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1. Introduction

Assume that F is an algebraically closed field with characteristic p ≥ 3. Let
L =

⊕s
i=−1 Li be a restricted Lie algebra W or S . With the adjoint action, L is

an L0 -module and each Li is an L0 -submodule. L−1 and Ls are two simple W0 -
modules. For each 0 < i < s , the L0 -module structure of Li remains unknown.
But we often need to know such structures in the nonrestricted representations of
L , where the p-characters can be put in some convenient form. That is, we need
to find certain “nice” representatives in each orbit of the p-characters under the
action of the automorphism groups (see [2]). With this motivation, we determine
the L0 -module structure of L in this paper. By introducing a gradation, we study
the structure of the submodules of each Li .

The paper is organized as follows. In Section 2, we give the preliminaries.
In Section 3, we determine the maximal vectors of Wl and study the submodules
of Wl . Then in Section 4, we prove that if p - (n+ l), Wl is the direct sum of its
two proper simple submodules. If p|(n+ l), we determine the composition series of
Wl . In Section 5, we use the results for W to determine the S0 -module structure
of S .

2. Preliminaries

In this section we describe the simple restricted Lie algebra of Cartan type, drawing
most of the notation and results from [8]. Assume n ≥ 2. Consider n-tuples

a = (a1, a2, . . . , an) b = (b1, b2, . . . , bn)

ISSN 0949–5932 / $2.50 c© Heldermann Verlag



710 Zhang

in Zn . We write a 6 b if ai 6 bi for all 1 6 i 6 n and we write a < b if a 6 b but
a 6= b . If a, b ≥ 0, define

(
a
b

)
= Πi

(
ai

bi

)
, where

(
ai

bi

)
is the usual binomial coefficient

with the convention that
(

ai

bi

)
= 0 unless bi 6 ai . Set C := {a ∈ Zn|0 6 a 6 τ} ,

where τ := (p − 1, . . . , p − 1). The divided power algebra A = A(n, 1) is the
associative F− algebra having F− basis {x(a)|a ∈ C} and multiplication subject
to the rule

x(a)x(b) =

{(
a+b
a

)
x(a+b), a+ b 6 τ

0, otherwise.

Note that A is Z-graded by Ak = 〈x(a)|a ∈ C, |a| = k〉 , where |a| =
∑n

i=1 ai .
For j ∈ {1, . . . , n} we consider Dj ∈ DerF(A) given by Dj(x

(a)) = x(a−εj) . Then
we have the simple restricted Witt algebra W = W (n, 1) =

∑n
j=1 ADj and W

inherits a gradation from A by means of Wi =
∑n

j=1 Ai+1Dj . Consequently,
W = ⊕sW

i=−1Wi with sW = n(p− 1)− 1 = |τ | − 1. In particular, W−1 =
∑n

i=1 FDi .

Suppose n ≥ 3. We introduce the mappings

Dij :

{
A → W (n, 1),

f 7→ Dj(f)Di −Di(f)Dj.

Then the simple restricted special Lie algebra is

S = S(n, 1) = 〈Dij(f)|f ∈ A, 1 6 i < j 6 n〉.

S = ⊕sS
i=−1S ∩ Wi is graded with sS = n(p − 1) − 2 = |τ | − 2. In particular,

S−1 = W−1 .

Identifying GL(n) with the central extension of the Chevalley group of
W0 = gl(n,F), each Wl is then naturally a GL(n)-module. Besides, every GL(n)-
submodule is a W0 -submodule. Set M = A1 . The action of W0 on M identifies
W0 with gl(M). Then the adjoint action of W0 on W−1 identifies W−1 with M∗ .
For each 0 6 l 6 sW , we then get a gl(M)-module(GL(n)-module) isomorphism
Al+1 ⊗M∗ → Wl : x

(a) ⊗Dj → x(a)Dj .

Let X+(n) denote the set of n-tuples λ = (λ1, . . . , λn) ∈ Zn satisfying
λ1 ≥ · · · ≥ λn . Then X+(n) can be identified with dominant weights for the
root system of GL(n). Let Ln(λ) denote the simple GL(n)-module with highest
weight λ .

Fix λ ∈ X+(n) and 1 6 i 6 n . We say that i is λ-removable if either
i = n or 1 6 i < n and λi > λi+1 . We say that i is λ-addable if either i = 1 or
1 < i 6 n and λi < λi−1 . For each (a, b) ∈ Zn×Zn , we set res(a, b) = b− a ∈ Fp .
We say that i is normal for λ if i is λ-removable and there is a decreasing injection
from the set of

λ− addable j with i < j 6 n and res(i, λi) = res(j, λj + 1)

into the set of

λ− removable j′ with i < j 6 n and res(i, λi) = res(j′, λj′).

We say that i is good for λ if i is normal for λ and there is no j that is normal
for λ with 1 6 j < i with res(j, λj) = res(i, λi) ([1]).

Since the structure of W (1, 1) is quite clear, we focus only on W (n, 1) with
n ≥ 2 throughout the paper.
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3. Two W0 − submodules of Wl

For each 0 < l < sW , let l + 1 = k(p − 1) + r , 0 < r 6 p − 1. Let ā denote the
n-tuple

(p− 1, . . . , p− 1
k

, r, 0, . . . , 0).

Clearly we have Al+1 = Ln(ā). In the following, we denote the Lie multiplication
[x, y] simply by x · y .

Definition 3.1. Let v ∈ Wl . If xiDj · v = 0 whenever 1 6 i < j 6 n , and for
every 1 6 i 6 n , xiDi · v = civ for some ci ∈ F , then v is called a maximal vector
of weight (c1, . . . , cn).

Let U denote the unipotent subgroup of GL(n) generated by elements in the set

{1 + txiDj|t ∈ F, i < j},

and let B denote the Borel subgroup of GL(n) with unipotent radical U . For
each Wl as a GL(n)-module as described above, we can also define the maximal
vector v ∈ Wl relative to B (see [3, Sec. 31.2]). It turns out at the end for v ∈ Wl ,
the two definitions of v being maximal agree.

Lemma 3.2. In each Wl , 0 < l < sW , there are two maximal vectors (up to
scalar multiple); namely:

v1 = x(ā)Dn, v2 =

{
rx(ā)Dk+1 +

∑
i>k+1 x

(ā−εk+1+εi)Di, if k + 1 < n

x(ā)Dn−1 − x(ā−εn−1+εn)Dn, if k + 1 = n.

Proof. By definition, there are two removable i that are normal for ā , namely,

i = n and i =

{
k + 1, if k + 1 < n

n− 1, if k + 1 = n.

Then by [1, Th.5.9 (1)], there are two maximal vectors in Wl . It is easy to check
that both v1 and v2 are maximal.

Set Vi =: u(W0)vi , i = 1, 2, where u(W0) is the reduced enveloping algebra
of W0 . Both V1 and V2 are W0 − submodules of Wl . Let W−

0 =:
∑

j>i FxjDi .

Then by the PBW theorem Vi = u(W−
0 )vi , i = 1, 2.

