On the L_0 -Module Structure for the Generalized Witt Algebra and the Special Lie Algebra

Chaowen Zhang

Communicated by K.-H.Neeb

Abstract. For n > 1, the L_0 -module structure of the restricted simple Lie algebra W(n, 1) and S(n, 1) is determined completely. Mathematics Subject Index 2000: 17B50.

Keywords and phrases: Witt algebras, special Lie algebras, maximal vectors, simple modules.

1. Introduction

Assume that \mathbb{F} is an algebraically closed field with characteristic $p \geq 3$. Let $L = \bigoplus_{i=-1}^{s} L_i$ be a restricted Lie algebra W or S. With the adjoint action, L is an L_0 -module and each L_i is an L_0 -submodule. L_{-1} and L_s are two simple W_0 -modules. For each 0 < i < s, the L_0 -module structure of L_i remains unknown. But we often need to know such structures in the nonrestricted representations of L, where the *p*-characters can be put in some convenient form. That is, we need to find certain "nice" representatives in each orbit of the *p*-characters under the action of the automorphism groups (see [2]). With this motivation, we determine the L_0 -module structure of L in this paper. By introducing a gradation, we study the structure of the submodules of each L_i .

The paper is organized as follows. In Section 2, we give the preliminaries. In Section 3, we determine the maximal vectors of W_l and study the submodules of W_l . Then in Section 4, we prove that if $p \nmid (n+l)$, W_l is the direct sum of its two proper simple submodules. If p|(n+l), we determine the composition series of W_l . In Section 5, we use the results for W to determine the S_0 -module structure of S.

2. Preliminaries

In this section we describe the simple restricted Lie algebra of Cartan type, drawing most of the notation and results from [8]. Assume $n \ge 2$. Consider *n*-tuples

$$a = (a_1, a_2, \dots, a_n)$$
 $b = (b_1, b_2, \dots, b_n)$

ISSN 0949–5932 / \$2.50 (c) Heldermann Verlag

in \mathbb{Z}^n . We write $a \leq b$ if $a_i \leq b_i$ for all $1 \leq i \leq n$ and we write a < b if $a \leq b$ but $a \neq b$. If $a, b \geq 0$, define $\binom{a}{b} = \prod_i \binom{a_i}{b_i}$, where $\binom{a_i}{b_i}$ is the usual binomial coefficient with the convention that $\binom{a_i}{b_i} = 0$ unless $b_i \leq a_i$. Set $\mathfrak{C} := \{a \in \mathbb{Z}^n | 0 \leq a \leq \tau\}$, where $\tau := (p - 1, \dots, p - 1)$. The divided power algebra $\mathfrak{A} = \mathfrak{A}(n, 1)$ is the associative \mathbb{F} – algebra having \mathbb{F} – basis $\{x^{(a)} | a \in \mathfrak{C}\}$ and multiplication subject to the rule

$$x^{(a)}x^{(b)} = \begin{cases} \binom{a+b}{a}x^{(a+b)}, & a+b \leqslant \tau\\ 0, & \text{otherwise.} \end{cases}$$

Note that \mathfrak{A} is \mathbb{Z} -graded by $\mathfrak{A}_k = \langle x^{(a)} | a \in \mathfrak{C}, |a| = k \rangle$, where $|a| = \sum_{i=1}^n a_i$. For $j \in \{1, \ldots, n\}$ we consider $D_j \in \operatorname{Der}_{\mathbb{F}}(\mathfrak{A})$ given by $D_j(x^{(a)}) = x^{(a-\epsilon_j)}$. Then we have the simple restricted Witt algebra $W = W(n, 1) = \sum_{j=1}^n \mathfrak{A} D_j$ and Winherits a gradation from \mathfrak{A} by means of $W_i = \sum_{j=1}^n \mathfrak{A}_{i+1} D_j$. Consequently, $W = \bigoplus_{i=-1}^{s_W} W_i$ with $s_W = n(p-1) - 1 = |\tau| - 1$. In particular, $W_{-1} = \sum_{i=1}^n \mathbb{F} D_i$.

Suppose $n \geq 3$. We introduce the mappings

$$D_{ij}: \begin{cases} \mathfrak{A} \to W(n,1), \\ f \mapsto D_j(f)D_i - D_i(f)D_j. \end{cases}$$

Then the simple restricted special Lie algebra is

$$S = S(n, 1) = \langle D_{ij}(f) | f \in \mathfrak{A}, 1 \leq i < j \leq n \rangle.$$

 $S = \bigoplus_{i=-1}^{s_S} S \cap W_i$ is graded with $s_S = n(p-1) - 2 = |\tau| - 2$. In particular, $S_{-1} = W_{-1}$.

Identifying GL(n) with the central extension of the Chevalley group of $W_0 = \mathfrak{gl}(n, \mathbb{F})$, each W_l is then naturally a GL(n)-module. Besides, every GL(n)-submodule is a W_0 -submodule. Set $M = \mathfrak{A}_1$. The action of W_0 on M identifies W_0 with $\mathfrak{gl}(M)$. Then the adjoint action of W_0 on W_{-1} identifies W_{-1} with M^* . For each $0 \leq l \leq s_W$, we then get a $\mathfrak{gl}(M)$ -module(GL(n)-module) isomorphism $\mathfrak{A}_{l+1} \otimes M^* \to W_l$: $x^{(a)} \otimes D_j \to x^{(a)}D_j$.

Let $X^+(n)$ denote the set of n-tuples $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{Z}^n$ satisfying $\lambda_1 \geq \cdots \geq \lambda_n$. Then $X^+(n)$ can be identified with dominant weights for the root system of GL(n). Let $L_n(\lambda)$ denote the simple GL(n)-module with highest weight λ .

Fix $\lambda \in X^+(n)$ and $1 \leq i \leq n$. We say that *i* is λ -removable if either i = n or $1 \leq i < n$ and $\lambda_i > \lambda_{i+1}$. We say that *i* is λ -addable if either i = 1 or $1 < i \leq n$ and $\lambda_i < \lambda_{i-1}$. For each $(a, b) \in \mathbb{Z}^n \times \mathbb{Z}^n$, we set $res(a, b) = b - a \in \mathbb{F}_p$. We say that *i* is normal for λ if *i* is λ -removable and there is a decreasing injection from the set of

 λ - addable j with $i < j \leq n$ and $res(i, \lambda_i) = res(j, \lambda_j + 1)$

into the set of

 λ - removable j' with $i < j \leq n$ and $res(i, \lambda_i) = res(j', \lambda_{j'})$.

We say that *i* is good for λ if *i* is normal for λ and there is no *j* that is normal for λ with $1 \leq j < i$ with $res(j, \lambda_j) = res(i, \lambda_i)$ ([1]).

Since the structure of W(1,1) is quite clear, we focus only on W(n,1) with $n \ge 2$ throughout the paper.

3. Two W_0 – submodules of W_l

For each $0 < l < s_W$, let l + 1 = k(p - 1) + r, $0 < r \le p - 1$. Let \bar{a} denote the *n*-tuple

$$(p-1,\ldots,p-1,r,0,\ldots,0).$$

Clearly we have $\mathfrak{A}_{l+1} = L_n(\bar{a})$. In the following, we denote the Lie multiplication [x, y] simply by $x \cdot y$.

Definition 3.1. Let $v \in W_l$. If $x_i D_j \cdot v = 0$ whenever $1 \leq i < j \leq n$, and for every $1 \leq i \leq n$, $x_i D_i \cdot v = c_i v$ for some $c_i \in \mathbb{F}$, then v is called a maximal vector of weight (c_1, \ldots, c_n) .

Let U denote the unipotent subgroup of GL(n) generated by elements in the set

$$\{1 + tx_i D_j | t \in \mathbb{F}, i < j\},\$$

and let B denote the Borel subgroup of GL(n) with unipotent radical U. For each W_l as a GL(n)-module as described above, we can also define the maximal vector $v \in W_l$ relative to B (see [3, Sec. 31.2]). It turns out at the end for $v \in W_l$, the two definitions of v being maximal agree.

Lemma 3.2. In each W_l , $0 < l < s_W$, there are two maximal vectors (up to scalar multiple); namely:

$$v_1 = x^{(\bar{a})} D_n, \quad v_2 = \begin{cases} r x^{(\bar{a})} D_{k+1} + \sum_{i > k+1} x^{(\bar{a} - \epsilon_{k+1} + \epsilon_i)} D_i, & \text{if } k+1 < n \\ x^{(\bar{a})} D_{n-1} - x^{(\bar{a} - \epsilon_{n-1} + \epsilon_n)} D_n, & \text{if } k+1 = n. \end{cases}$$

Proof. By definition, there are two removable i that are normal for \bar{a} , namely,

$$i = n$$
 and $i = \begin{cases} k+1, & \text{if } k+1 < n \\ n-1, & \text{if } k+1 = n. \end{cases}$

Then by [1, Th.5.9 (1)], there are two maximal vectors in W_l . It is easy to check that both v_1 and v_2 are maximal.

Set $V_i =: u(W_0)v_i$, i = 1, 2, where $u(W_0)$ is the reduced enveloping algebra of W_0 . Both V_1 and V_2 are W_0 – submodules of W_l . Let $W_0^- =: \sum_{j>i} \mathbb{F}x_j D_i$. Then by the PBW theorem $V_i = u(W_0^-)v_i$, i = 1, 2.

Let

$$\tilde{A} =: \{(a_1, a_2, \dots, a_n) | -1 \leq a_i \leq p - 1, i = 1, \dots, n\}.$$

We introduce an \tilde{A} -gradation on W (denoted \mathfrak{G}) as follows: $\mathfrak{G}(x^{(a)}D_i) = a - \epsilon_i \in \tilde{A}$. \tilde{A} is a completely ordered set with the order

$$(a_1, \dots, a_n) \prec (b_1, \dots, b_n)$$
 if $a_1 = b_1, \dots, a_{i-1} = b_{i-1}, a_i < b_i$

for some $i \ge 1$. We write $a \preccurlyeq b$ if $a \prec b$ or a = b. Let

$$(W_l)_{\alpha} = \langle x^{(a)} D_i \in W_l | a - \epsilon_i = \alpha \rangle$$

and let \bar{A}_l denote the set $\{a \in \tilde{A} | (W_l)_a \neq 0\}$. Then $W_l = \bigoplus_{\alpha \in \bar{A}_l} (W_l)_{\alpha}$. Note that the \bar{A}_l -gradation of W_l is just the weight space decomposition of W_l under the maximal torus of all diagonal matrices in GL(n).

