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1. Introduction

Let M be a smooth manifold endowed with a smooth action of a compact Lie group
G . We denote by c(G, M) the cohomogeneity of the action, i.e. the codimension
of the principal orbits in M, and by H a principal isotropy subgroup. In [6, p.
194] Bredon proved the following inequality for the dimension of the fixed point
set of a maximal torus T in G :

dim MT 6 c(G, M)− rk G + rk H

whenever MT is nonempty. Drawing on this fact, Püttmann introduced in [21]
the homogeneity rank of (G, M) as the integer

hrk(G, M) := rk G− rk H − c(G, M).

In this paper we are interested in studying actions on quaternionic projective spaces
and there are at least two reasons to consider actions with vanishing homogeneity
rank.
A first motivation comes from the following proposition which can be deduced
from [21].

Proposition 1.1. Let M be a compact manifold with positive Euler character-
istic acted on by a compact Lie group G. Then hrk(G, M) 6 0.
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Indeed quaternionic projective spaces (and more generally positive quaternionic-
Kähler manifolds, see [15]) have positive Euler characteristic, thus the actions we
aim to classify are those with maximal homogeneity rank and this fact turns out
to have remarkable consequences on the geometry of the action.
Furthermore, in the symplectic framework, Hamiltonian actions with vanish-
ing homogeneity rank have a precise geometric meaning. Let the compact Lie
group G act on the symplectic manifold (M, ω) in a Hamiltonian fashion, then
hrk(G, M) = 0 if and only if every principal orbit O of the G-action is coisotropic,
i.e. the symplectic orthogonal (TpO)ω is contained in TpO (such an action is said
to be coisotropic). If further M is compact and admits a G-invariant ω -compatible
complex structure J , then (M, ω, J) turns out to be a projective algebraic spher-
ical variety, that is the Borel subgroup of GC has an open orbit in M (see [10]).
Coisotropic actions on symplectic and Kähler manifolds have been extensively
studied starting from [8] and have been classified on Hermitian symmetric spaces
in [20], [4] and [3]. Linear actions with vanishing homogeneity rank have been con-
sidered by several authors: the classification in the complex case can be deduced
from [11] and [5], (while absolutely irreducible real representations with vanishing
homogeneity rank of compact Lie groups have been classified in [7]).

It is therefore rather natural to look for relations analogous to those found
in the complex/symplectic framework in the quaternionic setting.
Let M be a complete quaternionic Kähler manifold with positive scalar curvature
and Q the rank-3 sub-bundle of End TM defining the quaterionic Kähler struc-
ture. We say that a submanifold N of M is quaternion-coisotropic if for every
p∈N and J ∈Qp we have J(TpN)⊥ ⊆ TpN . The reason to consider the previous
definition is the fact that the principal orbits of polar actions on compact symmet-
ric quaternionic-Kähler manifolds are indeed quaternion-coisotropic [23] (in the
same way as polar actions on Kähler manifolds have coisotropic principal orbits
[19]).
A first result of this paper is an example of an action on the quaternionic pro-
jective space with vanishing homogeneity rank which is not quaternion-cosotropic
(Example 3.3). We further determine in our main theorem all the compact Lie
subgroups of Sp(n) acting with vanishing homogeneity rank on the quaternionic
projective space (see Definition 4.2 for the meaning of minimal action).

Theorem 1.2. Let ρ : G → Sp(V ) be a n-dimensional quaternionic represen-
tation of a compact connected Lie group. Then ρ induces a minimal vanishing
homogeneity rank action of G on PH(V ) ' HPn−1 if and only if one of the follow-
ing is satisfied:

1. G = Sp(1)n−1 and ρ = ρs ⊕ . . . ⊕ ρs ⊕ 1, where ρs : Sp(1) → Sp(H) is the
standard representation and 1 is the trivial representation on H;

2. G = H × Sp(1)r and ρ = σ ⊕ ρs ⊕ . . . ⊕ ρs , where σ : H → Sp(W ) is one
of the following 4(n− r)-dimensional quaternionic representation:

(a) H = S(U(k)× U(n− r − k)) ⊂ SU(n− r) ⊂ Sp(n− r) and k is odd;

(b) H = S(U(1)Sp(k)×U(n−r−k)) ⊂ S(U(2k)×U(n−r−2k)) ⊂ Sp(n−r);
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(c) H ×Sp(1) y W ⊗H H is orbit equivalent to the isotropy representation
of a quaternionic-Kähler symmetric space;

(d) H = Spin(7)⊗ Sp(1) ⊂ SO(8)⊗ Sp(1) ⊂ Sp(8).

Note that many of these actions turn out to be non polar.
The paper is organized as follows. In Section 2 we prove several lemmas about
the homogeneity rank necessary for the proof of the main theorem. Results about
polar actions on Wolf spaces and an example of a vanishing homogeneity rank
action which is not quaternion-coisotropic are provided in Section 3, while Section
4 is devoted to the classification actions on HPn−1 with vanishing homogeneity
rank.
Finally in the Appendix one can find some tables we refer to in the course of the
classification. These are taken from [12], [11], [5] and [7].
Notation. Lie groups and their Lie algebras will be indicated by capital and
gothic letters respectively. Moreover the notation for the fundamental weights Λi

of the simple Lie algebras follows the standard conventions as in [18], and we often
refer to irreducible representations through the corresponding maximal weights.

2. Homogeneity rank of compact Lie group actions

In this section we are going to prove several results about the homogeneity rank
which will be useful in the classification of actions with vanishing homogeneity rank
on quaternionic projective spaces. On the other hand these statements have an
autonomous interest since they hold in general for actions of compact Lie groups.

The following lemma allows us to by-pass (sometimes) the computation of
the principal isotropy subgroup.

Lemma 2.1. Let G be a compact connected Lie group acting on a compact
manifold M . Take p ∈ M and denote by δ the difference rk G − rk Gp and by
Σ the slice representation at p. Then hrk(G, M) = hrk(Gp, Σ) + δ . In particular
if the G-orbit through p has positive Euler characteristic, then the action of G
on M has vanishing homogeneity rank if and only if the slice representation at p
does.

Proof. Since the action of G on M is proper, it is known that at every point
the slice representation has the same cohomogeneity as that of the action of G
on M . Let Σ be the slice for the action at p . Let q ∈ Σ be principal both
for the G-action on M and the Gp -action on Σ (which is equivalent to the slice
representation). Obviously (Gp)q = Gq = Gprinc . Thus

hrk(G, Σ) = rk Gp − rk (Gp)q − c(Gp, Σ)

= rk G− δ − rk Gq − c(G, M) = hrk(G, M)− δ ,

and the conclusion follows. The last statement is a consequence of the well known
fact that the homogeneous space G/Gp has positive Euler characteristic if and
only if rk G = rk Gp .

