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Abstract. We define the infinitesimal and geometric orders of an effective
Klein geometry G/H . Using these concepts, we prove (i) For any integer m ≥ 2,
there exists an effective Klein geometry G/H of infinitesimal order m such that
G/H is a projective variety. (ii) An effective Klein geometry G/H of geometric
order M defines a differential equation of order M + 1 on G/H whose global
solution space is G .
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1. Introduction

As stated in the review of the book [19], in current mathematics it is mainly the
scores of Lie groups and Lie algebras that are extracted from the great symphony of
Sophus Lie. Later, mainly due to the efforts of E. Cartan, W. Killing and H. Weyl,
the classification of semisimple Lie algebras and their representations is achieved
as one the most beautiful and complete theories in mathematics. Going back to
the transformation groups of S. Lie, what do the root systems, Dynkin diagrams,
Weyl groups . . . really correspond to in terms of the infinitesimal generators of a
transitive and effective action of the Lie group? Conversely, if we start with a
transitive and effective action of a Lie group, what do prolongations, differential
invariants and other fundamental concepts arising in Lie’s theory of transformation
groups correspond to in terms of the Lie group and its Lie algebra? The purpose
of this paper is to take a modest step towards the answers of these questions in
the spirit of the framework proposed in [13]. The technical results stated in the
above abstract appear as byproducts.

This paper is organized as follows. In Section 2 we work in the “universal
envelope” of [13] and recall some well known facts about the infinite dimensional
Lie algebra of formal vector fields (J∞X)p with bracket { , }∞ and k -jets of vector
fields (JkX)p with the algebraic bracket { , }k induced by { , }∞, referring to
[4], [8], [17], [14] for more details. { , }k reduces the order by one (see (3)) and
therefore does not endow (JkX)p with a Lie algebra structure.

In Section 3, we restrict our attention to geometries contained in the uni-

ISSN 0949–5932 / $2.50 c© Heldermann Verlag
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versal filtration (1) and are defined by effective Klein geometries G/H. These
geometries define filtration which stabilize at zero after a finite number of steps
(see (9)). Using this fact, we define the infinitesimal order of an effective Klein ge-
ometry. This concept exists in the fundamental works [8], [17] and also in [4], pg.6.
Now { , }k restricts to the k -jets of the infinitesimal generators Jk(g)o ⊂ (JkX)p

of the action of G on G/H at some o ∈ G/H. On the other hand, we define an-
other bracket [ , ]k (see (11)) which also reduces the order by one. The definition
of this new bracket uses only the Lie algebras g , h of G and H and seems to
be unrelated to jets. Our main result (Proposition 3.4) shows that { , }k and
[ , ]k coincide and become the bracket of g if G acts effectively on G/H and k is
sufficiently large. This result allows us to detect jets inside G/H using only group
theory.

In Section 4, we consider |k|-graded semisimple Lie algebras. This well
known grading is induced by a choice of positive simple roots and seems to be
totally unrelated to the grading in terms of jets used before. However, the main
result of Section 4 (Proposition 4.2) shows that they indeed coincide. This fact
implies the first result in the above abstract (Corollary 4.3), gives an affirmative
answer to a question in [13] and also settles an open problem posed in [20] on
pg. 325. It also opens the way to express many standard concepts in the theory
of semisimple Lie groups in terms of jet theory by expressing them in terms of
the coefficients of the Taylor expansions of the infinitesimal generators, but much
remains to be done in this direction.

In Section 5, we introduce the concept of geometric order of an effective
Klein geometry. This concept exists also in [20] and is implicit in [16]. We prove
the analog of Proposition 3.4 on the group level (Proposition 5.5) and derive some
consequences. The most notable is Corollary 5.7 which shows the existence of
some canonical splittings.

In Section 6 we show that Corollary 5.8 implies the second result in the
abstract. The mentioned differential equation is an ODE if dim G/H = 1 and
a system of PDE ’s if dim G/H ≥ 2. This differential equation reduces to Lie’s
First fundamental Theorem when geometric order is zero and also generalizes the
well known Schwarzian differential equation for Mobius transformations.

In the Appendix we make some comments on the relation of our work to
[8], [17], [6].

2. Formal vector fields

In this section we recall some well known facts in the form which will be needed
in the next sections. We refer to [4], [8], [17], [14] for more details.

Let M be a differentiable manifold with dim M = n and p ∈ M. Let X

denote the Lie algebra of smooth vector fields on M and for X ∈ X , let (j∞X)p

denote the ∞-jet of X at p. We define the vector space

(J∞X)p
.
= {(j∞X)p | X ∈ X}.

For simplicity of notation, we denote (J∞X)p by J∞ in this section. Let J̃k ⊂ J∞
denote the subspace consisting of those (j∞X)p vanishing at all orders up to and

including order k ≥ 0. We set J̃−1
.
= J∞. Thus we obtain the following descending

filtration of subspaces
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· · · ⊂ J̃2 ⊂ J̃1 ⊂ J̃0 ⊂ J̃−1 = J∞ (1)

In the spirit of the framework proposed in [13], we call (1) the universal
filtration at p ∈ M.

