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Abstract. It is well known that the maximal subalgebras of a semisimple
Lie algebra g are certain semisimple subalgebras and the maximal parabolic
subalgebras. This paper provides a classification of subalgebras h ⊂ g such that
every subalgebra strictly containing h is horospherical, i.e., contains a maximal
unipotent subalgebra of g .
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Let g be a complex semisimple Lie algebra. In his doctoral thesis [5] V.V. Morozov
showed that any maximal subalgebra of g is either semisimple or a maximal
parabolic subalgebra (Morozov’s proof can also be found in [4]). Later in his
paper [2] E.B. Dynkin classified all semisimple maximal subalgebras.

Let us call an algebraic subalgebra h of g horospherical if it contains
a maximal unipotent subalgebra of g . These subalgebras can be described as
follows: there is a parabolic subalgebra p of g such that [l, l] � pu ⊂ h ⊂ p , where
p = l � pu is a Levi decomposition of p .

The inclusion relation on the horospherical subalgebras is very simple.
It looks natural to classify all non-horospherical algebraic subalgebras that are
maximal in this class. This is the main result of this paper.

Definition 0.1. A maximal non-horospherical subalgebra h of g is said to
be almost horospherical. The pair (g, h) in this case is also said to be almost
horospherical.

Let us recall the concept of parabolic induction of subalgebras introduced
in [8].

Let g be a reductive algebraic Lie algebra, p be a parabolic subalgebra of
g , and φ be a homomorphism from p onto some reductive algebraic Lie algebra
g̃ . Let h̃ be a subalgebra of g̃ . Set h = φ−1(h̃). The pair (g, h) is said to be
obtained from the pair (g̃, h̃) by parabolic induction via the parabolic subalgebra
p . We will denote this by (g̃, h̃)−→p (g, h).

We will call a pair (g, h) cuspidal if it cannot be obtained by a parabolic
induction with g̃ 6= g .
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Let p be a parabolic subalgebra of g and φ be a homomorphism from p

onto some reductive algebraic Lie algebra g̃ . Then the subalgebra p will be called
admissible for g̃ . We will call a parabolic subalgebra p1 ⊃ p of g , an admissible
enlargement of p for g̃ if there exists a homomorphism φ1 from p1 onto g̃ such
that φ1(a) = φ(a) for all a ∈ p . If p has no admissible enlargements then it will
be called maximal admissible for g̃ . In this case the Levi subalgebra l of p is
maximal among reductive subalgebras of g containing g̃ as an ideal.

Theorem 0.2. Almost horospherical pairs are exactly the pairs obtained from
the cuspidal almost horospherical pairs by parabolic induction via maximal admis-
sible parabolic subalgebras.

Therefore, the question is reduced to classifying cuspidal almost horospher-
ical pairs. Let us introduce some notions and notation necessary to formulate the
classification.

Let t be a Cartan subalgebra of g , b be a Borel subalgebra of g containing
t , ∆ be the system of roots of g with respect to t , ∆+ ⊂ ∆ be the set of positive
roots with respect to b , Π = {α1, . . . , αn} be the system of simple roots, eα ∈ g

be a root vector corresponding to the root α ∈ ∆, hα be the element of t such
that hα is orthogonal to Ker α (with respect to the Cartan scalar product) and
α(hα) = 2.

Now we can give a description of admissible and maximal admissible para-
bolic subalgebras in terms of roots. Let p ⊂ g be a parabolic subalgebra containing
b and l be its Levi subalgebra containing t . If there is a homomorphism φ : p → g̃

for an algebraic reductive g̃ then we may assume g̃ to be an ideal of l . If g̃ is
semisimple then it is defined by the set Π′ of simple roots α such that eα ∈ g̃

(or e−α ∈ g̃). Similarly, p is defined by the set Π′′ of simple roots α such that
e−α ∈ p . The subdiagram corresponding to Π′ is a connected component of the
subdiagram corresponding to Π′′ . And in case when p is maximal admissible for
g̃ , Π′′ consists of Π′ and all simple roots orthogonal to all elements of Π′ .

For each set Π1 ⊂ Π let us define a grading of g in the following way. Let
α be a root and α =

∑
njαj be its decomposition into a linear combination of

simple roots. Let us define the Π1 -height of α as the sum of coefficients nj such
that αj ∈ Π1 , and denote it by htΠ1(α). Set

gi =
∑

α | htΠ1
(α)=i

Ceα, i 6= 0,

g0 = t +
∑

α | htΠ1
(α)=0

Ceα.

