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Abstract. We prove that every connected component of the zero locus in
a connected Lie group G of any real polynomial without multiple roots is a
conjugacy class. As applications, we prove that any Ad-semisimple conjugacy
class C of G is a closed embedded submanifold, and that for any connected
subgroup H of G , every connected component of C ∩H is a conjugacy class of
H . Corresponding results for adjoint orbits in real Lie algebras are also proved.
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1. Introduction

Conjugacy classes of algebraic groups have been extensively studied (see e.g. [6]).
For instance, for a linear algebraic group G defined over an algebraically closed
field, it is well-known that semisimple conjugacy classes of G are Zariski closed.
If H a Zariski closed subgroup of G , the well-known Richardson’s Lemma asserts
that the intersection of H and every semisimple conjugacy class of G is a finite
union of conjugacy classes of H . Based on these results, it is easy to prove similar
assertions for a Lie group which is locally isomorphic to the group of R-points
of an algebraic group defined over R , if we replace the Zariski topology with the
Hausdorff topology (see e.g. [4, Proposition 10.1]).

On the contrary, few results are known for conjugacy classes of general Lie
groups that are not algebraic. Here we recall the recent result of [1] (see also [2])
which asserts that if G is a connected Lie group, then every connected component
of the set En(G) = {g ∈ G|gn = e} is a conjugacy class of G , where n is any
positive integer. Note that if G is a linear Lie group, the set En(G) can be viewed
as the zero locus of the polynomial λn − 1 applied to G .

In this paper, we generalize this result to more general polynomials where
addition and scalar multiplication are understood as being composed with an al-
most faithful representation. More precisely, we will prove the following assertion.

Theorem 1.1. Let G be a connected Lie group, and let ρ : G → GL(V) be a
representation of G in a finite dimensional real vector space V. Suppose ker(ρ)
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is discrete. Let f ∈ R[λ] be a real polynomial without multiple roots in C. Then
every connected component of the set

Zρ(f) = {g ∈ G|f(ρ(g)) = 0}

is a conjugacy class of G.

As applications of Theorem 1.1, we prove the following two results about
Ad-semisimple conjugacy classes in general Lie groups, which are the Lie-theoretic
analogs of the Zariski closedness of semisimple conjugacy classes and Richardson’s
Lemma for algebraic groups.

Theorem 1.2. Let G be a connected Lie group, and let C be an Ad-semisimple
conjugacy class of G. Then we have
(1) C is a closed embedded submanifold of G;
(2) For any connected closed subgroup H of G, every connected component of
C ∩H is a conjugacy class of H .

Here an element g of G is Ad-semisimple if Ad(g) is semisimple in GL(g),
where g is the Lie algebra of G , and a conjugacy class C of G is Ad-semisimple
if a (hence every) element of C is Ad-semisimple. Similarly, an element X of g

is ad-semisimple if ad(X) is semisimple in gl(g), and an adjoint orbit O in g is
ad-semisimple if a (hence every) element of O is ad-semisimple.

To prove Theorem 1.2, we also need the following notion. For a conjugacy
class C of a connected Lie group G , we define the set

Γ(C) = g−1C ∩ Z(G), g ∈ C,

where Z(G) is the center of G . It is easy to see that Γ(C) is independent of
the choice of g ∈ C and is a subgroup of Z(G). We will prove that if C is
Ad-semisimple, then Γ(C) is finite.

The arrangement of this paper is as follows. In Section 2 we will prove
Theorem 1.1. In Section 3 the finiteness of Γ(C) will be proved. The two parts of
Theorem 1.2 will be proved in Sections 4 and 5 respectively. In each section, we
will also prove the corresponding result for adjoint orbits in real Lie algebras in a
parallel way.

2. Characterizations of conjugacy classes by polynomials

In this section we prove Theorem 1.1 and its Lie algebra counterpart.

Theorem 2.1. Let G be a connected Lie group with Lie algebra g,
ρ : G → GL(V) be a representation of G in a finite dimensional real vector
space V. Suppose ker(ρ) is discrete. Let f ∈ R[λ] be a real polynomial without
multiple roots in C. Then
(1) Every connected component of

Zρ(f) = {g ∈ G|f(ρ(g)) = 0}

is a conjugacy class of G, and is a closed embedded submanifold of G;
(2) Every connected component of

zρ(f) = {X ∈ g|f(dρ(X)) = 0}

is an adjoint orbit in g, and is a closed embedded submanifold of g.
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Proof. (1) Denote Z = Zρ(f). Firstly, we note that Z is invariant under the
conjugation of G . So Z is the union of some conjugacy classes of G .

Let g ∈ Z . By the definition of the set Z , f(ρ(g)) = 0. Since f has no
multiple roots, ρ(g) is semisimple. We claim that g is Ad-semisimple. Indeed,
since ker(ρ) is discrete, the differential dρ : g → gl(V) of ρ is injective. So
the action of Ad(g) on g is equivalent to the action of Ad(ρ(g))|dρ(g) on dρ(g).
Since ρ(g) acts semisimply on V , Ad(ρ(g)) acts semisimply on gl(V), and then
Ad(ρ(g))|dρ(g) acts semisimply on dρ(g). This verifies the claim.