In order to achieve the classification, the following result proved in [7,
Proposition 2] will be essential.
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Proposition 2.2. Let G′ be a closed subgroup of the Lie group G acting
smoothly and properly on M . Then hrk(G′, M) 6 hrk(G, M).

One of its immediate consequences is the following property of the homogeneity
rank of reducible representations.

Lemma 2.3. Let ρi : G → GL(Vi) (i = 1, 2) be two finite-dimensional repre-
sentations of the compact Lie group G. Then hrk(G, V1 ⊕ V2) 6 hrk(G, V1) +
hrk(G, V2).

Proof. Let vi be a principal point of (G, Vi) for i = 1, 2. Denote by Oi = G/Hi

the corresponding orbits.
Now consider the action of G on V1 ⊕ V2 . The slice representation at (v1, 0)
is V2 ⊕ U where (G, V2) is the original action and U is a trivial G-module of
dimension c(G, V1). Now (v2, 0) is obviously principal for the slice representation,
so that a principal isotropy subgroup H of (G, V1 ⊕ V2) is (H1, V2)princ . Thus we
have c(G, V ) = c(G, V1) + c(H1, V2) and therefore

hrk(G, V ) = rk G− rk H − c(G, V )

= rk G− rk (H1, V2)princ − c(H1, V2)− c(G, V1)

= rk G− rk H1 + hrk(H1, V2)− c(G, V1)

= hrk(G, V1) + hrk(H1, V2) 6 hrk(G, V1) + hrk(G, V2)

This concludes the proof.

Another important tool in the classification carried out in Section 4 will be
the following proposition which generalizes, in the case of positive Euler character-
istic, the Restriction Lemma given in [10] for complex G-invariant submanifolds
of Hamiltonian isometric actions on compact Kähler manifolds.

Proposition 2.4. Let G be a compact connected Lie group acting by isome-
tries on a compact Riemannian manifold M . Let Y be a compact G-invariant
submanifold of M such that χ(Y ) > 0. If hrk(G, M) = 0, then hrk(G, Y ) = 0.

Proof. Let νMY be the normal bundle to Y in M . Since Y is compact, we can
use the invariant version of the tubular neighborhood theorem (see e.g. [6, p. 306])
to get a G-equivariant diffeomorphism of an open G-invariant neighborhood U of
the zero section of νMY onto an open G-invariant neighborhood W of Y in M .
Now, since W is open in M and G acts with vanishing homogeneity rank on M ,
the G-action on W has vanishing homogeneity rank too, hence also hrk(G, U) = 0.
Consider now the restriction of the natural projection π|U : U → Y . Let y ∈ Y be
such that

1. y is principal for the action of G on Y ;

2. F := π−1
|U (y) ⊂ U has non-empty intersection with Mprinc .

Now consider the action of Gy on F and take x ∈ F such that

1. x ∈ Mprinc ;
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2. x is principal for the action of Gy on F .

Since the action of Gy on F ∼= νM(Y )y is linear, the homogeneity rank of
this action is non-positive ([21, corollary 1.2]), i.e.

dim F > dim Gy − dim Gx + rk Gy − rk Gx.

Thus we can compute

c(G, Y ) = dim Y − dim G + dim Gy = dim X − dim F − dim G + dim Gy

6 dim X − (dim Gy − dim Gx + rk Gy − rk Gx)− dim G + dim Gy

= c(G, X)− rk Gy + rk Gx = rk G− rk Gy,

so that hrk(G, Y ) > 0. On the other hand the positive Euler characteristic of Y
obstructs actions with positive homogeneity rank (Proposition 1.1) and the claim
follows.

In the case of the quaternionic projective space we deduce also the following
useful consequence

Corollary 2.5. Let G1 and G2 be closed subgroups respectively of Sp(n1) and
Sp(n2). Assume that the action of G = G1 ×G2 on PH(Hn1 ⊕Hn2) ' HPn1+n2−1

has vanishing homogeneity rank. Then Gi acts on PH(Hni) ' HPni−1 with homo-
geneity rank zero.

Proof. Simply take two non-zero vectors v1 and v2 respectively in Hn1 and
Hn2 and consider the orbits Oi = G · [vi] ' HPni−1 . Now apply Proposition 2.4 to
the orbits O1 and O2 .

3. Quaternion-coisotropic actions and the vanishing of the
homogeneity rank

In order to introduce the right notion of “coisotropic” actions in the quaternionic
setting, it is necessary to fix some notation. Let (M, g) be a Riemannian manifold
and ∇ its Levi-Civita connection. A quaternionic-Kähler structure on M is
a ∇-parallel rank 3 subbundle Q of End TM , which is locally generated by a
triple of locally defined anticommuting g -orthogonal almost complex structures
(J1, J2, J3 = J1J2). Recall that a quaternionic-Kähler manifold is automatically
Einstein, hence if its scalar curvature is positive it is automatically compact. Here
we consider only positive quaternionic-Kähler manifolds.
A submanifold N of M will be called quaternion-coisotropic if for every p ∈ N
and J ∈ Qp we have J(TpN)⊥ ⊆ TpN . Trying to seek the analogy with the
symplectic context, it is rather natural to consider the following situation.

Definition 3.1. Let (M, g,Q) be a quaternionic-Kähler manifold. We say that
the action of a compact Lie group of isometries of M is quaternion-coisotropic if
the principal orbits are quaternion-coisotropic submanifolds of M .
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Recall that an isometric action of a compact Lie group G on a Riemannian mani-
fold M is said to be polar if there is an embedded submanifold Σ (a section) which
meets all principal orbits orthogonally. In [23] it is proved, using the classification
results of [19] and [13], that quaternion-coisotropic actions generalize polar ac-
tions on Wolf spaces [23, Theorem 4.10] in the same manner as coisotropic actions
generalize polar actions on compact Kähler manifolds ([20]). The classification of
polar actions on quaternion projective space has been obtained by Podestà and
Thorbergsson up to orbit equivalence. Recall that two isometric actions of two Lie
groups G and G′ on a Riemannian manifold M are called orbit equivalent if there
exists an isometry of M which maps G-orbits onto G′ -orbits. Here we restate the
classification theorem because in the statement of [19] a (trivial) case is missing.

Theorem 3.2. [19] The isometric action of a compact Lie group G on HPn−1

is polar if and only if it is orbit equivalent to the action induced by a n-dimensional
quaternionic representation ρ1 ⊕ . . . ⊕ ρk where ρi is the isotropy representation
of a quaternionic-Kähler symmetric space of rank one for i = 1, . . . , k − 1 and ρk

is one of the following:

1. the isotropy representation of a quaternionic-Kähler symmetric space of ar-
bitrary rank;

2. the trivial representation on a 1-dimensional quaternionic module H.

