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Abstract. We introduce an extension of the standard Local-to-Global Prin-
ciple used in the proof of the convexity theorems for the momentum map to
handle closed maps that take values in a length metric space. As an application,
this extension is used to study the convexity properties of the cylinder valued
momentum map introduced by Condevaux, Dazord, and Molino.
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1. Introduction

The Local-to-Global Principle [9, 16] is an important topological technique that
has been used in the formulation of convexity theorems for momentum maps
associated to compact group actions on non-compact symplectic manifolds with
proper momentum maps. This approach has been further developed and applied
to many interesting situations in [16] and has been generalized to closed maps
in [4].

All the convexity results in the literature in which the Local-to-Global
Principle has been used concern maps with values in vector spaces. The main
goal of this paper is the extension of this principle to closed maps with values in
a length metric space. Our approach is based on the extension of the classical
Hopf-Rinow theorem to length metric spaces due to Cohn-Vossen. This circle of
ideas also appears for compact spaces in [7]. In this context, we also show how
the connectedness of the fibers of the map in question, a property that is usually
addressed in symplectic convexity theorems, is ultimately a consequence of the
uniquely geodesic character of the target metric space (a property always available
for Euclidean spaces). A short appendix at the end of the paper contains all
the definitions and results on convexity in length metric spaces necessary for the
comprehension of the paper.

As an application of our extension of the Local-to-Global Principle we study
the convexity properties of the cylinder valued momentum map. This map is a
generalization of the usual momentum map that is always available for any Lie
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algebra action on a symplectic manifold and that generically takes values in an
Abelian group isomorphic to a cylinder. The cylinder valued momentum map
was introduced in [9] and carefully studied in [25, 26] in the context of reduction.
Additionally, its local properties are as well understood as those for the standard
momentum map [23, 26]. The generalized Local-to-Global Principle allows us to
extend to the cylinder valued momentum map the knowledge that we have about
the convexity properties of the classical momentum map. The metric approach
seems to be the best adapted generalization of the classical setup to our problem
since, under certain hypotheses related to the topological nature of the Hamiltonian
holonomy of the problem (a concept defined carefully later on), the target space
of the cylinder valued momentum map has an associated canonical length space
structure.

2. Image convexity for maps with values in length spaces

One of the main goals in this paper is the study of the convexity properties of the
image of a natural generalization of the momentum map. The notion of convexity
is usually associated with vector spaces. However, the map considered in this paper
has values in a manifold that is, in general, diffeomorphic to a cylinder. Thus, one
is forced to work in a more general setting. As reviewed in the Appendix (see §4),
most of the concepts pertaining to convexity can be extended to the context of
the so called length spaces. It turns out that the target space of the map that we
are going to study can be naturally endowed with a length space structure and
hence convexity will be used in this context. We give in §4 a self-contained brief
summary of all the definitions and results on length spaces necessary in this paper.

The convexity program has been successfully carried out for the standard
momentum map by several means. One possible approach consists in determining
certain local properties of the map that guarantee that it has a globally convex
image. This strategy relies on a fundamental result called the Local-to-Global
Principle which has been introduced in [9, 16] for maps whose target space is a
Euclidean vector space. Since the extension of the standard momentum map with
which we will be working does not map into a vector space but into a length space,
a generalization of the Local-to-Global Principle is needed to handle this situation.
This is the main goal of the present section.

Let f : X → Y be a continuous map between two connected Hausdorff
topological spaces. Declare two points x1, x2 ∈ X to be equivalent if and only if
f(x1) = f(x2) = y and they belong to the same connected component of f−1(y).
The elements of the topological quotient space Xf are the connected components

of the fibers of f . Let πf : X → Xf be the projection and f̃ : Xf → Y the induced

map which is uniquely characterized by f̃ ◦πf = f . The map f̃ is continuous and
if the fibers of f are connected then it is also injective.

Definition 2.1. Let X and Y be two topological spaces and f : X → Y a
continuous map. The subset A ⊂ X satisfies the locally fiber connected condition
(LFC) if A does not intersect two different connected components of the fiber
f−1(f(x)), for any x ∈ A .

Let X be an arcwise connected Hausdorff topological space. The continuous
map f : X → Y is said to be locally fiber connected if for each x ∈ X , any open
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neighborhood of x contains a connected neighborhood Ux of x such that Ux

satisfies the (LFC) condition.

The following consequences of the definition are useful later on. A subset
of a set that satisfies (LFC) also satisfies (LFC). If A ⊂ X satisfies (LFC), then
its saturation π−1

f (πf (A)) also satisfies (LFC). If f is locally fiber connected, then
any open neighborhood of x ∈ X contains an open neighborhood Ux of x such
that the restriction of f̃ to πf (Ux) is injective.

Definition 2.2. A continuous map f : X → Y is said to be locally open onto
its image if for any x ∈ X there exists an open neighborhood Ux of x such that
the restriction f |Ux : Ux → f(Ux) is an open map, where f(Ux) has the topology
induced by Y . We say that such a neighborhood satisfies the (LOI) condition.

Benoist proved in Lemma 3.7 of [3] the following result that will be used later on.

Proposition 2.3. Suppose f : X → Y is a continuous map between two
topological spaces. If f is locally fiber connected and locally open onto its image
then πf is an open map.

Corollary 2.4. Under the conditions of the previous proposition, the induced
map f̃ : Xf → Y is locally open onto its image.

Proof. Let x ∈ X be arbitrary and [x] := πf (x). Since f is locally open onto
its image there exists a neighborhood Ux of x in X such that f |Ux is open onto
its image. Let U[x] := πf (Ux); since by the previous lemma πf is an open map,
we conclude that U[x] is an open neighborhood of [x] ∈ Xf . We shall prove that

f̃ |U[x]
is open onto its image.

Let V ⊂ U[x] be an open subset of U[x] . We will show that f̃(V ) is open

in f̃(U[x]) = (f̃ ◦ πf )(Ux) = f(Ux) by proving that f̃(V ) = f(π−1
f (V ) ∩ Ux).

Indeed, if z ∈ f̃(V ) there is some [y] = πf (y) ∈ V such that f̃([y]) = z ; hence
y ∈ π−1

f (V ). Moreover y can be chosen in Ux because if this were not true, then

π−1
f ([y])∩Ux = ∅ . However, by the definition of the equivalence relation we know

that π−1
f ([y]) is a connected component of the f -fiber of z that cannot possibly

intersect the πf -saturation of Ux (which is the union of all connected components
of the fibers of f that intersect Ux ). But this means that [y] /∈ U[x] = πf (Ux)
which is a contradiction with the hypothesis V ⊂ U[x] . The converse inclusion is
straightforward. �
We need the following characterization of closed maps (see [10], Theorems 1.4.12
and 1.4.13).

Theorem 2.5. Let f : X → Y be a continuous mapping.

(i) f is closed if and only if for every B ⊂ Y and every open set A ⊂ X which
contains f−1(B), there exists an open set C ⊂ Y containing B and such
that f−1(C) ⊂ A.

(ii) f is closed if and only if for every point y ∈ Y and every open set U ⊂ X
which contains f−1(y), there exists a neighborhood Vy of the point y in Y
such that f−1(Vy) ⊂ U .
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Lemma 2.6. Let X be a normal, first countable, arcwise connected, Hausdorff
topological space and Y a Hausdorff topological space. Let f : X → Y be a
continuous map that is locally open onto its image and is locally fiber connected.
If f is a closed map, then

(i) the projection πf : X → Xf is also a closed map,

(ii) the quotient Xf is a Hausdorff topological space.

