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1. Introduction

Assume that F is an algebraically closed field with characteristic p > 3. Let
L=@&;_ | L; be a restricted Lie algebra W or S. With the adjoint action, L is
an Lgo-module and each L; is an Lg-submodule. L_; and L, are two simple W-
modules. For each 0 < 7 < s, the Lg-module structure of L; remains unknown.
But we often need to know such structures in the nonrestricted representations of
L, where the p-characters can be put in some convenient form. That is, we need
to find certain “nice” representatives in each orbit of the p-characters under the
action of the automorphism groups (see [2]). With this motivation, we determine
the Lg-module structure of L in this paper. By introducing a gradation, we study
the structure of the submodules of each Lj;.

The paper is organized as follows. In Section 2, we give the preliminaries.
In Section 3, we determine the maximal vectors of W, and study the submodules
of W;. Then in Section 4, we prove that if p{ (n+ 1), W, is the direct sum of its
two proper simple submodules. If p|(n+1), we determine the composition series of

W;. In Section 5, we use the results for W to determine the Sy-module structure
of S.

2. Preliminaries

In this section we describe the simple restricted Lie algebra of Cartan type, drawing
most of the notation and results from [8]. Assume n > 2. Consider n-tuples

a:(al,ag,...,an) b:<bl,b2,...,bn)
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in Z™. We write a < b if a; < b; forall 1 <7< n and we write a < b if a < b but
a#0b. If a,b >0, define (Z) = II; (ZZ) , where (Zz) is the usual binomial coefficient
with the convention that (ZZ) =0 unless b; < a;. Set €:={a € Z"|0 <a< T},
where 7 := (p — 1,...,p — 1). The divided power algebra A = 2A(n,1) is the
associative F — algebra having F — basis {2(*|a € €} and multiplication subject

to the rule
a+b\ .(a+b) b <
x(a)x(b):{( 2 )at?,a+ T

0, otherwise.

Note that 2 is Z-graded by 2 = (z@W|a € €, |a] = k), where |a| = Y7 a;.

For j € {1,...,n} we consider D; € Derg(2l) given by D;(z@) = 2(¢=%). Then

we have the simple restricted Witt algebra W = W(n,1) = 37 | AD; and W

inherits a gradation from 2 by means of W; = Z?Zl 2A;11D;. Consequently,

W =&Y W, with sy =n(p—1)—1=|r|—1. In particular, W_, = """ | FD;.
Suppose n > 3. We introduce the mappings

D A — Wi(n,1),
Y e Di(NDs = Di(f)D;

Then the simple restricted special Lie algebra is
S=5n,1)=(Dy(NHIf eA1<i<j<n)

S =@ [ SNW,; is graded with sg = n(p — 1) — 2 = |7| — 2. In particular,
S_l - W_1 .

Identifying GL(n) with the central extension of the Chevalley group of
Wy = gl(n,F), each W, is then naturally a GL(n)-module. Besides, every GL(n)-
submodule is a Wy-submodule. Set M = ;. The action of W, on M identifies
Wy with gl(M). Then the adjoint action of Wy on W_; identifies W_; with M*.
For each 0 < I < sy, we then get a gl(M)-module(GL(n)-module) isomorphism
W @ M* — W;: 2@ ® D; — :C(a)Dj.

Let X*(n) denote the set of n-tuples A = (\q,...,\,) € Z" satisfying
A1 > -+ > A,. Then XT(n) can be identified with dominant weights for the
root system of GL(n). Let L,(\) denote the simple GL(n)-module with highest
weight .

Fix A € XT(n) and 1 < i < n. We say that ¢ is A-removable if either
t=mnor 1<i<nand \; > \;11. We say that ¢ is A-addable if either ¢ =1 or
1 <i<nand \; < \_;. For each (a,b) € Z" x Z", we set res(a,b) =b—a € F,.
We say that ¢ is normal for A if ¢ is A-removable and there is a decreasing injection
from the set of

A —addable j with i<j<n and res(i,\;)=res(j,\;+1)
into the set of
A —removable j with i<j<n and res(i,\)=res(j, \y).

We say that i is good for A if ¢ is normal for A and there is no j that is normal
for A with 1 < j < with res(j, \;) = res(i, \;) ([1]).

Since the structure of W(1, 1) is quite clear, we focus only on W (n, 1) with
n > 2 throughout the paper.



ZHANG 711

3. Two W, — submodules of W,

Foreach 0 <l <swy,let [+1=Fk(p—1)+7r, 0 <r <p-—1. Let a denote the
n-tuple
(p—1,...,p—1,1,0,...,0).
k

Clearly we have 24,11 = L,(a). In the following, we denote the Lie multiplication
[, y] simply by z - y.

Definition 3.1. Let v € W;. If 2;D; - v = 0 whenever 1 <7 < j < n, and for
every 1 <i<n, ;D;-v=cv for some ¢; € F, then v is called a maximal vector
of weight (¢1,...,¢,).

Let U denote the unipotent subgroup of GL(n) generated by elements in the set
{1 + tLUlD]‘t S ]F,Z < ]},

and let B denote the Borel subgroup of GL(n) with unipotent radical U. For
each W, as a GL(n)-module as described above, we can also define the maximal
vector v € W, relative to B (see [3, Sec. 31.2]). It turns out at the end for v € W),
the two definitions of v being maximal agree.

Lemma 3.2.  In each W;, 0 <l < sy, there are two mazximal vectors (up to
scalar multiple); namely:

v =29D,, wv= re @Dy + 3y 2 FID;,ifk+1<n
n x(a)anl _ x(&—sn,1+en)Dn7 ka L 1=n.

Proof. By definition, there are two removable ¢ that are normal for a, namely,

‘ . kE+1, ifk+1<n
i=n and 7=
n—1, ifk+1=n.

Then by [1, Th.5.9 (1)], there are two maximal vectors in W;. It is easy to check
that both v; and vy are maximal. [ ]

Set V; =: u(Wy)v;, © = 1,2, where u(Wjy) is the reduced enveloping algebra
of Wy. Both Vi and V, are W, — submodules of W;. Let W, =: > . Fz;D;.
Then by the PBW theorem V; = u(Wj )v;, i = 1,2.