Note that the missing case (this including a trivial module) is easily seen to be
quaternion-coisotropic.
In spite of these analogies, the parallel with the symplectic setting does not go
further, indeed we have the following

Example 3.3. Consider the action of G = U(k) × U(n − k) ⊂ U(n) ⊂ Sp(n)
on M = HPn−1 . It is not hard to see that, for k > 3, the Lie algebra of principal
isotropy subgroup is isomorphic to u(k−2)⊕u(n−k−2) whence the cohomogeneity
of the action is 4 and the homogeneity rank vanishes. Suppose now that the
principal orbits are quaternion-coisotropic and consider the lifted action of G on
the twistor space Z = CP2n−1 (It is the S2 -bundle associated to Q , see [22]). In
general, when we lift an isometric action with hrk = 0 of a compact Lie group on
a positive quaternionic-Kähler manifold, three cases may occur according to the
cohomogeneity of the action of a principal isotropy subgroup Gp on the twistor
line Zp ' CP1 :

1. The action of Gp on Zp is transitive. In this case c(G, Z) = c(G, M).
Furthermore a G-principal orbit of Z is G/Gz . If we take into account the
homogeneous fibration G/Gz → G/Gp where Gp/Gz = S2 and the fact that
S2 has positive Euler characteristic, we have rk Gz = rk Gp , and we can
compute

hrk(G, Z) = rk G− rk Gz − c(G, Z)

= rk G− rk Gp − c(G, M) = 0

2. The action of Gp on Zp has cohomogeneity one. Again, if z is principal for
the Gp -action on Zp , then it is principal for the G-action on Z . Furthermore
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the homogeneous fibration G/Gz → G/Gp has fibre S1 = Gp/Gz , hence
rk Gz = rk Gp− 1. Now, taking into account that c(G, Z) = c(G, M)+1, by
a dimensional computation we obtain that also in this case the G-action on
Z is coisotropic.

3. The connected component of the identity of Gp acts trivially on Zp . In this
case the G-action on Z is no more coisotropic.

One easily verifies that in our case the homogenity rank of the lifted action is
−2, that is the G-action on Z is not coisotropic. This implies that the connected
component H of Gp acts trivially on the twistor line Zp ' CP1 . Now denote
by ν the normal space to the G-orbit at p which is acted on trivially by H .
On the other hand, if J1, J2, J3 are three generators of the algebra Qp , these are
fixed by H thanks to the argument above. Thus H pointwisely fixes the three 4-
dimensional mutually orthogonal subspaces J1ν, J2ν and J3ν of Tp G · p . But this
is impossible since we claim that a subspace of Tp G · p fixed by H has dimension
8. Indeed in correspondence to a principal point we have the following reductive
decomposition:

u(k)⊕u(n−k) = u(k−2)⊕u(n−k−2)⊕u(2)⊕u(2)⊕(C2⊗Ck−2)⊕(C2⊗Cn−k−2).

Hence we can identify the tangent space to the principal orbit with

u(2)⊕ u(2)⊕ (C2 ⊗ Ck−2)⊕ (C2 ⊗ Cn−k−2)

on which u(k− 2)⊕ u(n− k− 2) acts. Then H fixes the two copies of u(2), thus
has dimension 8, as claimed.

4. Actions with vanishing homogeneity rank on HPn−1 : proof of
Theorem 1.2

The entire section is devoted to prove Theorem 1.2. The strategy of the classifi-
cation is based upon the following lemma which is a consequence of Proposition
2.2.

Lemma 4.1. Let G be a compact Lie group acting by isometries on a compact
quaternionic-Kähler manifold M . If G′ is a closed subgroup of G acting on M
with hrk(G′, M) = 0, the same is true for G.

Proof. Every compact quaternionic-Kähler manifold has positive Euler char-
acteristic (see [15, Theorem 0.3]). As already observed this forces the homogeneity
rank to be non-positive. The claim follows applying Proposition 2.2.

Thus it is natural to state the following

Definition 4.2. A G-action with vanishing homogeneity rank on a manifold
M is said to be minimal if no closed subgroup G′ of G acts on M with vanishing
homogeneity rank.
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From now on we fix M = HPn−1 = Sp(n)/Sp(1)Sp(n− 1) and we aim to classify
minimal subgroups G of Sp(n) with hrk(G, M) = 0.
Since the identity component of Iso(HPn−1, g) is Sp(n), we go through all the
closed subgroups of it, starting from the maximal ones and then analysing only
the subgroups of those giving rise to vanishing homogeneity rank actions.
We proceed, in some sense, by strata: the first level is made by the maximal
connected subgroups of Sp(n), then we pass to the maximal connected subgroups
of the groups of the previous level and so on. To this end we enclose in the appendix
the list of maximal connected subgroups of classical Lie groups. Note that not all
the images of irreducible representations of simple Lie groups are maximal, but
this fact will not interfere with our proof.
Before starting the classification we state two more lemmas holding for manifolds
with positive Euler characteristic:

Lemma 4.3. Cohomogeneity one G-actions on a manifold M with χ(M) > 0
have hrk(G, M) = 0.

Proof. In this case rk G− rk Gprinc 6 1 and cannot be zero since otherwise the
homogeneity rank would be odd which is impossible since hrk(G, M) has the same
parity as dimR M (see [21, Theorem A]).

The following is immediate.

Lemma 4.4. A necessary condition for an action of G on M with χ(M) > 0
to have vanishing homogeneity rank is that

dim G + rk G > dim M. (1)

Due to the characterization of Lemma 2.1 of actions with vanishing homogeneity
rank in terms of representations, we will make extensive use of the classification
results on (irreducible) representations with hrk = 0.
Vanishing homogeneity rank representations admitting an invariant complex struc-
ture are exactly multiplicity free (or coisotropic) representations, which have been
classified by Kac [11] (the irreducible ones) and by Benson and Ratcliff [5] and
Leahy [14] (the reducible ones). Their results are resumed in Tables 1,2 and 3,4
respectively. These tables need some explanation. First of all in Table 3 it is meant
that U(1)×G acts on V = V1 ⊕ V2 as follows

(z, g) · (v1, v2) = g(zav1, z
bv2) ,

where a, b ∈ Z are fixed, and in Table 4 U(1)×U(1)×G acts on V = V1 ⊕ V2 as
follows

(z1, z2, g) · (v1, v2) = g(z1v1, z2v2) .

Moreover the classification of reducible multiplicity free representations refers only
to indecomposable ones. Recall that a representation ρ : G → V of a Lie group
G is indecomposable if we cannot write V as the direct sum V = V1 ⊕ V2 of
proper ρ(G)-invariant subspaces in such a way that ρ(G) = ρ1(G)× ρ2(G), where
ρi denotes the restriction to Vi .

Vanishing homogeneity rank irreducible representations admitting no in-
variant complex structure (absolutely irreducible real representations) have been
classified in
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Theorem 4.5. [7] An absolutely irreducible representation ρ of a compact con-
nected Lie group G has vanishing homogeneity rank if and only if it is either orbit-
equivalent to the isotropy representation af a non-Hermitian symmetric space of
inner type or is one of the representations listed in Table 5.

