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Abstract. Let g be the tangent space to the noncompact causal symmetric
space SU(n,n)/SL(n,C) x R% at the origin. In this paper we give an explicit
formula for the Bessel functions on . We use this result to prove a Paley-Wiener
theorem for the Bessel Laplace transform on . Further, a flat analogue of the
Abel transform is defined and inverted.
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1. Introduction

One of the central theorems in harmonic analysis on R is the Paley-Wiener theorem
which characterizes the space L?|—R, R] in terms of its image under the Euclidean
Fourier transform by showing that: a function is in L*[—R, R] if and only if its
Fourier transform can be continued analytically to the whole complex plane as an
entire function of exponential type R [29].

In the last thirty years, analogues of Paley-Wiener theorems for various
integral transformations have received a good deal of attention. Among these
analogues one may mention the following settings: A Paley-Wiener theorem for
the spherical Fourier transform on noncompact Riemannian symmetric spaces has
been proved independently by Helgason [14] and Gangolli [13]. Recently, the case
of Riemannian symmetric spaces of the compact type with even multiplicities was
done by Branson, ()lafsson, and Pasquale [6]. Helgason-Gangolli’s Paley-Wiener
theorem was generalized later by Opdam for the so-called Cherednik transform
[26].

A second direction has been attempted to extend the theory of Paley-Wiener
type theorems to the setting of noncompact causal symmetric spaces. In this set-
ting, a Paley-Wiener theorem for the Laplace transform has been proved by An-
dersen and Olafsson [2] for the rank-one case. The extension to noncompact causal
symmetric spaces of Cayley type was given by Andersen and Unterberger [4]. The
proof for arbitrary noncompact causal symmetric space with even multiplicities is
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due independently to Andersen, Olafsson, and Schlichtkrull [1] and Olafsson and
Pasquale [28].

Another important setting is that of integral transformations on flat sym-
metric spaces. A Paley-Wiener theorem for the Bessel Fourier transform on the
tangent space to a noncompact Riemannian symmetric space at the origin has
been proved by Helgason [15]. This result was generalized by de Jeu [21] for the
so-called Dunkl transform.

In the present paper we consider the Bessel Laplace transform on the
tangent space, say q, to the noncompact causal symmetric space

SU(n,n)/SL(n,C) x R,

at the origin. The precise statement of the Paley-Wiener theorem is given in Theo-
rem A. The main tools in the proof are the explicit formula of the Bessel function on
q, and a Bessel Laplace inversion formula. To establish the first tool, our approach
uses the explicit formula of the spherical functions on SU(n,n)/SL(n,C) x R%
proved in [3], by taking an appropriate zero-curvature limit. We mention that the
contraction procedure has been carried out by several authors in different settings.
See e.g. [22, 9, 30, 11]. In Remark 5.1 we show how a certain shift operator can be
used to recover the explicit formula of the Bessel function on q via the rank one
case. Thus one can use this shift operator to give an alternative proof for Theorem
A. In a forthcoming paper we shall develop this approach further for a larger class
of noncompact causal symmetric spaces.

In the last section of this paper we define a flat analogue of the Abel
transform on g. In Theorem B we give an inversion formula for the Abel transform
by means of a differential operator.

2. Notation and background

Let G = SU(n,n) be the group of complex matrices with determinant 1 which
preserve the Hermitian form

lel +--+ ann - Zn—l—lwn—i—l - Z2nm2n7

for z,w € C?. The group G is a connected noncompact semi-simple Lie group
with finite center. Its Lie algebra g = su(n,n) is given by

a b . B
g—{{b* c} |a——a,c-—c,tr(a+c)—0},

where a,b,c € M(n,C). It is well known that g is isomorphic to the Lie algebra
. « ﬂ _ * _ * _
o= {0 | s=p 0= e ~ o}

Denote by G the analytic subgroup of GL(2n,C) with Lie algebra g.
Let g = €@ p be the decomposition of g into the (+1)-eigenspaces of the
Cartan involution 6(X) := —X*, with X € g. More precisely

e:{ { _O‘ﬁ g] | a+a"=0, 8=73, Im(tr(a)):()},
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o {[3 2] 1emoer)

The analytic subgroup K of G with Lie algebra ¢ is isomorphic to S(U(n)xU(n)).
The quotient MY := G/K is a Riemannian symmetric space of the non-compact
type.

