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Abstract. Let q be the tangent space to the noncompact causal symmetric
space SU(n, n)/SL(n, C) × R∗

+ at the origin. In this paper we give an explicit
formula for the Bessel functions on q . We use this result to prove a Paley-Wiener
theorem for the Bessel Laplace transform on q . Further, a flat analogue of the
Abel transform is defined and inverted.
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1. Introduction

One of the central theorems in harmonic analysis on R is the Paley-Wiener theorem
which characterizes the space L2[−R,R] in terms of its image under the Euclidean
Fourier transform by showing that: a function is in L2[−R,R] if and only if its
Fourier transform can be continued analytically to the whole complex plane as an
entire function of exponential type R [29].

In the last thirty years, analogues of Paley-Wiener theorems for various
integral transformations have received a good deal of attention. Among these
analogues one may mention the following settings: A Paley-Wiener theorem for
the spherical Fourier transform on noncompact Riemannian symmetric spaces has
been proved independently by Helgason [14] and Gangolli [13]. Recently, the case
of Riemannian symmetric spaces of the compact type with even multiplicities was
done by Branson, Ólafsson, and Pasquale [6]. Helgason-Gangolli’s Paley-Wiener
theorem was generalized later by Opdam for the so-called Cherednik transform
[26].

A second direction has been attempted to extend the theory of Paley-Wiener
type theorems to the setting of noncompact causal symmetric spaces. In this set-
ting, a Paley-Wiener theorem for the Laplace transform has been proved by An-
dersen and Ólafsson [2] for the rank-one case. The extension to noncompact causal
symmetric spaces of Cayley type was given by Andersen and Unterberger [4]. The
proof for arbitrary noncompact causal symmetric space with even multiplicities is
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due independently to Andersen, Ólafsson, and Schlichtkrull [1] and Ólafsson and
Pasquale [28].

Another important setting is that of integral transformations on flat sym-
metric spaces. A Paley-Wiener theorem for the Bessel Fourier transform on the
tangent space to a noncompact Riemannian symmetric space at the origin has
been proved by Helgason [15]. This result was generalized by de Jeu [21] for the
so-called Dunkl transform.

In the present paper we consider the Bessel Laplace transform on the
tangent space, say q , to the noncompact causal symmetric space

SU(n, n)/SL(n,C)× R∗
+

at the origin. The precise statement of the Paley-Wiener theorem is given in Theo-
rem A. The main tools in the proof are the explicit formula of the Bessel function on
q , and a Bessel Laplace inversion formula. To establish the first tool, our approach
uses the explicit formula of the spherical functions on SU(n, n)/SL(n,C) × R∗

+

proved in [3], by taking an appropriate zero-curvature limit. We mention that the
contraction procedure has been carried out by several authors in different settings.
See e.g. [22, 9, 30, 11]. In Remark 5.1 we show how a certain shift operator can be
used to recover the explicit formula of the Bessel function on q via the rank one
case. Thus one can use this shift operator to give an alternative proof for Theorem
A. In a forthcoming paper we shall develop this approach further for a larger class
of noncompact causal symmetric spaces.

In the last section of this paper we define a flat analogue of the Abel
transform on q. In Theorem B we give an inversion formula for the Abel transform
by means of a differential operator.

2. Notation and background

Let G = SU(n, n) be the group of complex matrices with determinant 1 which
preserve the Hermitian form

z1w1 + · · ·+ znwn − zn+1wn+1 − · · · − z2nw2n,

for z, w ∈ C2n. The group G is a connected noncompact semi-simple Lie group
with finite center. Its Lie algebra g = su(n, n) is given by

g =

{[
a b
b∗ c

] ∣∣ a = −a∗, c = −c∗, tr(a+ c) = 0

}
,

where a, b, c ∈M(n,C). It is well known that g is isomorphic to the Lie algebra

g :=

{[
α β
γ −α∗

] ∣∣ β = β∗, γ = γ∗, Im(tr(α)) = 0

}
.

Denote by G the analytic subgroup of GL(2n,C) with Lie algebra g.

Let g = k ⊕ p be the decomposition of g into the (±1)-eigenspaces of the
Cartan involution θ(X) := −X∗, with X ∈ g. More precisely

k =

{ [
α β
−β α

] ∣∣ α+ α∗ = 0, β = β∗, Im(tr(α)) = 0

}
,
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and

p =

{ [
α β
β −α

] ∣∣ α = α∗, β = β∗
}
.

The analytic subgroup K of G with Lie algebra k is isomorphic to S(U(n)×U(n)).
The quotient Md := G/K is a Riemannian symmetric space of the non-compact
type.

Set h := sl(n,C) ⊕ R ∼= {α ∈ gl(n,C) | Im(tr(α)) = 0} . We may embed h

in g as following

h 3 α ↪→
[
α 0
0 −α∗

]
∈ g.

In particular, the subalgebra h corresponds to the (+1)-eigenspace of the involu-
tion σ : g → g defined by

σ
( [

α β
γ −α∗

])
:=

[
α −β
−γ −α∗

]
.

The (−1)-eigenspace q of σ is given by

q =

{[
0 β
γ 0

] ∣∣ β = β∗, γ = γ∗
}
.

Thus g = h⊕ q is the σ -eigenspace decomposition of g. Denote by H the analytic
subgroup of G with Lie algebra h. Then M := G/H ∼= SU(n, n)/SL(n,C)× R∗

+

is a noncompact causal symmetric space of Cayley type. We refer to [18, Chap. 3]
for more details on the theory of causal symmetric spaces of Cayley type. The
symmetric space Md is (isomorphic to) the so-called Riemannian dual of M.

Let a ⊂ p ∩ q be the Cartan subspace given by

a :=

{
at =

[
0 t
t 0

] ∣∣ t := diag(t1/2, . . . , tn/2), t1, . . . , tn ∈ R
}
.