Clearly we have

$$\mathfrak{G}(v_1) = \bar{a} - \epsilon_n, \mathfrak{G}(v_2) = \begin{cases} \bar{a} - \epsilon_{k+1}, & \text{if } k+1 < n \\ \bar{a} - \epsilon_{n-1}, & \text{if } k+1 = n. \end{cases}$$

Then $\mathfrak{G}(v_2) \prec \mathfrak{G}(v_1)$. If $x_i D_j \cdot x^{(a)} D_k \neq 0$ for some i < j, then

$$\mathfrak{G}(x_i D_j \cdot x^{(a)} D_k) = a - \epsilon_k + \epsilon_i - \epsilon_j \succ a - \epsilon_k = \mathfrak{G}(x^{(a)} D_k).$$

Corollary 3.3. $v_1 \notin V_2$.

For each $a \in \overline{A}_l$ with $a \ge 0$, set $\mathfrak{T}(a) = \{i | a_i . We denote by <math>t(a)$ the cardinality of the set $\mathfrak{T}(a)$ and by i_t the greatest index in $\mathfrak{T}(a)$. Then we have $(W_l)_a = \langle x^{(a+\epsilon_i)} D_i | i \in \mathfrak{T}(a) \rangle$.

If $a \in \overline{A}_l$ with $a \not\geq 0$, so that there is a unique *i* such that $a_i = -1$, then we obtain $(W_l)_a = \mathbb{F}x^{(a+\epsilon_i)}D_i$.

3.1. The structure of V_i , i = 1, 2, for l < (n-1)(p-1) - 1.

Theorem 3.4. Assume l = k(p-1) + r - 1 < (n-1)(p-1) - 1, $0 < r \le p-1$. Let $a \in \overline{A}_l$.

(1) If $a \ge 0$, then $t(a) \ge 2$, and $(V_1)_a$ has a basis $\{x^{(a+\epsilon_i)}D_i - x^{(a+\epsilon_{i_t})}D_{i_t} | i \in \mathfrak{T}(a) \setminus \{i_t\}\}.$

(2) If
$$a \not\geq 0$$
, then $(V_1)_a = (W_l)_a$.

Proof. The proof is by induction on $a \in \overline{A}_l$. We divide it into three steps. Step 1. The theorem holds for all $b \succeq \overline{a} - \epsilon_{k+1}$.

Suppose $b \succ \bar{a} - \epsilon_{k+1}$. Then $b \not\geq 0$ and there is i > k+1 such that $b_i = -1$. Thus we have either $b = \bar{a} - \epsilon_i$ or $b = \bar{a} - \epsilon_{k+1} + \epsilon_j - \epsilon_i$ for some $j \in \{k+2, \ldots, i-1\}$.

In the former case,

$$(W_l)_b = \mathbb{F}x^{(\bar{a})}D_i = \begin{cases} \mathbb{F}x^{(\bar{a})}D_n, & \text{if } i = n\\ \mathbb{F}x_nD_i \cdot x^{(\bar{a})}D_n, & \text{if } i < n, \end{cases}$$

which gives $(W_l)_b = (V_1)_b$.

In the latter case,

$$(W_l)_b = \mathbb{F}(x_j D_{k+1})(x_n D_i) \cdot v_1 = (V_1)_b$$

The greatest $a \ge 0$ is $\bar{a} - \epsilon_{k+1}$, for which we shall now show that

$$(V_1)_{\bar{a}-\epsilon_{k+1}} = \langle x^{(\bar{a})} D_{k+1} - x^{(\bar{a}-\epsilon_{k+1}+\epsilon_i)} D_i | i > k+1 \rangle. \quad (\star)$$

By the PBW theorem, we have

$$(V_1)_{\bar{a}-\epsilon_{k+1}} \subseteq \sum_{k+1 < j < i \leqslant n} x_i D_j \cdot (V_1)_{\bar{a}-\epsilon_{k+1}+\epsilon_j-\epsilon_i} + \sum_{i > k+1} x_i D_{k+1} \cdot (V_1)_{\bar{a}-\epsilon_i}.$$

We have just shown that

$$(V_1)_{\bar{a}-\epsilon_{k+1}+\epsilon_j-\epsilon_i} = \mathbb{F}x^{(\bar{a}-\epsilon_{k+1}+\epsilon_j)}D_i \quad \text{for} \quad k+1 < j < i \le n,$$
$$(V_1)_{\bar{a}-\epsilon_i} = \mathbb{F}x^{(\bar{a})}D_i \quad \text{for} \quad i > k+1.$$

Since

$$x_i D_j \cdot x^{(\bar{a}-\epsilon_{k+1}+\epsilon_j)} D_i = x^{(\bar{a}-\epsilon_{k+1}+\epsilon_i)} D_i - x^{(\bar{a}-\epsilon_{k+1}+\epsilon_j)} D_j$$

and

$$x_i D_{k+1} \cdot x^{(\bar{a})} D_i = x^{(\bar{a} - \epsilon_{k+1} + \epsilon_i)} D_i - x^{(\bar{a})} D_{k+1},$$
$$(V_1)_{\bar{a} - \epsilon_{k+1}} \subseteq \langle x^{(\bar{a})} D_{k+1} - x^{(\bar{a} - \epsilon_{k+1} + \epsilon_i)} D_i | i > k+1 \rangle$$

On the other hand, since $x^{(\bar{a})}D_i = -x_n D_i \cdot v_1 \in V_1$ for every k+1 < i < n,

$$x^{(\bar{a})}D_{k+1} - x^{(\bar{a}-\epsilon_{k+1}+\epsilon_i)}D_i$$

= $-x_iD_{k+1} \cdot x^{(\bar{a})}D_i \in (V_1)_{\bar{a}-\epsilon_{k+1}}.$

Thus we have

$$(V_1)_{\bar{a}-\epsilon_{k+1}} \supseteq \langle x^{(\bar{a})}D_{k+1} - x^{(\bar{a}-\epsilon_{k+1}+\epsilon_i)}D_i | i > k+1 \rangle.$$

This completes (\star) and hence Step 1.

Step 2. Assume the theorem is true for each $b \succ a$. We prove it for the case $0 \leq a \prec \bar{a} - \epsilon_{k+1}$.

Suppose $a + \epsilon_i - \epsilon_j \ge 0$ for some i < j. Then $(V_1)_{a+\epsilon_i-\epsilon_j}$ has basis vectors each in the form

$$x^{(a+\epsilon_i-\epsilon_j+\epsilon_s)}D_s - x^{(a+\epsilon_i-\epsilon_j+\epsilon_m)}D_m, s < m$$

by the induction assumption. We see that

$$x_{j}D_{i} \cdot [x^{(a+\epsilon_{i}-\epsilon_{j}+\epsilon_{s})}D_{s} - x^{(a+\epsilon_{i}-\epsilon_{j}+\epsilon_{m})}D_{m}]$$

$$= a_{j}[x^{(a+\epsilon_{s})}D_{s} - x^{(a+\epsilon_{m})}D_{m}] + \delta_{js}[x^{(a+\epsilon_{s})}D_{s} - x^{(a+\epsilon_{i})}D_{i}]$$

$$+ \delta_{mj}[x^{(a+\epsilon_{i})}D_{i} - x^{(a+\epsilon_{m})}D_{m}]$$

$$\in \langle x^{(a+\epsilon_{s})}D_{s} - x^{(a+\epsilon_{i_{t}})}D_{i_{t}}|s \in \mathfrak{T}(a) \setminus \{i_{t}\}\rangle.$$

Suppose $a + \epsilon_i - \epsilon_j \not\geq 0$ for some i < j. Then we must have $a_i and <math>a_j = 0$, so that $(V_1)_{a+\epsilon_i-\epsilon_j} = \mathbb{F}x^{(a+\epsilon_i)}D_j$ by the induction assumption. In this case

$$x_j D_i \cdot x^{(a+\epsilon_i)} D_j = x^{(a+\epsilon_j)} D_j - x^{(a+\epsilon_i)} D_i$$
$$\in \langle x^{(a+\epsilon_s)} D_s - x^{(a+\epsilon_i)} D_{i_t} | s \in \mathfrak{T}(a) \setminus \{i_t\} \rangle.$$

Using the PBW theorem, we conclude that

$$(V_1)_a = \sum_{j>i} x_j D_i \cdot (V_1)_{a+\epsilon_i-\epsilon_j}$$
$$\subseteq \langle x^{(a+\epsilon_s)} D_s - x^{(a+\epsilon_{i_t})} D_{i_t} | s \in \mathfrak{T}(a) \setminus \{i_t\} \rangle.$$

To complete this step, it remains to show that, for each fixed $s \in \mathfrak{T}(a) \setminus \{i_t\}$,

$$(*) \quad x^{(a+\epsilon_s)}D_s - x^{(a+\epsilon_{i_t})}D_{i_t} \in V_1.$$

We split the proof of (*) into five cases.

Case 1. $i_t < n$. In this case $a_n = p - 1$. Since $p \ge 3$ and k + 1 < n, there exists m < n such that

$$(a + \epsilon_m - \epsilon_n)_s and $(a + \epsilon_m - \epsilon_n)_{i_t} .$$$

By the induction hypothesis,

$$x^{(a+\epsilon_m-\epsilon_n+\epsilon_s)}D_s - x^{(a+\epsilon_m-\epsilon_n+\epsilon_{i_t})}D_{i_t} \in V_1.$$

Then

$$x^{(a+\epsilon_s)}D_s - x^{(a+\epsilon_{i_t})}D_{i_t}$$

= $-x_n D_m \cdot [x^{(a+\epsilon_m-\epsilon_n+\epsilon_s)}D_s - x^{(a+\epsilon_m-\epsilon_n+\epsilon_{i_t})}D_{i_t}] \in V_1.$

Case 2. $i_t = n$, $a_n = 0$. Let $b =: a + \epsilon_s - \epsilon_n \succ a$. Then $b \not\geq 0$. By the induction hypothesis, we obtain $(V_1)_b = (W_l)_b = \mathbb{F}x^{(b+\epsilon_n)}D_n$. Hence we have

$$-x_n D_s \cdot x^{(b_s + \epsilon_n)} D_n = x^{(a + \epsilon_s)} D_s - x^{(a + \epsilon_n)} D_n \in V_1$$

Case 3. $i_t = n$, $a_n \neq 0$, $a_s . Since <math>k + 1 < n$, $t(a) \geq 3$. Since $b = a + \epsilon_s - \epsilon_n \geq a$, the induction assumption gives

$$x^{(a+2\epsilon_s-\epsilon_n)}D_s - x^{(a+\epsilon_s)}D_n \in V_1$$

Applying $x_n D_s$, we get

$$x_n D_s \cdot [x^{(a+2\epsilon_s-\epsilon_n)}D_s - x^{(a+\epsilon_s)}D_n]$$
$$= (a_n+1)[x^{(a+\epsilon_s)}D_s - x^{(a+\epsilon_n)}D_n] \in V_1,$$

which gives (*), since $a_n + 1 \neq 0$.