Finally in order to clarify our procedure we make one more observation.
When considering the irreducible representations of simple Lie groups one must
often check the dimensional condition (1) or a variation of it. This is made easier
by the fact that if (c1, . . . , cn) are the coefficients of the maximal weights of the
representation of a rank n simple Lie group, then the function

(c1, . . . , cn) 7→ deg(ρ(c1,...,cn)),

is strictly monotonic, i.e. if ρ and ρ′ are two irreducible representations of a
simple compact Lie group with highest weights λ and λ′ , given by (c1, . . . , cn)
and (c′1, . . . , c

′
n) respectively, and if ci 6 c′i for all i and ci < c′i for at least one

i , then deg ρ < deg ρ′ (see [17]). Then, in many cases it is sufficient to test the
dimensional condition for the fundamental representations, and go further only if
the condition is satisfied.

4.1. Maximal subgroups of Sp(n)

4.1.1. G = U(n). The action of U(n) on HPn−1 , has cohomogeneity 1, thus
has vanishing homogeneity rank.

4.1.2. G = Sp(k) × Sp(n − k) (1 6 k 6 n). These subgroups act by
cohomogeneity 1 on HPn−1 , thus hrk = 0.

4.1.3. G = SO(p)⊗ Sp(q) (n = pq , p > 3, q > 1).For q > 2 we can compute
the slice representation at the quaternionic line ` spanned by a pure element of
Rp ⊗ R4q . The algebra of the stabilizer is o(p− 1)⊕ sp(1)⊕ sp(q − 1) acting on

Rp−1 ⊗ (U ⊕ R4(q−1)) (2)

where U can be seen as the 3-dimensional vector space of the imaginary quater-
nions on which Sp(1) acts by conjugation (see [12, p. 590]). Note that Sp(1) acts
also on R4(q−1) ∼= Hq−1 by right multiplication. If p is odd the G-orbit of ` has
positive Euler characteristic so we can easily rule out this case by observing that
the irreducible factor Rp−1⊗Hq−1 , regarded as a complex representation, does not
appear in Table 1.
So we are left to consider the cases in which p is even. To get rid of the action
on the slice of the unitary quaternions, let us consider the stabilizer of a principal
element of Rp−1 ⊗ U : such an element is of the form v1 ⊗ i + v2 ⊗ j + v3 ⊗ k ,
where v1, v2, v3 are linear independent elements of Rp−1 . Here the algebra of the
stabilizer H is o(p − 4) ⊕ sp(q − 1) and the slice contains as a direct summand
the tensor product of the standard representations V = Rp−4 ⊗ R4(q−1) . Since at
this level δ = rk G− rk H = 3, applying Lemma 2.1, in order to exclude also this
case it is enough to show that hrk(H, V ) 6 −4. Indeed this is easy to verify once
we subdivide into three more subcases and we compute explicitly the principal
isotropy of H on V . If q > p− 4 then hprinc = sp(q− p + 3); if p− 6 6 q 6 p− 3
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then hprinc is trivial; if q 6 p− 8 then hprinc = sp(p− q − 6) (see e.g. [9, p. 202])
and in all these cases hrk(H, V ) 6 −4 (note that the equality holds only if q = 1).
For q = 1 this is the action on HPp−1 induced by the isotropy representation of
the quaternionic-Kaehler symmetric space SO(p + 4)/SO(p) × SO(4), thus it is
polar by Theorem 3.2. To determine whether it has vanishing homogeneity rank
or not we have to distinguish according to the parity of p . If p is odd the G-
orbit of ` has positive Euler characteristic, the slice representation at ` is real
and appears in the classification of Theorem 4.5 since it is orbit equivalent to the
isotropy representation of the real Grassmannian of 3-planes in Rp+2 . Thus it has
vanishing homogeneity rank. When p is even, at the first step the slice is given
by Rp−1 ⊗ U and with easy computations we find that the principal isotropy is
hprinc = sp(p− 4), c = 3 hence hrk = 0.

4.1.4. G = ρ(H) with ρ complex irreducible representation of quaternionic
type of the simple Lie group H . In this case the dimensional condition that
should be satisfied becomes dim H + rk H > 2 deg ρ − 4. Going through all the
representations of this type, the following cases remain:

1. the representation of SU(6) on Λ3C6 ;

2. the representation of Sp(3) with maximal weight (0, 0, 1);

3. the spin representation of Spin(11);

4. the two half-spin representations of Spin(12);

5. the standard representation of E7 on C56 .

6. the standard representation of SU(2);

Except for SU(2), that gives rise to a homogeneity rank zero action, since it
has cohomogeneity one on HP1 ' S4 , the other cases can be treated using the
fact that all of them admit a totally complex orbit (see [2] and also [1]). These
totally complex submanifolds are Hermitian symmetric spaces, and therefore have
positive Euler characteristic. Thus we compute the slice representation on these
orbits, obtaining:

1. SU(3)× SU(3) · U(1) on C3 ⊗ C3 ⊗ C ;

2. SU(3) · U(1) on S2(C3)⊗ C ;

3. SU(5) · U(1) on Λ2(C5)⊗ C ;

4. SU(6) · U(1) on Λ2(C6)⊗ C ;

5. E6 · U(1) on C27 ⊗ C .

These all give rise to vanishing homogeneity rank actions, since they are all
multiplicity free (see Tables 1 and 2).
Let us remark that all of these actions on the quaternionic projective space are
polar.



Bedulli and Gori 827

4.2. The subgroups of U(n) ⊂ Sp(n). First note that the maximal compact
connected subgroups of U(n) are SU(n) and those of the form Z ·H where Z is
the center of U(n) and H is a maximal compact connected subgroup of SU(n)
(see Table 7).
Certainly SU(n) has vanishing homogeneity rank on HPn−1 since it has the same
orbits of U(n), so let us go through the remaining cases.

4.2.1. G = Z · S(U(k)×U(n− k)) = U(k)×U(n− k).We start by computing
the slice representation at the class of the identity in Sp(n)/Sp(1)Sp(n− 1). The
stabilizer is given by the intersection of G with Sp(1)Sp(n − 1). In this way we
get U(1)× U(k − 1)× U(n− k) acting on the slice

Σ = (C∗ ⊗ (Ck−1)∗)⊕ (C∗ ⊗ (Cn−k)∗)⊕ (C∗ ⊗ Cn−k) .

Now it is immediate to see that the principal isotropy group is isomorphic to
U(k−2)×U(n−k−2) so that the cohomogeneity is 4 and the action has vanishing
homogeneity rank.

Remark 4.6. Observe that the slice representation we just considered is com-
plex, indecomposable and has vanishing homogeneity rank, though it does not ap-
pear in the classification of Benson and Ratcliff (Tables 3 and 4). In fact they
consider only representations (G, V ) which are indecomposable for the semisimple
part of G.