Set b :=sl(n,C) R = {a € gl(n,C) | Im(tr(a))) = 0} . We may embed b
in g as following

and

_a*

K=

hsa— €g.

0

In particular, the subalgebra b corresponds to the (+1)-eigenspace of the involu-
tion o : g — g defined by

A5 D=5 %

The (—1)-eigenspace q of ¢ is given by

13 2]}

Thus g = h @ q is the o-eigenspace decomposition of g. Denote by H the analytic

subgroup of G with Lie algebra h. Then M := G/H = SU(n,n)/SL(n,C) x R%.

is a noncompact causal symmetric space of Cayley type. We refer to [18, Chap. 3]

for more details on the theory of causal symmetric spaces of Cayley type. The

symmetric space M is (isomorphic to) the so-called Riemannian dual of M.
Let a C pNq be the Cartan subspace given by

a:= {at: [ (t) é :| |t: d1ag(t1/2,,tn/2), tl,...7tn ER}

Note that a is also a Cartan subspace of p. From now on we will identify a with
R™ via the map
R">t— a; € a.

For 1 < i < n, let a; € a* be defined by «;(t) = —t;. Thus, the roots
of (g,a) are given by the long ones +«; (1 < i < n) and the short ones
+(o; £ y)/2 (1 < i < j < n), with multiplicities 1 and 2, respectively. The
root system X := Y(g,a) is of type C,. Choose an ordering on a* such that the
set X of positive roots is given by

1
EJr:{ozi(lSign),i(aj:I:ai) (1§@'<j§n)}.

Then the negative open Weyl chamber in a on which all elements of X7 are strictly
negative is
a. ={teR"|0<t; < - <t,}.

Denote by
1
Y, = {ii(aj —a;) (1<i<j< n)},



256 BEN SAID

and let .
Z: I:Z+QZO:{§(O{1—O{¢) (1§2<]§n)}

The Weyl groups for ¥ and X, are respectively W = S, x {£1}" and W, =S,
where S,, is the permutation group of n elements. The group W acts on a by
t = (Tito(1)s - - - s Talom)) With 7, = £1 and o0 € S,,.

For all A € C", denote by ¢, the Harish-Chandra spherical functions on
M? with spectral parameter A (cf. [17, Chap. IV]). In particular, if we use the
identification of functions on M¢% with right K-invariant functions on G, then
ox(kgk') = pa(g) for all k, k' € K and g € G. Thus, the spherical functions are
completely determined by their restriction to A_ = exp(a_). Furthermore, they
are YW-invariant on the spectral parameter A. In [5] Berezin and Karpelevic¢ gave
an explicit formula for the Harish-Chandra spherical functions on

SU(n,n)/S(U(n) x U(n)).

A complete proof can be found in [19].

Theorem 2.1.  (cf. [5, 19]) There exists a constant that depends only on n such
that the spherical functions py on SU(n,n)/S(U(n) x U(n)) are given by

det <PAF% (cht; ))

1<i,j<n

IT x2=x) JJ (cht;—cht;)

1<i<j<n 1<i<j<n

@ (exp(t)) = const.

for all X € C" such that [], c5i(a, A) # 0, and for all t € a_. Here P, denotes
the Legendre function of the first kind.

Remark 2.2.  For fized t, the function A\ — py(exp(t)) has a holomorphic
extension to C".

From now on we will identify K -bi-invariant functions on M9 with W-
invariant functions on a. For A € C", the spherical Fourier transform F4(f) of a
function f € C°(a)"V can be written as

FUHN) = : f(t)p-x(exp(t))A(t)dt,

where

A(t) =200 TT sht; [] (cht; —cht,)*. (1)

1<j<n 1<i<j<n

The inversion formula for F9 is given by

f(t) = const. fd(f)(A)%(eXp(t))ﬁ, te R, (2)

iR”™

where

0 =) IT sy o L 8= ®)

1<i<n /2) 1<i<j<n
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The constant “const” is positive and depends only on the normalization of the
measures, and c(d) is a positive constant which can be determined from ¢?(p) = 1,
where p = (1/2,3/2,...,1/24n — 1). For more details on the theory of spherical
Fourier transforms, we refer to [17, Chap. IV].

Let ¢max be the maximal Wy-invariant regular cone in a (= R™) defined by

Cmax == {t€R" | t; >0(1<i<n)}.