Denote a1 = ker(1−Ad(g)), a2 = Im(1−Ad(g)). Since Ad(g) is semisim-
ple, g = a1 ⊕ a2 . Define a map ϕg : a1 ⊕ a2 → G by

ϕg(Y1, Y2) = eY2eY1ge−Y2 , Y1 ∈ a1, Y2 ∈ a2.

Then it is easy to compute the differential (dϕg)(0,0) : a1 ⊕ a2 → TgG of ϕg at
(0, 0) as

(dϕg)(0,0)(Y1, Y2) = (drg)e(Y1 + (1− Ad(g))Y2),

where rg is the right translation on G induced by g . Since Ad(g) is semisimple,
the restriction of 1 − Ad(g) on a2 = Im(1 − Ad(g)) is a linear automorphism.
Hence (dϕg)(0,0) is a linear isomorphism. By the Implicit Function Theorem, there
exist an open neighborhood U1 of 0 ∈ a1 and an open neighborhood U2 of 0 ∈ a2

such that the restriction of ϕg to U1 × U2 ⊂ a1 ⊕ a2 is a diffeomorphism onto an
open neighborhood U = ϕg(U1 × U2) of g ∈ G .

Define a map αg : a1 → gl(V) by

αg(Y1) = f(ρ(eY1g)).

We claim that αg is an immersion at 0 ∈ a1 . Indeed, we have

(dαg)0(Y1) =
d

dt

∣∣∣
t=0
αg(tY1) =

d

dt

∣∣∣
t=0
f(etdρ(Y1)ρ(g)) = dρ(Y1)ρ(g)f

′(ρ(g)),

where f ′ is the derivative of f . Here the last step holds because etdρ(Y1) commutes
with ρ(g). Since f has no multiple roots, (f, f ′) = 1. So there exist polynomials
r, s such that fr+ f ′s = 1. Substitute ρ(g) for the indeterminate in this equality
and notice that f(ρ(g)) = 0, we get f ′(ρ(g))s(ρ(g)) = 1. So f ′(ρ(g)) is invertible.
Since ρ(g) is also invertible and dρ is injective, (dαg)0(Y1) = 0 implies Y1 = 0.
Hence αg is an immersion at 0 ∈ a1 . Thus, shrinking U1 if necessary, we may
assume that αg|U1 is injective.

Now for Y1 ∈ U1 , Y2 ∈ U2 , we have

f(ρ(ϕg(Y1, Y2))) = f(ρ(eY2)ρ(eY1g)ρ(eY2)−1) = ρ(eY2)f(ρ(eY1g))ρ(eY2)−1

=ρ(eY2)αg(Y1)ρ(e
Y2)−1.

So ϕg(Y1, Y2) ∈ Z ⇔ Y1 = 0, that is,

Z ∩ U = ϕg({0} × U2) = {eY2ge−Y2 |Y2 ∈ U2}.

This shows that every connected component of Z is an embedded submanifold of
G , which is necessarily closed by the definition of Z , and that every conjugacy
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class contained in Z is open in Z . But the connectedness of G implies that
conjugacy classes are connected. Hence every conjugacy class contained in Z is in
fact a connected component of Z . This proves (1).

(2) Similar to the proof of (1), the set z = zρ(f) is the union of some
adjoint orbits in g . Let X ∈ z . Then dρ(X) and ad(X) are semisimple.
Denote b1 = ker(ad(X)), b2 = Im(ad(X)). Then g = b1 ⊕ b2 . Define a map
ψX : b1 ⊕ b2 → g by

ψX(W1,W2) = Ad(eW2)(X +W1), W1 ∈ b1,W2 ∈ b2.

Then
(dψX)(0,0)(W1,W2) = W1 − ad(X)(W2).

Hence (dψX)(0,0) is a linear isomorphism, and then there exist an open neigh-
borhood V1 of 0 ∈ b1 and an open neighborhood V2 of 0 ∈ b2 such that the
restriction of ψX to V1×V2 ⊂ b1⊕ b2 is a diffeomorphism onto an open neighbor-
hood V = ψX(V1 × V2) of X ∈ g .

Define βX : b1 → gl(V) by

βX(W1) = f(dρ(X +W1)).

Then

(dβX)0(W1) =
d

dt

∣∣∣
t=0
βX(tW1) =

d

dt

∣∣∣
t=0
f(dρ(X) + tdρ(W1)) = dρ(W1)f

′(dρ(X)).

Similar to the proof of (1), we can prove f ′(dρ(X)) is invertible. So
(dβX)0(W1) = 0 implies W1 = 0, that is, βX is an immersion at 0 ∈ b1 . Shrinking
V1 if necessary, we may assume that βX |V1 is injective.

Now for W1 ∈ V1 , W2 ∈ V2 , we have

f(dρ(ψX(W1,W2))) =f(dρ(Ad(eW2)(X +W1))) = f(ρ(eW2)dρ(X +W1)ρ(e
W2)−1)

=ρ(eW2)f(dρ(X +W1))ρ(e
W2)−1 = ρ(eW2)βX(W1)ρ(e

W2)−1.