Let

J>1

A::{(al,ag,..., W —1<a; <p-—1,i=1,...,n}.

We introduce an A—gradation on W (denoted &) as follows: &(z@D;) = a—e; €
A. A is a completely ordered set with the order

(al,...,an)<(bl,...,bn) if alzbl,...,ai,lzbi,l,ai<b7;
for some i > 1. We write a <bif a <bor a=0>b. Let

W))a = <:L‘(“)Di e Wila—¢€ = a)
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and let A; denote the set {a € A|(W}), # 0}. Then W; = @ 4,(Wi)a. Note that
the A;-gradation of W is just the weight space decomposition of W; under the
maximal torus of all diagonal matrices in GL(n).

Clearly we have

B a—¢€pr1, fk+1<n
(G =a— n7Q5 =
(v1) =@ = €n, B(vz) {a ey, ifk+1=n.

Then &(vy) < &(vy). If 2;D; - 9Dy, # 0 for some i < j, then
S(z;D; -2\ D) =a— e+ 6 —¢; = a— e = Bz YDy).

Corollary 3.3. vy & Vs

For each a € A; with a >0, set T(a) = {ila; < p — 1}. We denote by t(a)
the cardinality of the set T(a) and by i; the greatest index in ¥(a). Then we have
(W))a = (2T D;li € T(a)).

If a € A; with a # 0, so that there is a unique i such that a; = —1, then
we obtain (W;), = Fzet<) D, .

3.1. The structure of V;,i=1,2,for I<(n—1)(p—1) — 1.
Theorem 3.4.  Assumel=k(p—1)+r—1<(n—1)(p—1)—1,0<r<p—1.

Let a € A;.
(1) If a >0, then t(a) > 2, and (V1), has a basis

{zlar) D; — gleta) D, Ji € T(a) \ {ir}}.
(2) If a 0, then (V1)q = (W)),.
Proof.  The proof is by induction on a € A;. We divide it into three steps.
Step 1. The theorem holds for all b 'z @ — €xy1 .
Suppose b = @ — €x41. Then b # 0 and there is ¢ > k + 1 such that
b; = —1. Thus we have either b = a — ¢ or b = a — €41 + ¢; — ¢ for some

jef{k+2,...,i—1}.
In the former case,

Fz@D,,, ifi=n

W), = F2 @D, = i
(W) {Iﬁ'ani -2@D,. ifi<n,

which gives (W), = (V1)s.
In the latter case,

(W) = F(2;Dis1)(@nDi) - v1 = (V1)p
The greatest a > 0 is @ — €x41, for which we shall now show that
(Vi)acepps = (@ Dy — 24059 D, i > k4+1). (%)
By the PBW theorem, we have

(Vvl)ﬁffkﬂ C Z xiDj ' (Vl)@*ﬁkﬂJréj*Ei + Z xka+1 ' (‘/1)64*51"

k+1<j<i<n i>k+1
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We have just shown that
(%)@7Ek+l+€j*6i = IF:U(erkﬂJrej)l)i for k+1<j<i<n,

(V)a—e, = Fx(a)Di for > k-+1.

Since
x;Dj - x(5—6k+1+€j)Di - x(ﬁ—€k+1+ﬁz‘)Di _ x(ﬁ—ékﬂ‘i‘ﬁj)pj

and
2Dy - 29 D; = 20wt D, — 2Dy,

(Vl)@,ek+1 C <x(E)Dk+1 _ x(a*€k+1+ﬁi)Di’i >k 4+ 1>.

On the other hand, since 2D, = —z,D; -v; € V; for every k+1<i <n,
x(&)Dk-H _ x(@—6k+1+ﬁi)Di

= —2;Djy1 - 29D; € (V1)

a—€p41°

Thus we have
(Vacepps 2 (@@ Dypy — 2059 Dyli > k4 1).

This completes () and hence Step 1.

Step 2. Assume the theorem is true for each b = a. We prove it for the
case 0 < a<a— €y

Suppose a +¢€; —¢€; > 0 for some i < j. Then (V1)qe
each in the form

—¢; has basis vectors

l,(a—i—ei—ej—l—es)Ds . l’(a+ei_6j+em)Dm, s<m
by the induction assumption. We see that
:EjDi . [m(a—i—ei—ej—‘res)DS o $(a+€i_€j+€m)Dm]

= a;[z @)D, — gl @TI D, 1 4 6,420 T) D, — 2@t D)
+5mj [$(a+6i)Di — $(a+€m)Dm]
e (2D, — gl D, |s € T(a) \ {ir}).

Suppose a+¢€;—e; # 0 for some i < j. Then we must have a; < p—1 and a; =0,
so that (V1)aye—e, = FI(“+€")DJ- by the induction assumption. In this case

x;D; - x(a+ei)Dj — x(a+€j)Dj _ x(a+ei)Di
€ (2@t D, — ¢+ D, |s € T(a) \ {ir}).

Using the PBW theorem, we conclude that

(‘/1)a = ijDz ' (Vvl)a-‘rsi—ej

>

C (x(““s)Ds — x(““it)Dit]s € T(a) \ {it}).
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To complete this step, it remains to show that, for each fixed s € T(a) \ {i;},
<*> x(a+es)Ds - x(a+e¢t)Dl,t e V.

We split the proof of (x) into five cases.
Case 1. 74 <n. In this case a, = p—1. Since p > 3 and k + 1 < n, there
exists m < n such that

(a+en—¢€)s<p—1 and (a+e€,—€,);, <p—1.
By the induction hypothesis,
x(a+€m_€n+€s)DS _ x(a+€m_€n+€it)Dit e V.

Then
x(aJres)DS o x(aJreit)Dit

=—z,D,, - [w(a+5m75n+fs)Ds . $(a+5m75n+5it)Dit] e V.