The subset Cpax := Ad(H)cmax C q is a maximal H-invariant regular cone in
g. Denote by I'(Chax) := exp(Chax)H the semi-group in SU(n,n) with interior
[(Chiax) = exp(Cha ) H = H exp(cgya) H.

For A € C™, set 1, to be the spherical function on M with spectral param-
eter A (cf. [12]). Note that ) are only defined on I'(C? ), and H -bi-invariant
functions. We mention that for an arbitrary noncompact causal symmetric space,
the spherical functions are defined in [12] by an integral formula over H. In [23],
the authors determine the exact set £ of A € af for which the integral is finite.
Further, a Harish-Chandra expansion type formula for ¢, can be found in [27].
We also note that 1, = ¥, for all w € W;.

In view of the Berezin-Karpelevi¢ formula for ¢y, and the Harish-Chandra

expansion type formula for ¢, we have:

Theorem 2.3.  (cf. [3]) There exists a constant that depends only on n such
that the spherical functions ¥y on SU(n,n)/SL(n,C) x R are given by

det (Qxi—1/2 (ch tj))

1<i,j<n

IT *2=x) JJ (cht;—chty)

1<i<j<n 1<i<j<n

Py (exp(t)) = const.

for all X € C" such that Re(\;) > 0 (1 < i <n) and for all t € a_. Here Q,
denotes the Legendre function of the second kind.

Remark 2.4.  Recall the set € from [23]. In the SU(n,n)/SL(n,C) xR’ -case,

we have
E={AeC"|Re(N)>—-1/2(1<i<n), Rei+X;)>0(1<i#j<n)}.

Thus, the statement of Theorem 2.3 remains valid for every X\ in .

Remark 2.5.  Using [20, Theorem 1.2.4] and the fact that v — Q,(2) is a
meromorphic function on C with poles at the points v € —N, one can see that
for fized t, the function A — y(exp(t)) has a meromorphic extension to C" with
simple poles at X\ € C" such that \; € =N +1/2 (1 <i <n) and \; + \; =0,
(1<i#j<n).

We may identify the space C°(H \ I'(C2,.)/H) with C(c2,.)"°. Thus,

the spherical Laplace transform £(f) of a function f € C>(c¢,,. )" can be written
as

LN = [ Ft)alexp(t))Alt)dt,

a_
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where A(t) is given by (1). The inverse spherical Laplace transform is given by

£(t) = const. / c<f><A>¢A<exp<t>>ﬁ, tecn ()

IR™

where ¢ is given by (3), and

I'(\ +1/2) 2 y2y-1
) = ¢e(Q _ A=) 5
=@ [ w5 I - )
1<i<n 1<i<j<n
Here ¢(£2) is a positive constant, see [23, Theorem II1.5]. We refer to [12] and [18,
Chap. 8] for more details on the theory of spherical Laplace transforms.

3. The Bessel Laplace transform
Recall the symmetric spaces
MY =SU(n,n)/S(U(n) x U(n)) and M = SU(n,n)/SL(n,C) x R

For € > 0, write g. = kexp(eX) with k € K and X € p. Denote by ®(\, X) :=
lime_o @a/e(ge). In [24] the author proved that the limit ®(A, X) exists and it
is a smooth function. The limiting functions are the so-called Bessel functions
on the flat symmetric space p. In [11, 7] this result was generalized to arbitrary
noncompact Riemannian symmetric space. In [8] a similar result (for arbitrary
noncompact causal symmetric space) was proved when ¢, is replaced by 1. More
precisely, if 7. = exp(eX)h, with X € C°__and h € H, then for a certain range
of A € af, the limit W(A, X) = lim. 0%y (exp(eX)) and its derivatives exist.
See [8] for the proof.

Theorem 3.1. (i) (cf. [24]) For all X € C" such that [] .5+ (N, ) # 0, and

for all t € a_, there exists a constant which depends only on n such that

det <Io()\itj)>

1<i,5<n

T x=-x I @-&

1<i<j<n 1<i<j<n

where 1,(z) := e ®™/2],(iz) and J, is the Bessel function of the first kind. The
Bessel function ® extends to a holomorphic function on C" x C".

(ii) For all A € C™ such that Re(N\;)) >0 (1 <i<n), and for all t € a_,
there exists a constant which depends only on n such that

det <K0()\itj)>

® (A, t) = const.