So ψX(W1,W2) ∈ z ⇔ W1 = 0, that is,

z ∩ V = ψX({0} × V2) = {Ad(eW2)(X)|W2 ∈ V2}.

Then an argument similar to the proof of (1) shows that every connected compo-
nent of z is a closed embedded submanifold of g , and is an adjoint orbit. This
proves (2).

Theorem 2.1 has the following obvious corollary.

Corollary 2.2. Let G be a connected Lie group with Lie algebra g, and let
ρ : G→ GL(V) be a representation of G in a finite dimensional real vector space
V. Suppose ker(ρ) is discrete. We have
(1) If C is a conjugacy class of G such that ρ(C) contains a semisimple element
A of GL(V), then C is a closed embedded submanifold of G, and is a connected
component of the set

Z = {g ∈ G|fA(ρ(g)) = 0},
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where fA is the minimal polynomial of A;
(2) If O is an adjoint orbit in g such that dρ(O) contains a semisimple element
B of gl(V), then O is a closed embedded submanifold of g, and is a connected
component of the set

z = {X ∈ g|fB(dρ(X)) = 0},
where fB is the minimal polynomial of B .

3. Finiteness of Γ(C)

Let G be a connected Lie group with Lie algebra g . Let C be a conjugacy class
of G , and let O be an adjoint orbit in g . The subset Γ(C) = ΓG(C) of the center
Z(G) of G is defined by

ΓG(C) = g−1C ∩ Z(G), g ∈ C.

The subset γ(O) = γg(O) of the center Z(g) of g is defined by

γg(O) = (−X +O) ∩ Z(g), X ∈ O.

For convenience, denote

Γ0(C) = Γ(C) ∩ Z(G)0 = g−1C ∩ Z(G)0, g ∈ C,

where Z(G)0 is the identity component of Z(G). In this section we prove some
properties of Γ(C) and γ(O), especially the finiteness of Γ(C) and the triviality
of γ(O) under the Ad-semisimplicity or ad-semisimplicity condition.

Lemma 3.1. (1) Γ(C) is independent of the choice of the element g ∈ C ;
(2) γ(O) is independent of the choice of the element X ∈ O .

Proof. (1) Let g1, g2 ∈ C . Then g1 = hg2h
−1 for some h ∈ G . Hence we have

g−1
1 C ∩ Z(G) = hg−1

2 h−1C ∩ Z(G) = hg−1
2 (h−1Ch)h−1 ∩ Z(G)

=hg−1
2 Ch−1 ∩ Z(G) = h(g−1

2 C ∩ Z(G))h−1 = g−1
2 C ∩ Z(G).

(2) Let X1, X2 ∈ O . Then X1 = Ad(g)X2 for some g ∈ G . Hence

(−X1 +O) ∩ Z(g) = (−Ad(g)X2 +O) ∩ Z(g)

= Ad(g)(−X2 +O) ∩ Z(g) = Ad(g)((−X2 +O) ∩ Z(g))

= (−X2 +O) ∩ Z(g).

For an element g in G , we denote by ZG(g) the centralizer of g in G , and
denote

NG(g) = {h ∈ G|g−1hgh−1 ∈ Z(G)}.
NG(g) is a closed subgroup of G containing ZG(g). In fact, if we let
π : G→ G/Z(G) be the quotient homomorphism, then NG(g) = π−1(ZG/Z(G)(π(g))).
Similarly, for an element X in the Lie algebra g of G , denote by ZG(X) the cen-
tralizer of X in G , and denote

NG(X) = {h ∈ G| −X + Ad(h)X ∈ Z(g)}.

Then NG(X) = π−1(ZG/Z(G)(dπ(X))) is a closed subgroup of G containing ZG(X).
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Lemma 3.2. (1) Γ(C) is a Lie subgroup of Z(G), and is isomorphic to
NG(g)/ZG(g) for every g ∈ C ;
(2) γ(O) is a Lie subgroup of the vector group Z(g), and is isomorphic to
NG(X)/ZG(X) for every X ∈ O .

Proof. (1) Let g ∈ C . Define a smooth map α : NG(g) → Z(G) by

α(h) = g−1hgh−1.

We claim that α is a homomorphism of Lie groups. Indeed, let h1, h2 ∈ NG(g),
then

α(h1)α(h2) = (g−1h1gh
−1
1 )(g−1h2gh

−1
2 )

=g−1h1g(g
−1h2gh

−1
2 )h−1

1 = g−1(h1h2)g(h1h2)
−1 = α(h1h2).

It is obvious that the kernel of α is ZG(g), and the image of α is Γ(C) =
g−1C∩Z(G). So Γ(C) is a Lie subgroup of Z(G), and is isomorphic to NG(g)/ZG(g).

(2) Let X ∈ O . Define β : NG(X) → Z(g) by

β(h) = −X + Ad(h)X.

For g1, g2 ∈ NG(X), we have

β(g1g2) = −X + Ad(g1g2)X

=(−X + Ad(g1)X) + (−Ad(g1)X + Ad(g1)Ad(g2)X)

=β(g1) + Ad(g1)(−X + Ad(g2)X) = β(g1) + Ad(g1)β(g2) = β(g1) + β(g2).