We now define the vector space Ĵk
.
= J̃k/ J̃k+1 ,−1 ≤ k . Note that

Ĵ−1 = T (M)p = the tangent space of M at p. Thus we obtain

J∞ = Ĵ−1 ⊕ Ĵ0 ⊕ Ĵ1 ⊕ Ĵ2 ⊕ · · · (2)

We define a bracket { , }∞ on J∞ by {(j∞X)p, (j∞Y )p}∞
.
= (j∞[X,Y ])p.

This gives a Lie algebra homomorphism X → J∞ defined by X → (j∞X)p. The

bracket { , }∞ turns Ĵ0⊕ Ĵ1⊕ Ĵ2⊕· · · into a graded Lie algebra: {Ĵi, Ĵj} ⊂ Ĵi+j ,

0 ≤ i, j. We also have [Ĵ−1, Ĵi] ⊂ Ĵi−1, i ≥ 0 but [x, y] is undefined for x, y ∈ Ĵ−1

which can be checked using coordinates. It is standard to define [Ĵ−1, Ĵ−1] = 0 and

turn J∞ into a graded Lie algebra by setting Ĵ−2
.
= 0. This definition turns out

to be incompatible with the present framework (see the paragraph below (24)).

For this reason, we leave [Ĵ−1, Ĵ−1] undefined. Note that (1) is now a descending

filtration of ideals inside J0 but not inside J̃−1 = J∞ since [J̃−1, J̃k] ⊂ J̃k−1.

We now truncate (2) at k−1 and define Jk
.
= Ĵ−1⊕ Ĵ0⊕· · ·⊕ Ĵk−1, 0 ≤ k,

so that J0 = Ĵ−1 . Clearly, Jk = J∞/J̃k. An element of Jk is called a k -jet of
a vector field at p and is denoted by (jkX)p. Thus (jkX)p = [(j∞X)p]k where

[(j∞X)p]k denotes the equivalence class of (j∞X)p in J∞/J̃k .

The bracket { , }∞ gives the algebraic bracket

{ , }k : Jk × Jk → Jk−1 1 ≤ k (3)

defined as follows: For (jkX)p , (jkY )p ∈ Jk where (jkX)p = [(j∞X)p]k and
(jkY )p = [(j∞Y )p]k, we define {(jkX)p, (jkY )p}k

.
= [(j∞[X, Y ])p]k−1.

Let Jk,j denote the kernel of the projection map πk,j : Jk → Jj, 0 ≤
j ≤ k − 1. Thus we have the exact sequence

0 −→ Jk,j −→ Jk

πk,j−→ Jj −→ 0 (4)

Now { , }k restricts to Jk,0 as

{ , }k : Jk,0 × Jk,0 → Jk,0 (5)

Thus Jk,0 is a Lie algebra with bracket { , }k and is called the isotropy
subalgebra. In fact, let (Gk)

p
p be the Lie group of k -jets of local diffeomorphisms

with source and target at p. Any choice of coordinates near p identifies (Gk)
p
p with

the k ’th order jet group GLk(n) and Jk,0 is the Lie algebra of (Gk)
p
p.

Now let (Gk)
p
q denote the set of all k -jets of local diffeomorphisms with

source at p ∈ M and target at q ∈ M. If jk+1(f)p
q ∈ (Gk+1)

p
q , then jk+1(f)p

q

induces an isomorphism \jk+1(f)p
q : (JkX)p → (JkX)q . In particular, we obtain a

representation of (Gk+1)
p
p on Jk, that is, a homomorphism

\ : (Gk+1)
p
p −→ GL(Jk) (6)

defined by jk+1(f)p
p → \jk+1(f)p

p. The representation \ is faithful.
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For an explicit formula for \ to be used in Section 5 , let (jkX)p ∈ Jk and
jk+1(f)p

p ∈ (Gk+1)
p
p. The diffeomorphism f ◦ etX ◦ f−1 is the identity when t = 0

and defines curves starting at points near p. Differentiating these curves at t = 0,
we obtain a vector field defined near p which we denote by d

dt
(f ◦ etX ◦ f−1)|t=0.

We have

\jk+1(f)p
p((jkX)p) = jk(

d

dt
(f ◦ etX ◦ f−1)|t=0)p (7)

The infinitesimal representation induced by (6) is

[ : Jk+1,0 −→ gl(Jk) (8)

A subset T ⊂ Jk is called transitive if πk,0(T) = Jk,0 = T (M)p.

The proof the next lemma is a straightforward computation in local coor-
dinates.

Lemma 2.1. Let T⊂Jk be transitive and jk+1(f)p
p∈(Gk+1)

p
p . If \jk+1(f)p

p(Y )=Y
for all Y ∈ T, then jk+1(f)p

p = id.

The local formulas for { , }∞ are obtained by differentiating the usual
bracket formula [X, Y ] = Xa∂aY

i − Y a∂aX
i successively infinitely many times,

evaluating at p and substituting jets. We denote the formula obtained by
k -times differentiation by Ak, k ≥ 0. For instance, A0 is {(j∞X)p, (j∞Y )p}i =
XaY i

a − Y aX i
a. We make use of these formulas in the proof of Lemma 3.3.