Case 4. $i_t = n$, $a_n \neq 0$, $a_j < p-2$ for some $j \in \mathfrak{T}(a) \setminus \{s, n\}$. By the induction assumption, we get

$$x^{(a+\epsilon_j-\epsilon_n+\epsilon_s)}D_s - x^{(a+\epsilon_j)}D_n \in V_1.$$

Applying $x_n D_j$, we have

$$x_n D_j \cdot [x^{(a+\epsilon_j-\epsilon_n+\epsilon_s)}D_s - x^{(a+\epsilon_j)}D_n]$$

= $a_n[x^{(a+\epsilon_s)}D_s - x^{(a+\epsilon_n)}D_n] + [x^{(a+\epsilon_j)}D_j - x^{(a+\epsilon_n)}D_n] \in V_1$

Using the conclusion in the preceding case and the assumption $a_n \neq 0$, one gets (*).

Case 5. $i_t = n$, $a_n \neq 0$, $a_j = p - 2$ for every $j \in \mathfrak{T}(a) \setminus \{n\}$. In this case we have $t(a) \geq 4$, since l < (n-1)(p-1) - 1. Taking $\alpha, \beta \in \mathfrak{T}(a) \setminus \{s, n\}$ with $\alpha < \beta$, the induction hypothesis then yields

$$x^{(a+\epsilon_{\alpha}-\epsilon_{\beta}+\epsilon_{s})}D_{s} - x^{(a+\epsilon_{\alpha}-\epsilon_{\beta}+\epsilon_{n})}D_{n} \in V_{1}.$$

Applying $x_{\beta}D_{\alpha}$, one gets (*). This completes Step 2.

Step 3. Assume the theorem is true for each $b \succ a$. We prove it for the case $0 \nleq a \prec \bar{a} - \epsilon_{k+1}$.

Let $a_i = -1$.

Suppose i < n. If $a_s = 0$ for every s > i, then $0 \nleq a + \epsilon_i - \epsilon_n \preccurlyeq \bar{a} - \epsilon_n$. By induction hypotheses, $(V_1)_{a+\epsilon_i-\epsilon_n} = \mathbb{F}x^{(a+\epsilon_i)}D_n$. So we get

$$(V_1)_a = \mathbb{F}x_n D_i \cdot x^{(a+\epsilon_i)} D_n = (W_l)_a$$

If there exists s > i such that $0 < a_s < p - 1$, then $0 \leq a + \epsilon_i - \epsilon_s \preccurlyeq \bar{a} - \epsilon_n$. By (1), we have $x^{(a+2\epsilon_i-\epsilon_s)}D_i - x^{(a+\epsilon_i)}D_s \in (V_1)_{a+\epsilon_i-\epsilon_s}$. Since

$$x_s D_i \cdot [x^{(a+2\epsilon_i - \epsilon_s)} D_i - x^{(a+\epsilon_i)} D_s] = (a_s + 1) x^{(a+\epsilon_i)} D_i \in (V_1)_a,$$

and $a_s + 1 \neq 0$, $(V_1)_a = (W_l)_a$.

If $a_s = p-1$ for every s > i, then by the assumption l < (n-1)(p-1)-1, we get $a_t < p-1$ for some t < i, so that $0 \nleq a + \epsilon_t - \epsilon_n$. By the induction hypotheses, $x^{(a+\epsilon_t+\epsilon_i-\epsilon_n)}D_i \in (V_1)_{a+\epsilon_t-\epsilon_n}$. This gives us

$$x^{(a+\epsilon_i)}D_i = -(x_nD_t) \cdot x^{(a+\epsilon_t+\epsilon_i-\epsilon_n)}D_i \in (V_1)_a,$$

and hence $(V_1)_a = (W_l)_a$.

If i = n, so that $a_n = -1$, then since $a \prec \bar{a} - \epsilon_{k+1}$, there is $s \leq k+1$ such that $a_s < \bar{a}_s$. Hence we must have $a_t > 0$ for some t > s. So the induction assumption yields $x^{(a+\epsilon_s-\epsilon_t+\epsilon_n)}D_n \in (V_1)_{a+\epsilon_s-\epsilon_t}$. It follows that

$$x^{(a+\epsilon_n)}D_n = a_t^{-1}x_tD_s \cdot x^{(a+\epsilon_s-\epsilon_t+\epsilon_n)}D_n \in (V_1)_a,$$

so that $(V_1)_a = (W_l)_a$.

For each $0 \leq a \in \overline{A}_l$, set

$$\mathfrak{v}_a =: \sum_{i=1}^n (a_i + 1) x^{(a+\epsilon_i)} D_i = \sum_{i \in \mathfrak{T}(a)} (a_i + 1) x^{(a+\epsilon_i)} D_i.$$

Theorem 3.5. Assume $l \leq (n-1)(p-1) - 1$. Let l+1 = k(p-1) + r, $0 < r \leq p-1$. Then for $a \in \overline{A}_l$, we have: (1) If $a \geq 0$, then $(V_2)_a = 0$. (2) If $a \geq 0$, then $(V_2)_a = \mathbb{F}\mathfrak{v}_a$.

Proof. We proceed by induction on *a*. Recall that

$$v_2 = rx^{(\bar{a})}D_{k+1} + \sum_{i>k+1} x^{(\bar{a}-\epsilon_{k+1}+\epsilon_i)}D_i$$

and $\mathfrak{G}(v_2) = \bar{a} - \epsilon_{k+1}$. Clearly we have $v_2 = \mathfrak{v}_{\bar{a}-\epsilon_{k+1}}$ and $(V_2)_{\bar{a}-\epsilon_{k+1}} = \mathbb{F}v_2$. Also by definition, $(V_2)_b = 0$ for every $b \succ \bar{a} - \epsilon_{k+1}$.

Assume both (1) and (2) are true for all $b \succ a$, and consider the case $a \prec \bar{a} - \epsilon_{k+1}$.

Suppose $a \ge 0$. Since $0 \le a \prec \overline{a} - \epsilon_{k+1}$, there is i < j such that

$$0 \leqslant a + \epsilon_i - \epsilon_j \preccurlyeq \bar{a} - \epsilon_{k+1}.$$

For any such i, j, let $b =: a + \epsilon_i - \epsilon_j$. Then the induction assumption shows that $(V_2)_b = \mathbb{F}\mathfrak{v}_b$. Notice that

$$\begin{aligned} x_j D_i \cdot \mathfrak{v}_b &= \sum_{m=1}^n (b_m + 1) x_j D_i \cdot x^{(b+\epsilon_m)} D_m \\ &= \sum_{m=1}^n (b_m + 1) [(b_j + 1 + \delta_{mj}) x^{(b+\epsilon_m - \epsilon_i + \epsilon_j)} D_m - \delta_{mj} x^{(b+\epsilon_m)} D_i] \\ &= \sum_{m \neq i,j} (b_m + 1) (b_j + 1) x^{(b+\epsilon_m - \epsilon_i + \epsilon_j)} D_m \\ &+ (b_j + 1) (b_j + 2) x^{(b+2\epsilon_j - \epsilon_i)} D_j - (b_j + 1) x^{(b+\epsilon_j)} D_i + (b_i + 1) (b_j + 1) x^{(b+\epsilon_j)} D_i \\ &= (b_j + 1) \sum_{m=1}^n (a_m + 1) x^{(a+\epsilon_m)} D_m = (b_j + 1) \mathfrak{v}_a \end{aligned}$$

and $b_j + 1 \neq 0$.

If there is i < j such that $a + \epsilon_i - \epsilon_j \not\geq 0$ or $a + \epsilon_i - \epsilon_j \not\leq \bar{a} - \epsilon_{k+1}$, which means again $a + \epsilon_i - \epsilon_j \not\geq 0$, then the induction assumption yields $(V_2)_{a+\epsilon_i-\epsilon_j} = 0$.

Using the PBW Theorem, one gets

$$(V_2)_a = \sum_{j>i} x_j D_i \cdot (V_2)_{a+\epsilon_i-\epsilon_j} = \mathbb{F}\mathfrak{v}_a,$$

which completes the proof of (2).

Suppose $a \geq 0$. If $(V_2)_{a+\epsilon_i-\epsilon_j} \neq 0$ for some i < j, then the induction assumption yields

$$b =: a + \epsilon_i - \epsilon_j \ge 0, \quad a_i = -1, \quad \text{and} \quad (V_2)_b = \mathbb{F}\mathfrak{v}_b.$$

Note that $b_i = 0$. Then we have

$$x_j D_i \cdot \mathfrak{v}_b = x_j D_i \cdot (b_i + 1) x^{(b+\epsilon_i)} D_i + x_j D_i \cdot (b_j + 1) x^{(b+\epsilon_j)} D_j$$
$$= (b_j + 1) x^{(b+\epsilon_j)} D_i - (b_j + 1) x^{(b+\epsilon_j)} D_i = 0.$$

Hence we have by the PBW Theorem that $(V_2)_a = 0$. So (1) follows.

3.2. The structure of V_i , i = 1, 2, for l > (n-1)(p-1) - 1.

Theorem 3.6. Assume
$$l = (n-1)(p-1) + r - 1$$
, $0 < r < p - 1$. Let $a \in \bar{A}_l$.
(1) $(V_1)_a = \mathbb{F}\mathfrak{v}_a$.
(2) If $t(a) = 1$, $(V_2)_a = 0$.
(3) If $t(a) \ge 2$, $(V_2)_a = \langle x^{(a+\epsilon_i)}D_i - x^{(a+\epsilon_{i_t})}D_{i_t} | i \in \mathfrak{T}(a) \setminus \{i_t\}\}$.

Proof. We prove (1)-(3) by induction on a.

The greatest $a \in \bar{A}_l$ with t(a) = 1 is $\bar{a} - \epsilon_n$, for which we have $(V_1)_{\bar{a}-\epsilon_n} = \mathbb{F}v_1$ and $v_1 = r^{-1} \mathfrak{v}_{\bar{a}-\epsilon_n}$. Also, we have $(V_2)_{\bar{a}-\epsilon_n} = 0$. The second greatest $a \in \bar{A}_l$ is $\bar{a} - \epsilon_{n-1}$, for which we have $t(a) \geq 2$ and

$$(V_2)_a = \mathbb{F}v_2 = \mathbb{F}(x^{(\bar{a})}D_{n-1} - x^{(\bar{a}-\epsilon_{n-1}+\epsilon_n)}D_n)$$
$$= \mathbb{F}(x^{(a+\epsilon_{n-1})}D_{n-1} - x^{(a+\epsilon_n)}D_n).$$

We see that

$$(V_1)_{\bar{a}-\epsilon_{n-1}} = \mathbb{F}x_n D_{n-1} \cdot v_1 = \mathbb{F}((r+1)x^{(\bar{a}-\epsilon_{n-1}+\epsilon_n)}D_n - x^{(\bar{a})}D_{n-1}) = \mathbb{F}\mathfrak{v}_{\bar{a}-\epsilon_{n-1}}.$$

So we conclude that (1)-(3) are true for all $b \succeq \bar{a} - \epsilon_{n-1}$.