So β is a homomorphism of Lie groups. The kernel of β is ZG(X), the image of β
is γ(O) = (−X+O)∩Z(g). So γ(O) is a Lie subgroup of Z(g), and is isomorphic
to NG(X)/ZG(X).

For an adjoint orbit O in g , exp(O) is a conjugacy class of G . γ(O) and
Γ(exp(O)) have the following relation.

Lemma 3.3. exp(γ(O)) ⊂ Γ0(exp(O)).

Proof. Let X ∈ O . If Y ∈ γ(O), then there exists h ∈ G such that
Y = −X + Ad(h)X . Since Y ∈ Z(g), heXh−1 = eAd(h)X = eX+Y = eXeY . So
eY = e−XheXh−1 ∈ e−X exp(O) ∩ Z(G)0 = Γ0(exp(O)). This shows exp(γ(O)) ⊂
Γ0(exp(O)).

Let π : G → G′ be a covering homomorphism of Lie groups. Then for a
conjugacy class C of G , π(C) is a conjugacy class of G′ . The next lemma relates
ΓG(C) with ΓG′(π(C)).

Lemma 3.4. π(ΓG(C)) = ΓG′(π(C)).
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Proof. First we claim that Z(G) = π−1(Z(G′)). Indeed, let z ∈ π−1(Z(G′)),
and let α : G→ G be the map defined by α(h) = hzh−1z−1 . Then α(G) ⊂ ker(π).
Since α(G) is connected containing the identity e of G , and ker(π) is discrete, we
have α(G) = {e} . So z ∈ Z(G). This shows π−1(Z(G′)) ⊂ Z(G). It is obvious
that Z(G) ⊂ π−1(Z(G′)). Hence Z(G) = π−1(Z(G′)). Now we choose a g ∈ C ,
then

π(ΓG(C)) = π(g−1C ∩ Z(G)) = π(g−1C ∩ π−1(Z(G′)))

= π(g−1C) ∩ Z(G′) = π(g)−1π(C) ∩ Z(G′) = ΓG′(π(C)).

The following lemma demonstrates a rough understanding of Γ(C) and
γ(O) under the semisimplicity assumptions.

Lemma 3.5. (1) If C is an Ad-semisimple conjugacy class of G, g ∈ C , then
the Lie algebras of NG(g) and ZG(g) coincide, and Γ(C) is a 0-dimensional Lie
subgroup of Z(G);
(2) If O is an ad-semisimple adjoint orbit in g, X ∈ O , then the Lie algebras
of NG(X) and ZG(X) coincide, and γ(O) is a 0-dimensional Lie subgroup of the
vector group Z(g).

Proof. (1) Since ZG(g) ⊂ NG(g), to prove their Lie algebras coincide, it is
sufficient to show that for every X in the Lie algebra of NG(g), X belongs to the
Lie algebra of ZG(g). For such an X , we have g−1etXge−tX ∈ Z(G) for every
t ∈ R . So etXe−tAd(g)X = g(g−1etXge−tX)g−1 ∈ Z(G). This implies that
(1− Ad(g))X belongs to the Lie algebra of Z(G), and then (1− Ad(g))2X = 0.
Since C is Ad-semisimple, Ad(g) is semisimple. So we in fact have
(1−Ad(g))X = 0. But the Lie algebra of ZG(g) is ker(1−Ad(g)). So X belongs
to the Lie algebra of ZG(g). Hence the Lie algebras of NG(g) and ZG(g) coincide.
As the image of the homomorphism α constructed in the proof of Lemma 3.2,
Γ(C) is a 0-dimensional Lie subgroup of Z(G).

(2) Similar to the proof of (1), let Y be an element of the Lie algebra
of NG(X). Then −X + Ad(etY )X ∈ Z(g) for every t ∈ R . This implies
that ad(Y )X ∈ Z(g). So ad(X)2Y = −ad(X)(ad(Y )X) = 0. Since X is ad-
semisimple, ad(X)Y = 0. This shows that Y belongs to the Lie algebra of ZG(X).
So the Lie algebras of NG(X) and ZG(X) coincide, and γ(O) is a 0-dimensional
Lie subgroup of Z(g).

Remark 3.6. We only need the discreteness of Γ(C) in Z(G) in the proof
Theorem 1.2. By Lemma 3.5, Γ(C) is 0-dimensional when C is Ad-semisimple.
But this does not imply that Γ(C) is discrete in Z(G). To get the discreteness of
Γ(C), we have to show that it is finite. If fact, if Γ(C) could be infinite for some
connected Lie group G and some Ad-semisimple conjugacy class C of G , we would
easily construct a discrete central subgroup D of G×R such that Γ(G×R)/D(π(C))
is not discrete, where π : G→ (G× R)/D is the covering homomorphism.

The remaining of this section is devoted to the proof of the finiteness of Γ(C)
and the Lie algebra counterpart. Some results on real algebraic groups are needed.
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We understand the Zariski topology on GLn(R) as the topology for which a closed
set is the set of common zeros of a family of real polynomial functions on GLn(R)
with indeterminates gij (1 ≤ i, j ≤ n) and 1

det g
, where g = (gij) ∈ GLn(R). It is

obvious that if G is a Lie subgroup of GLn(R), then the Zariski closure G of G
is also a Lie subgroup of GLn(R).