U(\, t) = const. s :
I &3=x I &)
1<i<j<n 1<i<j<n
where / /
Ko(z) := lim T _V(Z,> /(2)
v—0 2 sin v

denotes the Bessel function of the third kind. For fized t, the function X +— W(\,t)
has a meromorphic extension to

D={XeC" |\ eC\|—00,0]},
with simple poles at A € D such that \; + \; =0 for some 1 <1i # j < n.
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Proof.  (ii) For € > 0, write v ,.(exp(et)) as

En(n—l)
lexp(et = t.
U e(exp(et)) cons H T H ]2 — ) X
1<i<j<n 1<i<j<n
Z(—l)U H @x, iy /e-1/2(chet;).

o€Sy, 1<i<n

By [31, p.259], we have
'A—p+1/2)

ToFati2) @t

e (T(—p) /1 1, 1 1 ) T (1)
= F( A =), =(—=A —);1 ;—ht)
5 { o 2P+ g) g (= A+ )il + s —sh®t) + o2

QHF)\_ . . 2
(sht)~ FE/\+515332F1<%()\_M+ %),%(—A—u—i—%),l—u, —sh t)}

(sht)~

Using the well known formula

I'(z+a)

Tz +0) = 21+ 0(z7Y) as z — 00, (6)

together with the hypergeometric series of 5 F}, we obtain:

, 1, 1.1, A 1 , At
11_%2F1(§(2iu+§),5(—Eiu+§);1iu; —sh et) :r(iuﬂ)(?) L, (M),
and

i TE =)
1m—
—0D(2+pu+3)

Here I, denotes the modified Bessel function given in the statement (i) above.
Thus

(shet) ™" = ()™

T(\e—p+1/2)

li_r%(sh et)*“ ()\/6 Y Ae1/2(chet)
_ ezf“{f’( I'(1+ ) < ) “[M()\t N)Iz’gl— 1) ()\;l—ujuo\t)}

-t o

and therefore

‘ Tl ()\t) — Iu()‘t)
lim Qxje-1/2(chet) = }}L% 2 sin(mp)

= Ko(\b).

Now one may use [20, Theorem 1.2.4] to prove that the only singularities of W (A, t)
in A € D are those for which A\; + \; = 0, with i # j. u
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Remark 3.2. (i) The Bessel function ® is symmetric in its arguments. Fur-
ther, since Iy(z) is an even function, clearly we have ®(wA,t) = ®(\, wt) = (A, t)
for all w e W =S, x {£1}". For general results in the theory of Bessel functions
associated with Cartan motion groups, we refer to [17, 25].

(i) The Bessel function W is symmetric in X\ and t, with V(wA,t) =
U\, wot) = W(At) for all wg € W, =S,,.

Following [16], the Bessel Fourier transform F(f) of a function f € C(a)"

is given by
:/ FIOBON, Hw(t)dt,

H H —t7)? te€a_. (7)

1<i<n 1<i<j<n

where

Further, there exists a positive constant depending only on the normalization of
the measures such that

F(t) = const. [ F(fYA)B, )w(N)dA, (8)

iR™

where

= IT A T =22 (9)

1<i<n 1<i<j<n

Observe that one may recover the definition of F and its inversion formula via F ,
by applying a limit transition approach. Indeed, for € > 0, set f.(t) := f(e~'t).
Then

FUfINe) = / Je(t)p_xje(expt) Hsht H (2cht; — 2cht;)?dt

1<i<n 1<i<j<n

~ 2”1/ F(t)p_xse(expet) H H 5 —t7)?

1<i<n 1<i<j<n

as € — 0. Hence

lim e "D FI(f) (A e) = F(f)(N). (10)

By virtue of (6), one can also use the inversion formula (2) for F to recover(8). We
should mention that the Bessel Fourier transform has been carried out by several
authors in different settings (see e.g. [15, 16, 24, 33]).

Remark 3.3.  In [10] Dunkl introduced an integral transformation on the space
L*(a,dp) (where p is some suitable measure) in terms of the eigenfunctions of
the so-called Dunkl operators. This class of Dunkl transforms encloses the Bessel
Fourier transforms on flat symmetric spaces.

Define the Bessel Laplace transform £(f) of a function f € C°( We by

max)
LA = . FOTNw(t)dt,  Vf € CX(chan)™,

whenever this integral converges. Once again one may obtain the above natural
definition of £ via the spherical Laplace transform L.