Proof. (i) Let [x] ∈ Xf and U ⊂ X an open set that includes Ex :=
πf

−1([x]), the connected component of f−1(f(x)) that contains x . Denote by
F := f−1(f(x)) \Ex the union of all (closed) connected components of f−1(f(x))
different from Ex . We claim that F is a closed subset of X . Indeed, if z ∈ F , by
first countability of X , there exists a sequence {zn}n∈N in F which is convergent to
z . Since f(zn) = f(x), by continuity of f we conclude that f(x) = f(zn) → f(z)
and hence z ∈ f−1(f(x)). If z ∈ Ex then any neighborhood of z intersects at least
one other connected component of the fiber f−1(f(x)) since z ∈ F . This, however,
contradicts the (LFC) condition. Therefore, z ∈ F and hence F is closed. The
same argument as above shows that the (LFC) condition implies that Ex is also
closed in X .

Using the normality of X there exist two open sets UEx and W such
that Ex ⊂ UEx , F ⊂ W , and UEx ∩ W = ∅ . After shrinking, if necessary,
we can assume that UEx ⊂ U . Applying Theorem 2.5(ii), the closedness of
f ensures the existence of an open neighborhood Vf(x) of f(x) in Y such that
Ex ⊂ f−1(f(x)) ⊂ f−1(Vf(x)) ⊂ UEx ∪W .

The set A := UEx ∩ f−1(Vf(x)) is a nonempty open subset of X and is also
saturated with respect to the equivalence relation that defines πf or, equivalently,
πf

−1(πf (A)) = A . Indeed, if a connected component of a fiber of f from f−1(Vf(x))
intersects UEx , respectively W , then it is entirely contained either in UEx or in
W since UEx ∩W = ∅ .

Since A is open in X , by the definition of the quotient topology of Xf , it
follows that πf (A) is an open neighborhood of [x] . Note that πf

−1(πf (A)) ⊂ U ,
which shows via Theorem 2.5(ii) that πf is a closed map.

(ii) We prove that Xf is Hausdorff by showing that the projection πf is an
open map (which holds by Proposition 2.3) and that the graph of the equivalence
relation that defines Xf is closed.

To show that the graph is closed, we need some preliminary considerations.
For every x ∈ X there exists a neighborhood Ux that satisfies (LOI) and (LFC). By
normality of X there exists also a neighborhood U ′

x of x with U ′
x ⊂ Ux . We shall

prove that πf
−1(πf (U ′

x)) ⊂ πf
−1(πf (Ux)) which shows that for every connected

component Ex of a fiber there exists a saturated neighborhood of it which contains
a smaller saturated neighborhood whose closure still satisfies (LFC). In order to
prove the above inclusion observe that since πf is continuous and closed we have

that πf (U ′
x) = πf (U ′

x) ⊂ πf (Ux). By the continuity of πf we obtain the inclusion

πf
−1(πf (U ′

x)) ⊂ πf
−1(πf (U ′

x)) ⊂ πf
−1(πf (Ux)).

We now prove the closedness of the graph of the equivalence relation that
defines Xf . Take {xn}n∈N and {yn}n∈N two convergent sequences in X such that
xn and yn are in the same equivalence class for all n ∈ N . Suppose that xn → x
and yn → y . The continuity of f guarantees that f(x) = f(y). Additionally, there
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exists n0 ∈ N such that for n > n0 all xn ∈ πf
−1(πf (U

′
x)), where U ′

x has been
chosen as above. Consequently yn ∈ πf

−1(πf (U
′
x)) since xn and yn are in the same

equivalence class and πf
−1(πf (U

′
x)) is saturated. Therefore, x, y ∈ πf

−1(πf (U ′
x)).

But πf
−1(πf (U ′

x)) satisfies (LFC) and thus x and y belong to the same connected
component of the fiber f−1(f(x)). This shows that the graph of the equivalence
relation is closed, as required. �

Proposition 2.7. Let X be a normal, first countable, arcwise connected, Haus-
dorff topological space and (Y, d) a metric space. Let f : X → Y be a continuous
closed map that is also locally open onto its image and locally fiber connected. De-
fine d̃ : Xf × Xf → [0,∞] as follows: given [x], [y] ∈ Xf , let d̃([x], [y]) be the

infimum of all the lengths ld(f̃ ◦ γ) where γ is a continuous curve in Xf that
connects [x] and [y]. The length ld is computed with respect to the distance d on

Y . Then d̃ : Xf ×Xf → [0,∞] is a metric on Xf . From the definition it follows

that d(f̃([x]), f̃([y])) ≤ d̃([x], [y]). The open ball centered at y ∈ Y of radius r > 0
is denoted Bd(y, r) or BY (y, r).

Proof. The positivity, symmetry, and the triangle inequality of d̃ are obvious
from the definition of d̃ . We need to show that d̃([x], [y]) = 0 implies [x] = [y] .

Suppose that there exist [x] 6= [y] with d̃([x], [y]) = 0. Then d(f̃([x]), f̃([y])) = 0

and hence f(x) = f̃([x]) = f̃([y]) = f(y). This implies that [x] and [y] are images
under the the projection πf of two different connected components of the same
fiber.

Since f̃ is locally open onto its image (Corollary 2.4) and the quotient
topology of Xf is Hausdorff (Lemma 2.6), there exist two open neighborhoods U[x]

and U[y] of [x] and [y] , respectively, such that U[x]∩U[y] = ∅ and f̃ |U[x]
and f̃ |U[y]

are open onto their images. Consequently, there exist two open neighborhoods
U ′

[x] ⊂ U[x] and U ′
[y] ⊂ U[y] such that f̃(U ′

[x]) ⊃ Bd(f̃ [x], r) ∩ f̃(U[x]) and f̃(U ′
[y]) ⊃

Bd(f̃([y]), r′) ∩ f̃(U[y]) for two small enough constants r , r′ > 0

Any curve γ in Xf connecting [x] and [y] is mapped by f̃ to a loop in

Y based at f̃([x]) = f̃([y]); γ exits U ′
[x] and enters U ′

[y] since U ′
[x] ∩ U ′

[y] = ∅ .

Thus, the curve f̃ ◦ γ in Y exits the open ball Bd(f([x]), r) and enters the open

ball Bd(f([y]), r′) which implies that ld(f̃ ◦ γ) ≥ r + r′ . This is in contradicts the

hypothesis that d̃([x], [y]) = 0 for [x] 6= [y] . �
In order to put the following definition in context, the reader is encouraged

to look at the Appendix (see §4) where the concepts of length metric and geodesic
metric space are discussed.

Definition 2.8. A subset C in a length metric space (X, d) is said to be convex
if for any two points x, y ∈ C there exists a rectifiable shortest path in (X, d)
connecting x and y which is entirely contained in C .

Definition 2.9. Let X be a connected Hausdorff space and (Y, d) a length
space. A continuous mapping f : X → Y is said to have local convexity data if
for each x ∈ X and every sufficiently small neighborhood Ux of x the set f(Ux)
is a convex subset of Y . Any open set U in X such that f(U) is a convex subset
of Y will be said to satisfy the (LCD) condition.
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Proposition 2.10. Let X be a normal, first countable, arcwise connected,
Hausdorff topological space and (Y, d) a geodesic metric space (see Definition 4.2).
Assume that f : X → Y is a continuous closed map that is also locally open onto
its image, locally fiber connected, and has local convexity data. Then (Xf , d̃) is

a length space and the topology induced by d̃ coincides with the quotient topology
of Xf .

The proof of this proposition is based on the following lemma.

Lemma 2.11. Let [x], [y] ∈ Xf be such that they are contained in an open set

Ũ ⊂ Xf (open in the quotient topology of Xf ) such that Ũ = πf (U), where
U open in X and satisfies the (LCD), (LOI), and (LFC) conditions. Then

d(f̃([x]), f̃([y])) = d̃([x], [y]).