Case 2. iy =n, a, =0. Let b = a+€; — €, > a. Then b # 0. By the induction
hypothesis, we obtain (V}), = (W), = Fo(®*) D, . Hence we have

—x,D, - 2Ot D = plote) o plete) p ey

Case 3. 44 =n, a, # 0, a; < p—2. Since k+1 < n, t(a) > 3. Since
b=a+ e, — €, = a, the induction assumption gives

glat2e—e)po— et D, e V).
Applying z,D,, we get
CCnDs . [x(a+2esfen)DS o x(aJres)Dn]

= (an + D[zl D, — glete) D ] e 1y,

which gives (x), since a, + 1 # 0.
Case 4. iy =n, a, # 0, a;j < p—2 for some j € T(a) \ {s,n}. By the
induction assumption, we get

x(a—l—e]-—en—i-es)Ds o $(a+€j)Dn c ‘/1
Applying z,,D;, we have
z,D; - [x(a+61—6n+€s)]_)s _ x(a+61)Dn]
= a, |27 D, — 2@t D] 4 [zt D; — et D) € V.

Using the conclusion in the preceding case and the assumption a, # 0, one gets

().

Case 5. iy =n, a, #0, a; =p—2 for every j € Z(a) \ {n}. In this case
we have t(a) > 4, since | < (n—1)(p — 1) — 1. Taking o, 5 € T(a) \ {s,n} with
a < (3, the induction hypothesis then yields

x(a+ea—eﬁ+€s)Ds _ x(a+€a—€ﬂ+ﬁn)Dn [ ‘/1
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Applying z3D,,, one gets (). This completes Step 2.

Step 3. Assume the theorem is true for each b = a. We prove it for the
case 0 f a—<a—€y1-

Let a; = —1.

Suppose i < n. If ag =0 for every s >4, then 0 £ a+¢ — ¢, < @ — €,.
By induction hypotheses, (V1)a1e,—¢, = Fz@*) D, . So we get

(V) = F2,D; - 2T D, = (W),

If there exists s > ¢ such that 0 <a, <p—1,then 0 <a+¢ —€, <a—e¢,. By
(1), we have z(@t2a=<)D; — zl@+<) D € (V})gye. .. Since

z.D; - I:x((l+2ﬁi_ﬁs)Di . x(a—i—ei)Ds] — (as + 1)Ji(a+ﬂ)Di c (‘/1>a7

and a, + 1 7& 0, (‘/I)a - (Vvl)a'

If a; =p—1 for every s > i, then by the assumption [ < (n—1)(p—1)—1,
we get a; < p — 1 for some ¢t < 7, so that 0 ﬁ a + ¢ — €,. By the induction
hypotheses, z@+t«*5=)D; € (Vi) e, . This gives us

x(a+€i)Di = —(ant) '$(a+6t+€i_en)Di S (‘/1)(“

and hence (V1), = (W)),.

If i = n, so that a, = —1, then since a < @ — €;11, there is s < k41
such that a, < as. Hence we must have a; > 0 for some ¢t > s. So the induction
assumption yields z(@Ts~<+) D€ (V})gtre.—e, - It follows that

gt D, = a7 te, D, - plateTate) Do (V),,

so that (V1), = (W))a. |
For each 0 < a € /_ll, set

n

o = Y (a;+ 1)z D; = Y (a; + 1)t D,

i=1 i€%(a)

Theorem 3.5. Assume | < (n—1)(p—1)—1. Let I +1 = k(p—1)+r,
0<r<p-—1. Then for a € A;, we have:

(1) If a # 0, then (Va), = 0.

(2) If a >0, then (V3), = Fo,.

Proof. @ We proceed by induction on a. Recall that

vy = Tx(a)Dk-s-l + Z l»(a_ﬂc-‘rl'i‘fi)Di
i>k+1

and &(vy) = a — €41. Clearly we have vy = v;_,,, and (V3)a—c,,, = Fvo. Also
by definition, (V2), = 0 for every b > @ — €j41.

Assume both (1) and (2) are true for all b > a, and consider the case
a=<0a— €y
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Suppose a > 0. Since 0 < a < @ — €41, there is ¢« < j such that
0<a+ei—e]~<a—ek+1.

For any such 4,7, let b =: a + ¢; — ¢;. Then the induction assumption shows that
(V2)p = Fo,. Notice that

CL’jDZ' -y = Z(bm + ].)ZE]Dz . I(b+em)Dm

m=1

=) (b + D)[(bj 4+ 14 §ypj)abFem=atea) D, — 5, s OFem) D))
m=1
= (b + 1)(b; + Dttt
m#i,j
+(b; 4+ 1)(b; + 2)xT25 =) Dy — (b; + 1)z D; + (b; + 1) (b; + 1)2*+9) D,

= (0;+ 1) Y (am + D" D, = (b + 1)v,

m=1

and b; +1 # 0.
If there is ¢ < j such that a+e€ —¢; 20 or a+ ¢ —€j A @ — €41, which
means again a+¢; —¢€; # 0, then the induction assumption yields (V3)g1e,—, = 0.
Using the PBW Theorem, one gets

ij VVQ a+51 €& — Fnav

j>t

which completes the proof of (2).
Suppose a # 0. If (V3)ate—; 7# 0 for some i < j, then the induction
assumption yields

b=ta+e—¢€>0, a=-1, and (V3), =Fu,.
Note that b; = 0. Then we have
IjDZ‘ . Ub = LUjDi . (bl + ].).I(b—i-ei)Di + l’jDZ’ . (b] + l)l’(b+ej)Dj

= (b; + D)) D; — (b; + 1)zb+)D; = 0.
Hence we have by the PBW Theorem that (V3), = 0. So (1) follows. n

3.2. The structure of V;,i=1,2, for [ > (n—1)(p—1) — 1.

Theorem 3.6.  Assume = (n—1)(p—1)+r—1,0<r<p—1. Let a € 4.
(1) (V1), = Fo,.
(2) If t(a) =1, (Va), =0.
(3) If t(a) > 2, (Va), = (2\*T9)D; — gl D, |i € T(a) \ {ir}}.
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Proof. = We prove (1)-(3) by induction on a.
The greatest a € A; with t(a) =1 is @ — ¢,, for which we have (V})a_., =

Fv; and v; = r~'vz_, . Also, we have (V3)z_., = 0. The second greatest a € A;
is @ — €,_1, for which we have t(a) > 2 and

(‘/2)(1 = Fuy, = F(m(d)Dn_l — I(&—En—l-‘ren)Dn)

= F(zl@ten-2)p, | — zleten) D),
We see that

(V)a—ens = FauDyy -0y = F((r + 1)a® D, — 2@D, ) =Fo,_,

n—1°

So we conclude that (1)-(3) are true for all b= a —€,_;.