Lemma 3.7. Let G be a connected Lie subgroup of GLn(R) for some n, G
the Zariski closure of G in GLn(R). If g ∈ G is Ad-semisimple in G, then it is

Ad-semisimple in G.

Proof. Let g = gsgu be the multiplicative Jordan decomposition of g in

GLn(R), where gs is semisimple, gu is unipotent. It is well-known that gs, gu ∈ G
(see, for example, [3, Chapter 1, Section 4]). Then Ad

G
(g) = Ad

G
(gs) ·Ad

G
(gu) is

the multiplicative Jordan decomposition of Ad
G
(g) in GL(g), where g is the Lie

algebra of G . Since the Lie algebra g of G in invariant under Ad
G
(g), it is also

invariant under Ad
G
(gs) and Ad

G
(gu). So Ad(g) = Ad

G
(gs)|g · Ad

G
(gu)|g is the

multiplicative Jordan decomposition of Ad(g) in GL(g). But by the assumption,
Ad(g) is semisimple. So Ad

G
(gu)|g = 0. This implies that G ⊂ Z

G
(gu). Since

Z
G
(gu) is Zariski closed, we have G ⊂ Z

G
(gu), that is, gu ∈ Z(G). So Ad

G
(gu) =

1, and then Ad
G
(g) = Ad

G
(gs) is semisimple, that is, g is Ad-semisimple in G .

Lemma 3.8. Let G be a connected Lie subgroup of GLn(R) for some n, C an
Ad-semisimple conjugacy class of G. Then Γ(C) is a finite subgroup of Z(G).

Proof. Let G be the Zariski closure of G in GLn(R), and let C ′ be the

conjugacy class of G containing C . Choose a g ∈ C . Since g is Ad-semisimple

in G , by Lemma 3.7, g is Ad-semisimple in G . by Lemma 3.5, the Lie algebras
of N

G
(g) and Z

G
(g) coincide. Since N

G
(g) can be expressed as

N
G
(g) = {h ∈ G|(g−1hgh−1)x = x(g−1hgh−1),∀x ∈ G},

which is algebraic, by Whitney’s Theorem [9], N
G
(g) has finitely many con-

nected components. So as a quotient group of the component group of N
G
(g),

N
G
(g)/Z

G
(g) is finite. Hence Γ

G
(C ′) ∼= N

G
(g)/Z

G
(g) is finite.

We claim that Z(G) ⊂ Z(G). Indeed, if z ∈ Z(G), then ZGLn(R)(z) is an

algebraic subgroup of GLn(R) containing G . So ZGLn(R)(z) contains G , that is,

z ∈ Z(G). This shows Z(G) ⊂ Z(G). Now we have

ΓG(C) = g−1C ∩ Z(G) ⊂ g−1C ′ ∩ Z(G) = Γ
G
(C ′).

Hence ΓG(C) is finite. This proves the lemma.

Lemma 3.9. Let G be a connected semisimple Lie group, C an Ad-semisimple
conjugacy class of G. Then Γ(C) is a finite subgroup of Z(G).



An 549

Proof. Let Aut(g) be the automorphism group of the Lie algebra g of G .
Since

Aut(g) = {A ∈ GL(g)|fX,Y (A) = 0,∀X, Y ∈ g},

where

fX,Y (A) = A[X, Y ]− [AX,AY ]

is algebraic, Aut(g) is an algebraic subgroup of GL(g). Choose g ∈ C . Then
Ad(g) ∈ Aut(g). By Whitney’s Theorem, ZAut(g)(Ad(g)) has finitely many con-
nected components. Since G is semisimple, Ad(G) is the identity component of
Aut(g). So ZAd(G)(Ad(g)) = ZAut(g)(Ad(g)) ∩Ad(G) has finitely many connected
components. Since the kernel of the epimorphism Ad : G → Ad(G) is Z(G),
which is discrete, NG(g)/Z(G) ∼= ZAd(G)(Ad(g)) has finitely many connected com-
ponents.

On the other hand, we have

Γ(C) ∼= NG(g)/ZG(g) ∼= (NG(g)/Z(G))/(ZG(g)/Z(G)).

By Lemma 3.5, the Lie algebras of NG(g) and ZG(g) coincide. So the Lie algebras
of NG(g)/Z(G) and ZG(g)/Z(G) coincide. We have shown that NG(g)/Z(G) has
finitely many connected components. So Γ(C) ∼= (NG(g)/Z(G))/(ZG(g)/Z(G)) is
finite.

Now we can prove the finiteness of Γ(C) and the triviality of γ(O) under
the semisimplicity assumptions.

Theorem 3.10. Let G be a connected Lie group with Lie algebra g. We have
(1) If C is an Ad-semisimple conjugacy class of G, then Γ(C) is a finite subgroup
of Z(G);
(2) If O is an ad-semisimple adjoint orbit in g, then γ(O) is trivial.