Assume that (1)-(3) are true for every $b \succ a$, and consider the case $a \prec \bar{a} - \epsilon_{n-1}$.

Notice that we have obtained, in the proof of Theorem 3.5,

$$x_j D_i \cdot \mathfrak{v}_{a+\epsilon_i-\epsilon_j} = a_j \mathfrak{v}_a \quad \text{if} \quad j > i.$$

Using the PBW theorem and the induction assumption, we get

$$(V_1)_a = \sum_{j>i} x_j D_i \cdot (V_1)_{a+\epsilon_i-\epsilon_j} = \sum_{j>i} x_j D_i \cdot \mathbb{F}\mathfrak{v}_{a+\epsilon_i-\epsilon_j} = \mathbb{F}\mathfrak{v}_a.$$

This completes the proof of (1).

If t(a) = 1, then we have $(W_l)_a = \mathbb{F}x^{(a+\epsilon_i)}D_i$ for some i < n and $a_j = p-1$ for every $j \neq i$. Since l < n(p-1)-1, $a_i < p-2$. Let j > i. Then $t(a+\epsilon_i-\epsilon_j) = 2$, and the induction hypothesis gives

$$(V_2)_{a+\epsilon_i-\epsilon_j} = \mathbb{F}(x^{(a+2\epsilon_i-\epsilon_j)}D_i - x^{(a+\epsilon_i)}D_j).$$

Since

$$x_j D_i \cdot (x^{(a+2\epsilon_i - \epsilon_j)} D_i - x^{(a+\epsilon_i)} D_j) = a_j x^{(a+\epsilon_i)} D_i + x^{(a+\epsilon_i)} D_i = 0,$$

$$(V_2)_a = \sum_{j>i} x_j D_i \cdot (V_2)_{a+\epsilon_i-\epsilon_j} = 0.$$

This completes the proof of (2).

If $t(a) \geq 2$, then the induction assumption says that it is sufficient to assume $t(b) \geq 2$, and hence

$$(V_2)_b = \langle x^{(b+\epsilon_s)} D_s - x^{(b+\epsilon_t)} D_t | s, t \in \mathfrak{T}(b) \}$$

for each $b = a + \epsilon_i - \epsilon_j$ with i < j. In the light of the proof of Theorem 1, one gets

$$(V_2)_a = \sum_{j>i} x_j D_i \cdot (V_2)_{a+\epsilon_i-\epsilon_j} \subseteq \langle x^{(a+\epsilon_s)} D_s - x^{(a+\epsilon_{i_t})} D_{i_t} | s \in \mathfrak{T}(a) \setminus \{i_t\} \rangle.$$

To completes the proof of (3), it remains to show that

$$x^{(a+\epsilon_s)}D_s - x^{(a+\epsilon_{i_t})}D_{i_t} \in (V_2)_a$$

for every fixed $s \in \mathfrak{T}(a) \setminus \{i_t\}.$

a) If $t(a) \geq 3$, we take $i \in \mathfrak{T}(a) \setminus \{s, i_t\}$. It's no loss of generality to assume i < s. Note that $a_m > 0$ for each $m \in \mathfrak{T}(a)$, since l > (n-1)(p-1) - 1. So we have $a + \epsilon_i - \epsilon_{i_t} \geq 0$, $a + \epsilon_i - \epsilon_s \geq 0$. Then the induction hypothesis gives

$$x^{(a+\epsilon_i-\epsilon_{i_t}+\epsilon_s)}D_s - x^{(a+\epsilon_i)}D_{i_t} \in (V_2)_{a+\epsilon_i-\epsilon_{i_t}},$$
$$x^{(a+\epsilon_i)}D_s - x^{(a+\epsilon_i-\epsilon_s+\epsilon_{i_t})}D_{i_t} \in (V_2)_{a+\epsilon_i-\epsilon_s}.$$

Since

$$x_{i_t} D_i \cdot [x^{(a+\epsilon_i - \epsilon_{i_t} + \epsilon_s)} D_s - x^{(a+\epsilon_i)} D_{i_t}]$$

= $a_{i_t} [x^{(a+\epsilon_s)} D_s - x^{(a+\epsilon_{i_t})} D_{i_t}] + [x^{(a+\epsilon_i)} D_i - x^{(a+\epsilon_{i_t})} D_{i_t}] \in (V_2)_a$

and

$$x_s D_i \cdot [x^{(a+\epsilon_i)} D_s - x^{(a+\epsilon_i-\epsilon_s+\epsilon_{i_t})} D_{i_t}]$$

= $(a_s+1)[x^{(a+\epsilon_s)} D_s - x^{(a+\epsilon_{i_t})} D_{i_t}] - [x^{(a+\epsilon_i)} D_i - x^{(a+\epsilon_{i_t})} D_{i_t}] \in (V_2)_a,$

with $p|(a_s + a_{i_t} + 1)$ or, equivalently $a_s + a_{i_t} = p - 1$, one would get $l = \sum a_i \leq (n-1)(p-1) - 1$, a contradiction. Therefore $p \nmid (a_s + a_{i_t} + 1)$, which implies that

$$x^{(a+\epsilon_s)}D_s - x^{(a+\epsilon_{i_t})}D_{i_t} \in (V_2)_a.$$

b) When t(a) = 2, we have $\mathfrak{T}(a) = \{s, i_t\}$.

Suppose $a_s < p-2$. Then $a + \epsilon_s - \epsilon_{i_t} \ge 0$, since l > (n-1)(p-1) - 1. So we get

$$x^{(a+2\epsilon_s-\epsilon_{i_t})}D_s - x^{(a+\epsilon_s)}D_{i_t} \in (V_2)_{a+\epsilon_s-\epsilon_{i_t}}$$

by the induction assumption. It follows that

$$x^{(a+\epsilon_s)}D_s - x^{(a+\epsilon_{i_t})}D_{i_t}$$

= $(a_{i_t}+1)^{-1}x_{i_t}D_s \cdot [x^{(a+2\epsilon_s-\epsilon_{i_t})}D_s - x^{(a+\epsilon_s)}D_{i_t}] \in (V_2)_a.$

Suppose $a_s = p - 2$. Then we get s < n - 1, since $a \prec \bar{a} - \epsilon_{n-1}$. If $i_t = n$, we get

$$x^{(a+\epsilon_s)}D_s - x^{(a+\epsilon_n)}D_n = -x_{n-1}D_s \cdot v_2 \in (V_2)_a.$$

If $i_t < n$ and $a_{i_t} , the induction hypothesis shows that$

$$x^{(a+\epsilon_{i_t}-\epsilon_n+\epsilon_s)}D_s - x^{(a+2\epsilon_{i_t}-\epsilon_n)}D_{i_t} \in (V_2)_{a+\epsilon_{i_t}-\epsilon_n}$$

since $a + \epsilon_{i_t} - \epsilon_n \ge 0$. It follows that

$$x^{(a+\epsilon_s)}D_s - x^{(a+\epsilon_{i_t})}D_{i_t}$$

$$= -(x_n D_{i_t}) \cdot [x^{(a+\epsilon_{i_t}-\epsilon_n+\epsilon_s)} D_s - x^{(a+2\epsilon_{i_t}-\epsilon_n)} D_{i_t}] \in (V_2)_a.$$

If $i_t = n - 1$ and $a_{i_t} = p - 2$, we have

$$x^{(a+\epsilon_s)}D_s - x^{(a+\epsilon_{i_t})}D_{i_t} = x_n D_s \cdot v_2 \in (V_2)_a.$$

If $i_t < n-1$ and $a_{i_t} = p-2$, the induction assumption says that

$$x^{(a+\epsilon_s-\epsilon_{n-1}+\epsilon_{i_t})}D_{i_t} - x^{(a+\epsilon_s)}D_{n-1} \in (V_2)_{a+\epsilon_s-\epsilon_{n-1}},$$

since $a + \epsilon_s - \epsilon_{n-1} \ge 0$. Therefore

$$x^{(a+\epsilon_s)}D_s - x^{(a+\epsilon_{i_t})}D_{i_t}$$

= $(x_{n-1}D_s) \cdot [x^{(a+\epsilon_s-\epsilon_{n-1}+\epsilon_{i_t})}D_{i_t} - x^{(a+\epsilon_s)}D_{n-1}] \in (V_2)_a.$

This completes the proof of (3).

4. The W_0 – module structure of W_l

4.1. $p \nmid (n+l)$.

Theorem 4.1. If $p \nmid (n+l)$, $W_l = V_1 \oplus V_2$.

Proof. Let

$$\bar{a} = (p - 1, \dots, p - 1, r, 0, \dots, 0), 0 < r \leq p - 1.$$

By the proof of Lemma 3.2, there are two normal *i*. If k + 1 < n, then res(k + 1, r) = res(n, 0) if and only if r - k - 1 = -n(modp), which means p|(n+l) (note that l = r - k - 1(modp)). If $p \nmid (n+l)$, we have by definition that both k + 1 and *n* are good for \bar{a} . If k = n - 1, then since $res(n - 1, p - 1) \neq res(n, r)$, both normal *i* are good.

By [1, Th. $\hat{A}(2)$], both V_1 and V_2 are simple GL(n)-modules and $W_l = V_1 \oplus V_2$. Since V_i , i = 1, 2 contains no maximal vectors other than v_i , it is a simple W_0 -module.

The decomposition and the simplicity of V_i , i = 1, 2 for p > l - 1 are also given in [6, Sec.10]. For n = 2, the theorem is also given in [9].

Corollary 4.2. If $p \nmid (n + l)$, then V_1 and V_2 are the only simple W_0 – submodules of W_l .

Proof. Let M be a simple W_0 -submodule of W_l , and let $v \in M$ be a maximal vector. Then we have either $v = v_1$ or $v = v_2$. It follows that $V_1 \subseteq M$ or $V_2 \subseteq M$. Since M is simple we have $M = V_1$ or $M = V_2$.

4.2. p|(n+l).

If l = (n-1)(p-1) + r - 1, 0 < r < p - 1, then n + l = r(modp) and hence $p \nmid (n+l)$. Assume $p \mid (n+l)$. Then we must have $l \leq (n-1)(p-1) - 1$. Let l + 1 = k(p-1) + r, $0 < r \leq p - 1$. Then k + 1 < n.

