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Abstract. In the present note we discuss two different ring structures on
the set of holomorphic discrete series of a causal symmetric space of Cayley
type G/H and we suggest a new interpretation of Rankin-Cohen brackets in
terms of intertwining operators arising in the decomposition of tensor products
of holomorphic discrete series representations.
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1. Introduction

When studying L-functions of quadratic characters H. Cohen [C75] described in
1975 a particular family of bi-differential operators acting on smooth functions on
the Poincaré upper half-plane Π. The initial interest in these operators, called
henceforth the Rankin-Cohen brackets (RCB), is due to the fact that they give a
powerful tool for producing new modular forms of higher weight.

More precisely, fix a positive integer k and define for every f ∈ C∞(Π) :

(f|kγ)(z) := (cz + d)−kf

(
az + b

cz + d

)
, ∀γ =

(
a b
c d

)
∈ SL(2,R).

One says that a function f holomorphic on Π is a modular form of weight k with
respect to some arithmetic subgroup Γ ⊂ G if it satisfies the identity (f|kγ) = f
for all γ ∈ Γ.

Let k1, k2, j be three positive integers and f, g ∈ C∞(Π). One sets

Fj(f, g) =

j∑
`=0

(−1)`C`
k1+j−1C

j−`
k2+j−1f

(j−`)g(`), where f (`) =

(
∂

∂z

)`

f, (1)

and C`
k denote the binomial coefficient k!

(k−`)!`!
.

H. Cohen showed that the following identity holds:

Fj(f|k1γ, g|k2γ) = Fj(f, g)|k1+k2+2jγ, γ ∈ SL(2,R).
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Therefore if f and g are modular of weight k1 and k2 respectively Fj(f, g) is
again a modular form of weight k1 + k2 + 2j for every j ∈ N . Notice that in case
when Γ = SL(2,Z) the only non trivial modular forms are of even weight.

This construction was generalized in the setting of Sp(n,Z)-modular forms
on the Siegel half plane, i.e. the symmetric space of positive definite symmetric
matrices, by W.Eholzer and T.Ibukiyama [EI98]. An algebraic approach to RCB
and their possible generalizations via the commutation relations that they should
satisfy was developed by D. Zagier [Z94]. See also [Z92] for an overview of this
subject from the number theoretic point of view.

From the other side, in 1996 A and J. Unterberger [UU96] showed that
this family of bi-differential operators arises in an astonishing way in the con-
text of the covariant quantization of one of the coadjoint orbits of the Lie group
G = SL(2,R). By developing a covariant symbolic calculus on the one-sheeted hy-
perboloid realized as the symmetric space G/H = SL(2,R)/SO(1, 1) they proved
that the composition f#sg of two symbols f and g satisfying some regularity con-
ditions (they are images by the inverse Laplace transform of holomorphic functions,
square integrable with respect to some particular measure on the upper half plane)
is again a symbol of the same kind and moreover it decomposes into a convergent
sum f#sg =

∑
j hj where every summand hj is related to the Rankin-Cohen

bracket Fj(f, g).

This result implies that the set of holomorphic discrete series representa-
tions with even parameter of the group SL(2,R) is endowed with a graded non-
commutative ring structure given by the so-called standard (or convolution-first)
covariant symbolic calculus on SL(2,R)/SO(1, 1).

The group of unimodular real matrices G = SL(2,R) acts on the set of
functions defined on Π and the modular forms are the invariants of this action
restricted to SL(2,Z) ⊂ G .

The fact that RCB’s produce new modular forms from known ones fits
with the standard techniques of transvectants developed in the classical invariant
theory. This method allows us to construct new invariant analytic functions in
two complex variables starting with a couple of known analytic functions invariant
for the simultaneous linear action of GL(2,C). This procedure involves some
differential operators such that once restricted to homogeneous functions they
coincide with the RCB’s given by (1). P. Olver gives a very detailed overview of
this construction in chapter 5 of his book [O99] as well as in [OS00]. Notice that
the basic lemma underlying the link between transvectants ant the Rankin-Cohen
brackets was proved by S. Gundelfinger [G86] already in 1886.

Inspired by this observation we shall gather in the present note these two
different approaches to the RCB’s using the representation theory of the group
SL(2,R). These techniques will make clear the way to generalize the notion of
RCB’s in the setting of para-Hermitian symmetric spaces of Hermitian type (some
times called also causal symmetric spaces of Cayley type). The choice of this
particular class of symplectic symmetric spaces is explained in the next section.
We shall see that RCB’s are related to the decomposition of tensor products of two
holomorphic discrete series representations into irreducible components. Recent
results by Peetre [P94] and Peng and Zhang [PZ94] give an explicit formula for
the RCB in this case. The description of the Clebsh-Gordan coefficients of the
group G is an important problem even from the physical point of view and we
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hope that this note will give a better understanding of what one calls now the
Rankin-Cohen quantization [CM04].

M.P. is grateful to J. Alev, A. Unterberger and G. Zhang for fruitful dis-
cussions and thanks the E. Schrödinger International Institute for Mathematical
Physics in Vienna for its hospitality and support.

2. Geometric settings

Let G be a connected real semi-simple Lie group with finite center and K be
a maximal compact subgroup. We assume that the Harish-Chandra condition
rankG = rankK holds what guarantees the existence of discrete series repre-
sentations (i.e. unitary irreducible representations whose matrix coefficients are
square integrable on G). Furthermore, we assume that G/K is a Hermitian sym-
metric space of tube type and thus G has holomorphic discrete series, i.e. discrete
series realizable in holomorphic sections of holomorphic vector bundles over G/K .
Equivalently the last condition means that the Harish-Chandra modules underly-
ing these discrete series representations are highest weight modules.

Among such Lie groups we shall restrict our considerations to those which
can be seen as automorphism groups of some semi-simple para-Hermitian sym-
metric space. More precisely, let σ be an involutive automorphism of G and H
an open connected subgroup of the group of fixed points of σ . The coset space
G/H (which is actually a coadjoint orbit of G and therefore is a symplectic mani-
fold) is called para-Hermitian if its tangent bundle T (G/H) splits into the sum of
two G-invariant isomorphic sub-bundles (see [KK85] for a detailed study of such
spaces).

This splitting induces a G-invariant polarization on T (G/H) which is
necessary in order to define a symbolic calculus. Indeed, this polarization will allow
us to distinguish position and momenta variables on G/H which plays the role of
the phase space, while the symmetric space G/K will be seen as the configuration
space.

It turns out that the Lie groups G satisfying both conditions : G/K is
Hermitian of tube type and G/H is para-Hermitian, have a nice description in
terms of Euclidean Jordan algebras.

We shall briefly recall the link between Jordan algebras and the semi-simple
Lie groups considered above.

An algebra V over R or C is said to be a Jordan algebra if for all elements x
and y in V , one has x·y = y ·x and x·(x2 ·y) = x2 ·(x·y). For an element x ∈ V let
L(x) be the linear map of V defined by L(x)y := x ·y and P (x) = 2L(x)2−L(x2)
be the quadratic representation of V . For x and y in V one also defines an
endomorphism D(x, y) of V given by D(x, y) = L(xy)− [L(x), L(y)].