Note that a is also a Cartan subspace of p. From now on we will identify a with
Rn via the map

Rn 3 t 7→ at ∈ a.

For 1 ≤ i ≤ n, let αi ∈ a∗ be defined by αi(t) = −ti. Thus, the roots
of (g, a) are given by the long ones ±αi (1 ≤ i ≤ n) and the short ones
±(αj ± αi)/2 (1 ≤ i < j ≤ n), with multiplicities 1 and 2, respectively. The
root system Σ := Σ(g, a) is of type Cn. Choose an ordering on a∗ such that the
set Σ+ of positive roots is given by

Σ+ =

{
αi (1 ≤ i ≤ n),

1

2
(αj ± αi) (1 ≤ i < j ≤ n)

}
.

Then the negative open Weyl chamber in a on which all elements of Σ+ are strictly
negative is

a− = {t ∈ Rn | 0 < t1 < · · · < tn} .

Denote by

Σ◦ :=

{
±1

2
(αj − αi) (1 ≤ i < j ≤ n)

}
,
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and let

Σ+
◦ := Σ+ ∩ Σ◦ =

{
1

2
(αj − αi) (1 ≤ i < j ≤ n)

}
.

The Weyl groups for Σ and Σ◦ are respectively W ∼= Sn × {±1}n and W◦ ∼= Sn,
where Sn is the permutation group of n elements. The group W acts on a by
t 7→ (τ1tσ(1), . . . , τntσ(n)) with τi = ±1 and σ ∈ Sn.

For all λ ∈ Cn , denote by ϕλ the Harish-Chandra spherical functions on
Md with spectral parameter λ (cf. [17, Chap. IV]). In particular, if we use the
identification of functions on Md with right K -invariant functions on G, then
ϕλ(kgk

′) = ϕλ(g) for all k, k′ ∈ K and g ∈ G. Thus, the spherical functions are
completely determined by their restriction to A− = exp(a−). Furthermore, they
are W -invariant on the spectral parameter λ . In [5] Berezin and Karpelevič gave
an explicit formula for the Harish-Chandra spherical functions on

SU(n, n)/S(U(n)× U(n)).

A complete proof can be found in [19].

Theorem 2.1. (cf. [5, 19]) There exists a constant that depends only on n such
that the spherical functions ϕλ on SU(n, n)/S(U(n)× U(n)) are given by

ϕλ(exp(t)) = const.

det
1≤i,j≤n

(
Pλi− 1

2
(ch tj)

)
∏

1≤i<j≤n

(λ2
j − λ2

i )
∏

1≤i<j≤n

(ch tj − ch ti)
,

for all λ ∈ Cn such that
∏

α∈Σ+〈α, λ〉 6= 0, and for all t ∈ a−. Here Pµ denotes
the Legendre function of the first kind.

Remark 2.2. For fixed t, the function λ 7→ ϕλ(exp(t)) has a holomorphic
extension to Cn.

From now on we will identify K -bi-invariant functions on Md with W -
invariant functions on a. For λ ∈ Cn, the spherical Fourier transform Fd(f) of a
function f ∈ C∞c (a)W can be written as

Fd(f)(λ) =

∫
a−
f(t)ϕ−λ(exp(t))∆(t)dt,

where
∆(t) = 2n(n−1)

∏
1≤j≤n

sh tj
∏

1≤i<j≤n

(ch tj − ch ti)
2. (1)

The inversion formula for Fd is given by

f(t) = const.

∫
iRn

Fd(f)(λ)ϕλ(exp(t))
dλ

|cd(λ)|2
, t ∈ Rn, (2)

where

cd(λ) = c(d)
∏

1≤i≤n

Γ(−λi)

Γ(−λi + 1/2)

∏
1≤i<j≤n

(λ2
j − λ2

i )
−1. (3)



Ben Säıd 257

The constant “const” is positive and depends only on the normalization of the
measures, and c(d) is a positive constant which can be determined from cd(ρ) = 1,
where ρ = (1/2, 3/2, . . . , 1/2 + n− 1). For more details on the theory of spherical
Fourier transforms, we refer to [17, Chap. IV].

Let cmax be the maximal W0 -invariant regular cone in a (∼= Rn) defined by

cmax := {t ∈ Rn | ti ≥ 0 (1 ≤ i ≤ n)} .

The subset Cmax := Ad(H)cmax ⊂ q is a maximal H -invariant regular cone in
q. Denote by Γ(Cmax) := exp(Cmax)H the semi-group in SU(n, n) with interior
Γ(C◦

max) = exp(C◦
max)H = H exp(c◦max)H.

For λ ∈ Cn, set ψλ to be the spherical function on M with spectral param-
eter λ (cf. [12]). Note that ψλ are only defined on Γ(C◦

max), and H -bi-invariant
functions. We mention that for an arbitrary noncompact causal symmetric space,
the spherical functions are defined in [12] by an integral formula over H. In [23],
the authors determine the exact set E of λ ∈ a∗C for which the integral is finite.
Further, a Harish-Chandra expansion type formula for ψλ can be found in [27].
We also note that ψwλ = ψλ for all w ∈ W◦.

In view of the Berezin-Karpelevič formula for ϕλ, and the Harish-Chandra
expansion type formula for ψλ , we have:

Theorem 2.3. (cf. [3]) There exists a constant that depends only on n such
that the spherical functions ψλ on SU(n, n)/SL(n,C)× R∗

+ are given by

ψλ(exp(t)) = const.

det
1≤i,j≤n

(
Qλi−1/2(ch tj)

)
∏

1≤i<j≤n

(λ2
j − λ2

i )
∏

1≤i<j≤n

(ch tj − ch ti)
,

for all λ ∈ Cn such that Re(λi) > 0 (1 ≤ i ≤ n) and for all t ∈ a−. Here Qµ

denotes the Legendre function of the second kind.