Proof. Let Ω := f(U) = f̃(Ũ). Since Ω is convex (because (LCD) holds for U ),
there exists a rectifiable shortest path γ0 entirely contained in Ω that connects
f̃([x]) and f̃([y]), that is, ld(γ0) = d(f̃([x]), f̃([y])). Note that f̃ |Ũ : Ũ → Ω

is a homeomorphism (Ũ endowed with the quotient topology of Xf ) because

f̃ |Ũ is open, since U satisfies (LOI), and is injective, because U satisfies (LFC).

The curve c0 := f̃−1 ◦ γ0 is continuous and connects [x] with [y] . From the

definition of d̃ we have that d̃([x], [y]) ≤ ld(f̃ ◦ c0) = ld(γ0) = d(f̃([x]), f̃([y])).

As the inequality d(f̃([x]), f̃([y])) ≤ d̃([x], [y]) always holds, we obtain the desired

equality d(f̃([x]), f̃([y])) = d̃([x], [y]). �

Proof of Proposition 2.10. First, the previous lemma and Proposition 2.7
imply that the homeomorphism f̃ |Ũ : Ũ → Ω is also an isometry from (Ũ , d̃|Ũ) to
(Ω, d|Ω) and thus the quotient topology of Xf coincides with the metric topology

induced by d̃ .

Next we will prove that (Xf , d̃) is a length space. Let c : [a, b] → Xf

be a continuous curve connecting two arbitrary points [x] and [y] in Xf . For
two partitions ∆n and ∆n+1 of the interval [a, b] with ∆n+1 finer then ∆n we

have that
∑n

i=1 d̃(c(ti), c(ti+1)) ≤
∑n+1

i=1 d̃(c(si), c(si+1)) due to the triangle in-
equality. Therefore, in order to compute ld̃(c) it suffices to work with partitions
fine enough such that two consecutive points c(ti), c(ti+1), corresponding to a par-
tition ∆n , are close enough as above. Hence, by what was just proved, we have
d(f̃(c(ti)), f̃(c(ti+1))) = d̃(c(ti), c(ti+1)) and we conclude

ld̃(c) = sup
∆n

n∑
i=1

d̃(c(ti), c(ti+1)) = sup
∆n

n∑
i=1

d(f̃(c(ti)), f̃(c(ti+1))) = ld(f̃ ◦ c). (1)

Thus, f̃ ◦ c is a rectifiable curve in (Y, d) if and only if c is rectifiable in (Xf , d̃).
The equality

d̃([x], [y]) = inf ld(f̃ ◦ c) = inf ld̃(c) = d̃([x], [y]),

shows that (Xf , d̃) is a length space. See the Appendix in §4 for the definition

of d̃ . �
The following two results are Propositions 4.4.16 and 3.7.2 in [10].
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Lemma 2.12. (Vǎınštěın) If f : X → Y is a closed mapping from a metriz-
able space X onto a metrizable space Y , then for every y ∈ Y the boundary
bd(f−1(y)) := f−1(y) ∩ (X \ f−1(y)) is compact.

Definition 2.13. Let X be a Hausdorff topological space and f : X → Y a
continuous map. We call f a proper map if it is closed and all fibers f−1(y) are
compact subsets of X .

Theorem 2.14. If f : X → Y is a proper map, then for every compact subset
Z ⊂ Y the inverse image f−1(Z) is compact.

A converse of this theorem is available when Y is a k -space (i.e., Y is a
Hausdorff topological space that is the image of a locally compact space under a
quotient mapping). For example every first countable Hausdorff space is a k -space
(see [10], Theorem 3.3.20).

Proposition 2.15. Let X be a normal, first countable, arcwise connected,
Hausdorff topological space and (Y, d) a complete locally compact length space
(and thus, by Hopf-Rinow-Cohn-Vossen a geodesic metric space; see Theorem 4.3).
Assume that f : X → Y is a continuous closed map that is also locally open onto
its image, locally fiber connected, and has local convexity data. Then (Xf , d̃) is a
complete locally compact length space and hence a geodesic metric space.

Proof. First we will prove that f̃ is a proper map. It is a closed map since f is a
closed map. The local injectivity of f̃ implies that its fibers are made of isolated
points and hence bd(f̃−1(y)) = f̃−1(y). By Vǎınštěın’s Lemma 2.12 we conclude

that the fibers of f̃ are all compact and consequently f̃ is a proper map.

Because local compactness is an inverse invariant for proper maps we obtain
also that (Xf , d̃) is locally compact since f̃ : Xf → Y is a proper map.

By the Hopf-Rinow-Cohn-Vossen Theorem 4.3 it suffices to show that every
closed metric ball in Xf is compact in order to conclude that (Xf , d̃) is a complete
metric space. Let B([x], r) be the closure of the ball with center [x] and radius

r > 0 in Xf . By definition of the metric d̃ , the inclusion f̃(B([x], r)) ⊂
B(f̃([x]), r) holds. By the Hopf-Rinow-Cohn-Vossen Theorem it follows that

B(f̃([x]), r) is a compact set in Y and, consequently, f̃−1(B(f̃([x]), r)) is compact

in Xf due to properness of f̃ . Since B([x], r) is a closed subset of f̃−1(B(f̃([x]), r))
it is necessarily compact in Xf . �

As a consequence of the above proposition, (Xf , d̃) satisfies all the con-
ditions of the Hopf-Rinow-Cohn-Vossen Theorem which implies that for any two
points [x], [y] ∈ Xf there exists a shortest geodesic connecting them.

Definition 2.16. Let (X, d) be a geodesic metric space. We say that C is
weakly convex if for any two points x, y ∈ C there exists a geodesic between x
and y entirely contained in C .

Note that weak convexity does not require that the geodesic be a shortest
one. Now we can present the main result of this section.
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Theorem 2.17. (Local-to-Global Principle) Let X be a normal, first count-
able, arcwise connected, Hausdorff topological space and (Y, d) a complete, locally
compact length space. Assume that f : X → Y is a continuous closed map that
is also locally open onto its image, locally fiber connected, and has local convexity
data. Then the following hold:

(i) f(X) ⊂ (Y, d) is a weakly convex subset of Y .

(ii) If, in addition, (Y, d) is uniquely geodesic (that is, any two points can be
joined by a unique shortest path), then f(X) is a convex subset of (Y, d), f
has connected fibers, and f is open onto its image.

Proof. (i) We have to prove that for any y1, y2 ∈ f(X) there exists a geodesic
(not necessary shortest) in (Y, d) completely included in f(X). Indeed, take

[x1], [x2] ∈ Xf such that f̃([x1]) = y1 and f̃([x2]) = y2 . As was explained above,
there exists a shortest geodesic c : [a, b] → Xf with the properties c(a) = [x1] ,

c(b) = [x2] , and d̃([x1], [x2]) = ld̃(c). We will show that f̃ ◦ c ⊂ f(X) is a geodesic
that connects y1 with y2 . Since f is locally open onto its image, locally fiber
connected, and has local convexity data, each [x] ∈ Xf admits by Corollary 2.4

an open neighborhood U[x] such that f̃ |U[x]
: U[x] → f̃(U[x]) is injective, open

onto its image, and f̃(U[x]) is convex in Y . Choose now [x] in the image of c
and let t0 be such that c(t0) = [x] . Then the intersection of the image of c
with U[x] is the image of a curve c′ : I → U[x] with I ⊂ [a, b] a subinterval. If
we take U[x] small enough then for any subinterval [t1, t2] ⊂ I with t0 ∈ [t1, t2]

we have by Lemma 2.11 that d̃(c(t1), c(t2)) = d(f̃(c(t1)), f̃(c(t2))). Since c is a

shortest geodesic we have that d̃(c(t1), c(t2)) = ld̃(c|[t1,t2]). Additionally, by (1)

we have that ld̃(c|[t1,t2]) = ld(f̃ ◦ c|[t1,t2]) and we hence obtain the desired equality

d(f̃(c(t1)), f̃(c(t2))) = ld(f̃ ◦ c|[t1,t2]). This proves that f̃ ◦ c is a geodesic in (Y, d)
because it is a local distance minimizer.