Since n + l = n + k(p - 1) + r - 1 = n - (k + 1) + r(modp),

$$r = -[n - (k+1)](\mathrm{mod}p)$$

Therefore,

$$v_2 = rx^{(\bar{a})}D_{k+1} + \sum_{i>k+1} x^{(\bar{a}-\epsilon_{k+1}+\epsilon_i)}D_i$$
$$= \sum_{i>k+1} (x^{(\bar{a}-\epsilon_{k+1}+\epsilon_i)}D_i - x^{(\bar{a})}D_{k+1}).$$

4..0.1 l < (n-1)(p-1) - 1

If l < (n-1)(p-1)-1, then by Theorem 3.4 we have $v_2 \in (V_1)_{\bar{a}-\epsilon_{k+1}}$ and hence $V_2 \subseteq V_1$. Since v_1 and v_2 are the only maximal vectors in W_l , V_2 is the unique simple W_0 -submodule. Set $\overline{W}_l =: W_l/V_2$. Let l+1 = k(p-1)+r, $0 < r \leq p-1$. By assumption, k+1 < n. Then the structure of V_i (i = 1, 2) is given by Theorem 3.4 and Theorem 3.5.

Lemma 4.3. Let $\bar{v} \in \overline{W}_l$ be a maximal vector for some $v \in (W_l)_a \setminus V_2$. Then $a \geq 0$.

Suppose $a \geq 0$. Let $\mathfrak{T}(a) = \{i_1, \ldots, i_t\}$. Since k + 1 < n, $t(a) \geq 2$. We can write $v = \sum_{m=1}^{t-1} c_m x^{(a+\epsilon_{i_m})} D_{i_m}$. By definition, $x_i D_j \cdot v \in (V_2)_{a+\epsilon_i-\epsilon_j}$ for every i < j, that is,

$$x_i D_j \cdot v = \sum_{m=1}^{t-1} c_m (a_i + 1 + \delta_{i_m i}) x^{(a+\epsilon_i - \epsilon_j + \epsilon_{i_m})} D_{i_m} - c_m \delta_{i_m i} x^{(a+\epsilon_i)} D_j$$

$$= c \mathfrak{v}_{a+\epsilon_i-\epsilon_j}, \quad c \quad \text{in} \quad \mathbb{F}.$$

This implies that $x_i D_j \cdot v = 0$ in the following cases:

(1) $i \in \mathfrak{T}(a) \setminus \{i_t\}, j \notin \mathfrak{T}(a)$. In this case the term $x^{(a+\epsilon_i-\epsilon_j+\epsilon_{i_t})}D_{i_t}$ appears in $\mathfrak{v}_{a+\epsilon_i-\epsilon_j}$ by definition, but not on the left of the last equality. So we have c = 0.

(2) $i, j, n \in \mathfrak{T}(a), a_j \neq 0, j < n$. Note that $a + \epsilon_i - \epsilon_j \geq 0$. Since the term $x^{(a+\epsilon_i-\epsilon_j+\epsilon_n)}D_n$ appears on the right of the last equality by definition, but not on the left, we have c = 0.

(3) $a_i = p - 2$, $a_j = 0$. Since $a + \epsilon_i - \epsilon_j \geq 0$, Theorem 3.5 shows that $x_i D_j \cdot v \in (V_2)_{a+\epsilon_i-\epsilon_j} = 0$.

Proof of Lemma 2. Suppose $a \ge 0$. If $i_s \in \mathfrak{T}(a)$ and $j \notin \mathfrak{T}(a)$ for some $i_s < j$, since $t(a) \ge 2$, we may assume $i_s < i_t$. Then from $x_{i_s}D_j \cdot v = 0$, we would get

$$c_m(a_{i_s}+1) = 0$$
 if $m \neq s$, and $c_s = 0$.

This gives us $c_m = 0$ for m = 1, ..., t - 1, a contradiction. Therefore $\mathfrak{T}(a) = \{s, ..., n\}$ for some $s \leq n - 1$. Accordingly, $v = \sum_{m=s}^{n-1} c_m x^{(a+\epsilon_m)} D_m$.

In case $a_i < p-2$ and $a_j \neq 0$ for some $s \leq i < j < n$, $a + \epsilon_i - \epsilon_j \ge 0$. We would get, from $x_i D_j \cdot v = 0$,

$$c_m(a_i + 1) = 0$$
 if $m \neq i, j,$
 $c_m(a_i + 2) = 0$ if $m = i,$
 $c_j(a_i + 1) - c_i = 0$ if $m = j,$

which implies that $c_s = \cdots = c_{n-1} = 0$, a contradiction. Therefore, we must have

$$a = (p - 1, \dots, p - 1, p - 2, \dots, p - 2, r', 0, \dots, 0, a_n), 0 < r' < p - 1.$$

Suppose $s \leq n-3$. Taking $s \leq i < j < n$, we would have, from $x_i D_j \cdot v = 0$, $c_m(a_i+1) = 0$ if $m \neq i, j$. Thus $c_m = 0$ for each $m \neq i, j$. For each $m \in \{s, \ldots, n-1\}$, there are $i, j \in \{s, \ldots, n-1\}$ such that $m \neq i, j$, since $s \leq n-3$, so we get $c_s = \cdots = c_{n-1} = 0$, a contradiction.

Thus we have $s \ge n-2$, and v can be put in the form

$$v = c_{n-2}c^{(a+\epsilon_{n-2})}D_{n-2} + c_{n-1}x^{(a+\epsilon_{n-1})}D_{n-1}$$

We only sketch the rest of the proof, and leave the details to the interested reader.

Suppose $a_{n-2} < p-2$. From $x_{n-2}D_n \cdot \bar{v} = 0$, one would get $a_n = p-1$, a contradiction.

Suppose $a_{n-2} = p - 2$. From $x_{n-2}D_{n-1} \cdot \bar{v} = 0$, one would get that v can be put in the form $v = x^{(a+\epsilon_{n-2})}D_{n-2} - x^{(a+\epsilon_{n-1})}D_{n-1}$. Then from $x_{n-1}D_n \cdot \bar{v} = 0$, one gets

$$a = (p - 1, \dots, p - 1, p - 2, p - 2, 1)$$

which gives l = (n-1)(p-1) - 1, contrary to the assumption.

Suppose $a_{n-2} = p - 1$. Then

$$a = (p - 1, \dots, p - 1, a_{n-1}, a_n)$$

¿From $x_{n-1}D_n \cdot \bar{v} = 0$, one would get $a_n = p - 1$, a contradiction.

Lemma 4.4. Assume p|(n+l) and let l < (n-1)(p-1)-1. Then $\overline{V}_1 = V_1/V_2$ is a simple W_0 – submodule of \overline{W}_l .

Proof. First we show that $\overline{W_l}$ has a unique maximal vector \overline{v}_1 . Assume $v \in (W_l)_a \setminus V_2$ such that $\overline{v} \in \overline{W_l}$ is maximal. By Lemma 4.3, $a_m = -1$ for some $1 \leq m \leq n$. Since $(V_1)_a = \mathbb{F}x^{(a+\epsilon_m)}D_m$, we can write $v = x^{(a+\epsilon_m)}D_m$.

If m < n, we would have $0 \neq x_m D_n \cdot v \in V_2$; that is,

$$x_m D_n \cdot x^{(a+\epsilon_m)} D_m = (a_m + 2) x^{(a+2\epsilon_m - \epsilon_n)} D_m - x^{(a+\epsilon_m)} D_n$$
$$= x^{(a+2\epsilon_m - \epsilon_n)} D_m - x^{(a+\epsilon_m)} D_n = c \mathfrak{v}_{a+\epsilon_m - \epsilon_n},$$

for some $c \in \mathbb{F}$. By comparing both sides of the last equality, we have $a_i = p - 1$ whenever $i \neq m$, and hence l = (n - 1)(p - 1) - 1, a contradiction. Then we get m = n.

Since $(V_2)_a = 0$ for each $a \geq 0$, the assumption that \bar{v} is maximal shows that $x_i D_j \cdot v = 0$ whenever i < j. Therefore, v is maximal in W_l , hence $v = v_1$, as asserted.

Since $\overline{V}_1 \subseteq \overline{W}_l$, \overline{v}_1 is the only maximal vector in \overline{V}_1 . Since \overline{v}_1 generates \overline{V}_1 , \overline{V}_1 is simple.

Theorem 4.5. If p|(n+l) and if l < (n-1)(p-1)-1, then W_l has a unique composition series $W_l \supseteq V_1 \supseteq V_2 \supseteq 0$.

Proof. Set $\widetilde{W}_l =: W_l/V_1$. By Theorem 3.4, $(\widetilde{W}_l)_a = 0$ for each $a \geq 0$. By the discussion preceding Lemma 4.3, V_2 is the unique simple submodule of W_l . From the proof of Lemma 4.4, \overline{V}_1 is the unique simple submodule of \overline{W}_l . So it is sufficient to show that \widetilde{W}_l is simple.

For $a \ge 0$, let $\mathfrak{T}(a) = \{i_1, \ldots, i_t\}$. By Theorem 1(1), we have

$$\widetilde{x^{(a+\epsilon_{i_1})}}D_{i_1} = \dots = \widetilde{x^{(a+\epsilon_{i_t})}}D_{i_t},$$

and hence $\dim(\widetilde{W}_l)_a = 1$.

Let l = k(p-1) + r - 1, $0 < r \leq p - 1$. Let v denote $\widetilde{x^{(\bar{a})}D_{k+1}}$. If $b \succ \bar{a} - \epsilon_{k+1}$, then $b \not\geq 0$ and hence $(\widetilde{W}_l)_b = 0$. This implies that v is maximal.

To prove that W_l is generated by v we use induction on a. The greatest a with $(\widetilde{W}_l)_a \neq 0$ is $\mathfrak{G}(v) = \bar{a} - \epsilon_{k+1}$, for which we have $(\widetilde{W}_l)_{\bar{a}-\epsilon_{k+1}} = \mathbb{F}v$.

Assume that $(\widetilde{W}_l)_b$ is generated by v for every $b \succ a$, and consider the case $0 \leq a \prec \overline{a} - \epsilon_{k+1}$. Since $a \prec \overline{a} - \epsilon_{k+1}$, there exists $j > i_1$ such that $a_j \neq 0$. Let $b =: a + \epsilon_{i_1} - \epsilon_j \succ a$. Then the induction assumption says that $x^{(b+\epsilon_j)}D_j$ is generated by v. Since

$$x_{j}D_{i_{1}} \cdot x^{(o+\epsilon_{j})}D_{j}$$

= $(b_{j}+2)x^{(b+2\epsilon_{j}-\epsilon_{i_{1}})}D_{j} - x^{(b+\epsilon_{j})}D_{i_{1}}$
= $(a_{j}+1)[x^{(a+\epsilon_{j})}D_{j} - x^{(a+\epsilon_{i_{1}})}D_{i_{1}}] + a_{j}x^{(a+\epsilon_{i_{1}})}D_{i_{1}}$
= $a_{j}x^{(a+\epsilon_{i_{1}})}D_{i_{1}}(\text{mod}V_{1}),$

 $x^{(a+\epsilon_{i_1})}D_{i_1}$ is generated by v.

