g , ∀ k≥ 0, and
by Proposition 4.6,a2k+1 ∈ (

∧
s)s , ∀ k≥ 0.

(1) It is well-known thatH∗(g) = (
∧

g)g is the exterior algebra generated by the
invariant cocyclesa1, a3, . . . , a2n−1, i.e. (

∧
g)g = Ext[a1,a3, . . . ,a2n−1] and that

H∗(s) = (
∧

s)s is the exterior algebra generated by the invariant cocyclesa3, a5,
. . . , a2n−1, i.e. (

∧
s)s = Ext[a3,a5, . . . ,a2n−1] (see [15, 14, 10]).

(2) We need to compute the super Poisson bracket on(
∧

g)g . Note that{Ω,Ω′}= 0,
∀ Ω,Ω′ ∈ (

∧
s)s by Proposition 8.3. Usings⊥ = C 1g , an adapted orthonormal

basis, and the formula in Proposition 5.4, one finds that{a1,a1} = 2n. Then,
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since any element in(
∧

g)g decomposes asΩ+Ω′∧a1, with Ω , Ω′ ∈ (
∧

s)s , we
have only to compute the following brackets:

{Ω,Ω′∧a1}= 0,∀ Ω,Ω′ ∈ Extw
′
[a3, . . . ,a2n−1],

{Ω∧a1,Ω
′∧a1}= 2n(−1)w′ Ω∧Ω′,

∀ Ω ∈ Ext[a3, . . . ,a2n−1],Ω
′ ∈ Extw

′
[a3, . . . ,a2n−1].

(3) Use the isomorphismΦ∗ of Proposition 7.15 to findH∗
c (s) = Cc(s)s andH∗

c (g) =
Cc(g)g . One has[A2,A2k] = 0 by Proposition 4.2, soA2k is a cocycle, obvi-
ously g-invariant. By Proposition 4.11, it is a cyclic cocycle, andΦ(A2k) =
− 1

2(2k+1)a2k+1. It results that

H∗
c (s) = Ext+[A2,A4, . . . ,A2n−2] andH∗

c (g) = Ext+[A0,A2, . . . ,A2n−2].

(4) Now we compute the Gerstenhaber bracket. ForH∗
c (s), by Corollary 8.4, the

Gerstenhaber bracket vanishes. ForH∗
c (g), we use the isomorphismΨ∗ (see

Proposition 7.15) combined with 8.8 (3) and the commutation rules inH∗(g)
computed in 8.8 (2) from which the commutation rules inH∗

Q(g) = H∗(g)/C are
deduced. Finally the result is the following:

[F,F ′]a = 0,∀ F,F ′ ∈ Ext+[A2, . . . ,A2n−2],
[A0,F ]a = 0,∀ F ∈ Ext+[A0,A2, . . . ,A2n−2],
[F,F ′∧A0]a = 0,∀ F,F ′ ∈ Ext+[A2,A4, . . . ,A2n−2],

[A0,F
′∧A0]a =

n
2
(−1) f ′ F ′,∀ F ′ ∈ Extf ′

+ [A2,A4, . . . ,A2n−2],

[F ∧A0,F
′∧A0]a =

n
2
(−1) f ′ F ∧F ′,

∀ F ∈ Ext+[A2,A4, . . . ,A2n−2],F
′ ∈ Extf ′

+ [A2,A4, . . . ,A2n−2],

Remark that for the last result, one uses: ifF ′ ∈ Extf ′
+ [A2,A4, . . . ,A2n−2] ∩

C p′
c (g), then f ′ = p′+1 mod 2 andΦ(F ′) ∈

∧p′+1g.

9. Quadratic 2k-Lie algebras and cyclic cochains

9.1. . Let g be a finite-dimensional quadratic vector space with bilinear formB. Given
D ∈D2k−1, k≥ 1 denote byF = FD the associated (even) structure ong (see Sections
2 and 3), 3.), that we also denote by a bracket notation:

[Y1, . . . ,Y2k] = F(Y1, . . . ,Y2k),∀Y1, . . . ,Y2k ∈ g.