Let

Ã =: {(a1, a2, . . . , an)| − 1 6 ai 6 p− 1, i = 1, . . . , n}.

We introduce an Ã−gradation on W (denoted G) as follows: G(x(a)Di) = a−εi ∈
Ã . Ã is a completely ordered set with the order

(a1, . . . , an) ≺ (b1, . . . , bn) if a1 = b1, . . . , ai−1 = bi−1, ai < bi

for some i ≥ 1. We write a 4 b if a ≺ b or a = b . Let

(Wl)α = 〈x(a)Di ∈ Wl|a− εi = α〉



712 Zhang

and let Āl denote the set {a ∈ Ã|(Wl)a 6= 0} . Then Wl = ⊕α∈Āl
(Wl)α. Note that

the Āl -gradation of Wl is just the weight space decomposition of Wl under the
maximal torus of all diagonal matrices in GL(n).

Clearly we have

G(v1) = ā− εn,G(v2) =

{
ā− εk+1, if k + 1 < n

ā− εn−1, if k + 1 = n.

Then G(v2) ≺ G(v1). If xiDj · x(a)Dk 6= 0 for some i < j , then

G(xiDj · x(a)Dk) = a− εk + εi − εj � a− εk = G(x(a)Dk).

Corollary 3.3. v1 /∈ V2 .

For each a ∈ Āl with a ≥ 0, set T(a) = {i|ai < p− 1} . We denote by t(a)
the cardinality of the set T(a) and by it the greatest index in T(a). Then we have
(Wl)a = 〈x(a+εi)Di|i ∈ T(a)〉 .

If a ∈ Āl with a � 0, so that there is a unique i such that ai = −1, then
we obtain (Wl)a = Fx(a+εi)Di .

3.1. The structure of Vi, i = 1, 2, for l < (n− 1)(p− 1)− 1.

Theorem 3.4. Assume l = k(p−1)+r−1 < (n−1)(p−1)−1, 0 < r 6 p−1.
Let a ∈ Āl .

(1) If a ≥ 0, then t(a) ≥ 2, and (V1)a has a basis

{x(a+εi)Di − x(a+εit )Dit|i ∈ T(a) \ {it}}.

(2) If a � 0, then (V1)a = (Wl)a .

Proof. The proof is by induction on a ∈ Āl . We divide it into three steps.

Step 1. The theorem holds for all b < ā− εk+1 .

Suppose b � ā − εk+1 . Then b � 0 and there is i > k + 1 such that
bi = −1. Thus we have either b = ā − εi or b = ā − εk+1 + εj − εi for some
j ∈ {k + 2, . . . , i− 1} .

In the former case,

(Wl)b = Fx(ā)Di =

{
Fx(ā)Dn, if i = n

FxnDi · x(ā)Dn, if i < n,

which gives (Wl)b = (V1)b .

In the latter case,

(Wl)b = F(xjDk+1)(xnDi) · v1 = (V1)b.

The greatest a ≥ 0 is ā− εk+1 , for which we shall now show that

(V1)ā−εk+1
= 〈x(ā)Dk+1 − x(ā−εk+1+εi)Di|i > k + 1〉. (?)

By the PBW theorem, we have

(V1)ā−εk+1
⊆

∑
k+1<j<i6n

xiDj · (V1)ā−εk+1+εj−εi
+

∑
i>k+1

xiDk+1 · (V1)ā−εi
.
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We have just shown that

(V1)ā−εk+1+εj−εi
= Fx(ā−εk+1+εj)Di for k + 1 < j < i 6 n,

(V1)ā−εi
= Fx(ā)Di for i > k + 1.

Since
xiDj · x(ā−εk+1+εj)Di = x(ā−εk+1+εi)Di − x(ā−εk+1+εj)Dj

and
xiDk+1 · x(ā)Di = x(ā−εk+1+εi)Di − x(ā)Dk+1,

(V1)ā−εk+1
⊆ 〈x(ā)Dk+1 − x(ā−εk+1+εi)Di|i > k + 1〉.

On the other hand, since x(ā)Di = −xnDi · v1 ∈ V1 for every k + 1 < i < n ,

x(ā)Dk+1 − x(ā−εk+1+εi)Di

= −xiDk+1 · x(ā)Di ∈ (V1)ā−εk+1
.

Thus we have

(V1)ā−εk+1
⊇ 〈x(ā)Dk+1 − x(ā−εk+1+εi)Di|i > k + 1〉.

This completes (?) and hence Step 1.

Step 2. Assume the theorem is true for each b � a. We prove it for the
case 0 6 a ≺ ā− εk+1 .

Suppose a+ εi − εj ≥ 0 for some i < j . Then (V1)a+εi−εj
has basis vectors

each in the form

x(a+εi−εj+εs)Ds − x(a+εi−εj+εm)Dm, s < m

by the induction assumption. We see that

xjDi · [x(a+εi−εj+εs)Ds − x(a+εi−εj+εm)Dm]

= aj[x
(a+εs)Ds − x(a+εm)Dm] + δjs[x

(a+εs)Ds − x(a+εi)Di]

+δmj[x
(a+εi)Di − x(a+εm)Dm]

∈ 〈x(a+εs)Ds − x(a+εit )Dit|s ∈ T(a) \ {it}〉.

Suppose a+ εi− εj � 0 for some i < j . Then we must have ai < p−1 and aj = 0,
so that (V1)a+εi−εj

= Fx(a+εi)Dj by the induction assumption. In this case

xjDi · x(a+εi)Dj = x(a+εj)Dj − x(a+εi)Di

∈ 〈x(a+εs)Ds − x(a+εit )Dit|s ∈ T(a) \ {it}〉.

Using the PBW theorem, we conclude that

(V1)a =
∑
j>i

xjDi · (V1)a+εi−εj

⊆ 〈x(a+εs)Ds − x(a+εit )Dit|s ∈ T(a) \ {it}〉.



714 Zhang

To complete this step, it remains to show that, for each fixed s ∈ T(a) \ {it} ,

(∗) x(a+εs)Ds − x(a+εit )Dit ∈ V1.

We split the proof of (∗) into five cases.

Case 1. it < n . In this case an = p− 1. Since p ≥ 3 and k + 1 < n , there
exists m < n such that

(a+ εm − εn)s < p− 1 and (a+ εm − εn)it < p− 1.

By the induction hypothesis,

x(a+εm−εn+εs)Ds − x(a+εm−εn+εit )Dit ∈ V1.

Then
x(a+εs)Ds − x(a+εit )Dit

= −xnDm · [x(a+εm−εn+εs)Ds − x(a+εm−εn+εit )Dit ] ∈ V1.

Case 2. it = n , an = 0. Let b =: a + εs − εn � a . Then b � 0. By the induction
hypothesis, we obtain (V1)b = (Wl)b = Fx(b+εn)Dn . Hence we have

−xnDs · x(bs+εn)Dn = x(a+εs)Ds − x(a+εn)Dn ∈ V1.