BEN SAID 261

By [27, Lemma 4.16], we know that if f € C.(c2,.)""°, then there exists
a unique function f¢ € C.(a)"” such that f|a_ = fja_. Thus, we may obtain the

following relation between Fand L: for t € a_, we know that

or(exp(—t) = 3 %Wexpu», (11)
Te{£l}"

for almost every A € C" (cf. [18, Theorem 8.4.4]). Further, in the light of (6), we
have

ANe) ~ e e(d) T (27 [ A=A as e—0,

1<i<n 1<i<j<n
and
cAe)~ e Do) TT M2 I (2-2)7"  as e—o.
1<i<n 1<i<j<n
Thus

D\ 1) = o(d) > [ {(=m2) 7 2(mX) Py (zAt)  Viea, (12)

c() r=(r;);€{£1}n 1<i<n

for almost every A € C*. When n = 1, we have c¢(d)c(Q)™' = 7!, and the
equality (12) coincides with the well known formula Ko(z) — Ko(—2) = inly(2)
(cf. [31, p. 428]). Now the following is clear.

Corollary 3.4.  For almost every A € C" and for all f € C2°( We

Fryw =5 X TTHEm ) a0

) T=(1;);€{£1}" 1<i<n

max)

In particular, the right hand side extends to an analytic function on C".

The Bessel Laplace inversion formula is now immediate.

Theorem 3.5. If fecCx(c We

that

° ax) 0, then there ezists a positive constant such

f(t):const./ LN P H |

iR 1<i<n

for all t € a_. Here w(\) is as in (9).

Proof. For t € a_ we have

f(t) = const. fd(fd)() O(N, H)w(N)dA

= const. /n Z m)Lf 7')\)} ,t)w()\)lll |i dA\

ref{+1}n 1<7,<n ‘

The statement is now due to the W-invariance of ® and w(\)dA. n
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4. The Paley-Wiener theorem

For R > 0, let Bg :={t € R" | ||t]| < R}. Denote by C¢(a) the space of smooth
functions on a with support contained in the closed ball Bgr. Define the Paley-
Wiener space H{t,(C") as the space of WW-invariant holomorphic functions on C"
with the property that for each M € N there exists a constant ¢, > 0 such that

9] < ear(L+ [IA])~ MRy e Cm.

We will denote by Hyy(C") the union of the spaces H{t,(C") over all R > 0.

Theorem 4.1.  (cf. [15]) The Bessel Fourier transform f — F(f) is a bijection
of gfo(a)w onto Hw(C"™). The function f has support in the ball Br if and only
if F(f) € Hy(C).

Next we will discuss a Paley-Wiener theorem for L. For 0<r<R< 00,
let PWIE(C™) be the space of W, -invariant meromorphic functions g on D with
at most simple poles at \; + X; =0 (1 <i# 5 <n) such that:

(Py) the map

Aav(g) V) = Y [T A=ma) 2 @maA) (A

re{&1}n 1<i<n

extends to a function in Hi,(C").
(Py) for all M € N, there exists a constant ¢y, such that for A € D with
Re(A;)) >0 (1 <i<n) we have

IT 2 TT 2 = X1 1] < ear(1+ A~ Mer el
1<i<n 1<i<j<n
where to:=(1,...,1).
Denote by PW,(C") the union of the spaces PW!(C™) over all 0 < r < R < oo.

Lemma 4.2.  For all A\ € D such that Re(\;)) > 0 (1 < i < n), and for all
t € R" such that t; >r >0 (1 <i<mn), we have

ol TT 2= TT 2 T 1A = A2 < cemmBeto)

1<i<j<n 1<i<n 1<i<j<n

where to = (1,...,1) and c is a constant which depends only on r and n.