Assume that (1)-(3) are true for every b > a, and consider the case a <
a— €,_1.

Notice that we have obtained, in the proof of Theorem 3.5,

Z‘jD,‘ g A = a;b, if j > 1.

>y

Using the PBW theorem and the induction assumption, we get
ng ‘/1 a+61—6] Z iji ’ Fna-i—ei—s]- = Fo,.
7> 7>

This completes the proof of (1).

If t(a) = 1, then we have (W;), = Fz(@+<)D; for some i < n and a; = p—1
for every j # i. Since | < n(p—1)—1, a; < p—2. Let j > i. Then t(a+e;—¢;) =2,
and the induction hypothesis gives

(Vodara—e, = F@249)D; = gt ),
Since

IjDi . (l’(aJrzeiiej)Di — I(aJrEi)Dj) = CLjJI(aJrEi)Di + I(“+Ei)Di = 0,

E x] Vé a+6176] =0.

J>i

This completes the proof of (2).
If t(a) > 2, then the induction assumption says that it is sufficient to
assume t(b) > 2, and hence

(Va)p = (x(b+ES)Ds — x(b+et)Dt|3,t € %(b)}

for each b = a + ¢; — ¢; with ¢« < j. In the light of the proof of Theorem 1, one
gets

=" ;Di - (Va)arerey € (@)D, — 20D, |5 € T(a) \ {ir}).

j>i
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To completes the proof of (3), it remains to show that
2D — D, e (V),

for every fixed s € ¥(a) \ {it}.

a) If t(a) > 3, we take i € T(a)\ {s,i:}. It’s no loss of generality to assume
i < s. Note that a,, > 0 for each m € T(a), since I > (n—1)(p —1) — 1. So we
have a +¢€; —¢€;, > 0, a+¢€; —€; > 0. Then the induction hypothesis gives

x(a+€i—5it+GS)DS _ x(a-ﬁ-ez')DZ,t c (‘/é)aﬁi_%’

l,(a-i-Gz')DS — x(‘ﬁ'ei_ss—’—qt)Dit S (‘/Z)a-&-ei—es'

Since
tDi . [x(a+ﬁi_5it+€s)Ds o I(a+€i)Dit]

= a;, [:E(“+€S)DS — x(a+6it)Dit] + [x(‘”q)Di _ x(a+5it)Dit:| e (Va)a

X

and
sti . [l,(a+ei)Ds o x(a+ei*es+eit)Dit]

_ (as + 1)[x(a+es)DS . w(a—l—eit)Dit] o [$(a+€i)Di _ :E(a+6“)Dit] c (Vz)m

with p|(as + a;, + 1) or, equivalently a5 + a;, = p — 1, one would get | = ) a; <
(n—1)(p—1)—1, a contradiction. Therefore pt (as+ a;, + 1), which implies that

:L‘((H_ES)DS _ x(a-&-eu)Dit c (‘/2)(1.

b) When t(a) = 2, we have T(a) = {s,4:}.
Suppose a; < p—2. Then a+e€,—¢;, > 0,since l > (n—1)(p—1)—1. So
we get
x(a+265—6it)D8 _ l'(a+€s)Dit c (‘/Q)Q+€s_€it

by the induction assumption. It follows that
Jf(a+€s)Ds . x(a-l—eit)Dit

= (a;, + 1)’1xitDs . [x(“”ES’“t)DS — a:(““S)Dit} € (V2)a.

Suppose as =p — 2. Then we get s <n — 1, since a <a —€,_1.
If 7, = n, we get

glate)p, —glate) D — g 1Dy vy € (Va)g.
If i, <n and a;, < p— 2, the induction hypothesis shows that
x(a+qt—en+es)Ds . x(a+2eit—en)Dit e (VQ)CH%—EM
since a + €, — €, > 0. It follows that
pate) p, — gloread p

= —(@nDy,) - [pF T r D, — gD, | € (Vo)

If iy=n—1 and a;, = p — 2, we have

gt D, — gt D, =2, D, - vy € (Va),.
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If iy <n—1 and a;, = p — 2, the induction assumption says that
aﬂa+fs—fn—1+fu)l)“ __14a+fs)l)n_l c (vé)a+fs_en_1’
since a + €5, — €,_1 > 0. Therefore
x(“+€S)DS — m(‘”eit)Dit
= (@ aD,) - [l D, gD, ] € (Vy),.
This completes the proof of (3).

4. The W, — module structure of W,
4.1. pt(n+1).
Theorem 4.1. Ifpt(n+1), W, =Via V.

Proof. Let
a=p-1,...,p—1,70,...,0),0<r<p—1.

By the proof of Lemma 3.2, there are two normal i. If k 4+ 1 < n, then res(k +
1,7) = res(n,0) if and only if r —k —1 = —n(modp), which means p|(n+1) (note
that [ =r —k — 1(modp)). If p1 (n + 1), we have by definition that both &k + 1
and n are good for a. If k =n — 1, then since res(n —1,p — 1) # res(n,r), both
normal ¢ are good.

By [1, Th. A(2)], both Vi and V; are simple GL(n)-modules and W; =
Vi@ V,. Since V;, ¢ = 1,2 contains no maximal vectors other than v;, it is a
simple Wjy-module. [ ]

The decomposition and the simplicity of V;,i = 1,2 for p > [ —1 are also given in
[6, Sec.10]. For n = 2, the theorem is also given in [9].

Corollary 4.2.  If p t (n+ 1), then Vi and Vy are the only simple Wy —
submodules of W;.