Case 3. it = n , an 6= 0, as < p − 2. Since k + 1 < n , t(a) ≥ 3. Since
b = a+ εs − εn < a , the induction assumption gives

x(a+2εs−εn)Ds − x(a+εs)Dn ∈ V1.

Applying xnDs , we get

xnDs · [x(a+2εs−εn)Ds − x(a+εs)Dn]

= (an + 1)[x(a+εs)Ds − x(a+εn)Dn] ∈ V1,

which gives (∗), since an + 1 6= 0.

Case 4. it = n , an 6= 0, aj < p − 2 for some j ∈ T(a) \ {s, n} . By the
induction assumption, we get

x(a+εj−εn+εs)Ds − x(a+εj)Dn ∈ V1.

Applying xnDj , we have

xnDj · [x(a+εj−εn+εs)Ds − x(a+εj)Dn]

= an[x(a+εs)Ds − x(a+εn)Dn] + [x(a+εj)Dj − x(a+εn)Dn] ∈ V1.

Using the conclusion in the preceding case and the assumption an 6= 0, one gets
(∗).

Case 5. it = n , an 6= 0, aj = p − 2 for every j ∈ T(a) \ {n} . In this case
we have t(a) ≥ 4, since l < (n− 1)(p− 1)− 1. Taking α, β ∈ T(a) \ {s, n} with
α < β , the induction hypothesis then yields

x(a+εα−εβ+εs)Ds − x(a+εα−εβ+εn)Dn ∈ V1.
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Applying xβDα , one gets (∗). This completes Step 2.

Step 3. Assume the theorem is true for each b � a. We prove it for the
case 0 � a ≺ ā− εk+1 .

Let ai = −1.

Suppose i < n . If as = 0 for every s > i , then 0 � a + εi − εn 4 ā − εn .
By induction hypotheses, (V1)a+εi−εn = Fx(a+εi)Dn . So we get

(V1)a = FxnDi · x(a+εi)Dn = (Wl)a.

If there exists s > i such that 0 < as < p− 1, then 0 6 a + εi − εs 4 ā− εn . By
(1), we have x(a+2εi−εs)Di − x(a+εi)Ds ∈ (V1)a+εi−εs . Since

xsDi · [x(a+2εi−εs)Di − x(a+εi)Ds] = (as + 1)x(a+εi)Di ∈ (V1)a,

and as + 1 6= 0, (V1)a = (Wl)a .

If as = p−1 for every s > i , then by the assumption l < (n−1)(p−1)−1,
we get at < p − 1 for some t < i , so that 0 � a + εt − εn . By the induction
hypotheses, x(a+εt+εi−εn)Di ∈ (V1)a+εt−εn . This gives us

x(a+εi)Di = −(xnDt) · x(a+εt+εi−εn)Di ∈ (V1)a,

and hence (V1)a = (Wl)a .

If i = n , so that an = −1, then since a ≺ ā − εk+1 , there is s 6 k + 1
such that as < ās . Hence we must have at > 0 for some t > s . So the induction
assumption yields x(a+εs−εt+εn)Dn ∈ (V1)a+εs−εt . It follows that

x(a+εn)Dn = a−1
t xtDs · x(a+εs−εt+εn)Dn ∈ (V1)a,

so that (V1)a = (Wl)a .

For each 0 6 a ∈ Āl , set

va =:
n∑

i=1

(ai + 1)x(a+εi)Di =
∑

i∈T(a)

(ai + 1)x(a+εi)Di.

Theorem 3.5. Assume l 6 (n − 1)(p − 1) − 1. Let l + 1 = k(p − 1) + r ,
0 < r 6 p− 1. Then for a ∈ Āl , we have:

(1) If a � 0, then (V2)a = 0.

(2) If a ≥ 0, then (V2)a = Fva .

Proof. We proceed by induction on a . Recall that

v2 = rx(ā)Dk+1 +
∑

i>k+1

x(ā−εk+1+εi)Di

and G(v2) = ā − εk+1 . Clearly we have v2 = vā−εk+1
and (V2)ā−εk+1

= Fv2 . Also
by definition, (V2)b = 0 for every b � ā− εk+1 .

Assume both (1) and (2) are true for all b � a , and consider the case
a ≺ ā− εk+1 .
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Suppose a ≥ 0. Since 0 6 a ≺ ā− εk+1 , there is i < j such that

0 6 a+ εi − εj 4 ā− εk+1.

For any such i, j , let b =: a+ εi − εj . Then the induction assumption shows that
(V2)b = Fvb . Notice that

xjDi · vb =
n∑

m=1

(bm + 1)xjDi · x(b+εm)Dm

=
n∑

m=1

(bm + 1)[(bj + 1 + δmj)x
(b+εm−εi+εj)Dm − δmjx

(b+εm)Di]

=
∑

m6=i,j

(bm + 1)(bj + 1)x(b+εm−εi+εj)Dm

+(bj + 1)(bj + 2)x(b+2εj−εi)Dj − (bj + 1)x(b+εj)Di + (bi + 1)(bj + 1)x(b+εj)Di

= (bj + 1)
n∑

m=1

(am + 1)x(a+εm)Dm = (bj + 1)va

and bj + 1 6= 0.

If there is i < j such that a+ εi − εj � 0 or a+ εi − εj � ā− εk+1 , which
means again a+ εi− εj � 0, then the induction assumption yields (V2)a+εi−εj

= 0.

Using the PBW Theorem, one gets

(V2)a =
∑
j>i

xjDi · (V2)a+εi−εj
= Fva,

which completes the proof of (2).

Suppose a � 0. If (V2)a+εi−εj
6= 0 for some i < j , then the induction

assumption yields

b =: a+ εi − εj ≥ 0, ai = −1, and (V2)b = Fvb.

Note that bi = 0. Then we have

xjDi · vb = xjDi · (bi + 1)x(b+εi)Di + xjDi · (bj + 1)x(b+εj)Dj

= (bj + 1)x(b+εj)Di − (bj + 1)x(b+εj)Di = 0.

Hence we have by the PBW Theorem that (V2)a = 0. So (1) follows.

3.2. The structure of Vi, i = 1, 2, for l > (n− 1)(p− 1)− 1.

Theorem 3.6. Assume l = (n− 1)(p− 1) + r− 1, 0 < r < p− 1. Let a ∈ Āl .

(1) (V1)a = Fva .

(2) If t(a) = 1, (V2)a = 0.

(3) If t(a) ≥ 2, (V2)a = 〈x(a+εi)Di − x(a+εit )Dit|i ∈ T(a) \ {it}}.
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Proof. We prove (1)-(3) by induction on a .

The greatest a ∈ Āl with t(a) = 1 is ā− εn , for which we have (V1)ā−εn =
Fv1 and v1 = r−1vā−εn . Also, we have (V2)ā−εn = 0. The second greatest a ∈ Āl

is ā− εn−1 , for which we have t(a) ≥ 2 and

(V2)a = Fv2 = F(x(ā)Dn−1 − x(ā−εn−1+εn)Dn)

= F(x(a+εn−1)Dn−1 − x(a+εn)Dn).