It is clear that [gi, gj] ⊂ gi+j . Below we will prove that [g1, gi] = gi+1 for i ≥ 1
(Lemma 1.2). Set g≥i =

∑
j≥i gj and g≤i =

∑
j≤i gj . Then p = p(Π1) := g≥0

is a parabolic subalgebra. We will say that it is defined by the set Π1 . Set
depth(Π1) = max{i|gi 6= {0}} . This number is the nilpotent degree of the
unipotent radical pu = g≥1 of p .

Theorem 0.3. Let h be an algebraic subalgebra of a semisimple Lie algebra g.
The pair (g, h) is cuspidal almost horospherical exactly in the following cases:
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1. g is a simple Lie algebra, h is a semisimple maximal subalgebra (as it was
said above, the list of such pairs can be found in [2]);

2. g is a direct sum of two copies of a simple Lie algebra, h is the diagonal
subalgebra;

3. g is a simple Lie algebra, h is a Levi subalgebra of a maximal parabolic
subalgebra p({α}) ⊂ g such that depth({α}) = 1;

4. g is a simple Lie algebra,

h = Ch0 + {
∑
α∈Π

cαeα|
∑
α∈Π

cα = 0}+ g≥2 ⊂ g,

where h0 ∈ t is the element such that α(h0) = 1 for all α ∈ Π and the
grading is defined by the set of all simple roots;

5. g is a simple Lie algebra of type D4 ,

h = Chα2 + C(hα1 + hα3 + hα4) + Ceα2 + Ce−α2 + C(eα1 − eα3)+

C(eα1 − eα4) + C(eα1+α2 − eα3+α2) + C(eα1+α2 − eα4+α2) + g≥2

where the grading is defined by the set {α1, α3, α4}.

6. g is an exceptional simple Lie algebra and

h = g0 + g≥2,

where the grading is defined by the set {α} for a simple root α such that
depth({α}) ≥ 3.

I would like to express my deepest gratitude to E.B. Vinberg and D.I. Tima-
shev for permanent support in my work.

Notation:
g a semisimple Lie algebra;
t a Cartan subalgebra of g;
b a Borel subalgebra of g containing t;
∆ the system of roots of g with respect to t;
∆+ ⊂ ∆ the system of positive roots of g with respect to b;
Π = {α1, . . . , αn} ⊂ ∆+ the system of simple roots of g (see [6]);
{π1, . . . , πn} the set of fundamental weights of g;
pu the unipotent radical of a parabolic subalgebra p of g;

We will also use the notation εi for weights as accepted in [6].

If α ∈ t(R)∗ , then hα is an element of t such that hα is orthogonal to Ker α
(with respect to the Cartan scalar product) and α(hα) = 2.

If α ∈ ∆, then eα will denote the root vector, corresponding to α (de-
fined up to a scalar factor). We will assume that [eα, e−α] = hα (thus, the set
{hα, eα, e−α} will be a sl2 -triple).

The sign � will be used for semidirect sums of Lie algebras.
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1. Proofs of the theorems

Let us formulate Theorem 1.3 from [8] that will be used in the proof:

Theorem 1.1. Let (g̃, h̃)−→p (g, h) and h1 ⊃ h. The pair (g, h1) can be obtained
from the pair (g, h) in the following way:

• first of all, the subalgebra h̃ is is enlarged to a subalgebra h̃′ ⊃ h̃ of g̃, so we
replace the (g, h) with (g, h′), where (g̃, h̃′)−→p (g, h′)

• we pass to a deeper parabolic induction: if (g̃, h̃′) is not cuspidal by itself,
then (ĝ, ĥ)−→̃p (g̃, h̃′) for some cuspidal pair (ĝ, ĥ), therefore (ĝ, ĥ)−→p′ (g, h′),
where p′ = p̃ � k for any k such that p = g̃ � k (h′ is not changed by this
operation);

• and finally we enlarge p′ to a maximal admissible enlargement p1 for ĝ (as
a result (ĝ, ĥ)−→p1 (g, h1))

Proof. (of Theorem 0.2)

Let h̃ ⊂ g̃ and (g, h) be obtained from (g̃, h̃) via p .