Proof. Let M be asimple Wy—submodule of W;, and let v € M be a maximal
vector. Then we have either v = v; or v = v,y. It follows that V; C M or Vo, C M.
Since M is simple we have M =V, or M = V5. [ ]

4.2. pl(n+1).
fli=mn-1{p-1)+r—1,0<r <p-—1, then n+1 = r(modp) and
hence pt (n+1). Assume p|(n +1). Then we must have [ < (n —1)(p—1) — 1.
Let I+1=k(p—1)+7r,0<r<p—1. Then k+1 < n.
Since n+l=n+k(p—1)+r—1=n—(k+ 1)+ r(modp),
r=—[n—(k+1)](modp).
Therefore,
U2 — /r'x(a')Dk+l _|_ Z x(676k+1+6i)Di
i>k+1
- Z (z@ st Dy — 2@ Dy ),
i>k+1
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4.01 I<(n-1)p-1)—1

If | <(n—1)(p—1)—1, then by Theorem 3.4 we have v, € (V1)a—,,, and hence
Vo C Vi. Since vy and vy are the only maximal vectors in W;, V5 is the unique
simple Wy —submodule. Set W; =: W;/V,. Let [+1=k(p—1)+r, 0 <r <p—1.
By assumption, k41 < n. Then the structure of V; (i = 1,2) is given by Theorem
3.4 and Theorem 3.5.

Lemma 4.3.  Let v € W, be a mazimal vector for some v € (W), \ Va. Then
a ;é 0.

Suppose a > 0. Let T(a) = {i1,...,4;}. Since k+1 < n, t(a) > 2. We
can write v = 2;211 e @tem) D, . By definition, z;D; - v € (V2)ates—e, for every
1 < 7, that is,

t—1
.Z‘iDj U = Z cm(ai -+ 1 + (5imi)l’(a+ei_€j+€im)Dim — Cm5imix(a+ei)Dj

m=1
= Wi, ¢ n T

This implies that z;D; - v = 0 in the following cases:

(1) i € T(a)\ {i;}, j ¢ T(a). In this case the term z@+<—<+<) D, appears
in v, by definition, but not on the left of the last equality. So we have ¢ = 0.

(2) i,4,n € E(a), a; #0, j < n. Note that a +¢; —¢; > 0. Since the term
glota—<te) D appears on the right of the last equality by definition, but not on
the left, we have ¢ = 0.

(3) i =p—2, a; = 0. Since a + ¢ —¢; # 0, Theorem 3.5 shows that
2iDj-v € (Va)aye—e; = 0.

Proof of Lemma 2.  Suppose a > 0. If iy € T(a) and j ¢ T(a) for some
is < j,since t(a) > 2, we may assume iy < i;. Then from z; D; v =0, we would
get

cm(a;,, #1)=0 if m+#s, and ¢, =0.

This gives us ¢,, = 0 for m = 1,...,t — 1, a contradiction. Therefore ¥(a) =
{s,...,n} for some s <n — 1. Accordingly, v = >""" ¢, z@+m)D,,

In case a; <p—2 and a; #0 for some s <i<j<n,a+e¢—¢€ >0. We
would get, from z;D; -v =0,

Cm(CLl“—l):O if m;ﬁz,],

m(a; +2)=0 if m =i,
cilai+1)—c¢ =0 if m=y,

which implies that ¢, = --- = ¢,_1 = 0, a contradiction. Therefore, we must have

a=p-1,....p—1Lp—2,....p—2,7,0,...0,a,),0 <7 <p—1.
Suppose s < n — 3. Taking s < ¢ < j < n, we would have, from z;D; -v = 0,
¢m(a; +1) = 0 if m # 4,5. Thus ¢, = 0 for each m # i,j. For each
m € {s,...,n — 1}, there are i,j € {s,...,n — 1} such that m # i,j, since
s<n—3,soweget cs=---=c,_1 =0, a contradiction.
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Thus we have s > n — 2, and v can be put in the form
V= Cn—Zc(a+€n72)Dn—2 + Cn—lm(a+6n71)Dn—1-

We only sketch the rest of the proof, and leave the details to the interested reader.

Suppose a,,_s < p — 2. From x,,_»D, - v =0, one would get a, =p—1, a
contradiction.

Suppose a,_o =p — 2. From z, 9D, _1-v =0, one would get that v can
be put in the form v = z@ten-2)p, 5 —gloten-)p  Then from z, 1D, -0 =0,
one gets

a=p-1,...,p—1Lp—2,p—2,1),
which gives | = (n — 1)(p — 1) — 1, contrary to the assumption.

Suppose a,,_s = p — 1. Then

a = (p_la-'wp_lua'nflua'n)-

JFrom x, 1D, -v =0, one would get a, = p — 1, a contradiction.

Lemma 4.4.  Assume p|(n+1) andlet | < (n—1)(p—1)—1. Then Vi=WV/Vq
is a simple Wy — submodule of W;.

Proof. First we show that W, has a unique maximal vector ;. Assume
v € (W), \ Vo such that & € W, is maximal. By Lemma 4.3, a,, = —1 for
some 1 < m < n. Since (V1), = Fzl@*) D, we can write v = z(@T) D,

If m < n, we would have 0 # z,,D,, - v € Va; that is,

T D, - 2t D = (ay, + 2)zlatiem—e) D glaten) D

= m(a—i_zem_en)l)m - x(a+€m)Dn = Cn(l"‘fm_fn?

for some ¢ € F. By comparing both sides of the last equality, we have a; = p — 1
whenever ¢ # m, and hence [ = (n — 1)(p — 1) — 1, a contradiction. Then we get
m=n.

Since (V), = 0 for each a # 0, the assumption that ¥ is maximal shows
that z;D; - v = 0 whenever ¢ < j. Therefore, v is maximal in W;, hence v = vy,
as asserted.

Since V; C W, 7 is the only maximal vector in V;. Since ©; generates
Vi, Vi is simple. [ |

Theorem 4.5.  If p|(n+1) and if l < (n—1)(p—1) —1, then W, has a unique
composition series W; 2 Vi D Vo D 0.

Proof.  Set Wl =: W;/Vi. By Theorem 3.4, (W/Z)a = 0 for each a # 0. By
the discussion preceding Lemma 4.3, V5 is the unique simple submodule of W;.
;From the proof of Lemma 4.4, V', is the unique simple submodule of W;. So it
is sufficient to show that W, is simple.