We denote by β(x, y) the symmetric bilinear form on V defined by β(x, y) =
TrL(x · y).

Let r and n denote respectively the rank and the dimension of the Jordan
algebra V . The integer d determined by n = r + d

2
r(r − 1) is called Peirce

multiplicity. For a regular element x , the minimal polynomial fx is of degree r ,

fx(λ) = λr − a1(x)λ
r−1 + · · ·+ (−1)rar(x).

The coefficient aj is a homogeneous polynomial of degree j , ∆(x) := ar(x) is the
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Jordan determinant, and tr (x) := a1(x) is the Jordan trace of x .

A Jordan algebra V is semi-simple if the form β is non-degenerate on V .
A semi-simple Jordan algebra is unital, we denote by e its identity element.

A Jordan algebra Vo over R is said to be Euclidean if the bilinear form
β(x, y) is positive definite on Vo .

Let Vo be an Euclidean Jordan algebra (EJA) from now one. The set

Ω := {x2 | x invertible in Vo}

is an open, convex, self-dual cone in Vo . Those properties of Ω actually charac-
terize Vo as an EJA. The automorphism group of G(Ω) of the cone Ω is defined
by

G(Ω) = {g ∈ GL(Vo) | gΩ = Ω},

and it is a reductive Lie group.

Let V be the complexification of Vo . Consider the tube TΩ = Vo + iΩ ⊂ V
and the Lie group G = Aut(TΩ) of holomorphic automorphisms of TΩ . According
to general theory [FK94] Ch. X. §5, the group G(Ω) can be seen as a subgroup of
G as well as the Jordan algebra Vo it-self. Indeed, for every u ∈ Vo , the translation
τu : z → z + u is a holomorphic automorphism of the tube TΩ and the group of
all real translations τu is an Abelian subgroup N of G isomorphic to the vector
space Vo .

The subgroup of all affine linear transformations of the tube P = G(Ω)nN
is a maximal parabolic subgroup of G .

The subgroups G(Ω) and N together with the inversion map j : x −→
−x−1 , generate the group G .

Let σ be the involution of G given by σ(g) = j ◦ g ◦ j, g ∈ G. In the case
when Vo is a Euclidean Jordan algebra this is a Cartan involution. Let K be a
maximal compact subgroup of G . Then the symmetric space G/K ' TΩ is an
Hermitian symmetric space of tube type.

For w ∈ V the endomorphism D(w, w̄) is Hermitian and one defines an
invariant spectral norm |w| = ‖D(w, w̄)‖1/2 . Let

D = {w ∈ V : |w| < 1},

be the open unit ball for the spectral norm. Then the Cayley transform p :
z 7→ (z − ie)(z + ie)−1 is a holomorphic isomorphism from the tube TΩ onto the
domain D . Thus the group of holomorphic automorphisms of D that one denotes
G(D) = Aut(D) is conjugate to G : G(D) = pGp−1 . We shall refer to the domain
D as to the Harish-Chandra bounded realization of the symmetric space G/K .

We denote N = σ(N) and P := G(Ω) nN .

From the geometric point of view the subgroup P can be characterized in
the following way:

P = {g ∈ G′ | g(0) = 0},

where G′ is the subset of G of all transformations well defined at 0 ∈ Vo . It is
open and dense in G . Moreover G′ = NG(Ω)N . The map N ×G(Ω)×N → G′ is
a diffeomorphism. We shall refer to this decomposition as to the Gelfand-Naimark
decomposition of the group G . Furthermore, for every transformation g ∈ G
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which is well defined at x ∈ Vo , the transformation gnx belongs to G′ and its
Gelfand-Naimark decomposition is given by :

gnx = ng.x(Dg)xn̄
′, (2)

where (Dg)x ∈ G(Ω) is the differential of the conformal map x → g.x at x and
n̄′ ∈ N (see [P] Prop. 1.4).

The flag variety M = G/P , which is compact, is the conformal compacti-
fication of Vo . In fact the map x −→ (nx ◦ j)P gives rise to an embedding of Vo

into M as an open dense subset, and every transformation in G extends to M .

Let g be the Lie algebra of the automorphism group G . Euclidean Jor-
dan algebras, corresponding Lie algebras of infinitesimal automorphisms of tube
domains, and their maximal compact subalgebras are given by the first table.

g k V Vo

su(n, n) su(n)⊕ su(n)⊕ R M(n,C) Herm(n,C)
sp(n,R) su(n)⊕ R Sym(n,C) Sym(n,R)
so∗(4n) su(2n)⊕ R Skew(2n,C) Herm(n,H)
so(n, 2) so(n)⊕ R Cn−1 × C Rn−1 × R
e7(−25) e6 ⊕ R Herm(3,O)⊗ C Herm(3,O)

Let us consider the involution η of the complex Jordan algebra V given by
η(x + iy) = −x + iy (x, y ∈ V ) and define the corresponding fix point sub-group
in G by H = {g ∈ G | ηgη = g}. Clearly H = G(Ω). The involutions η and σ
commute.

Notice that the involution we introduced is a particular case of a conjugation
of V satisfying the following properties.

• η (V0) = V0 ,

• η (ie) = ie ,

• −η is a real Jordan algebra automorphism of V .

The factor space G/H is a para-Hermitian symmetric space. It means that
its tangent bundle splits into two G-invariant sub-bundles both isomorphic to the
underlying Jordan algebra Vo .

We restricted all considerations to Euclidean Jordan algebras therefore the
para-Hermitian spaces G/H that we get are of a particular type, one calls them
causal symmetric spaces of Cayley type [FO85]. Their infinitesimal classification
is given in the second table.

g h V V0

su(n, n) sl(n,C)⊕ R M(n,C) Herm(n,C)
sp(n,R) sl(n,R)⊕ R Sym(n,C) Sym(n,R)
so∗(4n) su∗(2n)⊕ R Skew(2n,C) Herm(n,H)
so(n, 2) so(n− 1, 1)× R Cn−1 × C Rn−1 × R
e7(−25) e6(−26) ⊕ R Herm(3,O)⊗ C Herm(3,O)
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3. Two series of representations of G

3.1. Holomorphic discrete series.

Holomorphic induction from a maximal compact subgroup leads to a series of
unitary representations of G , called holomorphic discrete series representations,
that one usually realizes on holomorphic sections of holomorphic vector bundles
over G/K .

According to our convenience and easiness of presentation we shall use both
bounded and unbounded realizations of the symmetric space G/K . We start with
the simplest case of scalar holomorphic discrete series.

For a real parameter ν consider the weighted Bergman spaces H2
ν (TΩ) of

complex valued holomorphic functions f ∈ O(TΩ) such that

‖f‖2
ν =

∫
TΩ

|f(z)|2∆ν−2n
r (y)dxdy <∞,

where z = x + iy ∈ TΩ . Note that the measure ∆−2n
r (y)dxdy on TΩ is invariant

under the action of the group G . For ν > 1+d(r− 1) these spaces are non empty
Hilbert spaces with reproducing kernels. More precisely, the space H2

ν (TΩ) has a
reproducing kernel Kν which is given by

Kν(z, w) = cν∆

(
z − w̄

2i

)−ν

, (3)

where cν is some expression involving Gindikin’s conical Γ-functions (see [FK94]
p.261).