We see that

(V1)ā−εn−1 = FxnDn−1 · v1 = F((r + 1)x(ā−εn−1+εn)Dn − x(ā)Dn−1) = Fvā−εn−1 .

So we conclude that (1)-(3) are true for all b < ā− εn−1 .

Assume that (1)-(3) are true for every b � a , and consider the case a ≺
ā− εn−1 .

Notice that we have obtained, in the proof of Theorem 3.5,

xjDi · va+εi−εj
= ajva if j > i.

Using the PBW theorem and the induction assumption, we get

(V1)a =
∑
j>i

xjDi · (V1)a+εi−εj
=

∑
j>i

xjDi · Fva+εi−εj
= Fva.

This completes the proof of (1).

If t(a) = 1, then we have (Wl)a = Fx(a+εi)Di for some i < n and aj = p−1
for every j 6= i . Since l < n(p−1)−1, ai < p−2. Let j > i . Then t(a+εi−εj) = 2,
and the induction hypothesis gives

(V2)a+εi−εj
= F(x(a+2εi−εj)Di − x(a+εi)Dj).

Since

xjDi · (x(a+2εi−εj)Di − x(a+εi)Dj) = ajx
(a+εi)Di + x(a+εi)Di = 0,

(V2)a =
∑
j>i

xjDi · (V2)a+εi−εj
= 0.

This completes the proof of (2).

If t(a) ≥ 2, then the induction assumption says that it is sufficient to
assume t(b) ≥ 2, and hence

(V2)b = 〈x(b+εs)Ds − x(b+εt)Dt|s, t ∈ T(b)}

for each b = a + εi − εj with i < j . In the light of the proof of Theorem 1, one
gets

(V2)a =
∑
j>i

xjDi · (V2)a+εi−εj
⊆ 〈x(a+εs)Ds − x(a+εit )Dit|s ∈ T(a) \ {it}〉.
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To completes the proof of (3), it remains to show that

x(a+εs)Ds − x(a+εit )Dit ∈ (V2)a

for every fixed s ∈ T(a) \ {it} .

a) If t(a) ≥ 3, we take i ∈ T(a)\{s, it} . It’s no loss of generality to assume
i < s . Note that am > 0 for each m ∈ T(a), since l > (n− 1)(p− 1)− 1. So we
have a+ εi − εit ≥ 0, a+ εi − εs ≥ 0. Then the induction hypothesis gives

x(a+εi−εit+εs)Ds − x(a+εi)Dit ∈ (V2)a+εi−εit
,

x(a+εi)Ds − x(a+εi−εs+εit )Dit ∈ (V2)a+εi−εs .

Since
xitDi · [x(a+εi−εit+εs)Ds − x(a+εi)Dit ]

= ait [x
(a+εs)Ds − x(a+εit )Dit ] + [x(a+εi)Di − x(a+εit )Dit ] ∈ (V2)a

and
xsDi · [x(a+εi)Ds − x(a+εi−εs+εit )Dit ]

= (as + 1)[x(a+εs)Ds − x(a+εit )Dit ]− [x(a+εi)Di − x(a+εit )Dit ] ∈ (V2)a,

with p|(as + ait + 1) or, equivalently as + ait = p− 1, one would get l =
∑
ai 6

(n− 1)(p− 1)− 1, a contradiction. Therefore p - (as + ait +1), which implies that

x(a+εs)Ds − x(a+εit )Dit ∈ (V2)a.

b) When t(a) = 2, we have T(a) = {s, it} .

Suppose as < p− 2. Then a+ εs− εit ≥ 0, since l > (n− 1)(p− 1)− 1. So
we get

x(a+2εs−εit )Ds − x(a+εs)Dit ∈ (V2)a+εs−εit

by the induction assumption. It follows that

x(a+εs)Ds − x(a+εit )Dit

= (ait + 1)−1xitDs · [x(a+2εs−εit )Ds − x(a+εs)Dit ] ∈ (V2)a.

Suppose as = p− 2. Then we get s < n− 1, since a ≺ ā− εn−1 .

If it = n , we get

x(a+εs)Ds − x(a+εn)Dn = −xn−1Ds · v2 ∈ (V2)a.

If it < n and ait < p− 2, the induction hypothesis shows that

x(a+εit−εn+εs)Ds − x(a+2εit−εn)Dit ∈ (V2)a+εit−εn ,

since a+ εit − εn ≥ 0. It follows that

x(a+εs)Ds − x(a+εit )Dit

= −(xnDit) · [x(a+εit−εn+εs)Ds − x(a+2εit−εn)Dit ] ∈ (V2)a.

If it = n− 1 and ait = p− 2, we have

x(a+εs)Ds − x(a+εit )Dit = xnDs · v2 ∈ (V2)a.
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If it < n− 1 and ait = p− 2, the induction assumption says that

x(a+εs−εn−1+εit )Dit − x(a+εs)Dn−1 ∈ (V2)a+εs−εn−1 ,

since a+ εs − εn−1 ≥ 0. Therefore

x(a+εs)Ds − x(a+εit )Dit

= (xn−1Ds) · [x(a+εs−εn−1+εit )Dit − x(a+εs)Dn−1] ∈ (V2)a.

This completes the proof of (3).

4. The W0 −module structure of Wl

4.1. p - (n+ l).

Theorem 4.1. If p - (n+ l), Wl = V1 ⊕ V2 .

Proof. Let

ā = (p− 1, . . . , p− 1, r, 0, . . . , 0), 0 < r 6 p− 1.

By the proof of Lemma 3.2, there are two normal i . If k + 1 < n , then res(k +
1, r) = res(n, 0) if and only if r−k−1 = −n(modp), which means p|(n+ l) (note
that l = r − k − 1(modp)). If p - (n + l), we have by definition that both k + 1
and n are good for ā . If k = n− 1, then since res(n− 1, p− 1) 6= res(n, r), both
normal i are good.

By [1, Th. Á(2)], both V1 and V2 are simple GL(n)-modules and Wl =
V1 ⊕ V2 . Since Vi , i = 1, 2 contains no maximal vectors other than vi , it is a
simple W0 -module.

The decomposition and the simplicity of Vi ,i = 1, 2 for p > l− 1 are also given in
[6, Sec.10]. For n = 2, the theorem is also given in [9].

Corollary 4.2. If p - (n + l), then V1 and V2 are the only simple W0 −
submodules of Wl .

Proof. Let M be a simple W0−submodule of Wl , and let v ∈M be a maximal
vector. Then we have either v = v1 or v = v2 . It follows that V1 ⊆M or V2 ⊆M .
Since M is simple we have M = V1 or M = V2 .

4.2. p|(n+ l).

If l = (n − 1)(p − 1) + r − 1, 0 < r < p − 1, then n + l = r(modp) and
hence p - (n + l). Assume p|(n + l). Then we must have l 6 (n − 1)(p − 1) − 1.
Let l + 1 = k(p− 1) + r , 0 < r 6 p− 1. Then k + 1 < n .