4.2.2. G = Z · Sp(k) with n = 2k . Proceeding as before we determine the
orbit through the class of the identity in Sp(n)/Sp(1)Sp(n − 1). Again we get
an orbit with positive Euler characteristic, more precisely the Lie algebra of the
isotropy is z⊕ u(1)⊕ sp(k− 1) and the slice representation is given by Hk−1⊕C ,
where the 1-dimensional factor z acts (non-trivially) only on C and u(1) acts
by scalar multiplication on Hk−1 . Thus the algebra of the principal isotropy is
isomorphic to u(1)⊕ sp(k − 2) and hrk(G, HPn−1) = 0.
Note that the action of the center here is essential: Once the action of Z is removed,
there is a trivial module in the slice representation. Therefore Sp(k) ⊂ SU(2k) ⊂
Sp(2k) does not have hrk = 0 on HPn−1 .

4.2.3. G = Z · SO(n). First consider the totally complex orbit of U(n) ⊃
SO(n) which is CPn−1 canonically embedded in HPn−1 . This orbit in its turn
contains a Lagrangian G-orbit (RPn−1 canonically embedded). Here the 1-
dimensional factor of the isotropy z⊕o(n−1) acts on the slice Rn−1⊕C2(n−1)⊗C∗

only on the second module. From this one easily sees that gprinc ' o(n − 4) and
the cohomogeneity is therefore 5. Thus hrk(G, HPn−1) = −2 and the action has
non-zero homogeneity rank.

4.2.4. G = Z · SU(p) ⊗ SU(q) (n = pq and p, q > 2). Here G acts on
PH(Cp⊗Cq⊕(Cp⊗Cq)∗). The orbit through the quaternionic line spanned by a pure
element of Cp⊗Cq is the product of two complex projective spaces CPp−1×CPq−1

and therefore has positive Euler characteristic. So we are in a position to apply the
criterion deriving from Lemma 2.1. The slice representation contains the module
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Cp−1 ⊗ Cq−1 ⊕ (Cp−1 ⊗ Cq−1)∗ on which z ⊕ u(1) ⊕ u(p − 1) ⊕ u(1) ⊕ u(q − 1)
acts. If p > 3 this module does not appear in the classification in Tables 3 and
4, thus the corresponding action has non-zero homogeneity rank. The case p = 2
is left to consider: If q 6 5 the dimensional condition (1) is not even satisfied, if
q > 6 it is easy to find directly that the principal isotropy is su(q− 4), so that the
homogeneity rank is −2.

4.2.5. G = Z · ρ(H) with ρ irreducible representation of complex type of
the simple Lie group H . If G acts with vanishing homogeneity rank on HPn−1

then, by Proposition 2.4, it acts coisotropically on the G-invariant totally complex
submanifold L = CPn−1 = U(n)/U(1) × U(n − 1) and, since Z acts trivially on
L this is in turn equivalent to the fact that the representation of ρ(H)C × C∗

on Cn is multiplicity free. Using Tables 1 and taking only the representations of
complex type we get the standard representation of SU(n), the representations
of SU(n) on Λ2(Cn) with n > 5 and on S2

0(Cn), the half-spin representation of
Spin(10), the standard representation of E6 on C26 . We have to consider those
representations of complex type satisfying the dimensional condition that in this
case becomes dim H +rk H > 4 deg ρ− 6. The only remaining case is the first one
and has already been treated in subsection 4.2.

4.3. The subgroups of U(k) × U(n − k) ⊂ U(n). Except the diagonal
subgroup (when 2k = n), the maximal compact connected subgroups of U(k) ×
U(n− k) are S(U(k)×U(n− k)) and those of the form H ×U(n− k) where H is
a maximal compact connected subgroup of U(k). For the subgroups of this form
we can apply Corollary 2.5 arguing that H must necessarily act with vanishing
homogeneity rank on HPk−1 . Thus for H we have only two possibilities: either
H = U(k1)× U(k2) (with k1 + k2 = k ) or H = Z · Sp(k/2) (when k is even).

4.3.1. H = U(k1) × U(k2). We can exploit the previous computations and
consider the orbit CPk1−1 ⊂ CPk−1 ⊂ CPn−1 ⊂ HPn−1 ; so the slice representation
is given by

C∗ ⊗ ((Ck1−1)∗ ⊕ Ck2 ⊕ (Ck2)∗ ⊕ Cn−k ⊕ (Cn−k)∗) .

on which U(1) × U(k1 − 1) × U(k2) × U(n − k) acts. Analogously to a previous
case it is easy to see that the principal isotropy group is isomorphic to U(k1 −
2)× U(k2 − 2)× U(n− k − 2) so that the cohomogeneity is 8 and the action has
homogeneity rank equal to −2.

4.3.2. H = Z · Sp(k/2).We can compute the slice representation at the class
of the identity in

Sp(n)/Sp(1)Sp(n− 1).
The intersection of g with sp(1)⊕ sp(n−1) is u(1)⊕u(1)⊕ sp(k/2−1)⊕u(n−k)
acting on the slice

Cn−k ⊕ (Cn−k)∗ ⊕Hk/2−1 ⊕ C ,

where one of the two 1-dimensional copies of u(1) acts on every module and
the other only on the first two modules. Now it is immediate to see that the
principal isotropy subalgebra is isomorphic to sp(k/2− 2)⊕ u(n− k − 2) so that
the cohomogeneity is 5 and the action has vanishing homogeneity rank.
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4.3.3. G = U(k)∆ ⊂ U(k) × U(k) with n = 2k . In order to conclude that
U(k)∆ has non-zero homogeneity rank on HPn−1 it is sufficient to observe that
U(k)∆ ⊂ Sp(k)∆ ⊂ Sp(k) × Sp(k) and that the action of Sp(k)∆ on HPn−1 is
equivalent to that of Sp(k) ⊂ U(2k) since the standard representation of Sp(k)
on C2k is self-dual.

4.4. The subgroups of G = Z(U(n)) · Sp(k) ⊂ U(n) (with n = 2k). Now
we are going to show that the action of Z(U(n)) · Sp(k) ⊂ U(n) is minimal as
vanishing homogeneity rank action. The maximal compact connected subgroups
of G other than Sp(k) (that we have considered in a previous step) are of the form
Z ·H where H is a maximal compact connected subgroup of Sp(k).

4.4.1. H = U(k). As for this subgroup the conclusion follows immediately
from the observation that Z ·U(k) is contained in Z · SO(2k) which does not act
with vanishing homogeneity rank on HPn−1 .

4.4.2. H = SO(p) ⊗ Sp(q) with 2pq = n. If Z · H acts with vanishing
homogeneity rank on HPn−1 , then it should act coisotropically on the totally
complex U(2pq)-orbit CP2pq−1 , but this is not the case as one can deduce from
Tables 1,2 3 and 4.