The action of G on H2
ν (TΩ) given for every integer ν > 1 + d(r − 1) by

πν(g)f(z) = Detν(Dg−1(z))f(g−1.z) (4)

is called a scalar holomorphic discrete series representation.1

In the above formula Dg(z) denotes the differential of the conformal trans-
formation z → g.z of the tube.

On the other hand side the corresponding action of the group G(D) can be
realized as follows. Let

B(z, w) = 1−D(z, w) + P (z)P (w),

be the Bergman operator on V . Its determinant detB(z, w) is of the form
h(z, w)2n/r where h(z, w) is the so-called canonical polynomial (see [FK94] p.262).
Notice that it is the pull back of K1(z, w) by the Cayley transform.

Then the group G(D) acts on the space H2
ν (D) of holomorphic functions

f on D such that

‖f‖2
ν,D = c′ν

∫
D
|f(z)|2h(z, z)ν−2n

r dxdy <∞

1Notice that in general one shows, by use of analytic continuation, that the reproducing kernel
(3) is positive-definite for a larger set of spectral parameters, namely for every ν in the so-called
Wallach set W (TΩ) =

{
0, d

2 , . . . , (r − 1)d
2

}
∪](r−1)d

2 ,∞[ . However we restrict our considerations
only to the subset of W (TΩ) consisting of integer ν > 1 + d(r − 1) in order to deal with spaces
of holomorphic functions.
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by the similar formula πν(g)f(z) = Detν(Dg−1(z))f(g−1.z).

More generally let g be the Lie algebra of the automorphisms group G(D)
with complexification gc . Let g = k⊕p be a Cartan decomposition of g . Let z be
the center of k . In our case the centralizer of z in g is equal to k and the center
of k is one-dimensional. There is an element Z0 ∈ z such that (adZ0)

2 = −1
on p . Fixing i a square root of −1, one has pc = p + ip = p+ + p− where
adZ0|p+ = i, adZ0|p− = −i. Then

gc = p+ ⊕ kc ⊕ p−. (5)

and [p±, p±] = 0, [p+, p−] = kc and [kc, p±] = p±. The vector space p+ is isomorphic
to V and furthermore it inherits its Jordan algebra structure. Let Gc be a con-
nected, simply connected Lie group with Lie algebra gc and Kc, P+ , P−, G,K,Z
the analytic subgroups corresponding to kc, p+, p−, g , k and z respectively. Then
KcP− (and KcP+ ) is a maximal parabolic subgroup of Gc with split component
A = exp iRZ0 . So the group G = G(D)o is closed in Gc .

Moreover, the exponential mapping is a diffeomorphism of p− onto P− and
of p+ onto P+ ([H78] Ch.VIII, Lemma 7.8). Furthermore:

Lemma 3.1. 1. The mapping (q, k, p) 7→ qkp is a diffeomorphism of
P+ ×Kc × P− onto an open dense submanifold of Gc containing G.

2. The set GKcP− is open in P+KcP− and G ∩KcP− = K .

(see [H78], Ch VIII, Lemmæ 7.9 and 7.10).

Thus G/K is mapped on an open, bounded domain D in p+ This is an
alternative description of the Harish-Chandra bounded realization of G/K . The
group G acts on D via holomorphic transformations.

Everywhere in this section we shall denote ḡ the complex conjugate of
g ∈ Gc with respect to G (do not confuse with the involution σ ). Notice that P+

is conjugate to P− .

For g ∈ P+KcP− we shall write g = (g)+ (g)0 (g)− , where (g)± ∈ P±, (g)0 ∈
Kc . For g ∈ Gc, z ∈ p+ such that g. exp z ∈ P+KcP− we define

exp g(z) = (g. exp z)+ (6)

J(g, z) = (g. exp z)0. (7)

J(g, z) ∈ Kc is called the canonical automorphic factor of Gc (terminology of
Satake).

Lemma 3.2. ([S80] Ch.II, Lemma 5.1.) The map J satisfies

(i) J(g, o) = (g)0 , for g ∈ P+KcP− ,

(ii) J(k, z) = k for k ∈ Kc, z ∈ p+ .
If for g1, g2 ∈ Gc and z ∈ p+ , g1(g2(z)) and g2(z) are defined, then (g1g2)(z) is
also defined and

(iii) J(g1g2, z) = J(g1, g2(z)) J(g2, z).

For z, w ∈ p+ satisfying (exp w̄)−1. exp z ∈ P+KcP− we define

K(z, w) = J((exp w̄)−1, z)−1 (8)

= ((exp w̄)−1. exp z)−1
0 . (9)
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This expression is always defined for z, w ∈ D , for then

(exp w̄)−1. exp z ∈ (GKcP−)
−1
GKcP− = P+KcGKcP− = P+KcP−.

K(z, w), defined on D × D , is called the canonical kernel on D (by Satake).
K(z, w) is holomorphic in z , anti-holomorphic in w , with values in Kc . Here are
a few properties:

Lemma 3.3. ([S80], Ch.II, Lemma 5.2.) The map K satisfies

(i) K(z, w) = K(w, z)
−1

if K(z, w) is defined,

(ii)K(o, w) = K(z, o) = 1 for z, w ∈ p+ .
If g(z), ḡ(w) and K(z, w) are defined, then K(g(z), ḡ(w)) is also defined and one
has:

(iii) K(g(z), ḡ(w)) = J(g, z)K(z, w) J(ḡ, w)
−1

.

Lemma 3.4. ([S80], Ch.II, Lemma 5.3.) For g ∈ Gc the Jacobian of the
holomorphic mapping
z 7→ g(z), when it is defined, is given by

Jac (z 7→ g(z)) = Adp+(J(g, z)).

For any holomorphic character χ : Kc 7→ C we define:

jχ(g, z) = χ(J(g, z)), (10)

kχ(z, w) = χ(K(z, w)). (11)

Since χ(k̄) = χ(k)
−1

we have :

kχ(z, w) = kχ(w, z), (12)

kχ(g(z), ḡ(w)) = jχ(g, z)kχ(z, w)jχ(ḡ, w) (13)

in place of Lemma (3.3) (i) and (iii).

The character χ1(k) = det Adp+(k), (k ∈ Kc) is of particular importance.
We call the corresponding jχ1 , kχ1 : j1 and k1 . Notice that

j1(g, z) = det(Jac (z 7→ g(z))). (14)

Because of (14), |k1(z, z)|−1dµ(z), where dµ(z) is the Euclidean measure on p+ ,
is a G− invariant measure on D . Indeed:

dµ(g(z)) = |j1(g, z)|2dµ(z),

k1(g(z), g(z)) = j1(g, z) k1(z, z) j1(g, z), for g ∈ G.

One can actually show that k1(z, z) > 0 on D . ([S80], Ch.II, Lemma 5.8).