First of all, if the pair (g̃, h̃) is not almost horospherical then h ⊂ h1 , where
(g̃, h̃1)−→p (g, h1) and h̃1 ⊃ h̃ is a non-horospherical subalgebra of h̃ . Also, if p is
not maximal admissible for g̃ then h ⊂ h1 , where (g̃, h̃)−−−→pmax (g, h1) and pmax ⊃ p

is a maximal admissible for g̃ parabolic subalgebra.

In both cases it easy to verify that (g, h1) is not horospherical. Conse-
quently, each almost horospherical reducible pair is obtained from a cuspidal al-
most horospherical pair by parabolic induction via a maximal admissible parabolic
subalgebra.

Now let h̃ ⊂ g̃ be cuspidal and almost horospherical and (g, h) be obtained
from (g̃, h̃) via a maximal admissible for g̃ parabolic subalgebra p . Suppose that
h1 ⊃ h is not horospherical.

Let us apply Theorem 1.3 of [8] and study what happens during the appli-
cation of these three operations. If h̃1 6= h̃ then h̃1 is horospherical, therefore h1

is horospherical as well, and we come to a contradiction. Therefore, h̃ = h̃1 , so
we cannot pass to a deeper parabolic induction since (g̃, h̃) is cuspidal. Hence we
cannot enlarge the parabolic subalgebra for p is maximal admissible, so h = h1 .

Lemma 1.2. Let g = ⊕igi be the grading of g defined by a subset Π1 ⊂ Π of
the system of simple roots. Then [g1, gi] = gi+1 for i ≥ 0.

Proof. It is enough to prove that for any root γ of a positive Π1 -height that
there is a root α of Π1 -height 1 such that [e−α, eγ] 6= 0. We will prove it by
induction on the Π-height of γ .

The induction base is obvious. Let now htΠγ = i + 1. There exists a root
δ ∈ Π such that [e−δ, eγ] 6= 0. If δ ∈ Π1 then we can set α = δ and we are done.
Otherwise γ − δ is a root of Π-height i and we can use the induction assumption
and find such β that htΠ1β = 1 and [e−β, [e−δ, eγ]] 6= 0. According to the Jacobi
identity, either δ + β is a root and we can set α = δ + β , or [e−β, eγ] 6= 0 and we
can set α = β .
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Corollary 1.3. If h ⊂ g≥1 is a subalgebra such that h + g≥2 = g≥1 then
h = g≥1 .

Proof. We have
∀b ∈ g1 ∃a ∈ g≥2 : b + a ∈ h. (1)

Using this statement as the base of induction and Lemma 1.2 as the induction
step, we prove

∀b ∈ gi ∃a ∈ g≥i+1 : b + a ∈ h for i > 0. (2)

Let j = depth(Π1). The formula (2) applied to i = j gives us the inclusion gj ⊂ h .
Then, using the last inclusion and the formula (2) for i = j − 1, we prove that
gj−1 ⊂ h and so on. Finally we show that g≥1 ⊂ h , and we are done.

Now we can turn to the proof of Theorem 0.3. From here on we will suppose
the pair (g, h) to be cuspidal and almost horospherical.

Let h = m � hu be the Levi decomposition of h . As it is well known,
there is a parabolic subalgebra p such that h can be properly included in p , i.e.
m ⊂ l and hu ⊂ pu where p = l � pu is a Levi decomposition of p . Suppose
that h cannot be properly included in any proper parabolic subalgebra p . Then
h is reductive and maximal; consequently, according to the results of Dynkin, it is
semisimple. Thus, we come to the cases 1 or 2 of the theorem.

¿From now on we will suppose that p 6= g .

Lemma 1.4. m ⊃ [l, l].

Proof. Consider the subalgebra h′ = h + pu . Since the pair (g, h) is almost
horospherical, either h ⊃ pu , or h′ is horospherical. The first case is impossible
since the pair (g, h) is cuspidal. Thus h′ is horospherical, therefore m ⊃ [l, l] .

Now let us replace the algebras by conjugate ones, in order to have p ⊃ b

and l ⊃ t . Set Π0 = {α ∈ Π|e−α ∈ p} , Π1 = Π\Π0 and consider the grading
defined by Π1 . Then p = p(Π1) and l = g0 . The algebra a = {a ∈ t|α(a) =
0,∀α ∈ Π0} is the direct complement of [l, l] in l , i.e. it is the center of l .

Lemma 1.5. h ⊃ g≥2 .