4.4.3. H = ρ(H ′) ⊂ Sp(k) where ρ is an irreducible representation of quater-
nionic type of the simple Lie group H ′ .We can argue as in subsection 4.2.5, that is
we apply our version of restriction lemma combined with the classification of Kac.
In this way we find no proper subgroup H of Sp(k).

4.4.4. H = Sp(r)× Sp(k− r) with 1 6 r 6 k− 1. Here it is sufficient to note
that Z(U(2k)) ·H is a subgroup of Z(U(r)) ·Sp(r)×Z(U(k−r)) ·Sp(k−r) whose
action on HPn−1 has non-zero homogeneity rank.

4.5. The subgroups of Z(U(k))·Sp(r)×U(n−k) ⊂ U(n) with k = 2r . Now
we prove that the vanishing homogeneity rank action of Z(U(2r))·Sp(r)×U(n−2r)
is minimal. Since the action of Z(U(2r)) · Sp(r) is minimal, by Proposition 2.4,
the only subgroups we need to consider are of the form Z(U(2r)) · Sp(r) × H ,
where H is a maximal compact connected subgroup of U(n − 2r) acting with
vanishing homogeneity rank on HPn−2r−1 . There are three possibilities for H :
H1 = U(k1)×U(k2) with k1 + k2 = n− 2r , H2 = Z(U(n− 2r)) · Sp(n−2r

2
) (when

n is even), H3 = SU(n − 2r). The subgroup Z(U(2r)) · Sp(r) ×H1 is contained
in U(2r)× U(k1)× U(k2), hence its action has non-zero homogeneity rank.
The subgroup Z(U(2r)) · Sp(r) × H2 need to be treated explicitly, finding the
intersection of it with Sp(1)Sp(n− 1). In this way we get the isotropy subalgebra
l = u(1)⊕ u(1)⊕ u(1)⊕ sp(r − 1)⊕ sp(n/2− r) acting on the slice

Hr−1 ⊕Hn/2−r ⊕Hn/2−r ⊕ C⊕ C .

Since the abelian subalgebra of l acts on the 1-dimensional modules, this action
has vanishing homogeneity rank on each irreducible submodule, nevertheless it is
easy to see that the principal isotropy is sp(r − 2) ⊕ sp(n/2 − r − 2). Therefore
the cohomogeneity is 8 and hrk(Z(U(2r)) · Sp(r)×H2, HPn−1) = −2.
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As for Z(U(2r)) · Sp(r) × H3 it is sufficient to observe that it induces on
the quaternionic projective space the same action of Sp(r)×U(n− 2r), which has
non-zero homogeneity rank.
This concludes the analysis of the subgroups of U(n) ⊂ Sp(n).

4.6. The subgroups of G = ρ(H) with ρ irreducible representation of
quaternionic type of the simple Lie group H . We have to examine only
those subgroups that in case 4.1.4 give rise to vanishing homogeneity rank actions.
We exclude all of them simply noting that none of the subgroups of maximal
dimension satisfy the dimensional condition (1). The list of subgroups of maximal
dimension is given in [16] and can be found also in [12].

4.7. The subgroups of G = SO(n)⊗ Sp(1). Now we prove that the action
of SO(n)⊗ Sp(1) is minimal except for n = 8.
A maximal compact connected subgroups of G is conjugate to one of the form
H1 ⊗H2 where H1 is either a compact connected maximal subgroup of SO(n) or
SO(n) itself, and H2 is either Sp(1) or U(1). The subgroup SO(n)⊗ U(1) is the
same as Z(U(n)) · SO(n) ⊂ U(n) that we have already excluded (see case 4.2.3),
so let us turn to the case H1 ⊗ Sp(1) and look at Table 6 for maximal subgroups
of SO(n).

4.7.1. H1 = U(k) where n = 2k . It is easy to find the slice representation at
the quaternionic line ` spanned by a pure element of Rk ⊗ R4 starting from (2).
The stabilizer subalgebra is u(k − 1)⊕ sp(1) acting on

Ck−1 ⊗R R3 ⊕ R3

where R3 stands for the adjoint representation of o(3) ' sp(1). It follows imme-
diately that the principal isotropy subalgebra is isomorphic to u(k − 4) if n > 5,
otherwise it is trivial. In any case the homogeneity rank is -4.

4.7.2. H1 = S(O(k) × O(n − k)). The isotropy subalgebra at ` ∈ HPn−1 is
o(k − 1)⊕ o(n− k)⊕ sp(1) acting on

Rk−1 ⊗ R3 ⊕ Rn−k ⊗ R3 ⊕ Rn−k .

Here, in the general case, we are not allowed to skip the computation of the prin-
cipal isotropy subalgebra. Nevertheless it is not hard to find that it is isomorphic
to o(k− 4)⊕ o(n− k− 4) for k, n− k > 6 so that c = 13 and hrk = −8. If either
k or n − k are smaller than 6, a similar argument leads to the same conclusion.
The remaining low-dimensional cases can be excluded using (1).

4.7.3. H1 = SO(p) ⊗ SO(q) with n = pq . The isotropy subalgebra at ` ∈
HPn−1 is o(p− 1)⊕ o(q − 1)⊕ sp(1) acting on

Σ = (Rp−1 ⊗ Rq−1)⊕ (Rp−1 ⊗ Rq−1 ⊗ R3)⊕ (Rp−1 ⊗ R3)⊕ (Rq−1 ⊗ R3) .

Let us distinguish three subcases according to the parity of p and q . If p and
q are odd then the orbit through ` has positive Euler characteristic but the real
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irreducible module Rp−1 ⊗Rq−1 ⊗R3 has negative homogeneity rank (it does not
appear in the classification of Theorem 4.5).
If only one among p and q is even (say p), then the orbit has no more positive
Euler characteristic but, with the notations of Lemma 2.1, we have δ = 1. Thus
it is sufficient to show that hrk(G`, Σ) 6 −2. Thanks to Lemma 2.3

hrk(G`, Σ) 6 hrk(O(p− 1)×O(q − 1)×O(3), Rp−1 ⊗ Rq−1 ⊗ R3) +

hrk(O(p− 1)×O(3), Rp−1 ⊗ R3) 6 −2 .

If both p and q are even, we have δ = 2, but

hrk(G`, Σ) 6 hrk(O(p− 1)×O(q − 1)×O(3), Rp−1 ⊗ Rq−1 ⊗ R3) +

hrk(O(p− 1)×O(3), Rp−1 ⊗ R3) +

hrk(O(q − 1)×O(3), Rq−1 ⊗ R3) 6 −3 .