Let τ be an irreducible holomorphic representation of Kc on a finite di-
mensional complex vector space W with scalar product 〈 | 〉 , such that τ|K is
unitary.
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Lemma 3.5. For every k ∈ Kc one has the identity τ ∗(k) = τ(k̄)−1 .

This follows easily by writing k = ko · exp iX with ko ∈ K , X ∈ k and
using that τ|K is unitary.

Call πτ = IndG
Kτ and set Wτ for the representation space of πτ . Then Wτ

consists of maps f : G 7→ W satisfying

(i) f measurable,

(ii) f(gk) = τ−1(k)f(g) for g ∈ G, k ∈ K ,

(iii)
∫

G/K
‖f(g)‖2dġ < ∞ , where ‖f(g)‖2 = 〈f(g)|f(g)〉 and dġ is an

invariant measure on G/K . Let us identify G/K with D and dġ with d∗z =
k1(z, z)

−1dµ(z). Then Wτ can be identified with a space of maps on D , setting

ϕ(z) = τ(J(g, o))f(g), (15)

if z = g(o), f ∈ Wτ . Indeed, the right-hand side of (15) is clearly right K− invariant.
The inner product becomes

(ϕ|ψ) =

∫
D
〈τ−1(J(g, o))ϕ(z)|τ−1(J(g, o))ψ(z)〉d∗z.

Since τ−1(J(g, o))∗τ−1(J(g, o)) = τ−1(J(g, o)J(g, o)
−1

) = τ−1(K(z, z)) by Lemma
(3.3), we may also write

(ϕ|ψ) =

∫
D
〈τ−1(K(z, z))ϕ(z)|ψ(z)〉d∗z. (16)

The G-action on the new space is given by

πτ (g)ϕ(z) = τ−1(J(g−1, z))ϕ(g−1(z)), (g ∈ G, z ∈ D). (17)

Now we restrict to the closed sub-space of holomorphic maps and call the resulting
Hilbert space Hτ . The space Hτ is πτ (G)-invariant. We assume that Hτ 6= {0} .

The pair (πτ ,Hτ ) is called a vector-valued holomorphic discrete series of G .

In a similar way we can define the anti-holomorphic discrete series. We
therefore start with τ̄ instead of τ and take anti-holomorphic maps. Then

πτ̄ (g)ψ(z) = τ̄−1(J(g−1, z))ψ(g−1(z)). (18)

for ψ ∈ Hτ̄ . One easily sees that Hτ̄ = H̄τ and πτ̄ = π̄τ in the usual sense. Notice
that when the representation τ is one dimensional we recover scalar holomorphic
discrete series representations introduced above.

The Hilbert space Hτ is known to have a reproducing (or Bergman) kernel
Kτ (z, w). Its definition is as follows. Set

Ez : ϕ 7→ ϕ(z) (ϕ ∈ Hτ )

for z ∈ D . Then Ez : Hτ 7→ W is a continuous linear operator, and Kτ (z, w) =
EzE

∗
w , being a End(W )-valued kernel, holomorphic in z , anti-holomorphic in w .

In more detail :

〈ϕ(w)| ξ〉 =

∫
D
〈τ−1(K(z, z))ϕ(z)| Kτ (z, w)ξ〉d∗z (19)
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for any ϕ ∈ Hτ , ξ ∈ W and w ∈ D .

Since Hτ is a G−module, one easily gets the following transformation
property for Kτ (z, w) :

Kτ (g(z), g(w)) = τ(J(g, z))Kτ (z, w)τ(J(g, w))−1 (g ∈ G, z, w ∈ D). (20)

Now consider H(z, w) = Kτ (z, w) · τ−1(K(z, w)).

Clearly H(g(z), g(w)) = τ(J(g, z))H(z, w)τ−1(J(g, z)) for all z, w ∈ D .
So, setting z = w = o, g ∈ K we see that H(o, o) is a scalar operator, and hence
H(z, z) = H(o, o) is so. But then H(z, w) = H(o, o). So, we get

Kτ (z, w) = c · τ(K(z, w)), (21)

where c is a scalar. The same reasoning yields that πτ is irreducible. Indeed, if
H ⊂ Hτ is a closed invariant subspace, then H has a reproducing kernel, say KH
and it follows that KH = cKτ , so either H = {0} or H = Hτ .

Let us briefly recall the analytic realization of (some of) vector-valued
holomorphic discrete series representations of G . We start with the irreducible
representations of the maximal compact subgroup K which can be realized on
the space of polynomials P(V ) and which are parameterized by the weights m =
(m1, . . . ,mr) ∈ Zr with m1 ≥ · · · ≥ mr ≥ 0 and m1 + · · ·+mr = m = |m| . These
representations do not exhaust all irreducible representations of K but they will
produce all necessary components for our further discussion.

Let V ′ be the dual vector space of V ' p+ . Consider the m−th symmetric
tensor power of V ′ . It is naturally identified with the space Pm(V ) of polynomials
of degree m on V . It is well known (see for instance [FK90],[Sch69]) that under the
K -action this space decomposes multiplicity free into a direct sum of irreducible
sub-representations :

Pm(V ) =
⊕∑

|m|=m

Pm(V ),

where Pm(V ) are irreducible representations of K of highest weight m . This
decomposition is often called the Kostant-Hua-Schmid formula and we refer the
reader to the paper [FK90] for a precise description of spaces Pm(V ) and the
corresponding highest weight vectors ∆m . We denote by Pm the orthogonal
projection of Pm(V ) onto Pm(V ).

Let h(z, w) be as before the canonical polynomial on V ×V , then according
to [FK90], for a real ν one has

h−ν(z, w) =
∑
m

(ν)mKm(z, w),

where Km(z, w) is the reproducing kernel of the space Pm(V ), and (ν)m stands
for the generalized Pochhammer symbol:

(ν)m =
r∏

j=1

(
ν − d

2
(j − 1)

)
mj

=
r∏

j=1

mj∏
k=1

(
ν − d

2
(j − 1) + k − 1

)
.

Denote Hν(Pm(V )) the Hilbert space of holomorphic functions on D with values
in Pm(V ) admitting the reproducing kernel

h−ν(z, w)⊗m Kt(z, w).
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Then, for an integer ν > 1 + d(r − 1) and a given weight m the group G acts on
its unitarily and irreducibly by

πν,m(g)f(z) = Det(Dg−1(z))ν
(
⊗m(dg−1)t

)
· f(g−1.z), (22)

where ⊗m(dg−1)t on Pm(V ) denotes the induced action of (dg−1)t on V .

3.2. Maximal degenerate series. Let Det(g) be the determinant of a linear
transform g ∈ G(Ω) ⊂ GL(Vo). We denote by χ(g) a particular character of this
reductive Lie group given by χ(g) := Det(g)

r
n .

This character can be trivially extended to the whole parabolic subgroup
P by χ(hn̄) := χ(h) for every h ∈ G(Ω), n̄ ∈ N .

For every µ ∈ C we define a character χµ of P by χµ(p̄) := |χ(p̄)|µ.
The induced representation π−µ = IndG

P
(χµ) of the group G acts on the

space
Ĩµ := {f ∈ C∞(G) | f(gp̄) = χµ(p̄)f(g),∀g ∈ G, p̄ ∈ P},

by left translations. A pre-Hilbert structure on Ĩµ is given by ‖f‖2 =
∫

K
|f(k)|2 dk,

where K is the maximal compact subgroup of G associated with the Cartan
involution σ , and dk is the normalized Haar measure of K .