For a > 0, let ¥(a) = {i1,...,4:}. By Theorem 1(1), we have

.T(a+€i1).Dil =...= x(a+€if)Dit=



722 ZHANG

and hence dim(f/lv/l)a =1.

Let Il =k(p—1)+7r—1,0<7r < p—1. Let v denote x@D;,,. If
b > @ — €xy1, then b # 0 and hence (W), = 0. This implies that v is maximal.

To prove that /I/I7l is generated by v we use induction on a. The greatest a
with (W) # 0 is &(v) = @ — €41, for which we have (W))z—,,, = Fo.

Assume that (/W/l)b is generated by v for every b > a, and consider the
case 0 < a < @ — €41. Since a < @ — €41, there exists j > 4; such that a; # 0.

Let b =: a+ ¢, —¢; > a. Then the induction assumption says that z(+<)D; is
generated by v. Since
ijil : Qf(b+€j)Dj

— (b] + 2)x(b+26j—eil)Dj . Jf(b+6j)Di1
_ (aj + 1)[x(a+€j)Dj B m(a+e¢1)DiJ + ajx(a+6i1)Di1
= a;2'") D, (modV}),

z(ete) D, is generated by v.

We claim that v is the unique maximal vector in fW/Z To establish the
claim, it suffices to show that, for each 0 < a < @ — €;41, there are ¢ and 5 with
i < j such that z,D; - (/VIZ)a #£0.

For each 0 < a < @ — €441, we have 0 < a + ¢ — ¢; < @ — €41 for some
i1<7.

(1) If a; < p—2, then

l'l'Dj . I(a+€i)Di = ((IZ' + 2)$(a+26i_6j)Di — .CE(CH_Q)D]'

— (ai + 1>x(a+2qfﬁj)Di + [x(a+2€i76j)Di . x(a+q)Dj]
= (a; + 1)z*25=%) D, (modV; ).

(2) If a; = p — 2, then z;D; - 2@+ D; = —gleta) D,
By Theorem 3.4, z;D; - @t D; ¢ Vi in both cases above, i.e., z;D; -

zlate) D; £ 0. So the claim holds. Consequently, W, is simple.

For the case | = 1, the theorem is also discussed in [6].
43.l=(n—-1)(p—1)—1.

Assume [ = (n—1)(p—1) — 1 and let
a:={p-1,....,p—1,0,p—1,....,p—1).

Let v¢ denote z(@)D; and V; denote the submodule of W, generated by vi. Set
Wy = W;/Va.

Proposition 4.6. (1) Vo is the unique simple submodule of W;.
(2) v% is mazimal in Wy for every 1 <i < n.
(3) Vi =:V{/Vy is a 1 — dimensional submodule of W;.
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Proof. (1) Since &(vy) < &(vy), V4 is the unique simple submodule of W, (note
that v; = (¥ D,, is denoted here also by v7}).
(2) (3) Assume s # t. Then

:L‘S VD = _ a y
t- U1 glaite—e) . 2@ p, - if g =,

Since z@ta—)p; — (@)D, = v,_., Theorem 3.5(2) says that x;D; - v} € V;.
Then ¢! is maximal and V{ is a 1 — dimensional submodule. n

Set W/ =: 3" Vi and let W; =: W;/W]. Since every a ¥ 0 with (W), # 0 is in
the form a — ¢;(= &(v})) for some 1 < i < n, we have (W;), # 0 only if a > 0.

Lemma 4.7. (1) If n = 2, W, contains a unique mazimal vector w, =
l’(a‘)Dn_l.
(2) For n > 3, let b denote (p—1,...,p—1,p—2,p—2,1). Then W,
n—2

contains two mazximal vectors, namely:

Wy = .T(a)Dn_h Wy = x(b+€n*2)Dn_2 — x(b+€”*1)Dn_1.

Proof.  Clearly, @D, _; € W, is maximal. Suppose v € (W), such that o is
maximal. Then a > 0. Assume T(a) = {i1,...,4:}. Then t(a) = ¢ > 2. Since
dim(W}), =1, v can be put in the form

t—1

v = Z Cma@TEm) D,

m=1

If &(x;D;-v) # 0 for some i < j, then we must have a; = p —2 and a; = 0. So
T(a) = {i,j} and v = cxl®+)D;.
Suppose j < n. Then since z;D,, - v = czl@tsts—<)D, € W/ for some
celFand a+e¢ —€, >0,
Cx(a+6i+€j—€n)Di e (%)a—i—e]’—en — ]:E‘Ua+€j

—€n

Using the definition of vgy¢, ¢, , one gets ¢ = 0, a contradiction. Then we must
have j =n.
Suppose i <n — 1. Then
xianl ‘U= _Cx(a)anl € (‘/2)&7%_1 = ]anzfe

n—1"°

By the definition of vsz_., ,, one gets ¢ = 0, a contradiction. So we get i =n —1,
and hence v = z@D,,_;.

Assume &(z;D;j -v) > 0 for all i@ < j. Then z;D; - v € (Va)ate—,
whenever i < j. Applying a similar argument as that used in the proof of
Lemma 4.3, we have, in the case n > 3, a = (p—1,...,p—Lp—2,p—2,1).

n—2
Let wy = gl@ten2D, 5 — gleten-)D By a direct computation we get ws, is
maximal in W,;. Note that dim(W;), = 1 implies that ws is the only maximal
vector with grading a. [ |
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Note that wy = —(2,Dp_1)(Tn_1Dp_2) - W1 — Ty Dp_o - Wy. Let B denote the
submodule of W; generated by w; (we use B to denote the pre-image of B under
the canonical epimorphism from W, to W;). Since &(wy) < &(w,), B is simple.

Identify W (n — 1,1) with the Lie subalgebra of W (n,1) in the canonical
way. Let gl(n — 1,F) denote

and let W(n —1,1); denote

Then for each 0 <i < p—2, (z,D,_1)"0, is maximal in the gl(n — 1,F)-module
w;.