We claim that v is the unique maximal vector in \widetilde{W}_l . To establish the claim, it suffices to show that, for each $0 \leq a \prec \overline{a} - \epsilon_{k+1}$, there are i and j with i < j such that $x_i D_j \cdot (\widetilde{W}_l)_a \neq 0$.

For each $0 \leq a \prec \overline{a} - \epsilon_{k+1}$, we have $0 \leq a + \epsilon_i - \epsilon_j \preccurlyeq \overline{a} - \epsilon_{k+1}$ for some i < j.

(1) If $a_i , then$

$$x_i D_j \cdot x^{(a+\epsilon_i)} D_i = (a_i+2) x^{(a+2\epsilon_i-\epsilon_j)} D_i - x^{(a+\epsilon_i)} D_j$$
$$= (a_i+1) x^{(a+2\epsilon_i-\epsilon_j)} D_i + [x^{(a+2\epsilon_i-\epsilon_j)} D_i - x^{(a+\epsilon_i)} D_j]$$
$$= (a_i+1) x^{(a+2\epsilon_i-\epsilon_j)} D_i (\text{mod}V_1).$$

(2) If $a_i = p - 2$, then $x_i D_j \cdot x^{(a+\epsilon_i)} D_i = -x^{(a+\epsilon_i)} D_j$.

By Theorem 3.4, $x_i D_j \cdot x^{(a+\epsilon_i)} D_i \notin V_1$ in both cases above, i.e., $x_i D_j \cdot x^{(a+\epsilon_i)} D_i \neq 0$. So the claim holds. Consequently, \widetilde{W}_l is simple.

For the case l = 1, the theorem is also discussed in [6].

4.3. l = (n-1)(p-1) - 1. Assume l = (n-1)(p-1) - 1 and let

$$\bar{a}_i := (p-1, \dots, p-1, 0, p-1, \dots, p-1).$$

Let v_1^i denote $x^{(\bar{a}_i)}D_i$ and V_1^i denote the submodule of W_l generated by v_1^i . Set $\widetilde{W}_l =: W_l/V_2$.

Proposition 4.6. (1) V_2 is the unique simple submodule of W_l . (2) \tilde{v}_1^i is maximal in \tilde{W}_l for every $1 \leq i \leq n$. (3) $\tilde{V}_1^i =: V_1^i/V_2$ is a 1-dimensional submodule of \widetilde{W}_l .

Proof. (1) Since $\mathfrak{G}(v_2) \prec \mathfrak{G}(v_1)$, V_2 is the unique simple submodule of W_l (note that $v_1 = x^{(\bar{a})} D_n$ is denoted here also by v_1^n).

(2) (3) Assume $s \neq t$. Then

$$x_s D_t \cdot v_1^i = \begin{cases} 0, & \text{if } s \neq i \\ x^{(\bar{a}_i + \epsilon_i - \epsilon_t)} D_i - x^{(\bar{a}_i)} D_t, & \text{if } s = i. \end{cases}$$

Since $x^{(\bar{a}_i+\epsilon_i-\epsilon_t)}D_i - x^{(\bar{a}_i)}D_t = \mathfrak{v}_{\bar{a}-\epsilon_t}$, Theorem 3.5(2) says that $x_iD_t \cdot v_1^i \in V_2$. Then \tilde{v}_1^i is maximal and \tilde{V}_1^i is a 1-dimensional submodule.

Set $W'_l := \sum_{i=1}^n V_1^i$ and let $\overline{W_l} := W_l/W'_l$. Since every $a \not\geq 0$ with $(W_l)_a \neq 0$ is in the form $\bar{a} - \epsilon_i (= \mathfrak{G}(v_1^i))$ for some $1 \leq i \leq n$, we have $(\overline{W}_l)_a \neq 0$ only if $a \geq 0$.

Lemma 4.7. (1) If n = 2, $\overline{W_l}$ contains a unique maximal vector $\overline{w}_1 = x^{(\overline{a})}D_{n-1}$.

(2) For $n \ge 3$, let b denote (p-1, ..., p-1, p-2, p-2, 1). Then $\overline{W_l}$

contains two maximal vectors, namely:

$$\bar{w}_1 = \overline{x^{(\bar{a})}D_{n-1}}, \quad \bar{w}_2 = \overline{x^{(b+\epsilon_{n-2})}D_{n-2}} - \overline{x^{(b+\epsilon_{n-1})}D_{n-1}}$$

Proof. Clearly, $\overline{x^{(\bar{a})}D_{n-1}} \in \overline{W_l}$ is maximal. Suppose $v \in (W_l)_a$ such that \bar{v} is maximal. Then $a \geq 0$. Assume $\mathfrak{T}(a) = \{i_1, \ldots, i_t\}$. Then $t(a) = t \geq 2$. Since $\dim(W'_l)_a = 1$, v can be put in the form

$$v = \sum_{m=1}^{t-1} c_m x^{(a+\epsilon_{i_m})} D_{i_m}$$

If $\mathfrak{G}(x_i D_j \cdot v) \not\geq 0$ for some i < j, then we must have $a_i = p - 2$ and $a_j = 0$. So $\mathfrak{T}(a) = \{i, j\}$ and $v = cx^{(a+\epsilon_i)}D_i$.

Suppose j < n. Then since $x_j D_n \cdot v = c x^{(a+\epsilon_i+\epsilon_j-\epsilon_n)} D_i \in W'_l$ for some $c \in \mathbb{F}$ and $a + \epsilon_j - \epsilon_n \ge 0$,

$$cx^{(a+\epsilon_i+\epsilon_j-\epsilon_n)}D_i \in (V_2)_{a+\epsilon_j-\epsilon_n} = \mathbb{F}\mathfrak{v}_{a+\epsilon_j-\epsilon_n}.$$

Using the definition of $\mathfrak{v}_{a+\epsilon_j-\epsilon_n}$, one gets c=0, a contradiction. Then we must have j=n.

Suppose i < n - 1. Then

$$x_i D_{n-1} \cdot v = -cx^{(\bar{a})} D_{n-1} \in (V_2)_{\bar{a}-\epsilon_{n-1}} = \mathbb{F}\mathfrak{v}_{\bar{a}-\epsilon_{n-1}}.$$

By the definition of $\mathfrak{v}_{\bar{a}-\epsilon_{n-1}}$, one gets c=0, a contradiction. So we get i=n-1, and hence $v=x^{(\bar{a})}D_{n-1}$.

Assume $\mathfrak{G}(x_i D_j \cdot v) \geq 0$ for all i < j. Then $x_i D_j \cdot v \in (V_2)_{a+\epsilon_i-\epsilon_j}$ whenever i < j. Applying a similar argument as that used in the proof of Lemma 4.3, we have, in the case $n \geq 3$, $a = (p-1, \ldots, p-1, p-2, p-2, 1)$. Let $w_2 = x^{(a+\epsilon_{n-2})} D_{n-2} - x^{(a+\epsilon_{n-1})} D_{n-1}$. By a direct computation we get \bar{w}_2 is maximal in \overline{W}_l . Note that $\dim(\overline{W}_l)_a = 1$ implies that \bar{w}_2 is the only maximal vector with grading a.

Note that $\bar{w}_2 = -(x_n D_{n-1})(x_{n-1}D_{n-2}) \cdot \bar{w}_1 - x_n D_{n-2} \cdot \bar{w}_1$. Let \bar{B} denote the submodule of \overline{W}_l generated by \bar{w}_2 (we use B to denote the pre-image of \bar{B} under the canonical epimorphism from W_l to \overline{W}_l). Since $\mathfrak{G}(\bar{w}_2) \prec \mathfrak{G}(\bar{w}_1)$, \bar{B} is simple.

Identify W(n-1,1) with the Lie subalgebra of W(n,1) in the canonical way. Let $\mathfrak{gl}(n-1,\mathbb{F})$ denote

$$W(n-1,1)_0 = \langle x_i D_j | 1 \leq i, j \leq n-1 \rangle$$

and let $W(n-1,1)_0^-$ denote

$$\langle x_j D_i | 1 \leq i < j \leq n - 1 \rangle.$$

Then for each $0 \leq i \leq p-2$, $(x_n D_{n-1})^i \overline{w}_2$ is maximal in the $\mathfrak{gl}(n-1,\mathbb{F})$ -module \overline{W}_l .

For $a \ge 0$, since $(W_l)_a$ has a basis $\{x^{(a+\epsilon_i)}D_i | i \in \mathfrak{T}(a)\}, (\overline{W}_l)_a$ has a basis $\{\overline{x^{(a+\epsilon_i)}D_i} | i \in \mathfrak{T}(a) \setminus \{i_t\}\}$, so that \overline{W}_l has a basis

$$\mathfrak{Z} = \bigcup_{a \ge 0} \{ \overline{x^{(a+\epsilon_i)} D_i} | i \in \mathfrak{T}(a) \setminus \{i_t\} \}.$$

For $0 \leq s \leq p-1$, set $(\overline{W}_l)_s =: \langle \overline{x^{(a)}D_i} \in \mathfrak{Z} | a_n = s \rangle$. Then $\overline{W}_l = \bigoplus_{s=0}^{p-1} (\overline{W}_l)_s$. For $0 \leq s \leq p-2$, since $(\overline{W}_l)_s$ has a basis $\{\overline{x^{(a)}D_i} | i < n, a_n = s\}$, there is a $\mathfrak{gl}(n-1,\mathbb{F})$ -module isomorphism:

$$\psi_s: (\overline{W}_l)_s \xrightarrow[x^{(a)}D_i \to x^{(a_1,\dots,a_{n-1})}D_i]{} W_{l-s}(\subseteq W(n-1,1)).$$

It is easy to see that $\psi_{s+1}((x_n D_{n-1})^s \overline{w}_2) = (s+1)! v_2$ for $0 \leq s < p-2$.