(ii) Let y, z ∈ f(X). As Y is a geodesic metric space, there exists a shortest
path γ0 in Y connecting y to z . Since Y is a length space, a shortest path is also
a geodesic. Consequently γ0 is a geodesic. As we proved in (i), f(X) is weakly
convex and hence there exists a geodesic γ1 included in f(X) connecting the two
points. By uniqueness of geodesics we obtain that γ0 = γ1 . Thus, we have a
shortest path connecting y and z which is completely included in f(X).

We prove that f has connected fibers. Suppose the contrary, that is, there
exist [x] 6= [y] with f̃([x]) = f̃([y]). Since by Proposition 2.15 the length metric
space (Xf , d̃) is geodesic, there exists a shortest geodesic c : [a, b] → Xf that links

[x] and [y] which is mapped by f̃ to a loop based at f̃([x]) = f̃([y]). As was

proved in (i), f̃ ◦ c is a geodesic in Y . Since (Y, d) is uniquely geodesic we obtain

that f̃ ◦ c is the constant loop. Consequently, f̃(c(t)) = f̃([x]) for all t ∈ [a, b] .

This implies that c(t) and [x] belong to the same fiber of f̃ for all t ∈ [a, b] which

contradicts the local injectivity of f̃ implied by the (LFC) property of f .

Since f̃ is a closed injective map, it is also open onto its image. As f = f̃◦πf

and by Proposition 2.3 πf is open, it follows that f is open onto its image. �

Remark 2.18. Unlike the situation encountered in the classical Local-to-Glob-
al Principle [9, 16] in which the target space of the map is a Euclidean vector space
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and hence uniquely geodesic, f could have, in general, a weakly convex image but
disconnected fibers. See Remark 3.10 for an example.

Remark 2.19. If Y is a Euclidean vector space and C is a convex subset of
Y then Theorem 2.17 applied to the map f : X → C yields the generalization of
the classical Local-to-Global Principle introduced in Theorem 2.28 of [4].

3. Metric convexity for cylinder valued momentum maps

The goal of this section is to apply the general results obtained in §2 to study the
convexity properties of the image of the cylinder valued momentum map. This
object, introduced in [9], naturally generalizes the standard momentum map def-
inition due to Kostant and Souriau. The standard momentum map is associated
to certain symplectic Lie algebra actions on a symplectic manifold and its con-
vexity properties have been extensively studied [2, 13, 14, 16, 28]. Unlike the
standard momentum map, the cylinder valued momentum map always exists for
any symplectic Lie algebra action. However, the convexity properties of the stan-
dard momentum map cannot be trivially extended to this object because it does
not map into a vector space but into a manifold that is, in general, diffeomorphic
to a cylinder. Thus, in order to study the convexity properties of the cylinder
valued momentum map the notion of convexity introduced and studied in §2 is
necessary.

3.1. The cylinder valued momentum map.

We quickly review below the elementary properties of the cylinder valued
momentum map. For more information and detailed proofs see [9] or Chapter 5
of [24].

Let (M, ω) be a connected paracompact symplectic manifold and let g be
a Lie algebra that acts symplectically on M . Let π : M × g∗ → M be the
projection onto M . Consider π as the bundle map of the trivial principal fiber
bundle (M × g∗, M, π, g∗) that has (g∗, +) as Abelian structure group. The group
(g∗, +) acts on M × g∗ by ν · (m, µ) := (m,µ − ν), with m ∈ M and µ, ν ∈ g∗ .
Let α ∈ Ω1(M × g∗; g∗) be the connection one-form defined by

〈α(m,µ)(vm, ν), ξ〉 := (iξM
ω)(m)(vm)− 〈ν, ξ〉, (2)

where (m, µ) ∈ M × g∗ , (vm, ν) ∈ TmM × g∗ , 〈·, ·〉 denotes the natural pairing
between g∗ and g , and ξM is the infinitesimal generator vector field associated to
ξ ∈ g . The connection α is flat. For (z, µ) ∈ M × g∗ , let (M × g∗)(z, µ) be the
holonomy bundle through (z, µ) and let H(z, µ) be the holonomy group of α with
reference point (z, µ) (which is an Abelian zero dimensional Lie subgroup of g∗ by
the flatness of α). The principal bundle ((M × g∗)(z, µ), M, π|(M×g∗)(z,µ),H(z, µ))
is a reduction of the principal bundle (M × g∗, M, π, g∗). To simplify notation, we

will write (M̃,M, p̃,H) instead of ((M × g∗)(z, µ), M, π|(M×g∗)(z,µ),H(z, µ)). Let

K̃ : M̃ ⊂ M × g∗ → g∗ be the projection into the g∗ -factor.

Let H be the closure of H in g∗ . Since H is a closed subgroup of (g∗, +),
the quotient C := g∗/H is a cylinder (that is, it is isomorphic to the Abelian Lie
group Ra × Tb for some a, b ∈ N). Let πC : g∗ → g∗/H be the projection. Define
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K : M → C to be the map that makes the following diagram commutative:

M̃
K̃−−−→ g∗

p̃

y yπC

M
K−−−→ g∗/H.

(3)

Thus, K is defined by K(m) = πC(ν), where ν ∈ g∗ is any element such that

(m, ν) ∈ M̃ .

We call K : M → g∗/H a cylinder valued momentum map associated to the
symplectic g-action on (M, ω) and H the Hamiltonian holonomy of the g-action
on (M, ω).

Elementary properties. The cylinder valued momentum map is a strict general-
ization of the standard (Kostant-Souriau) momentum map since the g-action has a
standard momentum map if and only if the holonomy group H is trivial. In such a
case the cylinder valued momentum map is a standard momentum map. The cylin-
der valued momentum map satisfies Noether’s Theorem, that is, for any g-invariant
function h ∈ C∞(M)g := {f ∈ C∞(M) | dh(ξM) = 0 for all ξ ∈ g} , the flow Ft of
its associated Hamiltonian vector field Xh satisfies the identity K◦Ft = K|Dom(Ft) .
Additionally, for any vm ∈ TmM , m ∈ M , TmK(vm) = TµπC(ν), where µ ∈ g∗

is any element such that K(m) = πC(µ) and ν ∈ g∗ is uniquely determined by

〈ν, ξ〉 = (iξM
ω)(m)(vm), for any ξ ∈ g . Also, ker(TmK) =

((
Lie(H)

)◦ ·m)ω

,

where Lie(H) ⊂ g∗ is the Lie algebra of H and range (TmK) = TµπC ((gm)◦) (Bi-
furcation Lemma); the superscripts ◦ and ω in the previous expressions denote the
annihilator and the symplectic orthogonal, respectively. In the first statement we
use the fact that the annihilator

(
Lie(H)

)◦
is a Lie subalgebra of g . The notation

k ·m for any Lie subalgebra k ⊂ g means the vector subspace of TmM formed by
evaluating all infinitesimal generators ηM at the point m ∈ M for all η ∈ k .