For a > 0, since (W), has a basis {z(@*)D;]i € T(a)}, (W), has a basis
{xlate) Di € T(a) \ {it}}, so that W, has a basis

3 = Uazo{a“t)Dyli € T(a) \ {ir}}.
For 0 < s < p—1, set (W), = (2@D; € 3|a, = s). Then W; =
@P~(W))s. For 0 < s < p—2, since (W), has a basis {z(D;|i < n,a, = s},
there is a gl(n — 1, F)-module isomorphism:

Vs 1 (W))s — Wi_(C W(n —1,1)).
F)Di—?I(al ..... a'”*l)Di
It is easy to see that g1 ((x,Dy1)%w2) = (s + 1)lvg for 0 < s < p —2.

We now determine the structure of B. Let b = (p—1,...,p—1,p—2,p—2,1).
Notice that

(ann—l)p_2w2 = (p - 1)!Ub7(p*2)en—1+(p72)en = 0.
Thus, by the PBW Theorem,
B =
> (2,D1)% . . (2 D) 2u(W(n — 1,1)5 ) (@0 Dy_1 ) 0o

0<ce; <p—1,0<s<p—2

For each 0 < s < p — 2, let B, denote
w(W(n —1,1)5) (@ Do) @2(S (Wi)st1)-

Notice that | — (s + 1) > (n — 2)(p — 1) — 1. Using the isomorphism s, and
Theorem 3.6(3) for W(n —1,1);_(s41) , we have

Corollary 4.8.  For each 0 < s <p—2, (Bs)a # 0 if and only if a > 0 and
t(a) > 3. In this case

(Bs)a - <x(a+€i)Di - x(a+6j)Dj|i7j € T(CL) \ {n}>
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Noting that a, < p — 1 implies that a,, # 0 for each m € ¥(a), we have, for
1<j<nand 1<m<n-—2,

l'an : (a:(““i)Di — $(a+€j)Dj>

— (an + 1)(x(a+€i+€n_€m)Di _ x(a-&-ej—&-en—em)Dj)' (*)
Hence x,D,, - B, C B, for 0 < s < p—3. So we obtain

B = @O§j<p—ZBj ) Z iL‘nDz . Bpfg.
i<n—2
Let B, 5 denote Zignd z,D; - B, 3.

Corollary 4.9.  For s =p—2, (B,), # 0 if and only if a > 0 and t(a) > 3.
In this case

(BJ)a = (@@ D; — 2 Djli, j € Ta) \ {ir}).

Proof. Note that n ¢ T(a) for any a > 0 with (B, 3), # 0, since B, o C
(Wl)p—1~
Assume a > 0 and t(a) = 2. Let T(a) = {i,j}, i < j. Then j < n. Since
l=(n—1)(p—1)—1, a;+a; =p—2. So we have a; + 1 = —(a; + 1)(modp).
Since

vg = (a;+1)2 D + (a; + 1)) D;
= (a; + 1) (2"t D; — z@t9) D)),

Corollary 4.8 and the formula (x) above give x,,D,,,-B,_3 = 0 for all 0 < m < n—2.
So we get (B,_2)a = 0.

Assume a > 0 and t(a) > 3. For any 4,j € T(a), there is s € T(a) such
that s # 4, 7. By Corollary 4.8,

x(a+55_€n+€i)Di — w(a+€s_€n+€j)Dj (= (Bp—3)a+€s—€n'

Applying z,D;, we get zlet<) D, — 2t D, € (B,_3),, so that

(@t D; — aleta) Dyli, j € T(a) \ {ir}) € (Bp-a)a-

On the other hand, using the formula (%) above, we see that

(Bp-2)a C (2@t D; — 2o+ Djli, j € T(a) \ {ir}).
|

For n > 3, let W, denote W,/B. Since (W;/B), = (W), for a >0 and t(a) = 2,
we get
= 1, ifa>
dlm(VVl)a -  na= 0
0, otherwise.
Theorem 4.10. (1) If n > 3, W, is simple.
(2) If n =2, W, is simple.
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Proof. (1) We shall divide the proof into two steps.

Stepl. W, is generated by z@D,_,.
We proceed by induction on a. The greatest a with (W}), #0is a —€,_1.
Clearly,

—

(W\l)(zfenfl = Fx(a)anl-

Assume that (171\/});, is generated by x@®D,_; for every b > a. Consider the

case 0 < a < a—¢€,-1. Let T(a) = {i1,...,4;}. Then (171\/5)@ = IFx(a“ij)Dij,
j=1,... t—1.

Suppose t(a) > 3. Since | = (n—1)(p—1) — 1, a;, # 0. For each m < t,
taking i, € T(a) \ {im, i}, we have that (@D, generates (ﬁ\/l)a+eis by the
induction assumption. Taking

_€it

_ o~
x(a+ﬁim +eig *ezt)Dim c (VVl)a-i-QS—eit?

since
‘rit Dis . $(a+eim+eis _Eit)Dim — aitx(a+eim)D.

tm)

(I//(\/l)a is generated by x(@D,,_;.
Suppose t(a) = 2. Let T(a) = {i,5}, ¢ < j. Then either a; < p—2 or
a; < p—2,say, a;j <p—2. If j <n, then a+ ¢ —¢, > a, so the induction

assumption says that z(@tetei—en) D, is generated by x@ D,,_;. Since

— —

x,D; - xletata=—a) D, = q,zl0ta) D,
and a, # 0, (17[/\;)@ = Fzlete) D; is generated by z(@D,,_.
In case j =n and 1 <n — 1, since

2D = 2, 1 D; - 29D,
(IjV\l)a is generated by z(@D,,_;.
In case j = n and © = n — 1, the assumption a < a — €¢,_; shows that
a; < p — 2, then similarly we have that (W\l)a is generated by z(@D,,_;.

—_—

Step 2. 171/\; has a unique mazimal vector x(@D,,_; .

It is sufficient to show that, for each a < a — €,_; with (17[/\1)@ # 0,
z;D; - (Wfl)a 2 0 for some i < j.

Suppose t(a) > 3. Let i,j € T(a) with ¢ < j. Note that

IL'iDj . [L’(a—i_q)Di = (ai + 2)$(a+26i_ej)Di — [L'((H_q)Dj.