It is also crucial to observe that if we replace X in the above construction
by the germs of vector fields at p, we get the same J∞ , since a partition of unity
argument shows that any such germ comes from some X ∈ X . This is far from
being true in the (complex) analytic category. In this case, if (j∞X)p = (j∞Y )p

for some X, Y ∈ X , then X = Y on M and so J∞ contains global information.
We have a special case of this situation below where for some integer m, (jmX)p

uniquely determines X and (3) turns into an honest Lie bracket on some finite
dimensional Lie algebra for k = m + 1.

3. Infinitesimal order

Let G be a Lie group (not necessarily connected) and H a Lie subgroup. G acts
on G/H by Lg(xH) = gxH. Other than this action, there is another fundamental
concept inherent in the definition of the homogeneous space G/H : the H -principal
bundle G → G/H. To emphasize our choice in this paper, we make the following

Definition 3.1. A global Klein geometry consists of the following:

i) A homogeneous space G/H

ii) The (left) action of G on G/H

In this paper, Klein geometry means global Klein geometry. We denote a
Klein geometry by G/H and call G/H effective if G acts effectively. If K is the
largest normal subgroup of G contained in H , then G/H is effective iff K = {e}.

We denote H by G0 and the Lie algebras of G, G0 by g, g0. Now following
[8], [17], we inductively define gk+1

.
= {x ∈ gk | [x, g] ⊂ gk, 0 ≤ k}. Then
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gk+1 ⊂ gk is an ideal for 0 ≤ k. Since g is finite dimensional, there exists an
integer m such that gm+i = gm for all 0 ≤ i . Since gm ⊂ g is an ideal, there
exists a connected and normal subgroup H C G−1 with Lie algebra gm. Now H is
contained in the connected component of G0 since gm ⊂ g0 . Therefore H = {e}
if G acts effectively on G/G0 . So we conclude gm = 0 in this case.

Definition 3.2. The integer m such that gm = 0 but gm−1 6= 0 is called the
infinitesimal order of the effective Klein geometry G/G0 .

Until Section 5, order means infinitesimal order.

Therefore, an effective Klein geometry determines the descending filtration

{0} ⊂ gm−1 ⊂ · · · ⊂ g2 ⊂ g1 ⊂ g0 ⊂ g (9)

Now, since gk ⊂ g0 is an ideal, we have the homomorphism adk : g0 →
gl(g/gk) defined by adk(x)(y + gi) = [x, y] + gk = adx(y) + gk where [ , ] is
the bracket of g . We observe that ker(adk) = gk+1. This gives an alternative
and more conceptual definition of the spaces in (9). In particular, we obtain the
faithful representation

adk : g0/gk+1 −→ gl(g/gk) (10)

(for simplicity of notation, we keep the same notation for maps when we pass to
quotients or make identifications).

We define the bracket

[ , ]k+1 : g/gk+1 × g/gk+1 → g/gk 0 ≤ k (11)

by [a+gk+1, b+gk+1]k+1
.
= [a, b]+gk. Since [g, gk+1] ⊂ gk, [ , ]k+1 is well defined.

Note that [ , ]m+1 = [ , ]. We also have the projection map

πk,j : g/gk → g/gj j + 1 ≤ k (12)

with kernel gj/gk and the restricted bracket

[ , ]k : g0/gk × g0/gk → g0/gk 1 ≤ k (13)

which is well defined since gk ⊂ g0 is an ideal.

Now we also have the Lie algebra homomorphism g → X which maps X ∈ g

to its infinitesimal generator X ∈ X , where X is the Lie algebra of smooth vector
fields on M = G/G0 . We denote the Lie subalgebra of infinitesimal generators by
g ⊂ X . Now g is isomorphic to g since the action is both transitive and effective.
We define Jk(g)o

.
= {(jkX)o | X ∈ g, 0 ≤ k} ⊂ (JkX)o. All the constructions of

Section 2 can be done now with g at o and all the spaces obtained in this way
imbed in the spaces in Section 2 together with their grading. In particular, we
obtain a filtration contained in the universal filtration (1).

The restriction of (3) gives

{ , }k+1 : Jk+1(g)o × Jk+1(g)o → Jk(g)o 0 ≤ k (14)

(14) follows from [14] but can be checked also directly. Note that J0(g)o = g/g0 =
T (G/G0)o. The restriction of πk,j gives



72 Abadoğlu, Ortaçgil, Öztürk

πk,j : Jk(g)o → Jj(g)o j + 1 ≤ k (15)

Clearly (15) commutes with (14). We have

{ , }k : Jk,0(g)o × Jk,0(g)o → Jk,0(g)o 1 ≤ k (16)

We also have the faithful representation

[|(g,g0) : Jk+1,0(g)o −→ gl(Jk(g)o) (17)

The faithfulness of (17) follows from the infinitesimal analog of Lemma 2.1
and the fact that Jk(g)o ⊂ (JkX)o is transitive.

To clarify the analogy between (11)-(14), (12)-(15), (13)-(16) and (10)-(17),
we define the map

θk : g → Jk(g)o (18)

θk(x) = jk(x)o k ≥ 0

where x is the infinitesimal generator of x. Now θk is clearly linear and is surjective
by the definition of Jk(g)o.