4.7.4. H1 = Sp(p) ⊗ Sp(q) with n = 4pq > 8. This action has no orbit of
positive Euler characteristic. If p, q > 2 the isotropy subalgebra at ` ∈ HPn−1 is
sp(p− 1)⊕ sp(q − 1)⊕ sp(1) acting on

(U ⊗ R3)⊕ (Hp−1 ⊗ R3)⊕ (Hq−1 ⊗ R3)⊕M ⊗ R3)⊕M ⊕ U ,

where M = M(p− 1, q− 1, H) and U is the adjoint representation of sp(1). Here
δ = 2 but hrk(Sp(p− 1)×Sp(1), Hp−1⊗R3) = −8 . Thus the action has non-zero
homogeneity rank.
Obviously this module appears in the slice even when q = 1, so we get no new
vanishing homogeneity rank actions.

4.7.5. H1 = ρ(K) with ρ irreducible representation of real type of the simple
Lie group K . We here use again the dimensional condition (1) that in this situation
becomes

dim K + rk K > 4 deg ρ− 8.

Kollross in lemma 2.6 in [12] lists all the representations σ of real type of Lie
groups L such that 2 dim L > deg σ − 2. This condition is always looser than
ours. Counting the dimensions for the groups and the representations from this
list, we have that only the spin representation of K = Spin(7) and the standard
representations of SO(n) satisfy the condition. The latter correspond to the case
treated in subsection 4.7. Let us compute hrk(Spin(7)× Sp(1), HP7). As usually
we consider the orbit through the quaternionic line ` spanned by a pure tensor of
R8⊗R4 . It turns out to be the seven-dimensional sphere Spin(7)/G2 and the slice
representation is the tensor product of the standard representation of G2 with the
adjoint representation of Sp(1). It is well known (see e.g. [7, p. 11]) that this
irreducible representation has trivial principal isotropy and from this follows that
hrk(Spin(7)× Sp(1), HP7) = 0.

4.8. The subgroups of Sp(k) × Sp(n − k). We analyse this case with the
aid of the following lemma:

Lemma 4.7. Let G ⊆ Sp(N) be a compact Lie group acting with vanishing ho-

mogeneity rank on HPN−1 . Then G̃ = G×Sp(n) acts with vanishing homogeneity
rank on HPN+n−1 = PH(HN ⊕Hn).
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Proof. If v is taken in Hn , the G̃-orbit through [v] in HPN+n−1 = PH(HN⊕Hn)

is HPn−1 . Therefore the action of G̃ has homogeneity rank zero if and only if the
slice representation at this quaternionic orbit has vanishing homogeneity rank.
Note that the last factor of the isotropy subgroup G × Sp(1) · Sp(n − 1) acts
trivially on the slice Σ[v] ' HN . Consider now the natural projection of HN \ {0}
on HPN−1 . This is an equivariant fibration with fiber H . Thus arguing as in
Proposition 2.4 we deduce that

hrk(G× Sp(1), HN) = hrk(G, HPN−1) + hrk(Sp(1), H)

and the claim follows since both the homogeneity ranks in the right hand side of
the equality vanish.

As a consequence, combining the previous lemma with Proposition 2.4 we obtain
the following

Corollary 4.8. The group G ⊆ Sp(n) acts on HPn−1 with vanishing homo-
geneity rank if and only if G× Sp(N) ⊆ Sp(n)× Sp(N) on HPn+N−1 does.

The previous corollary avoid the analysis of those subgroups of Sp(k)×Sp(n−k) of
the form H1×H2 where either H1 or H2 equals Sp(k) or Sp(n−k). Except for the
diagonal action of Sp(k)∆ when k = n−k (which has already been excluded), it is
therefore sufficient to analyse all the subgroups H1 ×H2 , where H1 ( Sp(k) acts
on HPk−1 and H2 ( Sp(n−k) acts on HPn−k−1 both with vanishing homogeneity
rank.
The cases that we shall consider are given by all possible combinations of the
following:

H1 = U(k), Sp(k1)× Sp(k2) with k1 + k2 = k,

SO(k)⊗ Sp(1), Spin(7)⊗ Sp(1), ρ(H1)

H2 = U(n− k), Sp(l1)× Sp(l2) with l1 + l2 = n− k,

SO(n− k)⊗ Sp(1), Spin(7)⊗ Sp(1), ρ(H2)

Where ρ(H1)⊗ σ and ρ(H2)⊗ σ are orbit equivalent to isotropy representations
of a quaternionic-Kähler symmetric space, where σ is the standard representation
of Sp(1).
The case U(k)×U(n− k) has already been treated, the cases in which one of the
factor is either Sp(k1)×Sp(k2) or Sp(l1)×Sp(l2) give rise to vanishing homogene-
ity rank actions thanks to Lemma 4.7.
The remaining cases can be all excluded with a common argument: we treat ex-
plicitly one of them and then we explain how to generalize.
Consider for example G = E7 × Spin(11) acting on PH(H28 ⊕ H16). Let E7/E6 ·
U(1) ⊆ HP27 ⊆ HP43 be the maximal totally complex orbit of G . The factor
U(1)× Spin(11) of the isotropy acts on the second module of the slice C27 ⊕H16

with non vanishing homogeneity rank, since it is neither the isotropy representa-
tion of a symmetric space of inner type nor it appears in Table 5.
Observe now that all of the factors of the products H1 × H2 we are considering
admit a totally complex orbit (see [2]). All the cases can therefore be excluded
in the same manner taking at a first step a maximal totally complex orbit for the
group H1 , and then observing that the slice representation contains a module on
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which the isotropy acts with non vanishing homogeneity rank.

The classification is now complete. In fact once one goes further the only
possibility that can occur is the product of three factors G1 ×G2 ×G3 where all
of Gi 6= Sp(ni) (otherwise this case can be treated with the aid of Lemma 4.7),
where each Gi gives rise to vanishing homogeneity rank action on HPni−1 . This
case can be easily excluded applying Proposition 2.4 to the product of two of the
factors.
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Appendix: Tables

We collect several tables that have been used during the classification. For
the notation see the explanation given before Theorem 4.5.

Table 1: Irreducible representations ρ : G → SU(V ) of compact connected Lie
groups G such that U(1)× ρ(G) acts irreducibly and coisotropically on V .

G ρ V cond.
SU(n) Λ1 Cn n ≥ 1
SO(n) Λ1 Cn n ≥ 3
Sp(n) Λ1 C2n n ≥ 2
SU(n) 2Λ1 S2Cn n ≥ 2
SU(n) Λ2 Λ2Cn n ≥ 4
SU(n)× SU(m) Λ1 ⊗ Λ1 Cn ⊗ Cm n, m ≥ 2
SU(2)× Sp(n) Λ1 ⊗ Λ1 C2 ⊗ C2n n ≥ 2
SU(3)× Sp(n) Λ1 ⊗ Λ1 C3 ⊗ C2n n ≥ 2
SU(n)× Sp(2) Λ1 ⊗ Λ1 Cn ⊗ C4 n ≥ 4
Spin(7) Λ3 C8

Spin(9) Λ4 C16

Spin(10) Λ4 C16

E6 Λ1 C27

G2 Λ1 C7

Table 2: Irreducible coisotropic representations in which the scalars are removable.