According to the Gelfand-Naimark decomposition a function f ∈ Ĩµ is
determined by its restriction fVo(x) = f(nx) on N ' Vo . Let Iµ be the subspace

of C∞(Vo) of functions fVo with f ∈ Ĩµ . The group G acts on Iµ by:

π−µ (g)f(x) = |A(g, x)|µf(g−1.x), g ∈ G, x ∈ Vo, (23)

where A(g, x) := χµ

(
(Dg−1)x

)
. These representations are usually called the max-

imal degenerate series representations of G .

One shows that the norm of a function f(nx) = fVo(x) ∈ Iµ is given by:

‖f‖2 =

∫
Vo

|fVo(x)|2h(x,−x)2<µ+n
r dx, (24)

where h(z, w) is the canonical polynomial introduced above. Formula (24) implies
that for <µ = − n

2r
the space Iµ is contained in L2(Vo) and the representation π−µ

extends as a unitary representation on L2(Vo).

Analogously the character χ can be extended to the subgroup P and one
defines in a similar way the representation π+

µ = IndG
P (χ−µ).

Following the standard procedure we introduce an intertwiner between π−µ
and π+

µ−n
r
. Consider the map Ãµ defined on Ĩµ by

f −→ (Ãµf)(g) :=

∫
N

f(gn)dn, ∀g ∈ G, (25)

where dn is a left invariant Haar measure on N . One shows that this integral
converges for <µ > n

2r0
.

Proposition 3.6. For every f ∈ Ĩµ the function Ãµf belongs to Ĩ−µ and the

map Ãµ given by (25) intertwines the corresponding representations of G:

π̃+
µ−n

r
(g)(Ãµf) = Ãµ(π̃−µ (g)f), ∀f ∈ Ĩµ, g ∈ G. (26)
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4. Ring structures on the holomorphic discrete series

In this section we discuss two different ring structures that one can endow
on the set of holomorphic discrete series.

4.1. Laplace transform and the point-wise product. We start with a gen-
eralization of a result on the usual point-wise product due to A. and J. Unterberger
(cf. [UU96] Lemma 3.1) in the case when G = SL(2,R).

Theorem 4.1. Let V0 be a Euclidean Jordan algebra and TΩ be the corre-
sponding tube domain V0 + iΩ. Consider two real numbers ν1 and ν2 such that
ν1, ν2 > 1+d(r− 1) = 2n

r
− 1 and two functions F1 ∈ H2

ν1
(TΩ) and F2 ∈ H2

ν2
(TΩ).

Then their point-wise product F1 · F2 belongs to H2
ν1+ν2

(TΩ).

In order to prove this statement recall the following result ([FK94], Theorem
XIII.1.1). Let ΓΩ denote the Gindikin conical Γ-function.

Lemma 4.2. Let ν be a real number, ν > 2n
r
− 1. Let L2

ν(Ω) be the space
L2(Ω,∆(2u)−ν+n

r du). For any f ∈ L2
ν(Ω), set

F (z) = (2π)−n/2

∫
Ω

f(u)e(z|u)du. (27)

Then F ∈ H2
ν (TΩ) and f 7→ F is a linear isomorphism from L2

ν(Ω) onto H2
ν (TΩ).

Moreover
‖F‖2

ν = ΓΩ

(
ν − n

r

)
‖f‖2

ν .

Let now F1 ∈ H2
ν1

(TΩ), F2 ∈ H2
ν2

(TΩ) and let u and v correspond to F1 and F2

respectively by the lemma, so u ∈ L2
ν1

(Ω), v ∈ L2
ν2

(Ω). Then we shall show:

‖u ∗ v‖ν1+ν2 ≤ C(ν1, ν2) ‖u‖ν1 ‖v‖ν2 ,

where C(ν1, ν2) is a constant. This is sufficient to prove the theorem since the map
f 7→ F sends convolutions to point-wise products. Observe that f is extended to
V by setting it zero outside Ω. More precisely we have

Lemma 4.3. Let ν1, ν2 >
2n
r
− 1, ‖u‖ν1 < ∞, ‖v‖ν2 < ∞ for the measurable

functions u and v on Ω. Set

(u ∗ v)(τ) =

∫
Ω∩(τ−Ω)

u(τ − η) v(η)dη (τ ∈ Ω).

Then (u ∗ v)(τ) exists for almost all τ , is measurable and

‖u ∗ v‖ν1+ν2 ≤ C(ν1, ν2) ‖u‖ν1 ‖v‖ν2 .

We only prove the estimate, since the rest of this lemma follows from the same
proof, applying Fubini’s theorem at each step.

We have to give an estimate for the integral

I =

∫
Ω

(u ∗ v)(τ) ∆(2τ)
n
r
−ν1−ν2w(τ)dτ

=

∫
Ω

∫
Ω

∆(2(ξ + η))
n
r
−ν1−ν2v(η)u(ξ)w(ξ + η) dξdη
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under the assumption that ‖w‖ν1+ν2 <∞ (w ∈ L2
ν1+ν2

(Ω)).

For any t > 0, using the inequality

2|u(ξ)v(η)| ≤ t∆(2(ξ + η))
1
2
(ν2−ν1) |u(ξ)|2 + t−1∆(2(ξ + η))

1
2
(ν1−ν2) |v(η)|2

we get

2|I| ≤ t

∫
Ω

|u(ξ)|2 dξ
∫

ξ+Ω

∆(2τ)
n
r
−ν1−ν2+ 1

2
(ν2−ν1) |w(τ)| dτ

+ t−1

∫
Ω

|v(η)|2 dη
∫

η+Ω

∆(2τ)
n
r
−ν1−ν2+ 1

2
(ν1−ν2) |w(τ)| dτ

≤ ‖w‖ν1+ν2

[
t

∫
Ω

|u(ξ)|2 dξ (

∫
ξ+Ω

∆(2τ)
n
r
−2ν1 dτ)1/2

+ t−1

∫
Ω

|v(η)|2 dη (

∫
η+Ω

∆(2τ)
n
r
−2ν2 dτ)1/2

]
.

Let us compute the expression
∫

ξ+Ω
∆(2τ)

n
r
−2ν2dτ for ξ ∈ Ω. Set ξ = g · e for

g ∈ G(Ω). The G(Ω)-invariant measure on Ω is equal to ∆(τ)−
n
r dτ , so that we

get ∫
ξ+Ω

∆(2τ)
n
r
−2ν1dτ = 2n−2ν1r

∫
ξ+Ω

∆(τ)
2n
r
−2ν1∆(τ)−

n
r dτ

= 2n−2ν1r

∫
e+Ω

∆(g · τ)
2n
r
−2ν1∆(τ)−

n
r dτ (28)

Now ∆(g · τ) = (Det g)r/n ∆(τ) = ∆(g · τ) ∆(τ), so we obtain for the latter
expression

=

∫
e+Ω

∆(2τ)
n
r
−2ν1 dτ ∆(ξ)

2n
r
−2ν1 .