Proof. (1) By Lemma 3.4, we may assume that G is simply connected. Let
R = Rad(G). By Levi’s Theorem, there is a connected semisimple subgroup L of
G such that G = Ro L . Note that R and L are simply connected.

We first prove that R ∩ Γ(C) is finite. Let Λ(L) be the linearizer of L
(by definition, Λ(L) is the intersection of the kernels of all finite dimensional
representations of L). By considering the adjoint representation of L in the
Lie algebra of G , we know that Λ(L) ⊂ Z(G). Since L/Λ(L) admits a finite
dimensional faithful representation (see [7, Chapter 5, Section 3, Theorem 8]),
by a theorem of Harish-Chandra [5], G/Λ(L) ∼= R o (L/Λ(L)) admits a finite
dimensional faithful representation. Since C is Ad-semisimple in G , π(C) is
Ad-semisimple in G/Λ(L), where π : G → G/Λ(L) is the quotient homomor-
phism. By Lemma 3.8, ΓG/Λ(L)(π(C)) is finite. Since Λ(L) is discrete, by Lemma
3.4, π(Γ(C)) = ΓG/Λ(L)(π(C)) is finite. Since R ∩ Λ(L) is trivial, the restriction
of π to R ∩ Γ(C) is injective. So R ∩ Γ(C) is finite.

Now consider the quotient homomorphism α : G → G/R . Since α(C) is
Ad-semisimple in G/R , by Lemma 3.9, ΓG/R(α(C)) is finite. But the kernel of the
homomorphism α|Γ(C) : Γ(C) → ΓG/R(α(C)) is R ∩ Γ(C), which we have shown
is finite. So α(C) is finite. This proves (1).
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(2) We may assume that G is simply connected. Since O is ad-semisimple,
exp(O) is an Ad-semisimple conjugacy class of G . By item (1) of the theorem,
Γ(exp(O)) is finite. So Γ0(exp(O)) = Γ(exp(O)) ∩ Z(G)0 is a finite subgroup of
Z(G)0 . But the simple connectedness of G implies that Z(G)0 is simply connected
(see [8, Corollary 3.18.6]), which is isomorphic to a vector group. So Γ0(exp(O)) is
in fact trivial. By Lemma 3.3, exp(γ(O)) is trivial. But the simple connectedness
of Z(G)0 implies that the restriction of the exponential map to Z(g) is injective.
In particular, exp |γ(O) is injective. So γ(O) is trivial.

Remark 3.11. Our proof of item (2) of Theorem 3.10 is based on item (1) of
that theorem. But one can also give a direct proof of item (2). To do this, one
can embed g into some gln(R) using Ado’s Theorem, consider the connected Lie
subgroup G′ of GLn(R) with Lie algebra g , and then consider the Zariski closure

G′ of G′ . In this course one need a result similar to Lemma 3.7, that is, if X ∈ g is

ad-semisimple in g , then it is ad-semisimple in the Lie algebra of G′ . The details
are similar to the proof of Lemma 3.8 and are omitted here.

4. Proof of Theorem 1.2 (1)

In this section we prove the closedness of Ad-semisimple conjugacy classes in
connected Lie groups and ad-semisimple adjoint orbits in real Lie algebras.

Theorem 4.1. Let G be a connected Lie group with Lie algebra g. Then
(1) Ad-semisimple conjugacy classes in G are closed embedded submanifolds of G;
(2) ad-semisimple adjoint orbits in g are closed embedded submanifolds of g.

Proof. Let G′ = G/Z(G)0 , where Z(G)0 is the identity component of the
center Z(G) of G . Let π : G → G′ be the quotient homomorphism. Then
the adjoint representation Ad : G → GL(g) induces naturally a representation
ρ : G′ → GL(g), such that ρ ◦ π = Ad. Note that ker(ρ) is discrete in G′ .

(1) Let C be an Ad-semisimple conjugacy class of G . Then C ′ = π(C) is
a conjugacy class of G′ . Since all elements of ρ(C ′) = Ad(C) are semisimple in
GL(g), by Corollary 2.2, C ′ is a closed embedded submanifold of G′ . So

M = π−1(C ′) = C · Z(G)0

is a closed embedded submanifold of G .

Now consider the transitive action of G×Z(G)0 on the manifold M , defined
by

(h, z).x = hxh−1z.

Choose a g ∈ C ⊂M , and let L ⊂ G× Z(G)0 be the isotropic group of g . Then
the map

ϕ : (G× Z(G)0)/L→M

defined by
ϕ((h, z)L) = hgh−1z

is a diffeomorphism.
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By Theorem 3.10, Γ(C) = g−1C ∩ Z(G) is a finite subgroup of Z(G). So
Γ0(C) = g−1C ∩ Z(G)0 = Γ(C) ∩ Z(G)0 is a finite subgroup of Z(G)0 . Then
Z(G)0/Γ0(C) is a Lie group. Let

α : G× Z(G)0 → Z(G)0/Γ0(C)

be the epimorphism defined by

α(h, z) = [z],

where [z] is the image of z under the quotient homomorphism

Z(G)0 → Z(G)0/Γ0(C).