Definition 9.1. The bilinear formB is F -invariant (or F is a quadratic structure
with bilinear form B) if B([Y1, . . . ,Y2k−1,Y],Z) = −B(Y, [Y1, . . . ,Y2k−1,Z]), ∀ Y1, . . . ,
Y2k−1, Y , Z ∈ g.

We introduce the linear maps adY1,...,Y2k−1
: g→ g by:

adY1,...,Y2k−1
(Y) = [Y1, . . . ,Y2k−1,Y], ∀Y1, . . . ,Y2k−1,Y ∈ g.

It is obvious that
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Proposition 9.2. The bilinear form B is F -invariant if and only ifadY1,...,Y2k−1
∈

o(B), ∀Y1, . . . ,Y2k−1 ∈ g.

The next Proposition results directly from Propositions 7.2 and 7.9.

Proposition 9.3.

(1) F is quadratic if and only if it is a cyclic cochain.

(2) F is quadratic if and only if there exists I∈
∧2k+1g such that D=−1

2adP(I) and
in that case, one has I(Y1, . . . ,Y2k+1) = B([Y1, . . . ,Y2k],Y2k+1), ∀ Y1, . . . , Y2k+1 ∈
g.

9.2. . Keeping the notation of Proposition 9.3, a quadraticF will define a 2k-Lie
algebra structure ong (namely a quadratic 2k-Lie algebra) if and only if:

[F,F ]a = 0 or [D,D] = 0 or {I , I}= 0. (7)

Examples of quadratic 2k-Lie algebras can be directly deduced from Proposition
8.3: let us assume in the remaining of 9.2, thatg is a semisimple Lie algebra with
bilinear formB (not necessarily the Killing form). Then one has:

Proposition 9.4. Any invariant even cyclic cochain inMa(g) defines a quadratic
2k-Lie algebra ong.

These examples were introduced for the first time in [3], in the case of primitive
elements in(

∧
g)g (we shall come back to the construction in [3] later in this Section).

Let F be an invariant even cyclic cochain, denote by:

[Y1, . . . ,Y2k] = F(Y1, . . . ,Y2k),∀Y1, . . . ,Y2k ∈ g

the associated quadratic 2k-bracket ong. Let us introduce, as in 9.1:

I([Y1, . . . ,Y2k+1) = B([Y1, . . . ,Y2k],Y2k+1), ∀Y1, . . . ,Y2k+1 ∈ g,

and the associated derivationD = −1
2adP(I) of

∧
g. Since [D,D] = 2D2 = 0,

we can define the associated cohomology on
∧

g by

H?(F) = Z(D)/B(D)

whereZ(D) = ker(D) andB(D) = Im(D).
The following Lemma has to be compared with Formula 3 of 3.2:

Proposition 9.5. Let {X1, . . . ,Xn} be an orthonormal basis ofg with respect to B.
Then there existβ1, . . . ,βn ∈

∧2k−1g such that:

D =
1
2∑

r
βr ∧θXr

.
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Proof. Let {ω1, . . . ,ωn} be the dual basis of{X1, . . . ,Xn} . One hasθXr
(ωs)(Y) =

B([Xr ,Xs],Y) for all Y ∈ g. So θXr
(ωs) =−θXs

(ωr) for all r , s. DefineΩ(X) = ιX(I),

X ∈ g. By Lemma 8.6, there exists ag-homomorphismα : g→
∧2k−1g such thatΩ =

∂ ◦α . Defineαr = α(Xr), thenθXr
(αs) = α([Xr ,Xs]), so one hasθXr

(αs) =−θXs
(αr).

DefineΩr = Ω(Xr) = ∂αr , the one has:

D =−1
2

adP(I) =−∑
r

Ωr ∧ ιXr
.