Equivariance properties of the cylinder valued momentum map. Suppose
now that the g-Lie algebra action on (M, ω) is obtained from a symplectic action
of the Lie group G on (M, ω) by taking the infinitesimal generators of all elements
in g . There is a G-action on the target space of the cylinder valued momentum
map K : M → g∗/H with respect to which it is G-equivariant. This action is
constructed by noticing first that the Hamiltonian holonomy H is invariant under
the coadjoint action, that is, Ad∗g−1H ⊂ H , for any g ∈ G . Actually, if G is
connected, then H is pointwise fixed by the coadjoint action [25]. Hence, there
is a unique group action Ad∗ : G × g∗/H → g∗/H such that for any g ∈ G ,
Ad∗g−1 ◦ πC = πC ◦ Ad∗g−1 . With this in mind, we define σ : G × M → g∗/H by
σ(g,m) := K(Φg(m))−Ad∗g−1K(m). Since M is connected by hypothesis, it can
be shown that σ does not depend on the points m ∈ M and hence it defines a
map σ : G → g∗/H which is a group valued one-cocycle: for any g, h ∈ G , it
satisfies the equality σ(gh) = σ(g) +Ad∗g−1σ(h). This guarantees that the map

Θ : (g, πC(µ)) ∈ G× g∗/H 7−→ Ad∗g−1(πC(µ)) + σ(g) ∈ g∗/H

defines a G-action on g∗/H with respect to which the cylinder valued momentum
map K is G-equivariant, that is, for any g ∈ G , m ∈ M , we have K(Φg(m)) =
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Θg(K(m)). We will refer to σ : G → g∗/H as the non-equivariance one-cocycle of
the cylinder valued momentum map K : M → g∗/H and to Θ as the affine G-
action on g∗/H induced by σ . The infinitesimal generators of the affine G-action
on g∗/H are given by the expression

ξg∗/H(πC(µ)) = −TµπC (Ψ(m)(ξ, ·)) , (4)

for any ξ ∈ g , (m, µ) ∈ M̃ , where Ψ : M → Z2(g) is the Chu map defined by
Ψ(ξ, η) := ω (ξM , ηM), for any ξ, η ∈ g .

3.2. A normal form for the cylinder valued momentum map.

A major technical tool in some proofs of the classical convexity theorems for
the standard momentum map is a normal form ([19], [15]) which is the analogue
of the classical Slice Theorem for proper group actions adapted to the symplectic
symmetric setup; it provides a semi-global set of coordinates (global only in the
direction of the group orbits) in which the standard momentum map takes a
particularly convenient and simple form and in which the conditions of the Local-
to-Global Principle can be verified. This normal form has been generalized to the
context of the cylinder valued momentum map in [23, 26]. We briefly review this
generalization.

In this section we will work on a connected and paracompact symplectic
manifold (M, ω) acted properly and symplectically upon by the Lie group G with
Lie algebra g . The first step in the construction of the symplectic slice theorem
is the splitting of the Lie algebra g of G into three parts. The first summand is
defined by

k :=
{
ξ ∈ g | ξM(m) ∈ (g ·m)ω(m)

}
, (5)

where m ∈ M is the point around whose G-orbit we want to construct the
symplectic slice. The set k is clearly a vector subspace of g that contains the
Lie algebra gm of the isotropy subgroup Gm of the point m ∈ M . In fact, k is
a Lie subalgebra of g . Since the G-action is proper (by hypothesis), the isotropy
subgroup Gm is compact and hence there is an AdGm -invariant inner product
〈·, ·〉g on g . We decompose

k = gm ⊕m and g = gm ⊕m⊕ q, (6)

where m is the 〈·, ·〉g–orthogonal complement of gm in k and q is the 〈·, ·〉g–

orthogonal complement of k in g . The splittings in (6) induce similar ones on the
duals

k∗ = g∗m ⊕m∗ and g∗ = g∗m ⊕m∗ ⊕ q∗. (7)

Each of the spaces in this decomposition should be understood as the set of
covectors in g∗ that can be written as 〈ξ, ·〉g , with ξ in the corresponding subspace;
e.g., q∗ = {〈ξ, ·〉g | ξ ∈ q} . The subspace q · m is a symplectic subspace of
(TmM, ω(m)).

Let now 〈〈·, ·〉〉 be a Gm–invariant inner product in TmM (available by
the compactness of Gm ). Define V to be the 〈〈·, ·〉〉-orthogonal complement to
g ·m ∩ (g ·m)ω(m) = k ·m in (g ·m)ω(m) :

(g ·m)ω(m) =
(
g ·m ∩ (g ·m)ω(m)

)
⊕ V = k ·m⊕ V.
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The subspace V is a symplectic Gm–invariant subspace of (TmM, ω(m)) such that
V ∩q ·m = {0} . Any such space V is called a symplectic normal space at m . Since
the Gm–action on (V, ω(m)|V ) is linear and symplectic it has a standard associated
equivariant momentum map JV : V → g∗m given by 〈JV (v), η〉 = 1

2
ω(m)(ηV (v), v).

The proof of the following two results can be found in [23, 24].

Proposition 3.1. (The symplectic tube) Let (M, ω) be a connected para-
compact symplectic manifold and G a Lie group acting properly and symplectically
on it. Let m ∈ M , V be a symplectic normal space at m, and m ⊂ g the subspace
introduced in the splitting (6). Then there exist Gm–invariant neighborhoods m∗

r

and Vr of the origin in m∗ and V , respectively, such that the twisted product

Yr := G×Gm (m∗
r × Vr) (8)

is a symplectic manifold with the two-form ωYr defined by:

ωYr([g, ρ, v])(T(g,ρ,v)π(TeLg(ξ1), α1, u1), T(g,ρ,v)π(TeLg(ξ2), α2, u2))

:= 〈α2 + TvJV (u2), ξ1〉 − 〈α1 + TvJV (u1), ξ2〉+ 〈ρ + JV (v), [ξ1, ξ2]〉
+ Ψ(m)(ξ1, ξ2) + ω(m)(u1, u2), (9)

where Ψ : M → Z2(g) is the Chu map associated to the G-action on (M, ω),
π : G × (m∗

r × Vr) → G ×Gm (m∗
r × Vr) is the projection, [g, ρ, v] ∈ Yr , ξ1, ξ2 ∈ g,

α1, α2 ∈ m∗ , and u1, u2 ∈ V .

The Lie group G acts symplectically on (Yr, ωYr) by g · [h, η, v] := [gh, η, v],
for any g ∈ G and any [h, η, v] ∈ Yr .

The symplectic manifold (Yr, ωYr) is called a symplectic tube of (M, ω) at
the point m .

Theorem 3.2. (The symplectic slice) Let (M, ω) be a symplectic manifold
and let G a Lie group acting properly and symplectically on M . Let (Yr, ωYr) be
the G-symplectic tube at m ∈ M constructed in Proposition 3.1. Then there is a
G-invariant neighborhood U of m in M and a G-equivariant symplectomorphism
φ : U → Yr satisfying φ(m) = [e, 0, 0].

We now provide an expression in the symplectic tube for the cylinder valued
momentum map, called the normal form. The proof of the following theorem can
be found in [26].

Theorem 3.3. (Normal form for cylinder valued momentum maps)
Let (M, ω) be a connected paracompact symplectic manifold acted properly and
symplectically upon by the connected Lie group G. Let (Yr, ωYr) be a symplectic
tube at m ∈ M that models a G-invariant neighborhood U of the orbit G·m via the
G-equivariant symplectomorphism φ : (Yr, ωYr) → (U, ω|U). Let K : M → g∗/H
be a cylinder valued momentum map associated to the G-action on M with non-
equivariance one-cocycle σ : G → g∗/H . Then for any [g, ρ, v] ∈ Yr we have

K(φ[g, ρ, v]) = Θg

(
K(m)+πC(ρ+JV (v))

)
= Θg (K(m))+πC

(
Ad∗g−1(ρ + JV (v))

)
where πC : g∗ → g∗/H is the projection and Θ : G × g∗/H → g∗/H is the affine
action associated to the non-equivariance one-cocycle σ .
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3.3. Closed Hamiltonian holonomies and covering spaces.

We will use in our study of the convexity properties of the cylinder valued
momentum map a hypothesis that allows us to naturally endow the target space
of this map with all the necessary metric properties. More specifically, we will
assume in all that follows that the Hamiltonian holonomy H is a closed subgroup
of (g∗, +).