Lemma 3.3. The kernel of θk is gk.

Proof. We prove by induction on k that, for 0 ≤ k , (jkX)o = 0 if and only if
X ∈ gk .

For k = 0, the claim is that X(o) = 0 if and only if X ∈ g0 . Let
π : G → G/G0 be the quotient map, inducing π = dπ(e) : g → g/g0 . By
definition, X(o) = d

dt |t=0
(etX(o)) = π( d

dt |t=0
etX) = π(X). Hence the claim follows.

Now X ∈ gk+1

⇐⇒ X ∈ gk and [X, Y ] ∈ gk for all Y ∈ g (definition of gk+1)

⇐⇒ (jkX)o = 0 and jk[X, Y ]o = 0 for all Y ∈ g (induction hypothesis)

⇐⇒ (jkX)o = 0 and jk[X, Y ]o = 0 for all Y ∈ g (19)

⇐⇒ (jkX)o = 0 and {(jk+1X)o, (jk+1Y )o}k+1 = 0 for all Y ∈ J0(g)o

(definition of { , }k+1)

We now choose some coordinate system (xi) around o and recall that the
components of {(jk+1X)o, (jk+1Y )o}k+1 are given by the formulas A0, A1, . . . , Ak.
Since (jkX)o = 0, all terms in the formulas A0, A1, . . . , Ak vanish except the last

term in Ak which is −Y
a
X

i

ajk···j1 . Therefore, the last formula in (19) is equivalent
to

Y
a
X

i

ajk···j1 = 0 for all Y ∈ J0(g)o (20)

Since Jk(g)o is transitive, (20) is equivalent to X
i

jk+1jk···j1 = 0, that is,

(jk+1X)o = 0. This completes the inductive step.
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Lemma 3.3 gives the linear isomorphism

θk : g/gk −→ Jk(g)o (21)

and its proof shows that (9) coincides with the filtration described above inside
the universal filtration (1).

Proposition 3.4. The diagrams

g/gk
θk−→ Jk(g)o

↓πk,j
↓πk,j

g/gj
θj−→ Jj(g)o

(22)

g/gk+1 × g/gk+1
[ , ]k+1−→ g/gk

↓θk+1×θk+1
↓θk

Jk+1(g)o × Jk+1(g)o
{ , }k+1−→ Jk(g)o

(23)

commute for k ≥ 0.

Proof. The commutativity of the first diagram is straightforward. As for the
second, for X, Y ∈ g−1 we have

{θk+1(X + gk+1), θk+1(Y + gk+1)}k+1 = {(jk+1X)o, (jk+1Y )o}k+1

= [(j∞{X, Y })o]k
= [(j∞[X, Y ])o]k
= (jk[X,Y ])o

while

θk([X + gk+1, Y + gk+1]k+1) = θk([X, Y ] + gk) = (jk[X, Y ])o

Thus we also obtain the linear isomorphisms θm : g → Jm(g)o, θk : g0/gk →
Jk,0(g)o ⊂ (Jk,0X)o and the commutative diagram

adk : g0/gk+1 −→ gl(g/gk)
‖ θk+1 ‖ θk

[|(g,g0) : Jk+1,0(g)o −→ gl(Jk(g)o)
(24)

Lemma 3.3 and Proposition 3.4 show that Jm(g)o ' Jm+1(g)o and (11)
gives the bracket { , }m+1 : Jm(g)o × Jm(g)o → Jm(g)o which coincides with the
bracket of g . Therefore θm is also a Lie algebra isomorphism. This statement
holds also for m = 0, that is, when G0 is discrete. For m = 0, note that the
standard notation g−1 for g and the extension of the formula (11) to k = −1 is
incorrect in the present framework if g is not abelian.

Definition 3.5. Let G/G0 be a any Klein geometry whose descending filtration
stabilizes at {0}. Then G/G0 is called almost effective.
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If G/G0 is almost effective, then K is discrete as we show in Section 5
(see the paragraph before Lemma 5.1). Therefore the effective Klein geometry
G/K
G0/K

defines the same filtration as G/G0 and has order m. This fact is used in
Proposition 4.2 and Corollary 4.3.

In this section we worked exclusively at the point o ∈ G/Go. Using homo-
geneity, all the above constructions can be done at any point p ∈ G/Go . This fact
is needed only in Corollary 5.8.

4. Parabolic geometries

Let s be a |k|-graded semisimple Lie algebra over F = R or C, k ∈ Z . Thus

s = s−k ⊕ s−k+1 ⊕ · · · ⊕ s−1 ⊕ s0 ⊕ s1 ⊕ · · · ⊕ sk−1 ⊕ sk (25)

To recall the grading in (25), we first assume that F = C , s is a semisimple
Lie algebra and p ⊂ s is a parabolic subalgebra. We can find a Cartan subalgebra
and a set of positive roots such that p is standard with respect to a set Σ of simple
roots. Now the Σ-height gives a |k|-grading on s , where k is the Σ-height of the
maximal root of s which gives the grading (25) with p = s0⊕ s1⊕ · · · ⊕ sk−1⊕ sk.
For F = R , the complexification sC = g is also |k|-graded and s is a real form
of the complex pair (g, p). For our purpose in this section, the relevant fact is
that the origin of the grading in (25) seems to be totally unrelated to the gradings
defined before in terms of jets.