Proof. For all t € R™ we have

el T a2 T =g =x3 = T e

1<i,j<n
1<i<n 1<i<j<n 1<i<n

< > TT 2 [Ko(tao)] -

o€Sy, 1<i<n

It is well known that for z € C\Joo, 0] we have Ko(z) = /5-Wy,0(22), where Wy
denotes the Whittaker function. Using the expression (4), p. 317 of [31], and the
asymptotic expression (1), p. 202 of [32], we get

|2|Y/2| Ky(2)| < const. e () z € C\Joo,0].
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Thus, if to; > 7 >0 and \; € C\Joo, 0], then
M Ko (Nito))| < cpeREAtr6),
If in addition Re()\;) > 0, we obtain
Nl 2 Ko(Aitogp))| < cre O,

Now the desired lemma is clear. ]

For 0 < r < oo, we set C, := {te€R"|t;, >r (1 <i<n)}. Denote by

o (Coax)”Ye the space of functions f € CZ°(cf,,, )" with support contained in

C. N Bg. Note that C7%(c5,.)""* = {0} if R < 7. The union of the spaces

max

CrR(Chax)”® over all 0 <7 < R < oo coincides with CZ°(cp,,)""°.

max max

Lemma 4.3.  Forall 0 <r < R < oo, the transformation L maps CXg(
injectively into PW>E(C™).

)Wo

O
Cmax

Proof.  Since the function A — W(\, ) is meromorphic on D with simple poles
at i +A; =0 for 1 < i # j < n, it follows that A — L(f)(\) extends to a
meromorphic function on D with simple poles at A\; + A; = 0 for ¢ # j. Further,
the W,-invariance of the Bessel functions ¥ implies that A — L£(f)(\) is a W,-
invariant map for all f € CN;”(C;M)WO. Moreover, by means of Corollary 3.4, the

Bessel Laplace transform L satisfies the property (P;). One can also check that
L obeys the property (Py). Indeed, for f € CP%(c5,a)""° We have

max

IT e TT we =22 o]

1<i<n 1<i<j<n

<[ ool T e T 0 - e
a_nsupp(f)

1<i<n 1<i<j<n
<C7” R 6_T<R‘e()‘)7t0>

Above we used Lemma 4.2. To reach the conclusion, it is enough to recall that
W(\, t) satisfies a Bessel system of differential equations (cf. [8, (4.8)]).

The injectivity of L follows from the inversion formula in Theorem 3.5. m

Lemma 4.4.  If av(L(f)) =0 with f € C®(c2, )", then f = 0.

max

Proof.  The statement of Corollary 3.4 can also be written as F(f4)(\) =

s((g)) av(L(f))()), where f‘%_ = fja_. Now the claim is an easy consequence of the
injectivity of F. [ |

The following statement can be proved in a similar way as Lemma 9.1 in
[1]. The function g bellow plays the same role as g; in the proof of [1, Lemma
9.1].
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Lemma 4.5.  Let g be a meromorphic function on D which satisfies the con-
dition (Py) for some r > 0. If av(g) =0, then g = 0.

We have now all ingredients to state and prove the first main result of the
paper. Our approach is similar to the one used in [1] for the spherical Laplace
transform.

Theorem A.  The Bessel Laplace transform L is a bijection from CrR(Cha)”™
onto PWIR(C™) for every 0 < r < R < oo, and from C°(c5,,.)"Y° onto
PW,(C™).

Proof. By virtue of Lemma 4.3 we only need to prove the surjectivity of L
from C%(cha)”Y® to PWLH(C™). By Theorem 3.1 part (i), we have

> 07 I (et

(I)(A,t) _ oES, 1<i<n
T ®-x I] &-1
1<i<j<n 1<i<j<n
I %(ent)
_ Z 1<i<n
2 2 2 2
7€Sn H (t; — ;) H (o) — Aoy
1<i<j<n 1<i<j<n
= ) E(o(\),1),
O'ESn
where
H In(\it;)
1<i<n
E(/\,t) = — )
II &= T -2
1<i<j<n 1<i<j<n

For A € C", let
9N = J[ (3 =).

1<i<j<n

Fix r and R, and define the wave packet of g € PWIE(C") by

Zg(t) :/ng(A)(I)(/\,t)ﬁ()\)z IT X

1<i<n

when ¢ € a_. The function Zg is well defined and it belongs to C*°(c¢,,,.)""°. This

max

follows from the growth behavior of g € PW(C"), and the fact that
|09t .. 0P D(A, t)| < const. || A||*1 T,

with A € iR™ and ¢t € R™. Here the constant “const” depends only on aq, ..., «a,.
Notice that for A € iR", 9(A)*[];cicp Mi = @A) IT1<icn ‘i—z| Bellow we will prove
that the support of Zg is contained in C, N Bg, i.e. Zg € Co%(ch.)""".
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By the W,-invariance of g and 9J(A)? [],.,<, \i, we have

Ig(t):n!/ gAN)EN )Y H)\d)\ tea_.