To spell out the implications of this hypothesis we introduce some termi-
nology. Let G be a group that acts on a topological space X . This action is
called totally discontinuous if every point x ∈ X has a neighborhood U such that
g · U ∩ U = ∅ for all g ∈ G satisfying g · x 6= x .

The proof of the following two results can be found in [8], Propositions
3.4.15 and 3.4.16. We recall that if f : X → Y is a continuous map between two
topological spaces and f∗ : π1(X, x0) → π1(Y, y0) is the induced homomorphism
of fundamental groups then a covering map f : X → Y is said to be regular
if f∗(π1(X, x0)) is a normal subgroup of π1(Y, y0) or, equivalently, f∗(π1(X, x0))
does not depend on x0 ∈ f−1(y0).

Proposition 3.4. Let G be a group acting on a topological space X freely and
totally discontinuously. Then the projection πG : X → X/G onto the orbit space is
a regular covering map. Moreover, the group of its deck transformations coincides
with G.

Theorem 3.5. Let f : X → Y be a regular covering and G its group of deck
transformations. Then the length metrics on Y are in one-to-one correspondence
with the G-invariant length metrics on X so that for corresponding metrics dX

on X and dY on Y , f is a local isometry.

We analyze the implications of the closedness hypothesis on the Hamiltonian
holonomy H .

Proposition 3.6. Let (M, ω) be a connected paracompact symplectic manifold
acted symplectically upon by the Lie algebra g with Hamiltonian holonomy H . If
H is closed in g∗ then:

(i) The projection πC : g∗ → g∗/H is a smooth regular covering map and hence
the Euclidean metric in g∗ projects naturally to a length metric on g∗/H with
respect to which this space is complete and locally compact and the projection
πC is a local isometry.

(ii) Suppose that there exists a compact connected Lie group G whose Lie algebra
is g. Identify the positive Weyl chamber t∗+ ⊂ g∗ with the orbit space of
the coadjoint action of G on g∗ . Then, t∗+ is a closed convex subset of
g∗ and hence it has a natural length space structure with respect to which
it is complete and locally compact. In addition, H acts on t∗+ in a totally
discontinuous fashion and hence the length metric in t∗+ projects naturally
to a length metric on t∗+/H with respect to which this space is complete and
locally compact and the orbit space projection π+

C : t∗+ → t∗+/H is a local
isometry.
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(iii) In the hypotheses of part (ii), the natural identification of t∗+ with the orbit
space g∗/G of the coadjoint action induces an identification of t∗+/H with
the orbit space (g∗/H)/G of the Ad∗ action of G on g∗/H with respect to
which the following diagram commutes:

g∗
πC−−−→ g∗/H

πG

y yπ+
G

g∗/G ' t∗+
π+

C−−−→ t∗+/H ' (g∗/H)/G.

(10)

Proof. Since H acts on (g∗, +) by translations, the Euclidean metric on g∗

is H-invariant. Additionally, as this action is free and proper, the Slice Theo-
rem guarantees that any point µ ∈ g∗ has an H-invariant neighborhood that is
equivariantly diffeomorphic to the product H × U , with U ⊂ g∗ an open neigh-
borhood of zero in g∗ . In this semi-global model the point µ is represented by
the element (0, 0). Since H is a closed zero dimensional submanifold of g∗ , it
follows that the set {0} × U is an open neighborhood of (0, 0) ≡ µ . Moreover,
for any ν ∈ H different from zero, we have ν · ({0} × U) = {ν} × U and since
({ν} × U) ∩ ({0} × U) = ∅ we conclude that H acts totally discontinuously on
g∗ . The first part in the statement (i) follows then by Proposition 3.4 and Theo-
rem 3.5. The local compactness of g∗/H is a consequence of the open character of
the orbit projection πC and the local compactness of g∗ (we recall that every orbit
projection is an open map and that if f : X → Y is an arbitrary open map from
a locally compact topological space onto a Hausdorff space Y , then Y is locally
compact). The completeness of g∗/H follows from the fact that H is a discrete
subgroup of (g∗, +) acting freely on this space by translations; hence the quotient
g∗/H is a cylinder with its natural metric structure inherited from g∗ and it is
therefore complete.

As to part (ii) we recall that the positive Weyl chamber t∗+ is a closed
convex subset of g∗ and hence a complete and locally compact length metric space
(see Definitions 4.4 and 2.8). We now recall that if G is connected, then H is
pointwise fixed by the coadjoint action [25] and hence the G-coadjoint action
and the H-action on g∗ commute, which guarantees that the H-action on g∗

drops to an H-action on g∗/G ' t∗+ . Since this action can be viewed as the
restriction to t∗+ of the totally discontinuous H-action on g∗ , we conclude that
it is also totally discontinuous and hence Proposition 3.4 and Theorem 3.5 apply.
Finally, we show that t∗+/H is complete by showing that it is a closed subset of
the complete metric space g∗/H . Indeed, let [τ ] be an element in the closure of
t∗+/H in g∗/H and let {[τn]}n∈N be a sequence of elements in t∗+/H such that
[τn] → [τ ] . We will now prove that [τ ] ∈ g∗/H . Since πC is a covering map,
there exists a neighborhood U[τ ] of [τ ] in g∗/H and an open set U in g∗ such
that π−1

C (U[τ ]) =
⋃

ν∈H(ν + U), πC |ν+U is a diffeomorphism onto its image, and
(ν + U) ∩ (µ + U) = ∅ , for any ν, µ ∈ g∗ . Let N ∈ N such that [τn] ∈ U[τ ]

for any n ≥ N and let τn := π−1
C ([τn]) ∩ U , τ := π−1

C ([τ ]) ∩ U , for any n ≥ N .
Since H acts on t∗+ and πC is a local isometry, the sequence {τn}n≥N lies in t∗+
and τn → τ . Since t∗+ is a closed subset of g∗ it follows that τ ∈ t∗+ and hence
[τ ] ∈ g∗/H , as required.

Regarding part (iii), the identification t∗+/H ' (g∗/H)/G is a consequence
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of the fact that the G-coadjoint action and the H-action on g∗ commute because
G is connected. The rest of the statement is a straightforward diagram chasing
exercise. �

3.4. Convexity properties of the cylinder valued momentum map. The
Abelian case.

In this subsection it will be shown that the image of the cylinder valued
momentum map associated to a proper Abelian Lie group action is weakly convex.
To prove this statement we use the Symplectic Slice Theorem 3.2 to show that
this map satisfies the local hypotheses needed to apply the generalization of the
Local-to-Global Principle for length spaces (Theorem 2.17). The main step in that
direction is taken in the following proposition.

Proposition 3.7. Let (M, ω) be a connected paracompact symplectic manifold
and let G a connected Abelian Lie group acting properly and symplectically on
M with closed Hamiltonian holonomy H . Let K : M → g∗/H be a cylinder
valued momentum map for this action and m ∈ M arbitrary such that K(m) =
[µ] ∈ g∗/H . Then there exists an open neighborhood U of m in M and open
neighborhoods W and V of µ ∈ g∗ and [µ] ∈ g∗/H , respectively, such that
K(U) ⊂ V , πC |W : W → V is a diffeomorphism, and

πC |−1
W ◦K|U = JU + c, (11)

with c ∈ g∗ a constant and JU : U → g∗ a map that in symplectic slice coordinates
around the point m has the expression

JU([g, ρ, v]) = ρ + JV (v)− 〈Pq(exp−1(s([g]))), ·〉q. (12)

The neighborhood U has been chosen so that it can be written in slice coordinates
as U ≡ Ue ×Gm (m∗ × Vr), with Ue an open Gm -invariant neighborhood of e
in G small enough so that there exists a local section s : Ue/Gm → Ve for the
projection G → G/Gm . The set Ve is an open neighborhood of e ∈ G such that
exp : U0 → Ve is a diffeomorphism, for some open neighborhood U0 of 0 ∈ g∗ .
The map Pq : g = gm ⊕m⊕ q → q is the projection onto q constructed using the
splitting in (6) and 〈·, ·〉q is the non-degenerate bilinear form on q induced by the
Chu map at m, that is, for any ξ, η ∈ q, 〈ξ, η〉q := ω(m)(ξM(m), ηM(m)).