Let S be a Lie group with Lie algebra s and P ⊂ S a Lie subgroup with
Lie algebra p. To be consistent with our notation above, we should denote P by
S0 but we will not do this.

If x ∈ p satisfies [x, s] ⊂ p , then the grading in (25) implies x ∈ sk and
clearly [sk, s] ⊂ p. Further, if x ∈ sk satisfies [x, s] ⊂ sk , then x = 0. This fact
implies the following

Proposition 4.1. The Klein geometry S/P is almost effective with descending
filtration

{0} ⊂ sk ⊂ p ⊂ s (26)

We rewrite (25) as s = p− ⊕ s0 ⊕ p+ . Since p−, p+ are dual with respect
to Killing form, they determine each other and (25) involves a redundancy. Our
purpose is to increase the length of (26) by exploiting this redundancy.

To simplify things and also to be specific, we assume S = SL(n, F), n ≥ 2,
s0 is the Cartan subalgebra of diagonal matrices, and p is the Borel subalgebra of
upper triangular matrices so that k = n − 1 in (25). However, the main idea of
our construction works in the broader context of (25).

We start by choosing an abelian subalgebra of s−1 which we denote by
a−1. For instance, some 1-dimensional subspace of s−1 will do. If n = 6, then the
matrices A(2, 1), A(4, 3), A(6, 5) in the standard basis having 1’s in the indicated
entries and 0’s elsewhere belong to s−1 and they commute. Thus we can choose
dim a−1 = 3 in this case. It is easy to check that dim a−1 can be at most [n

2
].

Having fixed a−1, we now define h
.
= a−1 ⊕ p . Since any x ∈ a−1 is a

common eigenvector for all y ∈ s0 , it follows that [a−1, s0] = a−1 ⊂ h. Using the
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grading and the fact that a−1 and p are both subalgebras, we conclude that h ⊂ s

is a subalgebra. Note that h is neither semisimple nor solvable (compare to pg.
xvi of the Introduction of [11]). We now choose a Lie subgroup H ⊂ S with Lie
algebra h and H/P defines the descending filtration

h = a−1 ⊕ p = a−1 ⊕ s0 ⊕ · · · ⊕ sn−1 (27)

h0 = p = s0 ⊕ · · · ⊕ sn−1

h1 = s1 ⊕ · · · ⊕ sn−1

h2 = s2 ⊕ · · · ⊕ sn−1

...

hn−1 = sn−1

hn = 0

Lemma 3.3 and Proposition 3.4 show that (27) is consistent with the order
of jets and (27) shows that H/P is almost effective. We define G

.
= H/K and

G0
.
= P/K where K is discrete and obtain

Proposition 4.2. The order of the effective Klein geometry G/G0 is n.

Note that h1/h2 = s1 = the span of positive simple roots. Now (22) gives

0 −→ h1/h2 −→ h/h2
π2,1−→ h/h1 −→ 0

↓θ2 ↓θ2 ↓θ1

0 −→ J2,1(g)o −→ J2(g)o

π2,1−→ J1(g)o −→ 0

(28)

Thus J2,1(g)o completely determines the Lie algebra structure of s. How-
ever, this is not so for h due to the arbitrariness involved in the choice of a−1.

For F = C , S/P is known to be a projective variety. Since H/P is closed
in S/P and G/G0 = H/P, we obtain

Corollary 4.3. For every integer n ≥ 2 and d, 1 ≤ d ≤ [n
2
], there exists an

effective Klein geometry G/G0 of order n such that G/G0 is a projective variety.

We know nothing about the structure of the projective varieties given by
Corollary 4.3 in general. Even the simplest case dim a−1 = 1 raises some questions
about these Riemann surfaces whose answers we do not know.

We conclude this section with the following remark: The tangent space
T (S/P )o of S/P is s/p = s−n+1⊕ s−n+2⊕ · · ·⊕ s−1 . Therefore the filtration (27)
(starting with h1 ) determines a filtration in T (S/P )o which, to our knowledge, is
observed and studied first in [2] (see also [3]) in the framework of general parabolic
geometries defined using principal P -bundles.

5. Geometric order

In this section we resume our framework of Section 3, assume that G/G0 is effective
and G is connected. Following [16], we inductively define

Gk+1
.
= {g ∈ Gk | Ad(g)x− x ∈ ĝk for all x ∈ g, 0 ≤ k}
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where ĝk is the Lie algebra of Gk for k ≥ 1. Now Gk+1 C Gk is a normal subgroup
for k ≥ 0. Thus we obtain the filtration

· · · ⊂ G2 ⊂ G1 ⊂ G0 ⊂ G (29)

(29) defines the filtration

· · · ⊂ ĝ2 ⊂ ĝ1 ⊂ g0 ⊂ g (30)

Note that Gk+1 is the kernel of Adk : G0 → GL(g/ĝk) defined by
Adk(x)(y + ĝk)

.
= Adx(y) + ĝk which gives the faithful representation

Adk : G0/Gk+1 −→ GL(g/ĝk). (31)

If ρ : G → R is any homomorphism of Lie groups with differential
dρ : g → r , then ker(dρ) is clearly the Lie algebra of ker(ρ). This fact together
with the definitions of ĝk and gk shows ĝk = gk. In particular, ĝm = {0} and Gm

is discrete. If G/G0 is almost effective with gm = {0}, then K ⊂ Gm because
(29) stabilizes at K which is therefore discrete .