If t(a + €; —€j) > 3, then we have, by Corollary 4.8,

— — —

.Z',L'Dj : x(a“i)Di = (ai + 2)£C(a+2ﬁi_ej)Di — x(a+e¢)Dj = (ai + 1)x(a+251—5j)Di 7é 0.

—

If t(a+ ¢ — €;) = 2, then we must have a; = p — 2, and hence z;D; - et D, =

o —
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Suppose t(a) = 2. Let T(a) = {i,5}, i < j. Since B, =0, B, = (W)), =
Fo,. In case 7 < n, we have

i Dj - zlatea) D, = Vate,—c;, + (a; + 1)x(a+q)Dj

— (a; + 1)z@)D; ¢ B,

Le., x;D; - zlet<)D; # 0. In a similar fashion, one can check that:

—

Incase j=nand i <n—1, ;D,_1-zl@t<)D; #0. In case i =n — 1 and
j =n, so that by assumption a; < p — 2,

x;D,, - xW/JFGTDZ =(p—1-— an)a:(mn # 0.

This completes the proof of (1).

(2) Let n = 2. By Lemma 4.7, W, has a unique maximal vector z@D,_;.
Applying a similar argument as that for the case t(a) = 2 in Step 1 above, we
have that 2@ D,,_; generates W;, so W, is simple. N

5. The Sy-module structure of S

In this section, we determine the Sy — module structure of S. By [8], S(n,1) is
generated by S_; and S;. For every i > 0, since W;_; = [W_1,W;], we have
S; € W;. Foreach [ >0, W, is a Sy — module, and each W, — submodule of W,

=

is also a Sy — submodule. On the other hand, each Sy — submodule of W, with
the adjoint action of x, D, given in W, is extended to a Wy — submodule (note
that Wy = So & Fx,,D,,).

Theorem 5.1. (1) IfO0<i<(n—1)(p—1)—1, then S; = V.
(2)Ifl>(n—1)(p—1) =1, then S, =Vj.

Proof. (1) Assume 0 <l < (n—1)(p—1)—1. Let I+1=Fk(p—1)+r,
0<r<p-1,and denote a=(p—1,...,p—1,r,...,0). Since
k

@ —Dpypr@Fest)ifr < p—1
V1 =X Dn — = .
_Dk+2,n$(a+6k+2)7 it r = p— 17

we have v; € 5}, and hence V; C 5.

By Theorem 4.1 and Theorem 4.5, V; is a maximal Wj-submodule of W,
so we get S, = V.

(2) Assume [ > (n—1)(p—1)—1. Let [+1 = (n—1)(p—1)+r, 0 <r < p—1,
and let a = (p—1,...,p—1,r). Since

Dn nflx(a+6n)
_ «T(a)Dn—l . x(r‘z—enfﬂ-en)Dn =y € Sl7
so that V5 C Sy, we have, by Theorem 4.1, S; = V5. [ |

For [ =(n—1)(p—1) =1, we have V5, C S}, since S; is a Wy-submodule of W,
and V5 is the unique simple submodule of W;.
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Lemma 5.2. Letl=(n—-1)(p—1)—1. Ifa #0, (S).=0.

Proof. Recall @, =7 — (p— 1)¢; and v} = (%) D;. Suppose vi € S;. Then we
have

vh = Z C%Dgyx@ = Z C% D' + Z Ca(zla=) D, — 2= D)),
s<t i¢{s,t} t#£i

Notice that each term z(®=<)D; in the second summation is not equal to (%) D,

since t # i. Also, the term x(®)D; does not appear in the first summation . This
leads to v{ = 0, a contradiction. [

For each @ > 0, since [ = (n—1)(p—1) — 1, t(a) > 2. Let X = By>0Xa,
where X, =: (z@+9)D; — z@*9)D;li 7 € T(a)). We see that, for i,j € T(a),
glata) D, — glerea) D; = Dyxrletata) € ;. Hence X C ).

Lemma 5.3. X is Wy-submodule (hence a Sy-submodule) of W;.

Proof.  For i # j, it is easy to see that x;D; - X4 C Xgqye—; if @ > 0 and
a—+ € — €5 Z 0.

If a>0, a+¢ —¢; # 0, then we must have a; = p—2 and a; = 0. In this
case X, = F(z@+)D; — z@*<) D). Then z;D; - (z(@+)D; — z(e+4)D;) = 0. So
we have z;D; - X C X whenever ¢ # j. Since z;D; - X, C X, for each 1 <7 < n,
the lemma holds. [ ]

Lemma 5.4. Letl=(n—1)(p—1)—1. Forany 0<a € A;, (S))a € (W)),.

Proof.  Suppose there were 0 < a € A; such that (S)), = (W;),. Let b be the
greatest such a. If there is ¢ < j with ¢ € T(b) and j ¢ T(b), take ¢ € T(b) \ 7,
then

5aD; - 20D, = (b + 1D, € (S,

So the fact X C .S; implies that (S)p+e;—c; = (Wi)pte,—c, , a contradiction. Hence
we have T(b) = {s,s+1,...,n}.

Suppose s < n—2. Then b; # 0 for all i € T(b), since | = (n—1)(p—1)—1.
Notice that

xSDS+1 . x(b+€n)Dn = (as + 1)x(b+63_65+1+6n)Dn € (Sl)b+es—es+1

implies that (S))pte,—e.ss = (Wi)pte,—eoyrs @ contradiction. So we have T(b) =
{n —1,n}. Suppose b,_; < p—2. Then b, > 0, and

xn_an . LE(IH_G")Dn = (bn—l + 1)£E(b+5"_1)Dn € (Sl)b+€n—1—6n

gives (S)bte,_1—en = Wi)bte,_1—e,, & contradiction. Suppose b,—1 = p — 2. Then
we get b=a — €,_1, so that

(Sl>b — (VVl)b — <x(a)Dn717x(d*6n71+en)Dn>.

Which leads to v? = —x,_1D,, - 2@ »—1¥) D€ S a contradiction. [

Corollary 5.5. Letl=(n—1)(p—1)—1. Then S;=X.
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