Proof. Since H is closed in g∗ , the projection πC is a local diffeomorphism
(see Proposition 3.6) and hence there exist an open neighborhood V of K(m) in
g∗/H and a neighborhood W of some element in the fiber π−1

C (K(m)) ⊂ g∗ such
that πC |W : W → V is a diffeomorphism. Let U be the connected component
containing m of the intersection of K−1(V ) with the domain of a symplectic slice
chart around m and shrink it, if necessary, so that the group factor in the slice
coordinates has the properties in the statement of the proposition.

We start by noticing that (12) is well defined because for any h ∈ Gm and
any [g, ρ, v] ∈ Ue ×Gm (m∗ × Vr) we have

JU([gh, h−1 · ρ, h−1 · v]) = c + Ad∗hρ + JV (h−1 · v)− 〈Pq(exp−1(s([gh]))), ·〉q
= c + Ad∗h(ρ + JV (v))− 〈Pq(exp−1(s([g]))), ·〉q
= c + ρ + JV (v)− 〈Pq(exp−1(s([g]))), ·〉q.
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The last equality follows from the Abelian character of G .

Next, we will show that for any z ∈ U and any ξ ∈ g , the map Jξ
U := 〈JU , ξ〉

satisfies
XJξ

U
(z) = ξM(z), (13)

with XJξ
U

the Hamiltonian vector field associated to the function Jξ
U ∈ C∞(M).

Since this is a local statement, it suffices to show that

iξYr
ωYr([exp ζ, ρ, v]) = dJξ

U([exp ζ, ρ, v]), (14)

where [exp ζ, ρ, v] is the expression of z in slice coordinates and ζ ∈ g is chosen
so that s([exp ζ]) = exp ζ . We prove (14) by using the expression of ωYr in
Proposition 3.1. First, notice that

ξYr([exp ζ, ρ, v]) = T(exp ζ,ρ,v)π(TeLexp ζ(ξ), 0, 0),

where π : G× (m∗
r × Vr) → G×Gm (m∗

r × Vr) is the orbit projection. If we let

w := T(exp ζ,ρ,v)π(TeLexp ζ(η), α, u) ∈ T[exp ζ,ρ,v](G×Gm (m∗
r × Vr))

then

ωYr([exp ζ, ρ, v])(ξYr([exp ζ, ρ, v]), w)

= 〈α + TvJV (u), ξ〉+ ω(m)(ξM(m), ηM(m))

= 〈α + TvJV (u), ξ〉+ ω(m)((Pqξ)M(m), (Pqη)M(m))

= 〈α + TvJV (u), ξ〉+ 〈Pqξ, Pqη〉q. (15)

On the other hand, by (12), we have

dJξ
U([exp ζ, ρ, v]) · w

= 〈α + TvJV (u), ξ〉 − d

dt

∣∣∣∣
t=0

〈Pq exp−1 s([exp ζ exp tη]), Pqξ〉q. (16)

In order to compute the second summand of the right hand side, notice that

s([exp ζ exp tη]) = s([exp(ζ + tη)]) = exp(ζ + tη)h(t),

with h(t) a curve in Gm such that h(0) = e and h′(0) = λ ∈ gm . Consequently,

d

dt

∣∣∣∣
t=0

s([exp ζ exp tη]) = TeLexp ζ(η + λ) =
d

dt

∣∣∣∣
t=0

exp(ζ + t(η + λ))

and hence, since Pqλ = 0, we have

d

dt

∣∣∣∣
t=0

〈Pq exp−1 s([exp ζ exp tη]), Pqξ〉q

=
d

dt

∣∣∣∣
t=0

〈Pq(ζ + t(η + λ)), Pqξ〉q = 〈Pqη, Pqξ〉q. (17)

The equalities (15), (16), and (17) show that (13) holds.
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With this in mind we will now show that for any z ∈ U

Tz(πC |−1
W ◦K|U) = TzJU . (18)

Indeed, for any vz ∈ TzM and ρ ∈ π−1
C (V ) such that K(z) = πC(ρ),

Tz(πC |−1
W ◦K|U)(vz) =

(
TK(z) πC |−1

W ◦ TzK
)
(vz) =

(
TK(z) πC |−1

W ◦ TρπC

)
(ν) = ν,

where ν ∈ g∗ is uniquely determined by the expression

〈ν, ξ〉 = (iξM
ω)(z) (vz) , for all ξ ∈ g. (19)

On the other hand, by (13), we can write

〈TzJ (vz) , ξ〉 = dJξ
U(z) (vz) = (iξM

ω)(z) (vz) .

This, together with (19), shows that (18) holds.

Let c(t) be a smooth curve such that c(0) = m and c(1) = z , available by
the connectedness of U . Then by (18)

(
πC |−1

W ◦K
)
(z) −

(
πC |−1

W ◦K
)
(m) =

∫ 1

0

d

dt

(
πC |−1

W ◦K
)
(c(t))dt

=

∫ 1

0

Tc(t)

(
πC |−1

W ◦K
)
(ċ(t)) dt

=

∫ 1

0

Tc(t)JU (ċ(t)) dt = JU(z)− JU(m).

Since z ∈ M is arbitrary and m ∈ M is fixed, the previous equality shows that (11)
holds by setting c =

(
πC |−1

W ◦K
)
(m)− JU(m). �

Theorem 3.8. Let (M, ω) be a connected paracompact symplectic manifold and
let G a connected Abelian Lie group acting properly and symplectically on M
with closed Hamiltonian holonomy H . Let K : M → g∗/H be a cylinder valued
momentum map for this action. If K is a closed map then the image K(M) ⊂
g∗/H is a weakly convex subset of g∗/H . We think of g∗/H as a length metric
space with the length metric naturally inherited from g∗ (see Proposition 3.6). If
H = {0} (so K : M → g∗ is a standard momentum map) then, as g∗ is uniquely
geodesic, we have that K(M) is convex, K has connected fibers, and it is open
map onto its image.

Proof. We will establish this result by using the Local-to-Global Principle for
length spaces (Theorem 2.17). First, notice that the closedness of the Hamiltonian
holonomy implies, by Proposition 3.6, that g∗/H is a complete and locally compact
length space and that the projection πC is a local isometry. Therefore, in order
to apply Theorem 2.17 we need to show that K is locally open onto its image,
locally fiber connected, and has local convexity data. Now, by Proposition 3.7
(more specifically by (11)) and Lemma 4.5, it suffices to prove that those three
local properties are satisfied by the map JU : U → g∗ .

We start the proof of this by recalling that since the G-action is proper the
isotropy subgroup Gm is compact and hence its connected component containing
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the identity is isomorphic to a torus. Thus, the map JV : V → g∗m is the
momentum map of the symplectic representation of a torus on the symplectic
vector space V and hence it automatically has (see for instance [16] for a proof)
local convexity data and it is locally fiber connected and locally open onto its
image. Additionally, if we split g∗ as g∗ = g∗m⊕m∗⊕ q∗ then the map JU − c can
be decomposed as

JU([g, ρ, v])− c = (JV (v), ρ,−〈Pq(exp−1(s([g]))), ·〉q).

Each of the three components of the map has local convexity data, is locally open
onto its image, and is locally fiber connected. Thus JU also has these properties,
as required. �

Remark 3.9. This result implies the weak convexity of the image of Lie group
valued momentum maps introduced in [20, 11, 1] when the group is Abelian. Let
(M, ω) be a symplectic manifold, T k a torus acting symplectically on (M, ω), and
(·, ·) an inner product in the Lie algebra t of T k . The map µ : M → T k is
called a Lie group valued momentum map if for any ξ ∈ t , iξM

ω = µ∗(θ, ξ), where
θ ∈ Ω1(T k, t) is the bi-invariant Maurer-Cartan form.