Remark 2.4. Recall the set E from [23]. In the SU(n, n)/SL(n,C)×R∗
+ -case,

we have

E = { λ ∈ Cn | Re(λi) > −1/2 (1 ≤ i ≤ n), Re(λi + λj) > 0 (1 ≤ i 6= j ≤ n) } .

Thus, the statement of Theorem 2.3 remains valid for every λ in E .

Remark 2.5. Using [20, Theorem 1.2.4] and the fact that ν 7→ Qν(z) is a
meromorphic function on C with poles at the points ν ∈ −N, one can see that
for fixed t, the function λ 7→ ψλ(exp(t)) has a meromorphic extension to Cn with
simple poles at λ ∈ Cn such that λi ∈ −N + 1/2 (1 ≤ i ≤ n) and λi + λj = 0,
(1 ≤ i 6= j ≤ n).

We may identify the space C∞c (H \ Γ(C◦
max)/H) with C∞c (c◦max)

W◦ . Thus,
the spherical Laplace transform L(f) of a function f ∈ C∞c (c◦max)

W◦ can be written
as

L(f)(λ) =

∫
a−
f(t)ψλ(exp(t))∆(t)dt,
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where ∆(t) is given by (1). The inverse spherical Laplace transform is given by

f(t) = const.

∫
iRn

L(f)(λ)ϕλ(exp(t))
dλ

c(λ)cd(−λ)
, t ∈ c◦max (4)

where cd is given by (3), and

c(λ) = c(Ω)
∏

1≤i≤n

Γ(λi + 1/2)

Γ(λi + 1)

∏
1≤i<j≤n

(λ2
j − λ2

i )
−1. (5)

Here c(Ω) is a positive constant, see [23, Theorem III.5]. We refer to [12] and [18,
Chap. 8] for more details on the theory of spherical Laplace transforms.

3. The Bessel Laplace transform

Recall the symmetric spaces

Md = SU(n, n)/S(U(n)× U(n)) and M = SU(n, n)/SL(n,C)× R∗
+.

For ε > 0, write gε = k exp(εX) with k ∈ K and X ∈ p. Denote by Φ(λ,X) :=
limε→0 ϕλ/ε(gε). In [24] the author proved that the limit Φ(λ,X) exists and it
is a smooth function. The limiting functions are the so-called Bessel functions
on the flat symmetric space p. In [11, 7] this result was generalized to arbitrary
noncompact Riemannian symmetric space. In [8] a similar result (for arbitrary
noncompact causal symmetric space) was proved when ϕλ is replaced by ψλ. More
precisely, if γε = exp(εX)h, with X ∈ C0

max and h ∈ H, then for a certain range
of λ ∈ a∗C, the limit Ψ(λ,X) := limε→0 ψλ/ε(exp(εX)) and its derivatives exist.
See [8] for the proof.

Theorem 3.1. (i) (cf. [24]) For all λ ∈ Cn such that
∏

α∈Σ+〈λ, α〉 6= 0, and
for all t ∈ a− , there exists a constant which depends only on n such that

Φ(λ, t) = const.

det
1≤i,j≤n

(
I0(λitj)

)
∏

1≤i<j≤n

(λ2
j − λ2

i )
∏

1≤i<j≤n

(t2j − t2i )
,

where Iν(z) := e−iνπ/2Jν(iz) and Jν is the Bessel function of the first kind. The
Bessel function Φ extends to a holomorphic function on Cn × Cn.

(ii) For all λ ∈ Cn such that Re(λi) > 0 (1 ≤ i ≤ n), and for all t ∈ a− ,
there exists a constant which depends only on n such that

Ψ(λ, t) = const.

det
1≤i,j≤n

(
K0(λitj)

)
∏

1≤i<j≤n

(λ2
j − λ2

i )
∏

1≤i<j≤n

(t2j − t2i )
,

where

K0(z) := lim
ν→0

π

2

I−ν(z)− Iν(z)

sin νπ
denotes the Bessel function of the third kind. For fixed t, the function λ 7→ Ψ(λ, t)
has a meromorphic extension to

D = {λ ∈ Cn | λi ∈ C\]−∞, 0] } ,
with simple poles at λ ∈ D such that λi + λj = 0 for some 1 ≤ i 6= j ≤ n.



Ben Säıd 259

Proof. (ii) For ε > 0, write ψλ/ε(exp(εt)) as

ψλ/ε(exp(εt)) = const.
εn(n−1)∏

1≤i<j≤n

(λ2
j − λ2

i )
∏

1≤i<j≤n

(sh2(εtj/2)− sh2(εti/2))
×

∑
σ∈Sn

(−1)σ
∏

1≤i≤n

Qλσ(i)/ε−1/2(ch εti).

By [31, p.259], we have

(sh t)−µ Γ(λ− µ+ 1/2)

Γ(λ+ µ+ 1/2)
Qµ

λ−1/2(ch t)

=
eiπµ

2

{
Γ(−µ)

2µ 2F1

(1

2

(
λ+ µ+

1

2

)
,
1

2

(
− λ+ µ+

1

2

)
; 1 + µ;−sh2 t

)
+

Γ(µ)

2−µ

(sh t)−2µ Γ(λ− µ+ 1/2)

Γ(λ+ µ+ 1/2)
2F1

(1

2

(
λ− µ+

1

2

)
,
1

2

(
− λ− µ+

1

2

)
; 1− µ;−sh2 t

)}
.

Using the well known formula

Γ(z + a)

Γ(z + b)
= za−b(1 +O(z−1)) as z →∞, (6)

together with the hypergeometric series of 2F1 , we obtain:

lim
ε→0

2F1

(1

2

(λ
ε
±µ+

1

2

)
,
1

2

(
− λ

ε
±µ+

1

2

)
; 1±µ;−sh2 εt

)
= Γ(±µ+1)

(λt
2

)∓µ

I±µ(λt),

and

lim
ε→0

Γ(λ
ε
− µ+ 1

2
)

Γ(λ
ε

+ µ+ 1
2
)
(sh εt)−2µ = (λt)−2µ.