We now determine the structure of \overline{B} . Let $b = (p-1, \ldots, p-1, p-2, p-2, 1)$. Notice that

$$(x_n D_{n-1})^{p-2} \bar{w}_2 = (p-1)! \overline{\mathfrak{v}_{b-(p-2)\epsilon_{n-1}+(p-2)\epsilon_n}} = 0.$$

 $\bar{B} =$

Thus, by the PBW Theorem,

$$\sum_{0 \leq c_i \leq p-1, 0 \leq s < p-2} (x_n D_1)^{c_1} \dots (x_n D_{n-2})^{c_{n-2}} u(W(n-1,1)_0^-) (x_n D_{n-1})^s \bar{w}_2.$$

For each $0 \leq s , let <math>\overline{B}_s$ denote

$$u(W(n-1,1)_0^-)(x_n D_{n-1})^s \bar{w}_2 \subseteq (\overline{W}_l)_{s+1}).$$

Notice that l - (s + 1) > (n - 2)(p - 1) - 1. Using the isomorphism ψ_{s+1} and Theorem 3.6(3) for $W(n - 1, 1)_{l-(s+1)}$, we have

Corollary 4.8. For each $0 \leq s < p-2$, $(\bar{B}_s)_a \neq 0$ if and only if $a \geq 0$ and $t(a) \geq 3$. In this case

$$(\bar{B}_s)_a = \langle \overline{x^{(a+\epsilon_i)}D_i} - \overline{x^{(a+\epsilon_j)}D_j} | i, j \in \mathfrak{T}(a) \setminus \{n\} \rangle.$$

Noting that $a_n < p-1$ implies that $a_m \neq 0$ for each $m \in \mathfrak{T}(a)$, we have, for i < j < n and $1 \leq m \leq n-2$,

$$x_n D_m \cdot (\overline{x^{(a+\epsilon_i)}} \overline{D_i} - \overline{x^{(a+\epsilon_j)}} \overline{D_j})$$

= $(a_n + 1)(\overline{x^{(a+\epsilon_i+\epsilon_n-\epsilon_m)}} \overline{D_i} - \overline{x^{(a+\epsilon_j+\epsilon_n-\epsilon_m)}} \overline{D_j}).$ (*)

Hence $x_n D_m \cdot B_s \subseteq B_{s+1}$ for $0 \leq s < p-3$. So we obtain

$$\bar{B} = \bigoplus_{0 \leqslant j < p-2} \bar{B}_j \oplus \sum_{i \leqslant n-2} x_n D_i \cdot \bar{B}_{p-3}.$$

Let \bar{B}_{p-2} denote $\sum_{i \leq n-2} x_n D_i \cdot \bar{B}_{p-3}$.

Corollary 4.9. For s = p - 2, $(\bar{B}_s)_a \neq 0$ if and only if $a \ge 0$ and $t(a) \ge 3$. In this case

$$(\bar{B}_s)_a = \langle \overline{x^{(a+\epsilon_i)}D_i} - \overline{x^{(a+\epsilon_j)}D_j} | i, j \in \mathfrak{T}(a) \setminus \{i_t\} \rangle$$

Proof. Note that $n \notin \mathfrak{T}(a)$ for any $a \geq 0$ with $(\overline{B}_{p-2})_a \neq 0$, since $\overline{B}_{p-2} \subseteq (\overline{W}_l)_{p-1}$.

Assume $a \ge 0$ and t(a) = 2. Let $\mathfrak{T}(a) = \{i, j\}, i < j$. Then j < n. Since $l = (n-1)(p-1) - 1, a_i + a_j = p - 2$. So we have $a_i + 1 = -(a_j + 1) \pmod{p}$. Since

$$\mathfrak{v}_{a} = (a_{i}+1)x^{(a+\epsilon_{i})}D_{i} + (a_{j}+1)x^{(a+\epsilon_{j})}D_{j}
= (a_{i}+1)(x^{(a+\epsilon_{i})}D_{i} - x^{(a+\epsilon_{j})}D_{j}),$$

Corollary 4.8 and the formula (*) above give $x_n D_m \cdot \overline{B}_{p-3} = 0$ for all $0 \le m \le n-2$. So we get $(\overline{B}_{p-2})_a = 0$.

Assume $a \ge 0$ and $t(a) \ge 3$. For any $i, j \in \mathfrak{T}(a)$, there is $s \in \mathfrak{T}(a)$ such that $s \ne i, j$. By Corollary 4.8,

$$\overline{x^{(a+\epsilon_s-\epsilon_n+\epsilon_i)}D_i} - \overline{x^{(a+\epsilon_s-\epsilon_n+\epsilon_j)}D_j} \in (\bar{B}_{p-3})_{a+\epsilon_s-\epsilon_n}.$$

Applying $x_n D_s$, we get $\overline{x^{(a+\epsilon_i)}D_i} - \overline{x^{(a+\epsilon_j)}D_j} \in (\overline{B}_{p-2})_a$, so that

$$\langle \overline{x^{(a+\epsilon_i)}D_i} - \overline{x^{(a+\epsilon_j)}D_j} | i, j \in \mathfrak{T}(a) \setminus \{i_t\} \rangle \subseteq (\overline{B}_{p-2})_a.$$

On the other hand, using the formula (*) above, we see that

$$(\bar{B}_{p-2})_a \subseteq \langle \overline{x^{(a+\epsilon_i)}D_i} - \overline{x^{(a+\epsilon_j)}D_j} | i, j \in \mathfrak{T}(a) \setminus \{i_t\} \rangle.$$

For $n \geq 3$, let \widehat{W}_l denote $\overline{W}_l/\overline{B}$. Since $(\overline{W}_l/\overline{B})_a \cong (\overline{W}_l)_a$ for $a \geq 0$ and t(a) = 2, we get

$$\dim(\widehat{W}_l)_a = \begin{cases} 1, & \text{if } a \ge 0\\ 0, & \text{otherwise.} \end{cases}$$

Theorem 4.10. (1) If $n \ge 3$, \widehat{W}_l is simple. (2) If n = 2, \overline{W}_l is simple. **Proof.** (1) We shall divide the proof into two steps.

Step1. \widehat{W}_l is generated by $x^{(\overline{a})} D_{n-1}$.

We proceed by induction on a. The greatest a with $(W_l)_a \neq 0$ is $\bar{a} - \epsilon_{n-1}$. Clearly,

$$(\widehat{W}_l)_{\bar{a}-\epsilon_{n-1}} = \mathbb{F}x^{\widehat{(\bar{a})}}D_{n-1}$$

Assume that $(\widehat{W}_l)_b$ is generated by $x^{(\overline{a})}D_{n-1}$ for every $b \succ a$. Consider the case $0 \leq a \prec \overline{a} - \epsilon_{n-1}$. Let $\mathfrak{T}(a) = \{i_1, \ldots, i_t\}$. Then $(\widehat{W}_l)_a = \mathbb{F}x^{(a+\epsilon_{i_j})}D_{i_j}, j = 1, \ldots, t-1$.

Suppose $t(a) \geq 3$. Since l = (n-1)(p-1) - 1, $a_{i_t} \neq 0$. For each m < t, taking $i_s \in \mathfrak{T}(a) \setminus \{i_m, i_t\}$, we have that $\widehat{x^{(\overline{a})}D_{n-1}}$ generates $(\widehat{W}_l)_{a+\epsilon_{i_s}-\epsilon_{i_t}}$ by the induction assumption. Taking

$$\widehat{x^{(a+\epsilon_{i_m}+\epsilon_{i_s}-\epsilon_{i_t})}}D_{i_m}\in (\widehat{W}_l)_{a+\epsilon_{i_s}-\epsilon_{i_t}}$$

since

$$x_{it}D_{is} \cdot x^{(a+\epsilon_{im}+\epsilon_{is}-\epsilon_{it})}D_{im} = a_{it}x^{(a+\epsilon_{im})}D_{im}$$

 $(\widehat{W}_l)_a$ is generated by $x^{(\overline{a})}D_{n-1}$.

Suppose t(a) = 2. Let $\mathfrak{T}(a) = \{i, j\}, i < j$. Then either $a_i or <math>a_j , say, <math>a_j . If <math>j < n$, then $a + \epsilon_j - \epsilon_n \succ a$, so the induction assumption says that $\widehat{x^{(a+\epsilon_i+\epsilon_j-\epsilon_n)}D_i}$ is generated by $\widehat{x^{(\overline{a})}D_{n-1}}$. Since

$$x_n D_j \cdot \widehat{x^{(a+\epsilon_i+\epsilon_j-\epsilon_n)}} D_i = a_n \widehat{x^{(a+\epsilon_i)}} D_i$$

and $a_n \neq 0$, $(\widehat{W}_l)_a = \mathbb{F}x^{(a+\epsilon_i)}D_i$ is generated by $x^{(\widehat{a})}D_{n-1}$. In case j = n and i < n-1, since

$$x^{(a+\epsilon_i)}D_i = -x_{n-1}D_i \cdot x^{(\bar{a})}D_{n-1},$$

 $(\widehat{W}_l)_a$ is generated by $x^{(\overline{a})}D_{n-1}$.

In case j = n and i = n - 1, the assumption $a \prec \overline{a} - \epsilon_{n-1}$ shows that $a_i , then similarly we have that <math>(\widehat{W}_l)_a$ is generated by $x^{(\overline{a})} D_{n-1}$.

Step 2. \widehat{W}_l has a unique maximal vector $x^{(\overline{a})} D_{n-1}$.

It is sufficient to show that, for each $a \prec \overline{a} - \epsilon_{n-1}$ with $(\widehat{W}_l)_a \neq 0$, $x_i D_j \cdot (\widehat{W}_l)_a \neq 0$ for some i < j.

Suppose $t(a) \ge 3$. Let $i, j \in \mathfrak{T}(a)$ with i < j. Note that

$$x_i D_j \cdot x^{(a+\epsilon_i)} D_i = (a_i+2) x^{(a+2\epsilon_i-\epsilon_j)} D_i - x^{(a+\epsilon_i)} D_j.$$

If $t(a + \epsilon_i - \epsilon_j) \ge 3$, then we have, by Corollary 4.8,

$$x_i D_j \cdot \widehat{x^{(a+\epsilon_i)}} D_i = (a_i+2) \widehat{x^{(a+\epsilon_i)}} D_i - \widehat{x^{(a+\epsilon_i)}} D_j = (a_i+1) \widehat{x^{(a+\epsilon_i)}} D_i \neq 0.$$

If $t(a + \epsilon_i - \epsilon_j) = 2$, then we must have $a_i = p - 2$, and hence $x_i D_j \cdot x^{(a + \epsilon_i)} D_i = -x^{(a + \epsilon_i)} D_j \neq 0$.