So D(ωr) =−∂αr . Then using∂ = 1
2 ∑sωs∧θXs

([16]), one has:

∂αr =−1
2∑

s
ωs∧θXr

(αs) =−1
2

(
θXr

(∑
s

ωs∧αs)−∑
s

θXr
(ωs)∧αs

)
.

But ∑sωs∧αs is g-invariant, so :

∂αr =
1
2∑

s
θXr

(ωs)∧αs =−1
2∑

s
αs∧θXr

(ωs) =
1
2∑

s
αs∧θXs

(ωr).

Therefore, sinceD and∑sαs∧θXs
are derivations of

∧
g, one hasD =−1

2 ∑sαs∧θXs
,

and if we setβs =−αs, the Proposition is proved.

From Proposition 9.5, we deduce:

Proposition 9.6. One has(
∧

g)g ⊂ Z(D).

From the fact thatI ∈ (
∧

g)g , D is a g-homomorphism of theg-module
∧

g,
which is semisimple. By standard arguments ([16]), one deduces:

Proposition 9.7. One has(
∧

g)g ⊂ H?(F).

WhenF is the Lie algebra structure ofg, it is well-known thatH?(F) = (
∧

g)g

([16]).
Let us now place the constructions in [3] in our context. We assume thatg

is a semisimple Lie algebra of rankr and fix a non degenerate symmetric bilinear
form B (not necessarily Killing) ong. Let S(g) = Sym(g∗). Using Chevalley’s
theorem, there exist homogeneous invariantsQ1, . . . ,Qr with qi = deg(Qi) such that
S(g)g = C[Q1, . . . ,Qr ]. Let t : S(g)g → (

∧
g)g be the Cartan-Chevalley transgression

operator ([5], [6]). By the Hopf-Koszul-Samelson theorem ([5], [6], [15]), one has
(
∧

g)g = Ext[t(Q1), . . . , t(Qr)] and deg(t(Qi)) = 2qi −1. By (7) and Proposition 8.3,
any odd elementI in (

∧
g)g defines a quadratic 2k-Lie algebra structure ong (and

corresponding generalized Poisson bracket ong∗ ). As a particular case, this works for
t(Qi), i = 1, . . . , r which define a(2qi −2)-Lie algebra structure ong and a GPB on
g∗ , and these are exactly the examples given in [3], though in these papers there are no
citations, neither to Chevalley [6], nor to Cartan [5]. Let us insist that not only primitive
invariants (as sometimes claimed in [3]), but actually all odd invariants do define 2k-Lie
algebra structures ong (Propositions 9.3 and 9.4).

9.3. . Using the notation and the results of Example 8.8, let us consider the case of
g = gl(n), with bilinear formB(X,Y) = Tr (XY), ∀X,Y ∈ g. ConsiderC = F +F ′∧A0
with F , F ′ ∈ Ext+[A2,A4, . . . ,A2n−2]. In order to haveC an even element ofMa(g),
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we have to assume thatF ∈ Extodd
+ [A2,A4, . . . ,A2n−2] andF ′ ∈ Exteven

+ [A2, . . . ,A2n−2]
(see the last remark in Example 8.8 (4)). Moreover, we have to assume thatF and
F ′ ∧A0 have the same degree inMa(g), say 2k. Then, from commutation rules in
8.8 (4), C defines a 2k-Lie algebra structure ong if and only if F ′ ∧F ′ = 0. This
last condition is obviously satisfied ifF ′ is decomposable. For instance, ifn ≥ 3,
αA8 + βA0∧A2∧A4, α , β ∈ C , defines a 8-Lie algebra structure ong; if n≥ 4,
αA14+βA0∧A4∧A8, α , β ∈ C , defines a 14-Lie algebra structure ong.
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tiques, Paris, 1958.

[5] Cartan, H.,La transgression dans un groupe de Lie et dans un espace fibré
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