Here Iµ denotes the modified Bessel function given in the statement (i) above.
Thus

lim
ε→0

(sh εt)−µ Γ(λ/ε− µ+ 1/2)

Γ(λ/ε+ µ+ 1/2)
Qµ

λ/ε−1/2(ch εt)

=
eiπµ

2

{Γ(−µ)Γ(1 + µ)

2µ

(λt
2

)−µ

Iµ(λt) +
Γ(µ)Γ(1− µ)

2−µ

(λt)−µ

2µ
I−µ(λt)

}
= eiπµ(λt)−µ

{π
2

I−µ(λt)− Iµ(λt)

sin(πµ)

}
,

and therefore

lim
ε→0

Qλ/ε−1/2(ch εt) = lim
µ→0

π

2

I−µ(λt)− Iµ(λt)

sin(πµ)
= K0(λt).

Now one may use [20, Theorem 1.2.4] to prove that the only singularities of Ψ(λ, t)
in λ ∈ D are those for which λi + λj = 0, with i 6= j.
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Remark 3.2. (i) The Bessel function Φ is symmetric in its arguments. Fur-
ther, since I0(z) is an even function, clearly we have Φ(wλ, t) = Φ(λ,wt) = Φ(λ, t)
for all w ∈ W = Sn×{±1}n. For general results in the theory of Bessel functions
associated with Cartan motion groups, we refer to [17, 25].

(ii) The Bessel function Ψ is symmetric in λ and t, with Ψ(w0λ, t) =
Ψ(λ,w0t) = Ψ(λ, t) for all w0 ∈ W◦ = Sn.

Following [16], the Bessel Fourier transform F̃(f) of a function f ∈ C∞c (a)W

is given by

F̃(f)(λ) =

∫
a−
f(t)Φ(λ, t)ω(t)dt,

where
ω(t) :=

∏
1≤i≤n

ti
∏

1≤i<j≤n

(t2j − t2i )
2, t ∈ a−. (7)

Further, there exists a positive constant depending only on the normalization of
the measures such that

f(t) = const.

∫
iRn

F̃(f)(λ)Φ(λ, t)ω(λ)dλ, (8)

where
ω(λ) :=

∏
1≤i≤n

|λi|
∏

1≤i<j≤n

|λ2
j − λ2

i |2. (9)

Observe that one may recover the definition of F̃ and its inversion formula via F ,
by applying a limit transition approach. Indeed, for ε > 0, set fε(t) := f(ε−1t).
Then

Fd(fε)(λ/ε) =

∫
a−
fε(t)ϕ−λ/ε(exp t)

∏
1≤i≤n

sh ti
∏

1≤i<j≤n

(2ch tj − 2ch ti)
2dt

∼ εn(2n−1)

∫
a−
f(t)ϕ−λ/ε(exp εt)

∏
1≤i≤n

ti
∏

1≤i<j≤n

(t2j − t2i )
2dt

as ε→ 0. Hence
lim
ε→0

ε−n(2n−1)Fd(fε)(λ/ε) = F̃(f)(λ). (10)

By virtue of (6), one can also use the inversion formula (2) for F to recover(8). We
should mention that the Bessel Fourier transform has been carried out by several
authors in different settings (see e.g. [15, 16, 24, 33]).

Remark 3.3. In [10] Dunkl introduced an integral transformation on the space
L2(a, dµ) (where µ is some suitable measure) in terms of the eigenfunctions of
the so-called Dunkl operators. This class of Dunkl transforms encloses the Bessel
Fourier transforms on flat symmetric spaces.

Define the Bessel Laplace transform L̃(f) of a function f ∈ C∞c (c◦max)
W◦ by

L̃(f)(λ) =

∫
a−
f(t)Ψ(λ, t)ω(t)dt, ∀f ∈ C∞c (c◦max)

W◦ ,

whenever this integral converges. Once again one may obtain the above natural
definition of L̃ via the spherical Laplace transform L.
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By [27, Lemma 4.16], we know that if f ∈ Cc(c
◦
max)

W◦ , then there exists
a unique function fd ∈ Cc(a)

W such that fd
|a− ≡ f|a− . Thus, we may obtain the

following relation between F̃ and L̃ : for t ∈ a−, we know that

ϕλ(exp(−t)) =
∑

τ∈{±1}n

cd(τλ)

c(τλ)
ψτλ(exp(t)), (11)

for almost every λ ∈ Cn (cf. [18, Theorem 8.4.4]). Further, in the light of (6), we
have

cd(λ/ε) ∼ εn(n−1/2)c(d)
∏

1≤i≤n

(−λi)
−1/2

∏
1≤i<j≤n

(λ2
j − λ2

i )
−1 as ε→ 0,

and

c(λ/ε) ∼ εn(n−1/2)c(Ω)
∏

1≤i≤n

λ
−1/2
i

∏
1≤i<j≤n

(λ2
j − λ2

i )
−1 as ε→ 0.

Thus

Φ(λ, t) =
c(d)

c(Ω)

∑
τ=(τi)i∈{±1}n

∏
1≤i≤n

{(−τiλi)
−1/2(τiλi)

1/2}Ψ(τλ, t) ∀ t ∈ a−, (12)

for almost every λ ∈ Cn . When n = 1, we have c(d)c(Ω)−1 = π−1 , and the
equality (12) coincides with the well known formula K0(z) − K0(−z) = iπI0(z)
(cf. [31, p. 428]). Now the following is clear.