G ρ V cond.
SU(n) Λ1 Cn n ≥ 2
Sp(n) Λ1 C2n n ≥ 2
SU(2m + 1)) Λ2 Λ2C2m+1 m ≥ 2
SU(n)× SU(m) Λ1 ⊗ Λ1 Cn ⊗ Cm n, m ≥ 2, n 6= m
SU(n)× Sp(2) Λ1 ⊗ Λ1 Cn ⊗ C4 n ≥ 5
Spin(10) Λ4 C16
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Table 3: Reducible representations ρ : G → SU(V ) of compact connected Lie
groups G such that the action of U(1) × ρ(G) on V = V1 ⊕ V2 defined by
(z, g) · (v1, v2) = g(zav1, z

bv2) is coisotropic.

G ρ V cond.
SU(n) Λ1 ⊕ Λ1 Cn ⊕ Cn n ≥ 3, a 6= b
SU(n) Λn−1 ⊕ Λ1 Cn∗ ⊕ Cn n ≥ 3 a 6= −b
SU(2m) Λ1 ⊕ Λ2 C2m ⊕ Λ2C2m m ≥ 2, b 6= 0
SU(2m + 1) Λ1 ⊕ Λ2 C2m+1 ⊕ Λ2C2m+1 m ≥ 2, a 6= −mb
SU(2m) Λ2m−1 ⊕ Λ2 C2m∗ ⊕ Λ2C2m m ≥ 2, b 6= 0
SU(2m + 1) Λ2m ⊕ Λ2 C2m+1∗ ⊕ Λ2C2m+1 m ≥ 2, a 6= mb
SU(n)× SU(m) (Λ1 ⊗ 1)⊕ (Λ1 ⊗ Λ1) Cn ⊕ (Cn ⊗ Cm) 2 ≤ n < m, a 6= 0
SU(n)× SU(m) (Λ1 ⊗ 1)⊕ (Λ1 ⊗ Λ1) Cn ⊕ (Cn ⊗ Cm) m ≥ 2, n ≥ m + 2, a 6= b
SU(n)× SU(m) (Λn−1 ⊗ 1)⊕ (Λ1 ⊗ Λ1) Cn∗ ⊕ (Cn ⊗ Cm) 2 ≤ n < m, a 6= 0
SU(n)× SU(m) (Λn−1 ⊗ 1)⊕ (Λ1 ⊗ Λ1) Cn∗ ⊕ (Cn ⊗ Cm) m ≥ 2, n ≥ m + 2, a 6= −b
SU(2)× SU(2)× SU(n) (Λ1 ⊗ Λ1 ⊗ 1)⊕ (1⊗ Λ1 ⊗ Λ1) (C2 ⊗ C2)⊕ (C2 ⊗ Cn) n ≥ 3, a 6= 0
SU(n)× SU(2)× SU(m) (Λ1 ⊗ Λ1 ⊗ 1)⊕ (1⊗ Λ1 ⊗ Λ1) (Cn ⊗ C2)⊕ (C2 ⊗ Cm) n, m ≥ 3
SU(n)× SU(2)× Sp(m) (Λ1 ⊗ Λ1 ⊗ 1)⊕ (1⊗ Λ1 ⊗ Λ1) (Cn ⊗ C2)⊕ (C2 ⊗ C2m) n ≥ 3, m ≥ 2, b 6= 0

Table 4: Reducible representations ρ : G → SU(V ) of compact connected Lie
groups G such that the action of U(1)×U(1)× ρ(G) on V = V1 ⊕ V2 defined by
(z1, z2, g) · (v1, v2) = g(z1v1, z2v2) is coisotropic.

G ρ V cond.
SU(2) Λ1 ⊕ Λ1 C2 ⊕ C2

Sp(n) Λ1 ⊕ Λ1 C2n ⊕ C2n n ≥ 2
Spin(8) Λ3 ⊕ Λ1 C8 ⊕ C8

SU(n)× SU(n) (Λ1 ⊗ 1)⊕ (Λ1 ⊗ Λ1) Cn ⊕ (Cn ⊗ Cn) n ≥ 2
SU(n)× SU(n) (Λn−1 ⊗ 1)⊕ (Λ1 ⊗ Λ1) Cn∗ ⊕ (Cn ⊗ Cn) n ≥ 2
SU(n + 1)× SU(n) (Λ1 ⊗ 1)⊕ (Λ1 ⊗ Λ1) Cn+1 ⊕ (Cn+1 ⊗ Cn) n ≥ 2
SU(n + 1)× SU(n) (Λn ⊗ 1)⊕ (Λ1 ⊗ Λ1) Cn+1∗ ⊕ (Cn+1 ⊗ Cn) n ≥ 2
SU(2)× Sp(n) (Λ1 ⊗ 1)⊕ (Λ1 ⊗ Λ1) C2 ⊕ (C2 ⊗ C2n) n ≥ 2
SU(2)× SU(2)× Sp(n) (Λ1 ⊗ Λ1 ⊗ 1)⊕ (1⊗ Λ1 ⊗ Λ1) (C2 ⊗ C2)⊕ (C2 ⊗ C2n)
Sp(n)× SU(2)× Sp(m) (Λ1 ⊗ Λ1 ⊗ 1)⊕ (1⊗ Λ1 ⊗ Λ1) (C2n ⊗ C2)⊕ (C2 ⊗ C2m) n,m ≥ 2

Table 5: Homogeneity rank zero real irreducible representations which are not
orbit-equivalent to the isotropy representation of a non-Hermitian symmetric space
of inner type.

G ρ V cond.
Sp(1)× Sp(n) 3Λ1 ⊗H Λ1 S3C2 ⊗H C2n n ≥ 2
SO(4)× Spin(7) Λ1 ⊗R Λ3 R4 ⊗R R8

Sp(1)× Spin(11) Λ1 ⊗H Λ5 C2 ⊗H C32
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Table 6: Maximal subgroups of SO(n)
SO(k)× SO(n− k) 1 ≤ k ≤ n− 1

U(m) 2m = n
SO(p)⊗ SO(q) pq = n, 3 ≤ p ≤ q
Sp(p)⊗ Sp(q) 4pq = n

ρ(H) H simple, ρ ∈ IrrR, deg ρ = n

Table 7: Maximal subgroups of SU(n)
SO(n)
Sp(m) 2m = n
S(U(k)× U(n− k)) 1 ≤ k ≤ n− 1
SU(p)⊗ SU(q) pq = n, p ≥ 3, q ≥ 3
ρ(H) H simple, ρ ∈ IrrC, deg ρ = n

Table 8: Maximal subgroups of Sp(n)
U(n)

Sp(k)× Sp(n− k) 1 ≥ k ≥ n− 1
SO(p)⊗ Sp(q) pq = n, p ≥ 3, q ≥ 1

ρ(H) H simple, ρ ∈ IrrH, deg ρ = 2n
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