The term
∫

e+Ω
∆(2τ)

n
r
−2ν1dτ has finally to be computed.

We make the change of variables τ 7→ τ−1 . Observe that (e + Ω)−1

= (e − Ω) ∩ Ω. The differential of τ 7→ τ−1 is −P (τ)−1 and |Det (−P (τ))−1| =

∆(τ)
2n
r , see ([FK94],Prop. II 3.3 and Prop. III 4.2). So∫

e+Ω

∆(2τ)
n
r
−2ν1dτ = 2n−2ν1r

∫
(e−Ω)∩Ω

∆(τ)−
n
r
+2ν1∆(τ)−

2n
r dτ

= 2n−2ν1r

∫
(e−Ω)∩Ω

∆(τ)−
2n
r

+2ν1dτ = 2n−2ν1rBΩ(−2n

r
+ 2ν1,

n

r
)

= 2n−2ν1r ΓΩ(−2n
r

+ 2ν1) ΓΩ(n
r
)

ΓΩ(−n
r

+ 2ν1)
.

So we obtain

|I| =
[
t‖u‖2

ν1

{
2n−2ν1r ΓΩ(−2n

r
+ 2ν1) ΓΩ(n

r
)

ΓΩ(−n
r

+ 2ν1)

}1/2

+

t−1‖v‖2
ν2

{
2n−2ν2r ΓΩ(−2n

r
+ 2ν2) ΓΩ(n

r
)

ΓΩ(−n
r

+ 2ν2)

}1/2]
‖w‖ν1+ν2 .
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Taking the minimum for t > 0, we get

‖u ∗ v‖ν1+ν2 ≤ 2
n
r
−(ν1+ν2) r

2

{ΓΩ(−2n
r

+ 2ν1) ΓΩ(n
r
)

ΓΩ(−n
r

+ 2ν1)

}1/4

·

{ΓΩ(−2n
r

+ 2ν2) ΓΩ(n
r
)

ΓΩ(−n
r

+ 2ν2)

}1/4

‖u‖ν1 ‖v‖ν2 .

Remark 4.1. If G = SL(2,R), then TΩ = Π and for every f ∈ H2
ν (Π)

df

dz
∈ H2

ν+2(Π).

4.2. Product structure on L2(G/H).

There exists a G-equivariant embedding of square-integrable functions on
the causal symmetric space G/H into the composition algebra of Hilbert-Schmidt
operators by means of the following diagram:

L2(G/H) ↪→ π+
µ ⊗ π−µ ↪→ π+

µ ⊗ π+
µ ' HS(L2(Vo), dx),

where dx is the usual Lebesgue measure on Vo .

The first arrow is of geometric nature and it is given by the fact that
the symmetric space G/H is an open dense subset of G/P × G/P . The last
isomorphism is given by

L2(V0, dx)⊗ L2(V0, dx) ' HS(L2(V0, dx).

This embedding gives rise to a covariant symbolic calculus on G/H .

In order to introduce the covariant symbolic calculus on G/H we start with

the case of G = SL(2,R) and H =

{(
a 0
0 a−1

)
, a ∈ R∗

}
.

Let P− be the parabolic subgroup of G consisting of the lower triangular
matrices

P− :

(
a 0
c a−1

)
,

with c ∈ R, a ∈ R∗ and let P+ be the group of upper triangular matrices

P+ :

(
a b
0 a−1

)
,

with b ∈ R, a ∈ R∗ . The group G acts on the sphere S =
{
s ∈ R2 : ‖s‖2 = 1

}
and acts transitively on S̃ = S/ ∼ , where s ∼ s′ if and only if s = ±s′ , by

g.s =
g(s)

‖g(s)‖
.

Clearly Stab(0̃, 1) = P− . So S̃ ' G/P− . Similarly S̃ ' G/P+ : S̃ = G.(1̃, 0). If
ds is the usual normalized surface measure on S , then

d(g.s) = ‖g(s)‖−2ds.
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For µ ∈ C , define the character ωµ of P± by

ωµ(p) = |a|µ.

Consider π±µ = IndG
P±ω∓µ .

Both π+
µ and π−µ can be realized on C∞(S̃), the space of smooth functions

φ on S satisfying

φ(−s) = φ(s), (s ∈ S).

The formula for π−µ is

π−µ (g)φ(s) = φ(g−1.s)‖g−1(s)‖µ.

Let θ be the Cartan involution of G given by θ(g) = tg−1 . Then

π+
µ (g)φ(s) = φ(θ(g−1).s)‖θ(g−1)(s)‖µ.

Since here

θ

(
a b
c d

)
= w

(
a b
c d

)
w−1

with w =

(
0 1
−1 0

)
, one has that π−µ ∼ π+

µ .

Let ( , ) denote the standard inner product on L2(S):

(φ, ψ) =

∫
S

φ(s)ψ(s)ds.

Then this form is invariant with respect to the pairs

(π−µ , π
−
−µ̄−2), and (π+

µ , π
+
−µ̄−2).

Therefore if <µ = −1, then the representations π±µ are unitary, the inner product
being ( , ).

G acts also on S̃ × S̃ by

g.(u, v) = (g.u, θ(g)v). (29)

This action is not transitive: the orbit

(S̃ × S̃)#
s = {(u, v) : 〈u, v〉 6= 0} = G.((0̃, 1), (0̃, 1))

is dense. Moreover (S̃ × S̃)#
s ' G/H .

The map

f → f(u, v)|〈u, v〉|−1+is, (s ∈ R),

is a unitary G-isomorphism between L2(G/H) and

π−−1+is⊗̂2π
+
−1+is

acting on L2(S̃ × S̃). The latter space is provided with the usual inner product.
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Define the operator Aµ on C∞(S̃) by the formula

Aµφ(s) =

∫
S

|〈s, t〉|−µ−2φ(t)dt.

This integral is absolutely convergent for <µ < −1, and can be analytically
extended to the whole complex plane as a meromorphic function. It is easily
checked that Aµ is an intertwining operator

Aµπ
±
µ (g) = π∓−µ−2(g)Aµ.

The operator A−µ−2 ◦Aµ intertwines π±µ with itself, and is therefore a scalar c(µ).
It can be computed using K -types:

c(µ) = π
Γ

(
µ+1

2

)
Γ

(
−µ+1

2

)
Γ

(−µ
2

)
Γ

(
1 + µ

2

) .
One also shows that : A∗µ = Aµ̄ . So that for µ = −1 + is we get (by abuse of
notation):

c(s) = π
Γ

(
is
2

)
Γ

(
− is

2

)
Γ

(
1−is

2

)
Γ

(
1+is

2

) ,
and moreover

A(−1+is) ◦ A∗(−1+is) = c(s)I,

so that π−
1
2

Γ( 1+is
2 )

Γ( is
2 )

A(−1+is) = d(s)A(−1+is) is a unitary intertwiner between π+
−1+is

and π−−1−is .