Lemma 5.1. For an effective Klein geometry G/G0 with the descending filtra-
tion (29), we have either i) Gm = {e} or ii) Gm 6= {e} and Gm+1 = {e}

Proof. Suppose Gm 6= {e} . As Gm+1 is the kernel of Adm : G0 → GL(g/ĝm) =
GL(g), we have Gm+1 ⊂ ker(Ad : G → GL(g)) = Z(G) = center of G since G is
connected. Therefore Gm+1 ⊂ Z(G) ∩G0 = {e} since the action is effective.

Definition 5.2. The integer M satisfying GM = {e}, GM−1 6= {e} is called
the geometric order of the effective Klein geometry G/G0

Lemma 5.1 shows that M = m or M = m + 1 for an effective Klein
geometry. How do we decide which one is the case? ii) below hints that the answer
is related to the fundamental group of G/G0. This is expected since fundamental
group is the new issue when we pass from Lie algebra to Lie group.

Setting k = M − 1 in (31), we obtain

Proposition 5.3. Let G0 be any Lie group. Suppose there exists a connected
Lie group G satisfying a) G0 ⊂ G is a Lie subgroup b) G acts effectively on
G/G0. Then G0 is a matrix group.

Now G0 is the stabilizer of the point o . Therefore, g ∈ G0 defines the
isomorphism \jk+1(Lg)

o
o : (JkX)o → (JkX)o and we obtain the representation

Adk : G0 −→ GL((JkX)o) (32)

defined by g 7→ \jk+1(Lg)
o
o . In fact, for g ∈ G0 , X ∈ g , it follows from (7) that

\jk+1(Lg)
o
o((jkX)o) = jk(

d

dt
(Lg ◦ LetX ◦ Lg−1)t=0))o

= jk(
d

dt
(LgetXg−1)t=0)o

= jk(Ad(g)X)o . (33)
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Note the fundamental difference between (7) and (33): (7) is local whereas
(33) is global and involves analyticity.

(33) shows that (32) restricts as

Adk : G0 −→ GL(Jk(g)o). (34)

Lemma 5.4. The kernel of Adk is Gk+1 .

Proof. Let g ∈ ker(Adk) so that \jk+1(Lg)
o
o is identity on Jk(g)o , that is,

\jk+1(Lg)
o
o((jkX)o) = (jkX)o for all X ∈ g−1 . Now (33) gives jk(Ad(g)X))o =

(jkX)o or equivalently jk(Ad(g)X −X)o = 0. By Lemma 3.3, this condition is
equivalent to Ad(g)X −X ∈ gk = ĝk and therefore to g ∈ Gk+1 by the definition
of Gk+1 .

Proposition 5.5. There is a canonical injection of Lie groups Φk : G0/Gk →
(Gk)

o
o ' GLk(n), n = dim G−1/G0 .

Proof. We define the homomorphism G0 → (Gk)
o
o by g → jk(Lg)

o
o. In view of

Lemma 2.1, jk(Lg)
o
o = id if and only if \jk(Lg)

o
o = id and the conclusion follows

from Lemma 5.4.

Lemma 5.4 gives the faithful representation Adk : G0/Gk+1 → GL(Jk(g)o),
and Propositions 3.4, 5.5 give the commutative diagram

Adk : G0/Gk+1 −→ GL(g/gk)
‖ Φk+1 ‖ θk

\|(G,G0) : Φk+1(G0/Gk+1) −→ GL(Jk(g)o)
(35)

which is the group analog of (24).

Setting k = M in Proposition 5.5 gives

Corollary 5.6. There is a canonical injection of Lie groups ΦM :G0→(GM)o
o .

The following two special cases of Corollary 5.6 are of special interest.

i) Let P ⊂ SL(n, C) be the Borel subgroup of upper triangular matrices.
Then there exists a discrete and normal subgroup K ⊂ P such that P/K injects
canonically into (G1)

o
o ' GLM(1), where M = n or n+1. To prove this statement,

we recall the construction of G/G0 in Proposition 4.2 and choose dim a−1 = 1.

Before we state ii), we recall the main result of [15]: A smooth manifold
N is determined up to diffeomorphism by the abstract Lie algebra structure of
X. This statement holds also in the analytic category and we refer to [5] for an
extensive literature on the generalizations of this result. It turns out that certain
subalgebras of X also determine N. In the analytic category, all the information
in X is encoded at one point. The next statement shows how the fundamental
group is encoded in first order jets in a special case.

ii) Let G be simply connected, G0 ⊂ G discrete and G/G0 effective. Then
we have the canonical injection π1(G/G0, o) → (G1)

o
o and the faithful representa-

tion π1(G/G0, o) → GL(g). For the proof, we note that G0 ' π1(G/G0, o) since
G0 is simply connected and m = 0 since G0 is discrete. Assuming that G0 6= {e},
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we conclude M 6= 0 and therefore M = 1 by Lemma 5.1. We now set k = M − 1
in (35).