Proof. Suppose the contrary. The set hu + g≥2 is a subalgebra. Since h is
almost horospherical, we have hu + g≥2 = g≥1 , but then according to Corollary
1.3, hu = g≥1 , and we come to a contradiction.

Let us study the m-invariant intersection h ∩ g1 now. To do that, let us
consider the m-equivariant decomposition g1 = ⊕α∈Π1g1(α), where

g1(α) :=
⊕

β∈∆∩(α+〈Π0〉)

C eβ

is m-irreducible (see [9]).

Lemma 1.6. The m-representations g1(α) are isomorphic to each other, h

does not contain any of the vector spaces g1(α), and g is simple.
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Proof. Let V be an isotypical component of g1 not contained in h and g1 =
V ⊕ V ′ . The vector subspace h ∩ g1 is m-invariant, therefore h ∩ g1 = (h ∩ V )⊕
(h∩V ′). Hence h+V ′ is a non-horospherical subalgebra of g containing h . Since
h is almost horospherical, we have h ⊃ V ′ .

Now let Π′ ⊂ Π1 be the subset of simple roots α such that h ⊃ g1(α),
p′ = p(Π′). Then h contains the unipotent radical of p′ . Now it is enough to note
that (g, h) is cuspidal.

Lemma 1.7. 1. h ∩ a = Ch0 , where h0 is the element such that α(h0) = 1
for α ∈ Π1 and α(h0) = 0 for α ∈ Π0 ;

2. if one fixes isomorphisms g1(α) ∼= g1(α
′) for all α, α′ ∈ Π1 , then the

intersection h ∩ g1 can be given by an equation
∑

cαxα = 0, where xα ∈
g1(α), and cα is a set of non-zero coefficients;

3. replacing h by a conjugate subalgebra, one may assume cα = 1 for all α;

Proof. It follows from Lemma 1.6 that any element of h ∩ a must act by the
same character on the root vectors eα for α ∈ Π1 . Hence h ∩ a ⊂ Ch0 . On the
other hand, h + Ch0 is not horospherical, therefore h ∩ a = Ch0 , and we have
proved the first statement of the lemma.

Observe now that for any m-invariant subspace V of g1 the set m +
Ch0 + V + g≥2 is an algebra. The algebra h is almost horospherical, therefore
dim(g1) − dim(h ∩ g1) = dim(g1(α)) for α ∈ Π1 . It proves the second statement
of the lemma, and the third one is obvious.

Now we can complete the proof of Theorem 0.3.

Proof. The m-representation spaces g1(α1) and g1(α2) are isomorphic to each
other for α1, α2 ∈ Π1 , therefore the t∩m-weights of α1 and α2 coincide. In other
words, the points corresponding to the roots α1 and α2 on the Dynkin diagram are
located “in the same position” with respect to the subdiagram corresponding to
Π0 . Suppose first that those weights are equal to zero. Then the Dynkin diagram
splits into two diagrams, corresponding to Π0 and Π1 . According to Lemma 1.6,
one of those diagrams must be empty, hence Π = Π1 . Now Lemma 1.7 leads us
directly to the fourth possibility of Theorem 0.3.

Now let us turn to the case when Π0 6= Ø.

To start with, let #Π1 = 1. According to Lemma 1.7, h ∩ g1 = {0} and
t ⊂ h . The algebra h can be described in the following way: there is a maximal
parabolic subalgebra g≥0 in g , and h = g0 + g≥2 . If depth(Π1) = 1, then h = g0 ,
so we come to the third possibility of Theorem 0.3. If depth(Π1) = 2, then we
come to a contradiction, since in this case h can be included in a semisimple
subalgebra g0 + g2 + g−2 . However, the case depth(Π1) ≥ 3 can occur only for an
exceptional g , so we come to the sixth possibility of Theorem 0.3.

Now let #Π1 = 2. Then there are two points on the Dynkin diagram
located “in the same position” with respect to all the other points; thus g = Dn ,
[l, l] = An−2 , and Π1 = {εn−1 + εn, εn−1 − εn} . Then, according to Lemma 1.7,
h = g≥2 + Chε1+...+εn−1 + [l, l] +

∑
i=1,...,n−1 C(eεi+εn + eεi−εn), but this algebra is

not almost horospherical since h ⊂ Bn−1 ⊂ Dn . Thus, #Π1 6= 2.
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A Dynkin diagram cannot have vertices of degree more than three, thus
#Π1 ≤ 3. We have one possibility left: #Π1 = 3, so g = D4 . It follows that
l = t+ Ceα2 + Ce−α2 , g1 = Ceα1 + Ceα3 + Ceα4 + Ceα1+α2 + Ceα3+α2 + Ceα4+α2 and
g≥2 = Ceα1+α3+α4+α2 + Ceα1+α3+α4+2α2 + Ceα1+α3+α2 + Ceα1+α4+α2 + Ceα3+α4+α2 .