For (h, z) ∈ L , hgh−1z = (h, z).g = g , so z−1 = g−1hgh−1 ∈ Γ0(C), and then [z]
is trivial in Z(G)0/Γ0(C). This shows that L ⊂ ker(α). Then α induces a smooth
map

α̃ : (G× Z(G)0)/L→ Z(G)0/Γ0(C)

defined by
α̃((h, z)L) = [z].

It is obvious that (G×Z(G)0)/L is a fiber bundle with base space Z(G)0/Γ0(C),
fiber type α̃−1([e]), and projection α̃ .

We claim that
α̃−1([e]) = ϕ−1(C).

Firstly, let (h, z)L ∈ α̃−1([e]). Then [z] = [e] , that is, z ∈ Γ0(C). So there exists
k ∈ G such that z = g−1kgk−1 . Then

ϕ((h, z)L) = hgh−1z = hgzh−1 = hg(g−1kgk−1)h−1 = (hk)g(hk)−1 ∈ C,

that is, (h, z)L ∈ ϕ−1(C). Conversely, let (h′, z′)L ∈ ϕ−1(C). Then there
exists k′ ∈ G such that ϕ((h′, z′)L) = h′gz′h′−1 = k′gk′−1 . This implies z′ =
g−1(h′−1k′)g(h′−1k′)−1 . So z′ ∈ Γ0(C). Hence (h′, z′)L ∈ α̃−1([e]). This verifies
the claim.

As the fiber above [e] , ϕ−1(C) = α̃−1([e]) is a closed embedded subman-
ifold of (G × Z(G)0)/L . Since ϕ is a diffeomorphism, C is a closed embedded
submanifold of M , hence a closed embedded submanifold of G . Item (1) is proved.

(2) Let O be an ad-semisimple adjoint orbit in g . Then O′ = dπ(O) is an
adjoint orbit in g′ , the Lie algebra of G′ . Since all elements of dρ(O′) = ad(O) is
semisimple in gl(g), by Corollary 2.2, O′ is a closed embedded submanifold of g′ .
So

N = (dπ)−1(O′) = O + Z(g)

is a closed embedded submanifold of g .

Consider the transitive action of G× Z(g) on the manifold N , defined by

(h, Y ).W = Ad(h)W + Y.

Choose an X ∈ O ⊂ N , and let K ⊂ G×Z(g) be the isotropic group of X . Then
the map

ψ : (G× Z(g))/K → N
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defined by
ψ((h, Y )K) = Ad(h)X + Y

is a diffeomorphism.

Let
β : G× Z(g) → Z(g)

be the projection to the second factor. For (h, Y ) ∈ K , Ad(h)X+Y = (h, Y ).X =
X , so −Y = −X + Ad(h)X ∈ γ(O). But by Theorem 3.10, γ(O) is trivial. So
Y = 0. This shows that K ⊂ ker(β). Then β induces a smooth map

β̃ : (G× Z(g))/K → Z(g)

defined by
β̃((h, Y )K) = Y.

It is obvious that (G×Z(g))/K is a fiber bundle with base space Z(g), fiber type

β̃−1(0), and projection β̃ . Similar to the proof of (1), we have β̃−1(0) = ψ−1(O).

As the fiber above 0 ∈ Z(g), ψ−1(O) = β̃−1(0) is a closed embedded
submanifold of (G × Z(g))/K . Since ψ is a diffeomorphism, O is a closed
embedded submanifold of N , hence a closed embedded submanifold of g . This
proves (2).

5. Proof of Theorem 1.2 (2)

In this section we prove Theorem 1.2 (2) in a more general setting. We first prove
a lemma.

Lemma 5.1. Let π : G → G′ be a covering homomorphism of connected Lie
groups. If C ′ is an Ad-semisimple conjugacy class of G′ , then every connected
component of π−1(C ′) is a conjugacy class of G.

Proof. By Theorem 4.1, C ′ is a closed embedded submanifold of G′ . Let C̃
be a connected component of π−1(C ′). Then C̃ is a closed embedded submanifold

of G . Since G is connected, C̃ is invariant under the conjugation of G . Let
C be a conjugacy class of G contained in C̃ . By Theorem 4.1, C is a closed
embedded submanifold of G , hence a closed embedded submanifold of C̃ . But
dimC = dimC ′ = dim C̃ . By the connectedness of C̃ , we must have C = C̃ .

Remark 5.2. Lemma 5.1 does not hold without the Ad-semisimplicity as-
sumption.

Theorem 1.2 (2) and its Lie algebra counterpart are obvious corollaries of
the following theorem.

Theorem 5.3. Let α : H → G be a homomorphism of connected Lie groups.
Suppose ker(α) is discrete. Let the Lie algebras of G and H be g and h, respec-
tively. We have
(1) If C is an Ad-semisimple conjugacy class of G, then every connected compo-
nent of α−1(C) is a conjugacy class of H ;
(2) If O is an ad-semisimple adjoint orbit in g, then every connected component
of (dα)−1(O) is an adjoint orbit in h.
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Proof. (1) We first observed that α−1(C) is invariant under the conjugation
of H . So α−1(C) is the union of a family of conjugacy classes of H . But the
connectedness of H implies that conjugacy classes of H are connected. So every
connected component of α−1(C) is the union of a family of conjugacy classes of
H . We prove that every connected component of α−1(C) is a conjugacy class of
H . The proof is divided into three steps.