iR™ 1<i<n

On the other hand, using the expression of Iy in [32, p. 77| and the asymptotic
expression (2), p. 203 of [32], it follows that there exist two positive constants

such that
|Io(2)| < const., 0< |z <1,

115(2)| < const. |z|71/2eRe(®) 1< |z|.
Thus, for fixed t € a_,

M TT PIE )] < const. (13)
1Zizn IT4#% II &-
1<i<n 1<i<j<n
if |\;| <t;7! for all i, and
(Re(A)t)
N T IMAER )] < const. ¢ (14)

1<i<n H t11/2 H (t_? - t?)
1<i<n 1<i<j<n
if |\;| >t7" for all i.
Now let t € a_\C,. By [1, p. 721], there exists an element A\° € R’ such
that ¢ := (\°,t —rt,) <0, where t, = (1,...,1). Hence, for arbitrary a > 0, we
have

n

. H i+ aXe 2 T (N + add)t)|
IO+ aX) TT I+ aXfPEN + axe, ) = =

Z I -2

1<i<j<n
(Re()\—i-a)\o) t)
(15)
I I 6
1<i<j<n
as a — oo. Here we used the fact that Iy(z) ~ z7'/2%¢* as z — oo. In

particular, if A € iR™ and t € a_ \ C,., there exists a constant not depending on A
such that the left hand side of (15) is bounded by ce®*** as a goes to infinity.
That is

+ o + o +« < ce™e "o as o — 00.
9\ )\o )\ )\o 1/2|= =(\ AO al ra(A°,to) 16

1<i<n

By virtue of (13), (14), (16), and the growth behavior of g € PWZE(C"), Cauchy’s
theorem and a contour shift imply that

To(t) = nl / GEO ) T Adn

— / 9O+ ) + X, DA+ ax)? T (i + ard)dr
Rn 1<i<n
— 0 as a — 00.
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Thus Zg vanishes on a_\ C,, and, by the continuity and the W, -invariance of Zg,
this is equivalent to Zg = 0 on ¢ .\ C,. Furthermore, the wave packet vanishes
also on ¢, \ Bgr. One can see this as following: If one recalls that for A € iR™,
PN Ticicn Ni = wN) TTicien, &—‘, then by the W-invariance of ® and w(\), one
has (for t € a_)

zo) = [ a0 I

1<i<n Al

_ —/ ST T (=m0 200 V2 g (PN B, (M)A

R e f£1)n 1<i<n

\
Ld\

1 ¢(§2)

- o / av(g) VO, (A

Comparing this formula with (8), we get (up to a positive constant which does not
depend on \)

F(Zg)(\) = const. av(g)(N). (17)
Since g € PWrE(C"), the property (P;) implies that F(Zg) belongs to the Paley-
Wiener space Hii,(C"). Hence, by Theorem 4.1, supp(Zg) C Bg, i.e. Zg(t) =0 for

all t € ¢, \ Br. Thus we draw the conclusion that Zg € C % (¢5,.,)"°. Moreover,
in view of Corollary 3.4, equation (17) yields

c(d)
()

for all g € PWIE(C™). Now, Lemma 4.5 implies that (up to a constant) £(Z(g))
g for all g € PWrE(C™). This finishes the proof.

av(L(Zg))(N) = F(Zg)(\) = const. av(g) (),

5. A flat analogue of the Abel transform

Replacing the Cartan involution by the involution ¢ in the proof of [17, Theorem
1.5.17], one can prove that for f € C.(

(Chiax)
/mdx f(Y)dY = const. / / f(Ad(R )ag+ {, X) | dhd X,

where “const” is some positive constant depending only on the normalization of
the measures. Thus, for A € af such that Re()\~) >0 (1 < i < n), the Bessel

Laplace transform of f € C®(c2,,. )" = C*(C°,.)AH) can be written as
LHK) = [ FEOPO, X)w(X)dX
a

. /a _ Fx)( /H e MMM oo (X)d X

= const. / f(X ”\(X )dX.