Corollary 3.4. For almost every λ ∈ Cn and for all f ∈ C∞c (c◦max)
W◦

F̃(fd)(λ) =
c(d)

c(Ω)

∑
τ=(τi)i∈{±1}n

∏
1≤i≤n

{(−τiλi)
−1/2(τiλi)

1/2}L̃(f)(τλ).

In particular, the right hand side extends to an analytic function on Cn.

The Bessel Laplace inversion formula is now immediate.

Theorem 3.5. If f ∈ C∞c (c◦max)
W◦ , then there exists a positive constant such

that

f(t) = const.

∫
iRn

L̃(f)(λ)Φ(λ, t)ω(λ)
∏

1≤i≤n

λi

|λi|
dλ

for all t ∈ a−. Here ω(λ) is as in (9).

Proof. For t ∈ a− we have

f(t) = const.

∫
iRn

F̃d(fd)(λ)Φ(λ, t)ω(λ)dλ

= const.

∫
iRn

{ ∑
τ∈{±1}n

(
∏

1≤i≤n

τi)L̃f(τλ)
}

Φ(λ, t)ω(λ)
∏

1≤i≤n

λi

|λi|
dλ.

The statement is now due to the W -invariance of Φ and ω(λ)dλ.
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4. The Paley-Wiener theorem

For R > 0, let BR := {t ∈ Rn | ‖t‖ ≤ R}. Denote by C∞R (a) the space of smooth
functions on a with support contained in the closed ball BR. Define the Paley-
Wiener space HR

W(Cn) as the space of W -invariant holomorphic functions on Cn

with the property that for each M ∈ N there exists a constant cM > 0 such that

|g(λ)| ≤ cM(1 + ‖λ‖)−MeR‖Re(λ)‖, ∀ λ ∈ Cn.

We will denote by HW(Cn) the union of the spaces HR
W(Cn) over all R > 0.

Theorem 4.1. (cf. [15]) The Bessel Fourier transform f 7→ F̃(f) is a bijection
of C∞c (a)W onto HW(Cn). The function f has support in the ball BR if and only

if F̃(f) ∈ HR
W(Cn).

Next we will discuss a Paley-Wiener theorem for L̃. For 0 < r < R < ∞,
let PWr,R

◦ (Cn) be the space of W◦ -invariant meromorphic functions g on D with
at most simple poles at λi + λj = 0 (1 ≤ i 6= j ≤ n) such that:

(P1 ) the map

λ 7→ av(g)(λ) :=
∑

τ∈{±1}n

∏
1≤i≤n

{(−τiλi)
−1/2(τiλi)

1/2}g(τλ)

extends to a function in HR
W(Cn).

(P2 ) for all M ∈ N, there exists a constant cM such that for λ ∈ D with

Re(λi) ≥ 0 (1 ≤ i ≤ n) we have∏
1≤i≤n

|λi|1/2
∏

1≤i<j≤n

|λ2
i − λ2

j | |g(λ)| ≤ cM(1 + ‖λ‖)−Me−r〈Re(λ),t0〉,

where t0 := (1, . . . , 1).
Denote by PW◦(Cn) the union of the spaces PWr,R

◦ (Cn) over all 0 < r < R <∞.

Lemma 4.2. For all λ ∈ D such that Re(λi) ≥ 0 (1 ≤ i ≤ n), and for all
t ∈ Rn such that ti ≥ r > 0 (1 ≤ i ≤ n), we have

|Ψ(λ, t)|
∏

1≤i<j≤n

|t2j − t2i |
∏

1≤i≤n

|λi|1/2
∏

1≤i<j≤n

|λ2
i − λ2

j | ≤ ce−r〈Re(λ),t0〉,

where t0 = (1, . . . , 1) and c is a constant which depends only on r and n.

Proof. For all t ∈ Rn we have

|Ψ(λ, t)|
∏

1≤i≤n

|λi|1/2
∏

1≤i<j≤n

|t2i − t2j | |λ2
i − λ2

j | =
∏

1≤i≤n

|λi|1/2
∣∣∣ det
1≤i,j≤n

(
K0(λitj)

)∣∣∣
≤

∑
σ∈Sn

∏
1≤i≤n

|λi|1/2
∣∣K0(λitσ(i))

∣∣ .
It is well known that for z ∈ C\]∞, 0] we have K0(z) =

√
π
2z
W0,0(2z), where W0,0

denotes the Whittaker function. Using the expression (4), p. 317 of [31], and the
asymptotic expression (1), p. 202 of [32], we get

|z|1/2|K0(z)| ≤ const. e−Re(z), z ∈ C\]∞, 0].
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Thus, if tσ(i) ≥ r > 0 and λi ∈ C\]∞, 0], then

|λi|1/2|K0(λitσ(i))| ≤ cre
−Re(λi)tσ(i) .

If in addition Re(λi) ≥ 0, we obtain

|λi|1/2|K0(λitσ(i))| ≤ cre
−rRe(λi).

Now the desired lemma is clear.

For 0 < r < ∞, we set Cr := { t ∈ Rn | ti ≥ r (1 ≤ i ≤ n) } . Denote by
C∞r,R(c◦max)

W◦ the space of functions f ∈ C∞c (c◦max)
W◦ with support contained in

Cr ∩ BR. Note that C∞r,R(c◦max)
W◦ = {0} if R ≤ r. The union of the spaces

C∞r,R(c◦max)
W◦ over all 0 < r < R <∞ coincides with C∞c (c◦max)

W◦ .

Lemma 4.3. For all 0 < r < R <∞, the transformation L̃ maps C∞r,R(c◦max)
W◦

injectively into PWr,R
◦ (Cn).