Step (a). We prove (1) under the additional assumptions that α is injective
and Γ(C) is trivial. In this case, H can be identified with α(H), which is a
Lie subgroup of G , and then α−1(C) is identified with C ∩H . Note that under
this identification, the prior topology on H may be different from the subspace
topology on H induced from G . We call the prior topology on H the H -topology,
and call a connected component of C ∩ H with respect to the H -topology an
H -connected component of C ∩H .

Let Ci be an H -connected component of C ∩ H . Consider the adjoint
homomorphism AdG = Ad : G → Ad(G). Then AdG(Ci) ⊂ AdG(C) ∩ AdG(H).
Let C ′

i be the AdG(H)-connected component of AdG(C) ∩ AdG(H) containing
AdG(Ci). Since all elements of AdG(C) are semisimple, by Corollary 2.2, the
conjugacy class AdG(C) in Ad(G) is an Ad(G)-connected component of Z =
{A ∈ Ad(G)|f(A) = 0} , where f is the minimal polynomial of AdG(h0) for
some h0 ∈ H . So C ′

i is an AdG(H)-connected component of Z ∩ AdG(H). By
Corollary 2.2 again, we conclude that C ′

i is a conjugacy class of AdG(H). Let
g1, g2 ∈ Ci . Then AdG(g1),AdG(g2) ∈ C ′

i , and then there exists h ∈ H such
that AdG(g2) = AdG(h)AdG(g1)AdG(h)−1 . So g2 = hg1h

−1z for some z ∈ Z(G).
But g1 and g2 are conjugate in G . So there is g ∈ G such that g2 = gg1g

−1 .
This implies gg1g

−1 = hg1h
−1z = hg1zh

−1 . Hence z = g−1
1 (h−1g)g1(h

−1g)−1 ∈
g−1
1 C ∩ Z(G) = Γ(C). But we have assumed that Γ(C) is trivial. So z = e , and

then g2 = hg1h
−1 . This shows that Ci is a conjugacy class of H .

Step (b). We prove (1) under the additional assumption that α is injective.
As we have done in step (a), we identify H with α(H). Let G′ = G/Γ(C).
By Theorem 3.10, Γ(C) is finite. So the quotient homomorphism π : G → G′

is a covering homomorphism. In particular, π|H : H → α(H) is a covering
homomorphism. Let Ci be an H -connected component of C ∩ H , and let C ′

be a conjugacy class of H contained in Ci . Then π(C ′) is a conjugacy class of
π(H), and we have π(C ′) ⊂ π(Ci) ⊂ π(C)∩π(H). Let C ′

i be the π(H)-connected
component of π(C) ∩ π(H) containing π(Ci). By Lemma 3.4, ΓG′(π(C)) =
π(Γ(C)) is trivial. So by step (a), C ′

i is a conjugacy class of π(H) containing π(C ′).
This forces π(C ′) = π(Ci) = C ′

i . Hence C ′ ⊂ Ci ⊂ (π|H)−1(C ′
i). By Lemma 5.1,

C ′ is an H -connected component of (π|H)−1(C ′
i). As an H -connected subset of

(π|H)−1(C ′
i) containing C ′ , Ci must coincide with C ′ . So Ci is a conjugacy class

of H .

Step (c). We finish the proof of item (1). Let Ci be a connected component
of α−1(C), and let C ′

i be the α(H)-connected component of C ∩α(H) containing
α(Ci). Then Ci is a connected component of α−1(C ′

i). But by step (b), C ′
i is a

conjugacy class of α(H). So by Lemma 5.1, Ci is a conjugacy class of H .

(2) Since dα is injective, h can be viewed as a subalgebra of g . We want to
prove that if O ∩ h is nonempty, then every connected component of O ∩ h is an
adjoint orbit in h . Let Oi be a connected component of O ∩ h . Then adg(Oi) ⊂
adg(O)∩adg(h). Let O′

i be the connected component of adg(O)∩adg(h) containing
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adg(Oi). Since all elements of adg(O) are semisimple, by Corollary 2.2, the adjoint
orbit adg(O) in ad(g) is a connected component of z = {B ∈ ad(g)|p(B) = 0} ,
where p is the minimal polynomial of adg(Y0) for some Y0 ∈ h . So O′

i is a
connected component of z ∩ adg(h). By Corollary 2.2 again, we conclude that O′

i

is an adjoint orbit in adg(h). Let X1, X2 ∈ Oi . Then adg(X1), adg(X2) ∈ O′
i ,

and then there exists h ∈ H such that adg(X2) = Ad(AdG(h))adg(X1). So
X2 = AdG(h)X1 + Y for some Y ∈ Z(g). But X1 and X2 lie in the same
adjoint orbit in g . So there is g ∈ G such that X2 = AdG(g)X1 . This implies
Y = −AdG(h)X1 + AdG(g)X1 ∈ γ(O). By Theorem 3.10, γ(O) is trivial. So
Y = 0, and then X2 = AdG(h)X1 + Y . This shows that Oi is an adjoint orbit in
h . (2) is proved.
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