The next corollary is an extension of Corollary 5.6.

Corollary 5.7. For any integer k ≥ 1, there is a canonical injection
ΦM+k : G0 → (GM+k)

o
o which makes the following diagram commute:

(GM+k)
o
o

πM+k,M−→ (GM)o
o

↖ΦM+k
↑ΦM

G0

(36)

Proof. We define ΦM+k as in the proof of Proposition 14.

In the same way as Levi-Civita connection is the object canonically deter-
mined by a Riemannian structure, the splitting given by (36) implies the exis-
tence of some objects canonically determined by some geometric structures. This
problem will be studied elsewhere (see [2], [3] for the standard but very different
approach to this problem).

We single out the next fact, which is essentially equivalent to Corollary 5.6,
as a corollary for reference in Section 6.

Corollary 5.8. Let a, b ∈ G satisfy La(p) = Lb(p) = q , for some p, q ∈ G/G0 .
If jM(La)

p
q = jM(Lb)

p
q , then a = b.

Proof. First we assume p = o . Now jM(La)
o
q = jM(Lb)

o
q if and only if

jM(La−1)q
o ◦ jM(Lb)

o
q = jM(La−1b)

o
o = id. Therefore a−1b ∈ GM = {e} and a = b .

The claim for arbitrary p follows from homogeneity.

6. Differential equations of finite type

In this section, we derive an important consequence of Corollary 5.8.

Following Lie, we write the action of G on G/G0 locally as

f i(x1, x2, . . . , xr, y1, y2, . . . , yn) = zi 1 ≤ i ≤ n (37)

where dim G/G0 = n and (yi), (zi) are local parameters for G/G0, dim G = r
and (xi) are local parameters for G. We write (37) shortly as f(x, y) = z and
fix some x, y, z with f(x, y) = z . Thus x ∈ G determines the diffeomorphism
z = z(y) defined by f(x, y) = z . The k -jet jk(x)y

z of this diffeomorphism is given
by

∂|µ|f i(x, y)

∂yµ
=

∂|µ|zi

∂yµ
(y), 0 ≤ |u| ≤ k. (38)

Corollary 5.8 asserts that x is uniquely determined by (38) for 0 ≤ |u| ≤ M.

Thus we can solve x in terms of y and ∂|µ|z
∂yµ (y) from (38) for 0 ≤ |u| ≤ M and

substitute the result into (38) for 0 ≤ |u| ≤ M + 1. The result is

Φi
µ(y,

∂|σ|zi

∂yσ
(y)) =

∂|u|zi

∂yµ
(y), 1 ≤ |u| ≤ M + 1, 0 ≤ |σ| ≤ M (39)
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for some functions Φi
µ. The form of (39) does not depend on the choices x, y .

Regarding y as a variable, (39) defines a system of PDE ’s of finite type. If
dim G/G0 = 1, then (39) is a system of ODE ’s. We can write (39) in a coordinate
system such that we have also 0 ≤ |σ| ≤ |u| . The number of equations in (39) is
dim GLM+1(n) and dim G0 of them are dependent.

To summarize, we have

Proposition 6.1. An effective Klein geometry G/H of geometric order M
defines a differential equation on G/H of order M + 1. The global solution space
of this differential equation is G.

In order to solve the group parameters uniquely from (38), the number of
unknowns should not exceed the number of equations. This gives an inequality
relating M , dim G and dim H, which is analogous to the inequalities in [12] (see
pg.161-162).

Two instances of Proposition 6.1 are well known:

1) Note that M = 0 iff G0 = {e} so that a Klein geometry G/G0 of
geometric order zero is nothing but the Lie group G together with the left action
of G on itself. In view of the simple computation in the proof of Theorem 5 in
[14] on page 178, (39) becomes

∂zi

∂yj
= ξi

a(z)ωa
j (y) (40)

where the vector fields ξj = ξa
j ∂a are the infinitesimal generators of the action

and the 1-forms ωi = ωi
adxa on G are components of the Maurer-Cartan form.

Therefore Proposition 6.1 reduces to Lie’s First Fundamental Theorem.

2) Let G = SL(2, C) and H = the subgroup of upper triangular matrices
and K = {±I}. Now G

.
= G/K can identified with the group M of normalized

Möbius transformations

az + b

cz + d
= w, ad− bc = 1, (41)

G/H = G/K
H/K

.
= G/G0 with the complex sphere S and the effective action of G on

G/G0 with the effective action of M on S as point transformations. In this case
M = 2 and the process of deriving (39) from (37) amounts to differentiating (41)
three times and eliminating the group parameters (see pg.21 of [14] for details).
We have dim G3(1) = 3 equations in (39) and dim G0 = 2 of these equations are
dependent. In fact, the first two equations reduce to identities and the third one
is the well known Schwarzian ODE

w′′′ =
3

2

(w′′)2

w′ (42)

We refer to [14], [12] on the relation of (42) to differential invariants and to
[9] for the use of (42) in defining projective structures on Riemann surfaces.