Since n+ l = n+ k(p− 1) + r − 1 = n− (k + 1) + r(modp),

r = −[n− (k + 1)](modp).

Therefore,

v2 = rx(ā)Dk+1 +
∑

i>k+1

x(ā−εk+1+εi)Di

=
∑

i>k+1

(x(ā−εk+1+εi)Di − x(ā)Dk+1).
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4..0.1 l < (n− 1)(p− 1)− 1

If l < (n− 1)(p− 1)− 1, then by Theorem 3.4 we have v2 ∈ (V1)ā−εk+1
and hence

V2 ⊆ V1 . Since v1 and v2 are the only maximal vectors in Wl , V2 is the unique
simple W0−submodule. Set W l =: Wl/V2 . Let l+1 = k(p−1)+r , 0 < r 6 p−1.
By assumption, k+1 < n . Then the structure of Vi (i = 1, 2) is given by Theorem
3.4 and Theorem 3.5.

Lemma 4.3. Let v̄ ∈ W l be a maximal vector for some v ∈ (Wl)a \ V2 . Then
a � 0.

Suppose a ≥ 0. Let T(a) = {i1, . . . , it} . Since k + 1 < n , t(a) ≥ 2. We
can write v =

∑t−1
m=1 cmx

(a+εim )Dim . By definition, xiDj · v ∈ (V2)a+εi−εj
for every

i < j , that is,

xiDj · v =
t−1∑
m=1

cm(ai + 1 + δimi)x
(a+εi−εj+εim )Dim − cmδimix

(a+εi)Dj

= cva+εi−εj
, c in F.

This implies that xiDj · v = 0 in the following cases:

(1) i ∈ T(a)\{it} , j /∈ T(a). In this case the term x(a+εi−εj+εit )Dit appears
in va+εi−εj

by definition, but not on the left of the last equality. So we have c = 0.

(2) i, j, n ∈ T(a), aj 6= 0, j < n . Note that a+ εi − εj ≥ 0. Since the term
x(a+εi−εj+εn)Dn appears on the right of the last equality by definition, but not on
the left, we have c = 0.

(3) ai = p − 2, aj = 0. Since a + εi − εj � 0, Theorem 3.5 shows that
xiDj · v ∈ (V2)a+εi−εj

= 0.

Proof of Lemma 2. Suppose a ≥ 0. If is ∈ T(a) and j /∈ T(a) for some
is < j , since t(a) ≥ 2, we may assume is < it . Then from xisDj · v = 0, we would
get

cm(ais + 1) = 0 if m 6= s, and cs = 0.

This gives us cm = 0 for m = 1, . . . , t − 1, a contradiction. Therefore T(a) =
{s, . . . , n} for some s 6 n− 1. Accordingly, v =

∑n−1
m=s cmx

(a+εm)Dm .

In case ai < p− 2 and aj 6= 0 for some s 6 i < j < n , a+ εi − εj ≥ 0. We
would get, from xiDj · v = 0,

cm(ai + 1) = 0 if m 6= i, j,

cm(ai + 2) = 0 if m = i,

cj(ai + 1)− ci = 0 if m = j,

which implies that cs = · · · = cn−1 = 0, a contradiction. Therefore, we must have

a = (p− 1, . . . , p− 1, p− 2
s
, . . . , p− 2, r′, 0, . . . 0, an), 0 < r′ < p− 1.

Suppose s 6 n − 3. Taking s 6 i < j < n , we would have, from xiDj · v = 0,
cm(ai + 1) = 0 if m 6= i, j . Thus cm = 0 for each m 6= i, j . For each
m ∈ {s, . . . , n − 1} , there are i, j ∈ {s, . . . , n − 1} such that m 6= i, j , since
s 6 n− 3, so we get cs = · · · = cn−1 = 0, a contradiction.
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Thus we have s ≥ n− 2, and v can be put in the form

v = cn−2c
(a+εn−2)Dn−2 + cn−1x

(a+εn−1)Dn−1.

We only sketch the rest of the proof, and leave the details to the interested reader.

Suppose an−2 < p− 2. From xn−2Dn · v̄ = 0, one would get an = p− 1, a
contradiction.

Suppose an−2 = p − 2. From xn−2Dn−1 · v̄ = 0, one would get that v can
be put in the form v = x(a+εn−2)Dn−2− x(a+εn−1)Dn−1 . Then from xn−1Dn · v̄ = 0,
one gets

a = (p− 1, . . . , p− 1, p− 2, p− 2, 1),

which gives l = (n− 1)(p− 1)− 1, contrary to the assumption.

Suppose an−2 = p− 1. Then

a = (p− 1, . . . , p− 1, an−1, an).

¿From xn−1Dn · v̄ = 0, one would get an = p− 1, a contradiction.

Lemma 4.4. Assume p|(n+l) and let l < (n−1)(p−1)−1. Then V 1 = V1/V2

is a simple W0 − submodule of W l .

Proof. First we show that Wl has a unique maximal vector v̄1 . Assume
v ∈ (Wl)a \ V2 such that v̄ ∈ W l is maximal. By Lemma 4.3, am = −1 for
some 1 6 m 6 n . Since (V1)a = Fx(a+εm)Dm , we can write v = x(a+εm)Dm .

If m < n , we would have 0 6= xmDn · v ∈ V2 ; that is,

xmDn · x(a+εm)Dm = (am + 2)x(a+2εm−εn)Dm − x(a+εm)Dn

= x(a+2εm−εn)Dm − x(a+εm)Dn = cva+εm−εn ,

for some c ∈ F . By comparing both sides of the last equality, we have ai = p− 1
whenever i 6= m , and hence l = (n− 1)(p− 1)− 1, a contradiction. Then we get
m = n .

Since (V2)a = 0 for each a � 0, the assumption that v̄ is maximal shows
that xiDj · v = 0 whenever i < j . Therefore, v is maximal in Wl , hence v = v1 ,
as asserted.

Since V 1 ⊆ W l , v̄1 is the only maximal vector in V 1 . Since v̄1 generates
V 1 , V 1 is simple.

Theorem 4.5. If p|(n+ l) and if l < (n− 1)(p− 1)− 1, then Wl has a unique
composition series Wl ⊇ V1 ⊇ V2 ⊇ 0.

Proof. Set W̃l =: Wl/V1 . By Theorem 3.4, (W̃l)a = 0 for each a � 0. By
the discussion preceding Lemma 4.3, V2 is the unique simple submodule of Wl .
¿From the proof of Lemma 4.4, V 1 is the unique simple submodule of W l . So it
is sufficient to show that W̃l is simple.

For a ≥ 0, let T(a) = {i1, . . . , it} . By Theorem 1(1), we have

˜x(a+εi1
)Di1 = · · · = ˜x(a+εit )Dit ,
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and hence dim(W̃l)a = 1.

Let l = k(p − 1) + r − 1, 0 < r 6 p − 1. Let v denote ˜x(ā)Dk+1 . If

b � ā− εk+1 , then b � 0 and hence (W̃l)b = 0. This implies that v is maximal.