We thus get a π−−1+is⊗̂2 π̄
−
−1+is invariant map from L2(G/H) onto L2(S̃×S̃)

given by

f → d(s)

∫
S

f(u,w)|〈u,w〉|−1+is|〈v, w〉|−1−isdw

= (Tsf)(u, v), s 6= 0.

This integral does not converge: it has to be considered as obtained by analytic
continuation.

Define the product f#sg for f, g ∈ L2(G/H) as follows: let (Tsf)(u, v)

be the kernel of a Hilbert-Schmidt operator Op(f) on L2(S̃). Then we set:

Op(f#sg) = Op(f) ◦Op(g).

This is an associative product such that:

• ‖f]s g‖2 ≤ ‖f‖2 · ‖g‖2.

• Op(Lxf) = π−−1+is(x)Op(f)π−−1+is(x
−1), so

Lx(f#sg) = (Lxf)#s(Lxg),

for x ∈ G .



van Dijk and Pevzner 299

Let us write down a formula for f#sg ; we have:

d−1(s)(f#sg)(u, v) (30)

=

∫
S

∫
S

f(u, x)g(y, v)|[u, y, x, v]|−1+isdµ(x, y), (31)

where dµ(x, y) = |〈x, y〉|−2dxdy is a G-invariant measure on S̃ × S̃ for the G-
action (29). Here

[u, y, x, v] =
〈u, x〉〈y, v〉
〈u, v〉〈y, x〉

.

For a generic causal symmetric space of Cayley type G/H the composition
formula of two symbols f, g ∈ L2(G/H) is defined in a similar way. In order to
keep a reasonable size of this note we just indicate the flavor of the explicit formula.
Recall that G/H is para-Hermitian, TeH(G/H) ' V0 ⊕ V0 , and hence functions
on it can be seen as functions on V0 × V0 . Therefore f]s g is given by a double
integral on V0 , of f and g against an appropriate power of the quotient of four
functions that are integral kernels of the intertwining operator (25), exactly as in
(30).

4.3. Product structure on L2(G/H)hol .

One says that a symmetric space G/H has discrete series representations if
the set of representations of G on minimal closed invariant subspaces of L2(G/H)
is nonempty. According to a fundamental result of Flensted-Jensen [FJ80] the
discrete series for G/H is nonempty and infinite if

rank(G/H) = rank(K/K ∩H).

For a causal symmetric space of Cayley type G/H this condition is ful-
filled and on can realize part of its discrete series as holomorphic discrete series
representations of the group G .

More precisely assume that π is a scalar holomorphic discrete series rep-
resentation of G , i.e. it acts on Hπ ⊂ O(D) ∩ L2(D, dmπ) where D is some
symmetric domain (the image of the tube TΩ by the Cayley transform) and where
dmπ(w) is a measure on D associated to π . In such a case the Hilbert space Hπ

has a reproducing kernel Kπ(z, w).

Assume that the representation π occurs as a multiplicity free closed sub-
space in the Plancherel formula for L2(G/H) (actually this is the case in our
setting, see [OO88] Theorem 5.9).

Consider ξπ ∈ H−∞
π the unique up to scalars H -fixed distribution vector

associated to π (see [OO88] p. 142 for the definition of ξπ = φλ(z)). It gives rise
to a continuous embedding map

Jπ : Hπ ↪→ L2(G/H) ⊂ D′(G/H)

given for any analytic vector v ∈ H∞
π by

(Jπv)(x) = 〈v, π(x)ξπ〉, x ∈ G/H, (32)

where by abusing notations we write π(x) instead of π(g) with x = g.H ∈ G/H .
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For any fixed w ∈ D let us define the function vw := Kπ(·, w) which is
actually a real analytic vector in Hπ .

Consider now the following function :

gw(x) := (J vw)(x), x ∈ G/H, w ∈ D.

Because of the reproducing property of the Hilbert space Hπ for every
f ∈ Hπ one can write

f(z) =

∫
D

Kπ(z, w)f(w)dmπ(w).

Furthermore, if such a function is an analytic vector f ∈ H∞
π for the representation

π , then

(Jπf)(x) =

∫
D

f(w)gw(x)dmπ(w).

Choosing an appropriate normalization in (32) one can get the embedding
Jπ isometric. Therefore the subspace generated by gw(x), w ∈ D is a closed
subspace of L2(G/H) isometric to some holomorphic discrete series representation
of G . ( see [OO88] Theorem 5.4 for the precise statement).

The dual map J ∗
π : D(G/H) 7→ Hπ is defined by

〈J ∗
πφ, f〉 = 〈φ,Jπf〉

=

∫
G/H

∫
D

φ(x)f(w)gw(x)dm(w)dν(x), ∀φ ∈ D(G/H),

where dν(x) denotes the invariant measure on G/H . Therefore we have,

(J ∗
πφ)(w) =

∫
G/H

φ(x)gw(x)dν(x).

Similar observations are valid for vector-valued holomorphic discrete series repre-
sentations as well.

Define the set
L2(G/H)hol =

⊕
π∈Ĝ′

hol

Jπ(Hπ)

where Ĝ′
hol denotes the set of equivalence classes of unitary irreducible holomorphic

discrete series representations of G with corresponding character τ trivial on
H ∩ Z . Notice that the space L2(G/H)hol decomposes multiplicity free into
irreducible subspaces [OM84].

According to [OO88] the H -fixed distribution vector ξk = ξπν , associated
with the scalar holomorphic discrete series representation πν (see (4)) is given up
to a constant by

ξk(z) = ∆

(
η(z)− z̄

2i

)− ν
2

, z ∈ V0 + iΩ. (33)

Example. If G = SL(2,R) the holomorphic discrete series of G are only scalar
and according to (4) act on H2

k(Π) (k ≥ 2, k ∈ N) by

πk(g)f(z) = (cz + d)−kf

(
az + b

cz + d

)
, g−1 =

(
a b
c d

)
.
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The involution η is given here by η(z) = −z̄ , the subgroup H is isomorphic

to SO(1, 1) and according to (33) ξk(z) = (−z̄)− k
2 what corresponds precisely to

k
2
-th power of the Unterbergers generating function ([UU96] Prop 3.3.)

gz(s, t) =
s− t

(s− z̄)(t− z̄)
,

evaluated at the base point (0,∞) of the orbit G/H .

In this case it is well known [OO88] that only πk with k even can be
uniquely realized on L2(G/H). Therefore we have

L2(G/H)hol =
⊕
k even

Jk(H
2
k(Π)),

In [UU96] Theorem 3.6 the authors showed that the set L2(G/H)hol is closed
under the non commutative product #s (30). They give an explicit formula for
the components of f#sg for f ∈ Jk(H

2
k(Π)) and g ∈ J`(H

2
` (Π)) in terms of

Rankin-Cohen brackets (1). The method they developed is elegant but technical
and from our point of view not well adapted for generalization.

To get more insight in the product structure of L2(G/H)hol , we rely on
some recent results by T.Kobayashi ([K98],Theorem 7.4),

We are going to show that L2(G/H)hol is closed under the product #s .
It is, because of the continuity of the product, sufficient to show the following
theorem.