Note that the second statement of Proposition 6.1 is rather a definition than
an assertion. We refer to [19] for a categorical approach to the global formulation
of PDE ’s and their symmetries in terms of diffieties and to the classical book [11]
for a systematic study of symmetries of differential equations.
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We arrived at (39) starting from geometry. Conversely, we can also start
with differential equations of finite type and study their geometrization as in [21],
[22]. It is therefore no coincidence that semisimple Lie groups, parabolic subgroups
and projective imbeddings arise naturally also in [21], [22] as in this paper. This
geometrization problem is studied for general exterior differential systems in the
influential paper [18].

To conclude this section, it is standard to take the bundle G → G/H as the
basis of a Klein geometry and generalize G to an auxiliary but extremely useful
object on which a Lie group H acts freely (see the Foreword of [16] by S.S.Chern
for a very concise formulation of this point of view). It is well known that this
approach has been remarkably successful with far reaching results. However, we
believe that the approach to geometry based on transitive actions of Lie groups
has also much to offer.

7. Appendix

All ingredients of our constructions in Section 3 are contained in the fundamental
papers [8], [17] in much more generality and we make here some comments on the
relation of Section 3 to these works, emphasizing the novelty of our approach.

Let g ⊂ gl(V ) be a subalgebra. Following [8], [17], [7], we set pr0g
.
= g and

define the k ’th prolongation prkg of g inductively by the formula

prkg
.
= {S ∈ Hom(V, prk−1g) | S(v)w = S(w) for all v, w ∈ V }.

Definition 7.1. g ⊂ gl(V ) is called finite type if prmg = 0 for some m. If
prm̃g = 0 and prm̃−1g 6= 0, we call m̃ the prolongation order of g ⊂ gl(V ).

The best known matrix algebras which are finite type are the orthogonal,
conformal, projective and affine algebras (see [8], [17] for details). As far as we
know, for all first order G-structures studied so far in geometry, either the Lie
algebra g of G is of infinite type (as in symplectic or complex structures) or of
finite type with m̃ ≤ 2. Next setting k = 0 in (24), we formulate

Definition 7.2. ad0(g0/g1) ⊂ gl(g/g0) is called the first order isotropy algebra
of the effective Klein geometry G/G0.

Now we prove the following

Proposition 7.3. The infinitesimal order m of the first order isotropy algebra
ad0(g0/g1) ⊂ gl(g/g0) of an effective Klein geometry G/G0 satisfies m ≤ m̃
(where we set m̃

.
= ∞ if ad0(g0/g1) is of infinite type).

Proof. Let L(V, h) denote the space of linear maps V → h where h ⊂ gl(V ).
We define the map ϑ : g1/g2 → L(g/g0, ad0(g0/g1)) by ((ϑ(x + g2))(y + g0))

.
=

ad0[x, y] , x ∈ g1, y ∈ g , so that (((ϑ(x + g2))(y + g0))(z + g0)
.
= [[x, y], z] + g0,

z ∈ g . Now ϑ is well defined, linear and also injective by the definition of g2 . Since
[[x, y], z] − [[x, z], y] = [x, [y, z]] ∈ g0 , the image of ϑ is contained in pr1(g0/g1),
where we identify g0/g1 with ad0(g0/g1). Identifying g1/g2 with ϑ(g1/g2), we
get g1/g2 ⊂ pr1(g0/g1). Proceeding inductively, we obtain gk/gk+1 ⊂ prk(g0/g1).
Setting k = m− 1, we find prm−1(g0/g1) 6= 0, which proves m ≤ m̃.
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Now let G0
.
= Sp(2n) ⊂ GL(R2n) and define G

.
= G0 ∝ R2n where ∝

denotes semidirect product. Clearly, G/G0 is effective with m = 1 whereas Sp(2n)
is known to be of infinite type so that m̃ = ∞ (see [Guillemin-Sternberg]). The
main point is that prk(g0/g1) does not take the action of G on G/G0 into account
and treats G0 as a separate object. Consequently, it is not possible to replace “⊂”
by “=” in gk/gk+1 ⊂ prk(g0/g1) in general (“abstract elements” of prk(g0/g1) is
best seen in coordinates). However, there are easy sufficient conditions which
imply equality but we will not go into details here.

Also, the concept of a rigid geometric structure is introduced in [6]. These
structures are characterized by the fact that their infinitesimal automorphisms are
determined by their jets of some fixed order. In view of our results in this paper,
it is not surprising that this concept turns out to being equivalent to first order
G-structures being of finite type, as shown in [1]. Therefore, we believe that there
is also some conceptual overlap with [6], [1] and this paper.

Acknowledgements. Sections 5, 6 did not exist in the original version of this
paper. We are indebted to P. J. Olver for drawing our attention to [21], [22] which
gave birth to Proposition 18. Part of this work was completed when the second
author was visiting Feza Gürsey Institute. He is grateful to Tübitak for its financial
support and to T. Turgut for his encouragement for this research.

Added March 04, 2008. Proposition 7.3 has been revised and replaced after
online publication.
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