To prove that W̃l is generated by v we use induction on a . The greatest a
with (W̃l)a 6= 0 is G(v) = ā− εk+1 , for which we have (W̃l)ā−εk+1

= Fv .

Assume that (W̃l)b is generated by v for every b � a , and consider the
case 0 6 a ≺ ā− εk+1 . Since a ≺ ā− εk+1 , there exists j > i1 such that aj 6= 0.

Let b =: a + εi1 − εj � a . Then the induction assumption says that ˜x(b+εj)Dj is
generated by v . Since

xjDi1 · x(b+εj)Dj

= (bj + 2)x(b+2εj−εi1
)Dj − x(b+εj)Di1

= (aj + 1)[x(a+εj)Dj − x(a+εi1
)Di1 ] + ajx

(a+εi1
)Di1

= ajx
(a+εi1

)Di1(modV1),

˜x(a+εi1
)Di1 is generated by v .

We claim that v is the unique maximal vector in W̃l . To establish the
claim, it suffices to show that, for each 0 6 a ≺ ā− εk+1 , there are i and j with

i < j such that xiDj · (W̃l)a 6= 0.

For each 0 6 a ≺ ā − εk+1 , we have 0 6 a + εi − εj 4 ā − εk+1 for some
i < j .

(1) If ai < p− 2, then

xiDj · x(a+εi)Di = (ai + 2)x(a+2εi−εj)Di − x(a+εi)Dj

= (ai + 1)x(a+2εi−εj)Di + [x(a+2εi−εj)Di − x(a+εi)Dj]

= (ai + 1)x(a+2εi−εj)Di(modV1).

(2) If ai = p− 2, then xiDj · x(a+εi)Di = −x(a+εi)Dj .

By Theorem 3.4, xiDj · x(a+εi)Di /∈ V1 in both cases above, i.e., xiDj ·
˜x(a+εi)Di 6= 0. So the claim holds. Consequently, W̃l is simple.

For the case l = 1, the theorem is also discussed in [6].

4.3. l = (n− 1)(p− 1)− 1.

Assume l = (n− 1)(p− 1)− 1 and let

āi := (p− 1, . . . , p− 1, 0
i
, p− 1, . . . , p− 1).

Let vi
1 denote x(āi)Di and V i

1 denote the submodule of Wl generated by vi
1 . Set

W̃l =: Wl/V2 .

Proposition 4.6. (1) V2 is the unique simple submodule of Wl .

(2) ṽi
1 is maximal in W̃l for every 1 6 i 6 n.

(3) Ṽ i
1 =: V i

1/V2 is a 1− dimensional submodule of W̃l .
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Proof. (1) Since G(v2) ≺ G(v1), V2 is the unique simple submodule of Wl (note
that v1 = x(ā)Dn is denoted here also by vn

1 ).

(2) (3) Assume s 6= t . Then

xsDt · vi
1 =

{
0, if s 6= i

x(āi+εi−εt)Di − x(āi)Dt, if s = i.

Since x(āi+εi−εt)Di − x(āi)Dt = vā−εt , Theorem 3.5(2) says that xiDt · vi
1 ∈ V2 .

Then ṽi
1 is maximal and Ṽ i

1 is a 1− dimensional submodule.

Set W ′
l =:

∑n
i=1 V

i
1 and let Wl =: Wl/W

′
l . Since every a � 0 with (Wl)a 6= 0 is in

the form ā− εi (= G(vi
1)) for some 1 6 i 6 n , we have (W l)a 6= 0 only if a ≥ 0.

Lemma 4.7. (1) If n = 2, Wl contains a unique maximal vector w̄1 =

x(ā)Dn−1 .

(2) For n ≥ 3, let b denote (p − 1, . . . , p − 1, p− 2
n−2

, p − 2, 1). Then Wl

contains two maximal vectors, namely:

w̄1 = x(ā)Dn−1, w̄2 = x(b+εn−2)Dn−2 − x(b+εn−1)Dn−1.

Proof. Clearly, x(ā)Dn−1 ∈ Wl is maximal. Suppose v ∈ (Wl)a such that v̄ is
maximal. Then a ≥ 0. Assume T(a) = {i1, . . . , it} . Then t(a) = t ≥ 2. Since
dim(W ′

l )a = 1, v can be put in the form

v =
t−1∑
m=1

cmx
(a+εim )Dim .

If G(xiDj · v) � 0 for some i < j , then we must have ai = p− 2 and aj = 0. So
T(a) = {i, j} and v = cx(a+εi)Di .

Suppose j < n . Then since xjDn · v = cx(a+εi+εj−εn)Di ∈ W ′
l for some

c ∈ F and a+ εj − εn ≥ 0,

cx(a+εi+εj−εn)Di ∈ (V2)a+εj−εn = Fva+εj−εn .

Using the definition of va+εj−εn , one gets c = 0, a contradiction. Then we must
have j = n .

Suppose i < n− 1. Then

xiDn−1 · v = −cx(ā)Dn−1 ∈ (V2)ā−εn−1 = Fvā−εn−1 .

By the definition of vā−εn−1 , one gets c = 0, a contradiction. So we get i = n− 1,
and hence v = x(ā)Dn−1 .

Assume G(xiDj · v) ≥ 0 for all i < j . Then xiDj · v ∈ (V2)a+εi−εj

whenever i < j . Applying a similar argument as that used in the proof of
Lemma 4.3, we have, in the case n ≥ 3, a = (p − 1, . . . , p − 1, p− 2

n−2
, p − 2, 1).

Let w2 = x(a+εn−2)Dn−2 − x(a+εn−1)Dn−1 . By a direct computation we get w̄2 is
maximal in W l . Note that dim(W l)a = 1 implies that w̄2 is the only maximal
vector with grading a .
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Note that w̄2 = −(xnDn−1)(xn−1Dn−2) · w̄1 − xnDn−2 · w̄1 . Let B̄ denote the
submodule of W l generated by w̄2 (we use B to denote the pre-image of B̄ under
the canonical epimorphism from Wl to W l ). Since G(w̄2) ≺ G(w̄1), B̄ is simple.

Identify W (n − 1, 1) with the Lie subalgebra of W (n, 1) in the canonical
way. Let gl(n− 1,F) denote

W (n− 1, 1)0 = 〈xiDj|1 6 i, j 6 n− 1〉

and let W (n− 1, 1)−0 denote

〈xjDi|1 6 i < j 6 n− 1〉.

Then for each 0 6 i 6 p− 2, (xnDn−1)
iw̄2 is maximal in the gl(n− 1,F)-module

W l .

For a ≥ 0, since (Wl)a has a basis {x(a+εi)Di|i ∈ T(a)} , (W l)a has a basis

{x(a+εi)Di|i ∈ T(a) \ {it}} , so that W l has a basis

Z = ∪a≥0{x(a+εi)Di|i ∈ T(a) \ {it}}.