Proof. Since the function λ 7→ Ψ(λ, t) is meromorphic on D with simple poles

at λi + λj = 0 for 1 ≤ i 6= j ≤ n, it follows that λ 7→ L̃(f)(λ) extends to a
meromorphic function on D with simple poles at λi + λj = 0 for i 6= j. Further,

the W◦ -invariance of the Bessel functions Ψ implies that λ 7→ L̃(f)(λ) is a W◦ -
invariant map for all f ∈ C∞c (c◦max)

W◦ . Moreover, by means of Corollary 3.4, the

Bessel Laplace transform L̃ satisfies the property (P1 ). One can also check that

L̃ obeys the property (P2 ). Indeed, for f ∈ C∞r,R(c◦max)
W◦ we have

∏
1≤i≤n

|λi|1/2
∏

1≤i<j≤n

|λ2
i − λ2

j |
∣∣∣L̃(f)(λ)

∣∣∣
≤

∫
a−∩supp(f)

|f(t)| |Ψ(λ, t)|
∏

1≤i≤n

|λi|1/2
∏

1≤i<j≤n

|λ2
i − λ2

j |ω(t)dt

≤cr,R e−r〈Re(λ),t0〉.

Above we used Lemma 4.2. To reach the conclusion, it is enough to recall that
Ψ(λ, t) satisfies a Bessel system of differential equations (cf. [8, (4.8)]).

The injectivity of L̃ follows from the inversion formula in Theorem 3.5.

Lemma 4.4. If av(L̃(f)) ≡ 0 with f ∈ C∞c (c◦max)
W◦ , then f ≡ 0.

Proof. The statement of Corollary 3.4 can also be written as F̃(fd)(λ) =
c(d)
c(Ω)

av(L̃(f))(λ), where fd
|a− ≡ f|a− . Now the claim is an easy consequence of the

injectivity of F̃ .

The following statement can be proved in a similar way as Lemma 9.1 in
[1]. The function g bellow plays the same role as g1 in the proof of [1, Lemma
9.1].
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Lemma 4.5. Let g be a meromorphic function on D which satisfies the con-
dition (P2 ) for some r > 0. If av(g) ≡ 0, then g ≡ 0.

We have now all ingredients to state and prove the first main result of the
paper. Our approach is similar to the one used in [1] for the spherical Laplace
transform.

Theorem A. The Bessel Laplace transform L̃ is a bijection from C∞r,R(c◦max)
W◦

onto PWr,R
◦ (Cn) for every 0 < r < R < ∞, and from C∞c (c◦max)

W◦ onto
PW◦(Cn).

Proof. By virtue of Lemma 4.3 we only need to prove the surjectivity of L̃
from C∞r,R(c◦max)

W◦ to PWr,R
◦ (Cn). By Theorem 3.1 part (i), we have

Φ(λ, t) =

∑
σ∈Sn

(−1)σ
∏

1≤i≤n

I0
(
λσ(i)ti

)
∏

1≤i<j≤n

(λ2
j − λ2

i )
∏

1≤i<j≤n

(t2j − t2i )

=
∑
σ∈Sn

∏
1≤i≤n

I0
(
λσ(i)ti

)
∏

1≤i<j≤n

(t2j − t2i )
∏

1≤i<j≤n

(λ2
σ(j) − λ2

σ(i))

=
∑
σ∈Sn

Ξ(σ(λ), t),

where

Ξ(λ, t) :=

∏
1≤i≤n

I0(λiti)∏
1≤i<j≤n

(t2j − t2i )
∏

1≤i<j≤n

(λ2
j − λ2

i )
,

with ti 6= ±tj and λi 6= ±λj for i 6= j.

For λ ∈ Cn, let

ϑ(λ) :=
∏

1≤i<j≤n

(λ2
j − λ2

i ).

Fix r and R , and define the wave packet of g ∈ PWr,R
◦ (Cn) by

Ig(t) =

∫
iRn

g(λ)Φ(λ, t)ϑ(λ)2
∏

1≤i≤n

λidλ

when t ∈ a−. The function Ig is well defined and it belongs to C∞(c◦max)
W◦ . This

follows from the growth behavior of g ∈ PWr,R
◦ (Cn), and the fact that

|∂α1
t1 . . . ∂

αn
tn Φ(λ, t)| ≤ const. ‖λ‖α1+···+αn ,

with λ ∈ iRn and t ∈ Rn. Here the constant “const” depends only on α1, . . . , αn.
Notice that for λ ∈ iRn, ϑ(λ)2

∏
1≤i≤n λi = ω(λ)

∏
1≤i≤n

λi

|λi| . Bellow we will prove

that the support of Ig is contained in Cr ∩BR, i.e. Ig ∈ C∞r,R(c◦max)
W◦ .
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By the W◦ -invariance of g and ϑ(λ)2
∏

1≤i≤n λi, we have

Ig(t) = n!

∫
iRn

g(λ)Ξ(λ, t)ϑ(λ)2
∏

1≤i≤n

λidλ, t ∈ a−.

On the other hand, using the expression of I0 in [32, p. 77] and the asymptotic
expression (2), p. 203 of [32], it follows that there exist two positive constants
such that

|I0(z)| ≤ const. , 0 ≤ |z| ≤ 1,
|I0(z)| ≤ const. |z|−1/2eRe(z), 1 ≤ |z|.

Thus, for fixed t ∈ a−,

|ϑ(λ)|
∏

1≤i≤n

|λi|1/2|Ξ(λ, t)| ≤ const.
1∏

1≤i≤n

t
1/2
i

∏
1≤i<j≤n

(t2j − t2i )
(13)

if |λi| ≤ t−1
i for all i, and

|ϑ(λ)|
∏

1≤i≤n

|λi|1/2|Ξ(λ, t)| ≤ const.
e〈Re(λ),t〉∏

1≤i≤n

t
1/2
i

∏
1≤i<j≤n

(t2j − t2i )
(14)

if |λi| ≥ t−1
i for all i.