Theorem 4.4. Let Hπ and Hπ′ be two irreducible closed subspaces of
L2(G/H)hol . Then

Jπ(f)#sJπ′(g) ∈ L2(G/H)hol.

for every f ∈ Hπ and g ∈ Hπ′ .

Even in the case of G = SL(2,R) this result reduces the computations of
[UU96] in an interesting way. The proof of this theorem follows from a fairly recent
result by Kobayashi saying:

Theorem 4.5. (Kobayashi). Let π and π′ be holomorphic discrete series rep-
resentations of G. Then the representation

π⊗̂2π
′

decomposes discretely into holomorphic discrete series representations of G with
finite multiplicities. Moreover, π⊗̂2π

′ is K -admissible, i.e. every irreducible
representation of K occurs in it with finite multiplicity.

In general we do not have a multiplicity free decomposition.

Now let us show our theorem. The map
f ⊗ g → Jπ(f)#sJπ′(g) clearly gives rise to a K− and U(g)−equivariant linear
map

(Hπ⊗̂2Hπ′)
K = HK

π ⊗HK
π′ → L2(G/H),

and thus the result follows for f and g K−finite, and then, by continuity of the
product, for all f and g .
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Example. The decomposition of the tensor product of two holomorphic discrete
series for SL(2,R) was obtained by J.Repka [R79] in full generality using the
Harish-Chandra-modules techniques, and it is given by

πn⊗̂2πm =
∞⊕

k=0

πm+n+2k,

so that this reduces the computations in [UU96] even more.

At the same time V.F.Molchanov obtained the same result (decomposition
of all possible tensor products of unitary irreducible representations of SO(2, 1))
in [M80]. He realized such tensor products on functions defined on the one-sheeted
hyperboloid and gave all the Fourier coefficients of the positive-definite kernel that
defines the Hilbert structure of these unitary representations.

In the general situation we have to consider also vector-valued holomorphic
discrete series representations. Indeed, according to the theorem (4.5) and par-
ticularly to the result stated in the theorem 3.3 in [PZ94] the tensor product of
two scalar holomorphic discrete series representations decomposes multiplicity free
in the direct sum of unitary irreducible vector-valued holomorphic discrete series
representations:

Hν1 ⊗Hν2 =
∑
m≥0

Hν1+ν2(Pm(V ′)),

in the case when ν1 ≥ ν2 > 1 + d(r − 1).

In order to understand the previous decomposition we have to identify its
different ingredients.

First, we see an element of the tensor product Hν1 ⊗Hν2 as a holomorphic
function F (z, w) on D × D . Therefore, according to [R86] Coroll. 6.26, p. 269
for any positive integer m one can write a Taylor expansion formula:

F (z, w) =
m∑

j=0

(F (j)(z),⊗j(w − z)) + (F (m+1)(z, w),⊗m+1(z − w)),

where F (j)(z) are Pj(V ′)-valued holomorphic functions on D , F (m+1)(z, w) is a
Pm+1(V ′)-valued holomorphic function on D×D uniquely determined by the data
of F (z, w), and ( , ) denotes the standard pairing of corresponding vector spaces.

Second, according to Peetre [P94] consider an End(V )-valued holomorphic
differential form on D defined for every fixed w1, w2 ∈ V and z ∈ D by

Ω(z; , w1, w2) = dzB(z, w1)B(z, w1)
−1 − dzB(z, w2)B(z, w2)

−1,

and denote by ω(z;w1, w2) it trace − r
2n

trΩ(z;w1, w2). The former differential
form plays a crucial role in the construction of intertwining operators for tensor
products.

Namely, for fixed w1 and w2 the expression

h(z, w1)
−ν1h(z, w2)

−ν2Pm ⊗|m| ω(z;w1, w2)

can be seen as an element of the space Hν1 ⊗ Hν2 dual of Hν1 ⊗ Hν2 . Let 〈 , 〉
stand for the corresponding pairing. Then the operator Im given by

Im(f ⊗ g)(z) = 〈h(z, ·)−ν1h(z, ·)−ν2Pm ⊗|m| ω(z; ·, ·), f ⊗ g〉, (34)
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is a G-equivariant map from (πν1 ⊗πν2 ,Hν1 ⊗Hν2) to the space of Pm(V )-valued
holomorphic functions on D seen as the representation space of πν1+ν2,m (see (22).

Theorem 4.4 in [PZ94] which is an extended version of the main theorem
in [P94] gives a description of this map. Summarizing and using Theorem (4.4),
we get

Proposition 4.6. Let ν1 ≥ ν2 > 1 + d(r − 1) and f ∈ Hν1 , g ∈ Hν2 . Assume

that
(
H−∞

ν1

)H
and

(
H−∞

ν2

)H
are not reduced to {0}. Then

Jπν1
(f)#s Jπν2

(g) =
∑
m≥0

cm,sJπν1+ν2
(Bm,ν1,ν2(f, g)),

where cm,s are fundamental constants given by the #s product of the reproducing
kernels of the corresponding Bergman spaces Hν1 and Hν2 and Bm,ν1,ν2 is such a
bi-differential operator on Hν1 ⊗Hν2 that

Im(Bm,ν1,ν2(f, g)) =
∑

|n|+|n′|=m

C
|n|
|m| ·

(−1)|n|

(ν1)n(ν2)n′
· Pm

(
Pn∂

|n|f ⊗ Pn′∂
|n′|g

)
, (35)

with n and n′ being all possible weights such that |n|+ |n′| = |m|.
In case when the group under consideration is SU(1, 1) formula (35) re-

duces to the Rankin-Cohen brackets initially introduced for the SL(2,R)-action.
The fact that the expression remains the same in both compact and non-compact
realizations of the Riemannian symmetric space G/K , is due to the fact that
the groups SU(1, 1) and SL(2,R) are real forms of the same complex Lie group
SL(2,C) and therefore covariant differential operators on SU(1, 1)/S(U(1)×U(1))
and SL(2,R)/SO(2,R) are isomorphic via the analytic continuation in the com-
plexification of these symmetric spaces. This phenomenon holds in general for
covariant differential operators on D and on TΩ and for transvectants in particu-
lar as was noticed by Peetre [P94] p. 1076.

For this reason it would be natural to call the bi-differential operators
occurring in (35) generalized Rankin-Cohen brackets.

4.4. Open questions.

• The construction we described is valid for holomorphic discrete series repre-
sentations with spectral parameter ν > 1 + d(r − 1). However it would be
interesting to understand whether this can be extended to the whole Wallach
set.

• A possible relationship with vertex algebras, already mentioned in [P94] and
[Z94], were pointed out to us by I. Cherednik. It is a challenge to investigate
this link.

• We have seen that the ring structure on L2(G/H)hol is related to the tensor
product of holomorphic discrete series representations. Does it reflect, via
the Tannaka-Krein duality, the existence of a certain Hopf algebra that would
govern the non-commutative product ]s ?
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• According to the Beilinson-Bernstein classification of (g, K)-modules one
can study representations of semi-simple Lie groups in terms of D -modules
on associated flag varieties. Can the ring structure on the set of holomorphic
discrete series be interpreted as a cup-product on the sheaves associated with
closed H -orbits on the flag variety?
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