According to Lemma 1.7, 2hα1 + 3hα2 + 2hα3 + 2hα4 = h0 ∈ h and c1eα1 +
c3eα3 + c4eα4 ∈ h ⇔ c1eα1+α2 + c3eα3+α2 + c4eα4+α2 ∈ h ⇔ c1 + c3 + c4 = 0. So we
come to the fifth possibility of Theorem 0.3.

So now we know that all cuspidal almost horospherical pairs are listed in
Theorem 0.3.

It remains to prove the inverse statement: that all pairs listed in Theorem
0.3 are almost horospherical and cuspidal.

Let us first prove that they are almost horospherical. It is clear for the first
two possibilities for they are maximal.

Assume the contrary. Let h′ ) h be a non-horospherical subalgebra.

Let g = g−1 +g0 +g1 , and let h = g0 be the third case. The representations
g0 : g±1 are irreducible, therefore h contains either g1 or g−1 , and we come to a
contradiction.

Consider the fourth case. It is easy to see that h′ ∩ p = h . Choose an
element e :=

∑
α∈Π cαeα ∈ h with all cα not equal to zero and include it in an

sl2 -triple (e, h, f). Then it follows from the theory of sl2 representations that
h = 2h0 and the operator a → [e, a] is injective on the negative components. The
algebra h′ is an (e, h)-invariant subspace of g , therefore [e, h′ ∩ g−1] = Ch0 , and
so h′ ∩ g−1 = Cf . The operator a → [f, a] preserves h′ and is injective on the
positive components, so [f, g2] = Ce , but this is impossible since e is a highest
vector for sl2 .

Consider the fifth case. Similarly, we have h′ ∩ p = h and h′ ∩ g−1 6= {0} .
Let x = c1e−α1 + c3e−α3 + c4e−α4 + c′1e−α1−α2 + c′3e−α3−α2 + c′4e−α4−α2 be a non-zero
element of this intersection. We have [h∩ g1, x] ⊂ m , thus [eα1 − eα3 , x] ∈ m . But
the last element is equal to c1hα1 + c3hα3 + te−α2 for some number t . Therefore
c1hα1 +c3hα3 ∈ m , so c1 = c3 = 0. Analogously we prove that the other coefficients
are also equal to zero, so x = 0 and we come to a contradiction.

Consider the sixth case. Suppose first that h′ can be properly included into
a parabolic subalgebra p′ 6= g . We have p′ ⊃ g0 , therefore either p′ = g≤0 or
p′ = g≥0 . The first case is obviously impossible, and in follows from the second
one that h′ ⊂ g≥0 . Hence h′∩g1 6= 0, but the representation g0 : g1 is irreducible,
and we come to a contradiction. Therefore there is no such subalgebra p′ , so h′ is
reductive. Then h′ ⊃ g−2 , and it is enough to note that [g−2, g3] 6= {0} .

Let us now prove that the pairs listed in Theorem 0.3 are cuspidal. Suppose
the contrary. Then h contains the unipotent radical of a parabolic subalgebra
p . Obviously it is impossible for the first three cases of the theorem, for those
subalgebras are reductive. In the sixth case we have p ⊃ g0 , therefore either
p = g≤0 or p = g≥0 , but both those possibilities are impossible for pu 6⊂ h .

Let us consider the two remaining cases. First of all, let us prove that
p ⊃ t . If we consider the fourth case, then h0 ∈ p . It is a semisimple element that
can be included in a Cartan subalgebra of p . But the centralizer of h0 coincides
with t , hence p ⊃ t . In the fifth case an analogous proof works for a general
linear combination of h0 and hα2 . Now we know that p ⊃ t and p ⊃ h , therefore
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p ⊃ [t, h] ⊃ b . Consequently there must be a simple root α such that eα ∈ pu and
e−α 6∈ p , so eα ∈ h and e−α 6∈ h . A contradiction.
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