For 0 6 s 6 p − 1, set (W l)s =: 〈x(a)Di ∈ Z|an = s〉 . Then W l =

⊕p−1
s=0(W l)s . For 0 6 s 6 p − 2, since (W l)s has a basis {x(a)Di|i < n, an = s} ,

there is a gl(n− 1,F)-module isomorphism:

ψs : (W l)s → Wl−s(⊆ W (n− 1, 1))
x(a)Di→x(a1,...,an−1)Di

.

It is easy to see that ψs+1((xnDn−1)
sw̄2) = (s+ 1)!v2 for 0 6 s < p− 2.

We now determine the structure of B̄ . Let b = (p−1, . . . , p−1, p−2, p−2, 1).
Notice that

(xnDn−1)
p−2w̄2 = (p− 1)!vb−(p−2)εn−1+(p−2)εn = 0.

Thus, by the PBW Theorem,

B̄ =∑
06ci6p−1,06s<p−2

(xnD1)
c1 . . . (xnDn−2)

cn−2u(W (n− 1, 1)−0 )(xnDn−1)
sw̄2.

For each 0 6 s < p− 2, let B̄s denote

u(W (n− 1, 1)−0 )(xnDn−1)
sw̄2(⊆ (W l)s+1).

Notice that l − (s + 1) > (n − 2)(p − 1) − 1. Using the isomorphism ψs+1 and
Theorem 3.6(3) for W (n− 1, 1)l−(s+1) , we have

Corollary 4.8. For each 0 6 s < p − 2, (B̄s)a 6= 0 if and only if a ≥ 0 and
t(a) ≥ 3. In this case

(B̄s)a = 〈x(a+εi)Di − x(a+εj)Dj|i, j ∈ T(a) \ {n}〉.
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Noting that an < p − 1 implies that am 6= 0 for each m ∈ T(a), we have, for
i < j < n and 1 6 m 6 n− 2,

xnDm · (x(a+εi)Di − x(a+εj)Dj)

= (an + 1)(x(a+εi+εn−εm)Di − x(a+εj+εn−εm)Dj). (∗)
Hence xnDm · B̄s ⊆ B̄s+1 for 0 6 s < p− 3. So we obtain

B̄ = ⊕06j<p−2B̄j ⊕
∑

i6n−2

xnDi · B̄p−3.

Let B̄p−2 denote
∑

i6n−2 xnDi · B̄p−3 .

Corollary 4.9. For s = p − 2, (B̄s)a 6= 0 if and only if a ≥ 0 and t(a) ≥ 3.
In this case

(B̄s)a = 〈x(a+εi)Di − x(a+εj)Dj|i, j ∈ T(a) \ {it}〉.

Proof. Note that n /∈ T(a) for any a ≥ 0 with (B̄p−2)a 6= 0, since B̄p−2 ⊆
(W l)p−1 .

Assume a ≥ 0 and t(a) = 2. Let T(a) = {i, j} , i < j . Then j < n . Since
l = (n− 1)(p− 1)− 1, ai + aj = p− 2. So we have ai + 1 = −(aj + 1)(modp).

Since

va = (ai + 1)x(a+εi)Di + (aj + 1)x(a+εj)Dj

= (ai + 1)(x(a+εi)Di − x(a+εj)Dj),

Corollary 4.8 and the formula (∗) above give xnDm·B̄p−3 = 0 for all 0 6 m 6 n−2.
So we get (B̄p−2)a = 0.

Assume a ≥ 0 and t(a) ≥ 3. For any i, j ∈ T(a), there is s ∈ T(a) such
that s 6= i, j . By Corollary 4.8,

x(a+εs−εn+εi)Di − x(a+εs−εn+εj)Dj ∈ (B̄p−3)a+εs−εn .

Applying xnDs , we get x(a+εi)Di − x(a+εj)Dj ∈ (B̄p−2)a , so that

〈x(a+εi)Di − x(a+εj)Dj|i, j ∈ T(a) \ {it}〉 ⊆ (B̄p−2)a.

On the other hand, using the formula (∗) above, we see that

(B̄p−2)a ⊆ 〈x(a+εi)Di − x(a+εj)Dj|i, j ∈ T(a) \ {it}〉.

For n ≥ 3, let Ŵl denote W l/B̄ . Since (W l/B)a
∼= (W l)a for a ≥ 0 and t(a) = 2,

we get

dim(Ŵl)a =

{
1, if a ≥ 0

0, otherwise.

Theorem 4.10. (1) If n ≥ 3, Ŵl is simple.

(2) If n = 2, W l is simple.
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Proof. (1) We shall divide the proof into two steps.

Step1. Ŵl is generated by ̂x(ā)Dn−1 .

We proceed by induction on a . The greatest a with (Ŵl)a 6= 0 is ā− εn−1 .
Clearly,

(Ŵl)ā−εn−1 = F ̂x(ā)Dn−1.

Assume that (Ŵl)b is generated by ̂x(ā)Dn−1 for every b � a . Consider the

case 0 6 a ≺ ā − εn−1 . Let T(a) = {i1, . . . , it} . Then (Ŵl)a = F ̂
x(a+εij

)Dij ,
j = 1, . . . , t− 1.

Suppose t(a) ≥ 3. Since l = (n− 1)(p− 1)− 1, ait 6= 0. For each m < t ,

taking is ∈ T(a) \ {im, it} , we have that ̂x(ā)Dn−1 generates (Ŵl)a+εis−εit
by the

induction assumption. Taking

̂x(a+εim+εis−εit )Dim ∈ (Ŵl)a+εis−εit
,

since
xitDis · x(a+εim+εis−εit )Dim = aitx

(a+εim )Dim ,

(Ŵl)a is generated by ̂x(ā)Dn−1 .

Suppose t(a) = 2. Let T(a) = {i, j} , i < j . Then either ai < p − 2 or
aj < p − 2, say, aj < p − 2. If j < n , then a + εj − εn � a , so the induction

assumption says that ̂x(a+εi+εj−εn)Di is generated by ̂x(ā)Dn−1 . Since

xnDj · ̂x(a+εi+εj−εn)Di = an
̂x(a+εi)Di

and an 6= 0, (Ŵl)a = F ̂x(a+εi)Di is generated by ̂x(ā)Dn−1 .

In case j = n and i < n− 1, since

x(a+εi)Di = −xn−1Di · x(ā)Dn−1,

(Ŵl)a is generated by ̂x(ā)Dn−1 .

In case j = n and i = n − 1, the assumption a ≺ ā − εn−1 shows that

ai < p− 2, then similarly we have that (Ŵl)a is generated by ̂x(ā)Dn−1 .

Step 2. Ŵl has a unique maximal vector ̂x(ā)Dn−1 .

It is sufficient to show that, for each a ≺ ā − εn−1 with (Ŵl)a 6= 0,

xiDj · (Ŵl)a 6= 0 for some i < j .

Suppose t(a) ≥ 3. Let i, j ∈ T(a) with i < j . Note that

xiDj · x(a+εi)Di = (ai + 2)x(a+2εi−εj)Di − x(a+εi)Dj.