Now let t ∈ a−\Cr. By [1, p. 721], there exists an element λ◦ ∈ Rn
+ such

that ζ := 〈λ◦, t− rt◦〉 < 0, where t◦ = (1, . . . , 1). Hence, for arbitrary α >> 0, we
have

|ϑ(λ+ αλ◦)|
n∏

i=1

|λi + αλ◦i |1/2|Ξ(λ+ αλ◦, t)| =

n∏
i=1

|λi + αλ◦i |
1/2

∣∣I0((λi + αλ◦i )ti
)∣∣

∏
1≤i<j≤n

(t2j − t2i )

∼ e〈Re(λ+αλ◦),t〉

n∏
i=1

t
1/2
i

∏
1≤i<j≤n

(t2j − t2i )

(15)

as α → ∞. Here we used the fact that I0(z) ∼ z−1/2ez as z → ∞. In
particular, if λ ∈ iRn and t ∈ a− \Cr, there exists a constant not depending on λ
such that the left hand side of (15) is bounded by ceα〈λ◦,t〉 as α goes to infinity.
That is

|ϑ(λ+αλ◦)|
∏

1≤i≤n

|λi +αλ◦i |1/2|Ξ(λ+αλ◦, t)| ≤ ceαζerα〈λ◦,t◦〉 as α→∞. (16)

By virtue of (13), (14), (16), and the growth behavior of g ∈ PWr,R
◦ (Cn), Cauchy’s

theorem and a contour shift imply that

Ig(t) = n!

∫
iRn

g(λ)Ξ(λ, t)ϑ(λ)2
∏

1≤i≤n

λidλ

= n!

∫
iRn

g(λ+ αλ◦)Ξ(λ+ αλ◦, t)ϑ(λ+ αλ◦)2
∏

1≤i≤n

(λi + αλ◦i )dλ

−→ 0 as α→∞.
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Thus Ig vanishes on a−\Cr, and, by the continuity and the W◦ -invariance of Ig,
this is equivalent to Ig ≡ 0 on c◦max\ Cr. Furthermore, the wave packet vanishes
also on c◦max\BR. One can see this as following: If one recalls that for λ ∈ iRn,
ϑ(λ)2

∏
1≤i≤n λi = ω(λ)

∏
1≤i≤n

λi

|λi| , then by the W -invariance of Φ and ω(λ), one

has (for t ∈ a− )

Ig(t) =

∫
iRn

g(λ)Φ(λ, t)ω(λ)
∏

1≤i≤n

λi

|λi|
dλ

=
1

2n

∫
iRn

∑
τ∈{±1}n

∏
1≤i≤n

{(−τiλi)
−1/2(τiλi)

1/2}g(τλ)Φ(λ, t)ω(λ)dλ

=
1

2n

c(Ω)

c(d)

∫
iRn

av(g)(λ)Φ(λ, t)ω(λ)dλ.

Comparing this formula with (8), we get (up to a positive constant which does not
depend on λ)

F̃(Ig)(λ) = const. av(g)(λ). (17)

Since g ∈ PWr,R
◦ (Cn), the property (P1 ) implies that F̃(Ig) belongs to the Paley-

Wiener space HR
W(Cn). Hence, by Theorem 4.1, supp(Ig) ⊂ BR, i.e. Ig(t) = 0 for

all t ∈ c◦max \BR. Thus we draw the conclusion that Ig ∈ C∞r,R(c◦max)
W◦ . Moreover,

in view of Corollary 3.4, equation (17) yields

c(d)

c(Ω)
av(L̃(Ig))(λ) = F̃(Ig)(λ) = const. av(g)(λ),

for all g ∈ PWr,R
◦ (Cn). Now, Lemma 4.5 implies that (up to a constant) L̃(I(g)) =

g for all g ∈ PWr,R
◦ (Cn). This finishes the proof.

5. A flat analogue of the Abel transform

Replacing the Cartan involution by the involution σ in the proof of [17, Theorem
I.5.17], one can prove that for f ∈ Cc(C

◦
max)∫

C◦max

f(Y )dY = const.

∫
a−

∫
H

f(Ad(h)X)
∏

α∈Σ+

|〈α,X〉|mαdhdX,

where “const” is some positive constant depending only on the normalization of
the measures. Thus, for λ ∈ a∗C such that Re(λi) > 0 (1 ≤ i ≤ n), the Bessel
Laplace transform of f ∈ C∞c (c◦max)

W◦ ∼= C∞c (C◦
max)

Ad(H) can be written as

L̃(f)(λ) =

∫
a−
f(X)Ψ(λ,X)ω(X)dX

=

∫
a−
f(X)

( ∫
H

e−λ(Ad(h)X)dh
)
ω(X)dX

= const.

∫
C◦max

f(X)e−λ(X)dX.

Above we used the following integral representation of the Bessel functions

Ψ(λ,X) =

∫
H

e−λ(Ad(h)X)dh,
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(cf. [8, Theorem 4.12]). Let a⊥ be the orthogonal complement of a in q. Then for
λ ∈ a∗ such that λi > 0 (1 ≤ i ≤ n), we have

L̃(f)(λ) = const.

∫
C◦max∩a

e−λ(X)
( ∫

C◦max∩a⊥
f(X + Y )dY

)
dX

= const.

∫
c◦max

e−λ(X)A(f)(X)dX, (18)

where

A(f)(X) :=

∫
C◦max∩a⊥

f(X + Y )dY

denotes (the flat analogue of) the Abel transform of f ∈ C∞c (C◦
max)

Ad(H) ∼=
C∞c (c◦max)

W◦ at X ∈ c◦max. The expression (18) is similar to the one proved by
Helgason in [15] for the Bessel Fourier transform on p. It follows that

L̃(f)(λ) = const.

∫
c◦max

e−λ(X)A(f)(X)dX = const.F
(
A(f)

)
(λ), (19)

where F denotes the Euclidean Laplace transform associated with c◦max. Let

V(x1, . . . , xn) :=
∏

1≤i<j≤n

(x2
j − x2

i ).