In ax

Above we used the following integral representation of the Bessel functions

T\, X) = / WX gp,
H
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(cf. [8, Theorem 4.12]). Let at be the orthogonal complement of a in q. Then for
A € a* such that \; >0 (1 <i<n), we have

()N = const. /C o me—w( /C o FX+ Y)Y )dx

max max

= const. / e M A(f(X)dX, (18)

o
Cmax

where

A()(X) = /C Sy

max

denotes (the flat analogue of) the Abel transform of f € C>®(C¢,, )Ad) =~

max
C®(c2, )" at X € 2. The expression (18) is similar to the one proved by

Helgason in [15] for the Bessel Fourier transform on p. It follows that

L(f)(\) = const. /O e M A(X)dX = const. F(A(f)) (N, (19)

max

where § denotes the Euclidean Laplace transform associated with ¢ . Let

V(zy, ..., xp,) = H (ZL‘?—ZE?)

1<i<j<n
One may write V(A, ..., \)L(f)(A) in two different ways. First, by (19), we have
V(s M) LA = const. VO, .., M)F(A(F)) (V)
- const.&[V(@l, O A( f)} (\). (20)
Second, for f € C(c2,. )"V, we have

VO, AL

= const. . f(t)lgdﬁzn (Ko(Ai;)) H (t2 —t7)

= const. [ f(t) det (Ko(Nty) [ & JI (8 —)dt

1<i,j<n

= const. Z/a f(t) H to Ko (Nito(i)) H(tfr(j)_tg(i))dt

oES, 1<i<n 1<j
= const./ FOV(t,. ) T 6 J] Ko(Mits)dt.
Chhax 1<i<n  1<i<n

Since o _
6 z8
Ka(z2t) = —d$7 Re(z >O, t>07
oot = [ At (Re(2) )
it follows that
Vs ) L)

A)
_ —iSi o . o tidti
— const./ IT ¢ [/0 /0 flt, ) V(.. L) H —m}ds

Chax 1<i<n 1<i<n

= const. S(A?”(fV)) (N),
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where A?" denotes the n-fold tensor product of the one dimensional integral
transformation

® t
A1<F)(8) Z:A F(t)ﬂdt, Fe CSO(RJr), s> 0.

The later transform satisfies

F(t) = Ld L 21
() const. _E 1( )(S)ﬂ S. ( )

Comparing (20) with (21), and using the injectivity of the Euclidean Laplace
transform §, we get

V(01 ..., 00)A(f)(t) = const. AT"(fV)(¢).

In view of (22), we obtain the second main result of the paper.

Theorem B.  Assume that f € C(c
transform is expressed as

o sds;
V(t1,...,tn)f(t) = const. tdt/ / V(0y,...,0, H\/m

where V(@l, N ,an) = H1§i<j§n<832‘ - 812)

© o) Yo For every t € a_, the inverse Abel

Remark 5.1. (Another way of computing the Bessel function W(\,t) via the
rank one case.) Let /\/l(1 o) be the rank one symmetric space SOo(1,2)/50(1,1).

The associated restricted root system is given by {+a}, where a(t) = —t defines
the positive root. Here a = R, and m, = 1. By [8, Example 4.13], the Bessel

functions associated with M&)o) are given by

g

oA 1) = Ko(At),  Re(A) >0, t>0.

Let M (1 0 be the product of n-copies of MY (10)* and define on ./\/l the pseudo-
Bessel functlon
v

G0y (A1) = Z H Ko(A

0€Sy, 1<i<n

On the other hand, recall that the restricted root system (g, a) associated with
M = SU(n,n)/SL(n,C) x R} consists of long roots with multiplicities 1 and
short roots with multiplicities 2. By [26] we Can prove that we may obtain the

Bessel function W(A,t) associated with M via \If ()\ t) a

const.

[T o5 -x

1<i<j<n

(A t) = G(0,2) T (A1), (22)

where G(0,2) denotes the shift operator

H (t?_tf)_l H (D(tj7atj>_p<ti7ati>)7

1<i<j<n 1<i<j<n
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2 1d
p-4  1d
a2t

Since Ky(z) is a solution to

it follows that

T(\ 1)

const.
= Z H Ko(As@iyti) H A — M)
[T @& = - J=ss i<idi<n

1<i<j<n

const.
= (=1)7 Ko(Aoiyti)
IT & -2 -x) %; 12

1<i<j<n
et (o))
= const. )
I &-o I &-x2
1<i<j<n 1<i<j<n

which coincides with Theorem 3.1 part (ii). Notice that one may use (23) to
give another proof for Theorem A. In a forthcoming paper we shall develop this
approach further to prove a Paley-Wiener theorem for a larger class of noncompact
causal symmetric spaces.
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