Suppose t(a) = 2. Let $\mathfrak{T}(a) = \{i, j\}, i < j$. Since $\overline{B}_a = 0, B_a = (W'_l)_a = \mathbb{F}\mathfrak{v}_a$. In case j < n, we have

$$x_i D_j \cdot \overline{x^{(a+\epsilon_i)} D_i} = \overline{\mathfrak{v}_{a+\epsilon_i-\epsilon_j}} + (a_i+1) \overline{x^{(a+\epsilon_i)} D_j}$$
$$= (a_i+1) \overline{x^{(a+\epsilon_i)} D_j} \notin \overline{B},$$

i.e., $x_i D_j \cdot x^{(a+\epsilon_i)} D_i \neq 0$. In a similar fashion, one can check that:

In case j = n and i < n-1, $x_i D_{n-1} \cdot x^{(a+\epsilon_i)} D_i \neq 0$. In case i = n-1 and j = n, so that by assumption $a_i < p-2$,

$$x_i D_n \cdot \widehat{x^{(a+\epsilon_i)}} D_i = (p-1-a_n) \widehat{x^{(a+\epsilon_i)}} D_n \neq 0.$$

This completes the proof of (1).

(2) Let n = 2. By Lemma 4.7, \overline{W}_l has a unique maximal vector $\overline{x^{(\bar{a})}D_{n-1}}$. Applying a similar argument as that for the case t(a) = 2 in Step 1 above, we have that $\overline{x^{(\bar{a})}D_{n-1}}$ generates \overline{W}_l , so \overline{W}_l is simple.

5. The S_0 -module structure of S

In this section, we determine the S_0 – module structure of S. By [8], S(n, 1) is generated by S_{-1} and S_1 . For every i > 0, since $W_{i-1} = [W_{-1}, W_i]$, we have $S_i \subsetneq W_i$. For each $l \ge 0$, W_l is a S_0 – module, and each W_0 – submodule of W_l is also a S_0 – submodule. On the other hand, each S_0 – submodule of W_l , with the adjoint action of $x_n D_n$ given in W, is extended to a W_0 – submodule (note that $W_0 = S_0 \oplus \mathbb{F} x_n D_n$).

Theorem 5.1. (1) If 0 < l < (n-1)(p-1) - 1, then $S_l = V_1$. (2) If l > (n-1)(p-1) - 1, then $S_l = V_2$.

Proof. (1) Assume 0 < l < (n-1)(p-1) - 1. Let l+1 = k(p-1) + r, $0 < r \le p-1$, and denote $\bar{a} = (p-1, \dots, p-1, r, \dots, 0)$. Since

$$v_1 = x^{(\bar{a})} D_n = \begin{cases} -D_{k+1,n} x^{(\bar{a}+\epsilon_{k+1})}, & \text{if } r < p-1 \\ -D_{k+2,n} x^{(\bar{a}+\epsilon_{k+2})}, & \text{if } r = p-1, \end{cases}$$

we have $v_1 \in S_l$, and hence $V_1 \subseteq S_l$.

By Theorem 4.1 and Theorem 4.5, V_1 is a maximal W_0 -submodule of W_l , so we get $S_l = V_1$.

(2) Assume l > (n-1)(p-1)-1. Let l+1 = (n-1)(p-1)+r, $0 < r \le p-1$, and let $\bar{a} = (p-1, \dots, p-1, r)$. Since

$$D_{n,n-1}x^{(\bar{a}+\epsilon_n)}$$
$$= x^{(\bar{a})}D_{n-1} - x^{(\bar{a}-\epsilon_{n-1}+\epsilon_n)}D_n = v_2 \in S_l,$$

so that $V_2 \subseteq S_l$, we have, by Theorem 4.1, $S_l = V_2$.

For l = (n-1)(p-1) - 1, we have $V_2 \subseteq S_l$, since S_l is a W_0 -submodule of W_l and V_2 is the unique simple submodule of W_l .

Lemma 5.2. Let l = (n-1)(p-1) - 1. If $a \ge 0$, $(S_l)_a = 0$.

Proof. Recall $\bar{a}_i = \tau - (p-1)\epsilon_i$ and $v_1^i = x^{(\bar{a}_i)}D_i$. Suppose $v_1^i \in S_l$. Then we have

$$v_1^i = \sum_{s < t} C_{st}^a D_{st} x^{(a)} = \sum_{i \notin \{s,t\}} C_{st}^a D_{st} x^{(a)} + \sum_{t \neq i} C_{ti}^a (x^{(a-\epsilon_t)} D_i - x^{(a-\epsilon_i)} D_t).$$

Notice that each term $x^{(a-\epsilon_t)}D_i$ in the second summation is not equal to $x^{(\bar{a}_i)}D_i$, since $t \neq i$. Also, the term $x^{(\bar{a}_i)}D_i$ does not appear in the first summation. This leads to $v_1^i = 0$, a contradiction.

For each $a \geq 0$, since l = (n-1)(p-1) - 1, $t(a) \geq 2$. Let $\mathfrak{X} = \bigoplus_{a \geq 0} \mathfrak{X}_a$, where $\mathfrak{X}_a =: \langle x^{(a+\epsilon_i)}D_i - x^{(a+\epsilon_j)}D_j | i, j \in \mathfrak{T}(a) \rangle$. We see that, for $i, j \in \mathfrak{T}(a)$, $x^{(a+\epsilon_i)}D_i - x^{(a+\epsilon_j)}D_j = D_{ji}x^{(a+\epsilon_i+\epsilon_j)} \in S_l$. Hence $\mathfrak{X} \subseteq S_l$.

Lemma 5.3. \mathfrak{X} is W_0 -submodule (hence a S_0 -submodule) of W_l .

Proof. For $i \neq j$, it is easy to see that $x_i D_j \cdot \mathfrak{X}_a \subseteq \mathfrak{X}_{a+\epsilon_i-\epsilon_j}$ if $a \geq 0$ and $a + \epsilon_i - \epsilon_j \geq 0$.

If $a \ge 0$, $a + \epsilon_i - \epsilon_j \not\ge 0$, then we must have $a_i = p - 2$ and $a_j = 0$. In this case $\mathfrak{X}_a = \mathbb{F}(x^{(a+\epsilon_i)}D_i - x^{(a+\epsilon_j)}D_j)$. Then $x_iD_j \cdot (x^{(a+\epsilon_i)}D_i - x^{(a+\epsilon_j)}D_j) = 0$. So we have $x_iD_j \cdot \mathfrak{X} \subseteq \mathfrak{X}$ whenever $i \ne j$. Since $x_iD_i \cdot \mathfrak{X}_a \subseteq \mathfrak{X}_a$ for each $1 \le i \le n$, the lemma holds.

Lemma 5.4. Let l = (n-1)(p-1) - 1. For any $0 \le a \in \bar{A}_l$, $(S_l)_a \subsetneq (W_l)_a$.

Proof. Suppose there were $0 \leq a \in \overline{A}_l$ such that $(S_l)_a = (W_l)_a$. Let b be the greatest such a. If there is i < j with $i \in \mathfrak{T}(b)$ and $j \notin \mathfrak{T}(b)$, take $q \in \mathfrak{T}(b) \setminus i$, then

$$x_i D_j \cdot x^{(b+\epsilon_q)} D_q = (b_i+1) x^{(b+\epsilon_i-\epsilon_j+\epsilon_q)} D_q \in (S_l)_{b+\epsilon_i-\epsilon_j}.$$

So the fact $\mathfrak{X} \subseteq S_l$ implies that $(S_l)_{b+\epsilon_i-\epsilon_j} = (W_l)_{b+\epsilon_i-\epsilon_j}$, a contradiction. Hence we have $\mathfrak{T}(b) = \{s, s+1, \ldots, n\}$.

Suppose $s \leq n-2$. Then $b_i \neq 0$ for all $i \in \mathfrak{T}(b)$, since l = (n-1)(p-1)-1. Notice that

$$x_s D_{s+1} \cdot x^{(b+\epsilon_n)} D_n = (a_s+1) x^{(b+\epsilon_s-\epsilon_{s+1}+\epsilon_n)} D_n \in (S_l)_{b+\epsilon_s-\epsilon_{s+1}}$$

implies that $(S_l)_{b+\epsilon_s-\epsilon_{s+1}} = (W_l)_{b+\epsilon_s-\epsilon_{s+1}}$, a contradiction. So we have $\mathfrak{T}(b) = \{n-1, n\}$. Suppose $b_{n-1} < p-2$. Then $b_n > 0$, and

$$x_{n-1}D_n \cdot x^{(b+\epsilon_n)}D_n = (b_{n-1}+1)x^{(b+\epsilon_{n-1})}D_n \in (S_l)_{b+\epsilon_{n-1}-\epsilon_n}$$

gives $(S_l)_{b+\epsilon_{n-1}-\epsilon_n} = (W_l)_{b+\epsilon_{n-1}-\epsilon_n}$, a contradiction. Suppose $b_{n-1} = p-2$. Then we get $b = \bar{a} - \epsilon_{n-1}$, so that

$$(S_l)_b = (W_l)_b = \langle x^{(\bar{a})} D_{n-1}, x^{(\bar{a}-\epsilon_{n-1}+\epsilon_n)} D_n \rangle.$$

Which leads to $v_1^n = -x_{n-1}D_n \cdot x^{(\bar{a}-\epsilon_{n-1}+\epsilon_n)}D_n \in S_l$, a contradiction.

Corollary 5.5. Let l = (n-1)(p-1) - 1. Then $S_l = \mathfrak{X}$.

References

- [1] Brundan, J., and A. Kleshchev, On translation functors for general linear and symmetric groups, Proc. London Math. Soc. (3) 80 (2000), 75–106.
- Feldvoss J., and D. Nakano, Representation Theory of the Witt Algebra, J. Algebra 203 (1998), 447–469.
- [3] Humphreys, J., "Linear Algebraic Groups," GTM **21**, Springer-Verlag, 1981.
- [4] Holmes, R., Simple modules with character height at most one for the restricted Witt algebras, J. Algebra **237** (2001), 446–469.
- [5] Holmes, R., and C. Zhang, Some simple modules for the restricted Cartantype Lie algebras, J. Pure and Appl. Algebra **173** (2002), 135–165.
- [6] Kostrikin, A. I., and I. R. Safarevic, Graded Lie algebras of finite characteristic, Math. USSR-Izv. 3 (1969), 237–304.
- [7] Strade, H., *Representation of the Witt algebra*, J. of Algebra **49** (1977), 595–605.
- [8] Strade, H., and R. Farnsteiner, "Modular Lie algebras and their representations," Marcel Dekker, New York, 1988.
- [9] Wichers, T., "Irreduzible Darstellungen der Witt-Algebra W_2 über einem Körper mit positiver Charakteristik," Ph. D. Thesis, Hamburg 1977.
- [10] Wilson, R. L., Automorphisms of graded Lie algebras of Cartan type, Comm. Algebra **3** (1995), 591–613.
- [11] Zhang, C., Representations of the restricted Lie algebras of Cartan-type, J. of Algebra **290** (2005), 408–432.

Chaowen Zhang Department of Mathematics China University of Mining and Technology Xu Zhou, China, 221008 cwzhang@cumt.edu.cn

Received August 18, 2006 and in final form July 18, 2007