One may write V(λ1, . . . , λn)L̃(f)(λ) in two different ways. First, by (19), we have

V(λ1, . . . , λn)L̃(f)(λ) = const.V(λ1, . . . , λn)F
(
A(f)

)
(λ)

= const.F
[
V(∂1, . . . , ∂n)A(f)

]
(λ). (20)

Second, for f ∈ C∞c (c◦max)
W◦ , we have

V(λ1, . . . , λn)L̃(f)(λ)

= const.

∫
a−
f(t) det

1≤i,j≤n

(
K0(λitj)

) ω(t)∏
1≤i<j≤n

(t2j − t2i )
dt

= const.

∫
a−
f(t) det

1≤i,j≤n

(
K0(λitj)

) ∏
1≤i≤n

ti
∏

1≤i<j≤n

(t2j − t2i )dt

= const.
∑
σ∈Sn

∫
a−
f(t)

∏
1≤i≤n

tσ(i)K0

(
λitσ(i)

) ∏
i<j

(t2σ(j) − t2σ(i))dt

= const.

∫
c◦max

f(t)V(t1, . . . , tn)
∏

1≤i≤n

ti
∏

1≤i≤n

K0

(
λiti

)
dt.

Since

K0(zt) =

∫ ∞

t

e−zs

√
s2 − t2

ds, (Re(z) > 0, t > 0),

it follows that

V(λ1, . . . , λn)L̃(f)(λ)

= const.

∫
c◦max

∏
1≤i≤n

e−λisi

[ ∫ s1

0

· · ·
∫ sn

0

f(t1, . . . , tn)V(t1, . . . , tn)
∏

1≤i≤n

tidti√
s2

i − t2i

]
ds

= const.F
(
A⊗n

1 (fV)
)
(λ),
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where A⊗n
1 denotes the n-fold tensor product of the one dimensional integral

transformation

A1(F )(s) :=

∫ s

0

F (t)
t√

s2 − t2
dt, F ∈ C∞c (R+), s > 0.

The later transform satisfies

F (t) = const.
1

t

d

dt

∫ t

0

A1(F )(s)
s√

t2 − s2
ds. (21)

Comparing (20) with (21), and using the injectivity of the Euclidean Laplace
transform F, we get

V(∂1, . . . , ∂n)A(f)(t) = const.A⊗n
1 (fV)(t).

In view of (22), we obtain the second main result of the paper.

Theorem B. Assume that f ∈ C∞c (c◦max)
W◦ . For every t ∈ a− , the inverse Abel

transform is expressed as

V(t1, . . . , tn)f(t) = const.
n∏

i=1

1

ti

d

dti

∫ t1

0

· · ·
∫ tn

0

V(∂1, . . . , ∂n)A(f)(s)
n∏

i=1

sidsi√
t2i − s2

i

,

where V(∂1, . . . , ∂n) =
∏

1≤i<j≤n(∂2
j − ∂2

i ).

Remark 5.1. (Another way of computing the Bessel function Ψ(λ, t) via the

rank one case.) Let M(1)
(1,0) be the rank one symmetric space SO0(1, 2)/SO0(1, 1).

The associated restricted root system is given by {±α}, where α(t) = −t defines
the positive root. Here a ∼= R, and mα = 1. By [8, Example 4.13], the Bessel

functions associated with M(1)
(1,0) are given by

Ψ
(1)
(1,0)(λ, t) = K0(λt), Re(λ) > 0, t > 0.

Let M(n)
(1,0) be the product of n-copies of M(1)

(1,0) , and define on M(n)
(1,0) the pseudo-

Bessel function
Ψ

(n)
(1,0)(λ, t) :=

∑
σ∈Sn

∏
1≤i≤n

K0(λσ(i)ti).

On the other hand, recall that the restricted root system Σ(g, a) associated with
M = SU(n, n)/SL(n,C) × R+

∗ consists of long roots with multiplicities 1 and
short roots with multiplicities 2. By [26] we can prove that we may obtain the

Bessel function Ψ(λ, t) associated with M via Ψ
(n)
(1,0)(λ, t) as

Ψ(λ, t) =
const.∏

1≤i<j≤n

(λ2
j − λ2

i )
2
G(0, 2)Ψ

(n)
(1,0)(λ, t), (22)

where G(0, 2) denotes the shift operator∏
1≤i<j≤n

(t2j − t2i )
−1

∏
1≤i<j≤n

(
D(tj, ∂tj)−D(ti, ∂ti)

)
,
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with

D :=
d2

dt2
+

1

t

d

dt
.

Since K0(z) is a solution to

u′′ +
1

z
u′ − u = 0,

it follows that

Ψ(λ, t) =
const.∏

1≤i<j≤n

(t2j − t2i )(λ
2
j − λ2

i )
2

∑
σ∈Sn

∏
1≤i≤n

K0(λσ(i)ti)
∏

1≤i<j≤n

(λ2
σ(j) − λ2

σ(i))

=
const.∏

1≤i<j≤n

(t2j − t2i )(λ
2
j − λ2

i )

∑
σ∈Sn

(−1)σ
∏

1≤i≤n

K0(λσ(i)ti)

= const.
det

1≤i,j≤n

(
K0(λitj)

)
∏

1≤i<j≤n

(t2j − t2i )
∏

1≤i<j≤n

(λ2
j − λ2

i )
,

which coincides with Theorem 3.1 part (ii). Notice that one may use (23) to
give another proof for Theorem A. In a forthcoming paper we shall develop this
approach further to prove a Paley-Wiener theorem for a larger class of noncompact
causal symmetric spaces.

References
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[27] Ólafsson, G., Spherical functions and spherical Laplace transform on or-
dered symmetric spaces, see: http://www.math.lsu.edu/∼preprint.



Ben Säıd 271
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