If t(a+ εi − εj) ≥ 3, then we have, by Corollary 4.8,

xiDj · ̂x(a+εi)Di = (ai + 2) ̂x(a+2εi−εj)Di − ̂x(a+εi)Dj = (ai + 1) ̂x(a+2εi−εj)Di 6= 0.

If t(a+ εi − εj) = 2, then we must have ai = p− 2, and hence xiDj · ̂x(a+εi)Di =

− ̂x(a+εi)Dj 6= 0.
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Suppose t(a) = 2. Let T(a) = {i, j} , i < j . Since B̄a = 0, Ba = (W ′
l )a =

Fva . In case j < n , we have

xiDj · x(a+εi)Di = va+εi−εj
+ (ai + 1)x(a+εi)Dj

= (ai + 1)x(a+εi)Dj /∈ B̄,

i.e., xiDj · ̂x(a+εi)Di 6= 0. In a similar fashion, one can check that:

In case j = n and i < n− 1, xiDn−1 · ̂x(a+εi)Di 6= 0. In case i = n− 1 and
j = n , so that by assumption ai < p− 2,

xiDn · ̂x(a+εi)Di = (p− 1− an) ̂x(a+εi)Dn 6= 0.

This completes the proof of (1).

(2) Let n = 2. By Lemma 4.7, W l has a unique maximal vector x(ā)Dn−1 .
Applying a similar argument as that for the case t(a) = 2 in Step 1 above, we

have that x(ā)Dn−1 generates W l , so W l is simple.

5. The S0 -module structure of S

In this section, we determine the S0 −module structure of S . By [8], S(n, 1) is
generated by S−1 and S1 . For every i > 0, since Wi−1 = [W−1,Wi] , we have
Si ( Wi . For each l ≥ 0, Wl is a S0 −module, and each W0 − submodule of Wl

is also a S0 − submodule. On the other hand, each S0 − submodule of Wl , with
the adjoint action of xnDn given in W , is extended to a W0 − submodule (note
that W0 = S0 ⊕ FxnDn ).

Theorem 5.1. (1) If 0 < l < (n− 1)(p− 1)− 1, then Sl = V1 .

(2) If l > (n− 1)(p− 1)− 1, then Sl = V2 .

Proof. (1) Assume 0 < l < (n − 1)(p − 1) − 1. Let l + 1 = k(p − 1) + r ,
0 < r 6 p− 1, and denote ā = (p− 1, . . . , p− 1

k
, r, . . . , 0). Since

v1 = x(ā)Dn =

{
−Dk+1,nx

(ā+εk+1), if r < p− 1

−Dk+2,nx
(ā+εk+2), if r = p− 1,

we have v1 ∈ Sl , and hence V1 ⊆ Sl .

By Theorem 4.1 and Theorem 4.5, V1 is a maximal W0 -submodule of Wl ,
so we get Sl = V1 .

(2) Assume l > (n−1)(p−1)−1. Let l+1 = (n−1)(p−1)+r , 0 < r 6 p−1,
and let ā = (p− 1, . . . , p− 1, r). Since

Dn,n−1x
(ā+εn)

= x(ā)Dn−1 − x(ā−εn−1+εn)Dn = v2 ∈ Sl,

so that V2 ⊆ Sl , we have, by Theorem 4.1, Sl = V2 .

For l = (n − 1)(p − 1) − 1, we have V2 ⊆ Sl , since Sl is a W0 -submodule of Wl

and V2 is the unique simple submodule of Wl .
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Lemma 5.2. Let l = (n− 1)(p− 1)− 1. If a � 0, (Sl)a = 0.

Proof. Recall āi = τ − (p− 1)εi and vi
1 = x(āi)Di . Suppose vi

1 ∈ Sl . Then we
have

vi
1 =

∑
s<t

Ca
stDstx

(a) =
∑

i/∈{s,t}

Ca
stDstx

(a) +
∑
t6=i

Ca
ti(x

(a−εt)Di − x(a−εi)Dt).

Notice that each term x(a−εt)Di in the second summation is not equal to x(āi)Di ,
since t 6= i . Also, the term x(āi)Di does not appear in the first summation . This
leads to vi

1 = 0, a contradiction.

For each a ≥ 0, since l = (n − 1)(p − 1) − 1, t(a) ≥ 2. Let X = ⊕a≥0Xa ,
where Xa =: 〈x(a+εi)Di − x(a+εj)Dj|i, j ∈ T(a)〉 . We see that, for i, j ∈ T(a),
x(a+εi)Di − x(a+εj)Dj = Djix

(a+εi+εj) ∈ Sl . Hence X ⊆ Sl .

Lemma 5.3. X is W0 -submodule (hence a S0 -submodule) of Wl .

Proof. For i 6= j , it is easy to see that xiDj · Xa ⊆ Xa+εi−εj
if a ≥ 0 and

a+ εi − εj ≥ 0.

If a ≥ 0, a+ εi− εj � 0, then we must have ai = p− 2 and aj = 0. In this
case Xa = F(x(a+εi)Di − x(a+εj)Dj). Then xiDj · (x(a+εi)Di − x(a+εj)Dj) = 0. So
we have xiDj · X ⊆ X whenever i 6= j . Since xiDi · Xa ⊆ Xa for each 1 6 i 6 n ,
the lemma holds.

Lemma 5.4. Let l = (n− 1)(p− 1)− 1. For any 0 6 a ∈ Āl , (Sl)a ( (Wl)a .

Proof. Suppose there were 0 6 a ∈ Āl such that (Sl)a = (Wl)a . Let b be the
greatest such a . If there is i < j with i ∈ T(b) and j /∈ T(b), take q ∈ T(b) \ i ,
then

xiDj · x(b+εq)Dq = (bi + 1)x(b+εi−εj+εq)Dq ∈ (Sl)b+εi−εj
.

So the fact X ⊆ Sl implies that (Sl)b+εi−εj
= (Wl)b+εi−εj

, a contradiction. Hence
we have T(b) = {s, s+ 1, . . . , n} .

Suppose s 6 n−2. Then bi 6= 0 for all i ∈ T(b), since l = (n−1)(p−1)−1.
Notice that

xsDs+1 · x(b+εn)Dn = (as + 1)x(b+εs−εs+1+εn)Dn ∈ (Sl)b+εs−εs+1

implies that (Sl)b+εs−εs+1 = (Wl)b+εs−εs+1 , a contradiction. So we have T(b) =
{n− 1, n} . Suppose bn−1 < p− 2. Then bn > 0, and

xn−1Dn · x(b+εn)Dn = (bn−1 + 1)x(b+εn−1)Dn ∈ (Sl)b+εn−1−εn

gives (Sl)b+εn−1−εn = (Wl)b+εn−1−εn , a contradiction. Suppose bn−1 = p− 2. Then
we get b = ā− εn−1 , so that

(Sl)b = (Wl)b = 〈x(ā)Dn−1, x
(ā−εn−1+εn)Dn〉.

Which leads to vn
1 = −xn−1Dn · x(ā−εn−1+εn)Dn ∈ Sl , a contradiction.

Corollary 5.5. Let l = (n− 1)(p− 1)− 1. Then Sl = X.
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