A typical example for this momentum map is provided by the following
situation. Take the symplectic manifold T 2 = S1 × S1 with symplectic form the
standard area form and consider the action of the circle on the first circle of T 2 .
The S1 -valued momentum map associated to this action is the projection on the
second circle of T 2 , namely, µ(eiϕ1 , eiϕ2) = eiϕ2 .

A very simple argument shows that the image of µ : M → T k is a
weakly convex subset of T k . Indeed, by Proposition 3.4 and Remark 3.3 of [1],
each point in M has an open simply connected neighborhood U ⊂ M and a
standard momentum map Φ : U → t (t and t∗ are identified here) such that the
restriction exp |Φ(U) : Φ(U) → T k is a diffeomorphism onto its image and one has
µ|U = exp ◦Φ. This immediately implies that µ has the local properties (LFC),
(LOI), and (LCD). Thus the hypotheses of Theorem 2.17 hold and the statement
is a direct consequence of this theorem.

Remark 3.10. For a map with values in a metric spaces that is not uniquely
geodesic, the convexity property of its image is not related to the connectedness
of its fibers. This is in sharp contrast to the situation encountered for standard
momentum maps. For instance, if in the example in the remark above we multiply
the symplectic form by two, then the associated S1 -valued momentum map is
µ(eiϕ1 , eiϕ2) = e2iϕ2 which satisfies the hypothesis of Theorem 2.17 and hence has
a convex image but does not have connected fibers.

3.5. Convexity properties of the cylinder valued momentum map. The
Non-Abelian case.

The study of the convexity properties of the image of the cylinder valued
momentum map for non-Abelian groups presents two main complications with re-
spect to its Abelian analog. First, unless additional hypotheses are introduced,
there is no convenient local representation for K (the counterpart of Proposi-
tion 3.7) implying the necessary local properties that ensure convexity by applica-
tion of the Local-to-Global Principle. Second, the entire image is not likely to be
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convex since, already in the standard momentum map case, one has to intersect
with a Weyl chamber to obtain convexity. We will take care of the first problem
by working with special actions, namely those that are tubewise Hamiltonian. The
second problem will be solved, as in the classical case, by intersecting the image
of K with t∗+/H and taking advantage of the good behavior of the projection
π+

C : t∗+ → t∗+/H introduced and discussed in the second part of Proposition 3.6.

Definition 3.11. Let (M, ω) be a symplectic manifold acted symplectically
upon by a Lie group G . We say that the G-action on M is tubewise Hamiltonian
at m ∈ M if there exists a G-invariant open neighborhood of the orbit G · m
such that the restriction of the action to the symplectic manifold (U, ω|U) has
an associated standard momentum map. The G-action on M is called tubewise
Hamiltonian if it is tubewise Hamiltonian at any point of M .

Sufficient conditions ensuring that a symplectic action is tubewise Hamil-
tonian have been given in [23, 22]. For example, here are two useful results.

Proposition 3.12. Let (M, ω) be a symplectic manifold and let G a Lie group
with Lie algebra g acting properly and symplectically on M . For m ∈ M let
Yr := G ×Gm (m∗

r × Vr) be the slice model around the orbit G · m introduced in
Proposition 3.1. If the G-equivariant g∗ -valued one form γ ∈ Ω1(G; g∗) defined
by

〈γ(g) (TeLg(η)) , ξ〉 := −ω(m)
(
(Adg−1ξ)

M
(m), ηM(m)

)
(20)

for any g ∈ G and ξ, η ∈ g is exact, then the G-action on Yr given by g ·[h, η, v] :=
[gh, η, v], for any g ∈ G and any [h, η, v] ∈ Yr , has an associated standard
momentum map and thus the G-action on (M, ω) is tubewise Hamiltonian at
m.

Corollary 3.13. Let (M, ω) be a symplectic manifold and let G a Lie group
with Lie algebra g acting properly and symplectically on M . If either H1(G) = 0,
or the orbit G·m is isotropic, then the G-action on (M, ω) is tubewise Hamiltonian
at m.

The following result is the analog of Proposition 3.7 in the non-Abelian
setup.

Proposition 3.14. Let (M, ω) be a connected paracompact symplectic manifold
and let G a compact connected Lie group acting symplectically on M in a tubewise
Hamiltonian fashion with closed Hamiltonian holonomy H . Let K : M → g∗/H
be a cylinder valued momentum map for this action and m ∈ M arbitrary such
that K(m) = [µ] ∈ g∗/H . Then there exist an open neighborhood U of m in M
and open neighborhoods W and V of µ ∈ g∗ and [µ] ∈ g∗/H , respectively, such
that K(U) ⊂ V , πC |W : W → V is a diffeomorphism, and

πC |−1
W ◦K|U = JU + c, (21)

where c ∈ g∗ is a constant and JU : U → g∗ is a map that in symplectic slice
coordinates around the point m has the expression

JU([g, ρ, v]) = Ad∗g−1(ν + ρ + JV (v)), (22)

with ν ∈ g∗ a constant.
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Proof. Due to the closedness hypothesis on the Hamiltonian holonomy H , the
projection πC is a local diffeomorphism (see Proposition 3.6) and hence there exists
an open neighborhood V of K(m) in g∗/H and a neighborhood W of some ele-
ment in the fiber π−1

C (K(m)) ⊂ g∗ such that πC |W : W → V is a diffeomorphism.
Let U be the connected component containing m of the intersection of K−1(V )
with the domain of a symplectic slice chart around m . Given that the G-action is
by hypothesis tubewise Hamiltonian, the symplectic slice chart can be chosen so
that the restriction of the G-action to that chart has a standard associated mo-
mentum map JYr that in slice coordinates has, by the Marle-Guillemin-Sternberg
normal form [19, 15], the expression

JYr([g, ρ, v]) = Ad∗g−1(ν + ρ + JV (v)) + σ(g),

with ν ∈ g∗ a constant and σ : G → g∗ the non-equivariance one-cocycle of JYr .
Since the group G is compact, JYr can be chosen equivariant and hence with
trivial non-equivariance cocycle σ (see [21] for the original source of this result, or
[24], Proposition 4.5.19). Let JU be the restriction of that equivariant momentum
map to U . By the definition of the standard momentum map we have that for
any z ∈ U and any ξ ∈ g , the map Jξ

U := 〈JU , ξ〉 satisfies XJξ
U
(z) = ξM(z),

with XJξ
U

the Hamiltonian vector field associated to the function Jξ
U ∈ C∞(M).

With this in mind, it suffices to mimic the proof of Proposition 3.7 starting from
expression (18) to establish the statement of the proposition. �

Theorem 3.15. Let (M, ω) be a connected paracompact symplectic manifold
and let G a compact connected Lie group acting symplectically on M in a tubewise
Hamiltonian fashion with closed Hamiltonian holonomy H . Let K : M → g∗/H
be a cylinder valued momentum map for this action. If K is a closed map then the
intersection of the image K(M) ⊂ g∗/H with t∗+/H is a weakly convex subset of
g∗/H . We think of g∗/H and t∗/H as length metric spaces with the length metric
naturally inherited from g∗ (see Proposition 3.6). If H = {0} (and hence K is a
standard momentum map), then as t∗+ is uniquely geodesic, K(M)∩ t∗+ is convex,
K has connected fibers, and it is open onto its image.

Proof. First of all, notice that the closedness of the Hamiltonian holonomy im-
plies, by Proposition 3.6, that g∗/H and t∗+/H are complete and locally compact
length spaces and that the projections πC and π+

C are local isometries. Moreover,
the identification t∗+/H ' (g∗/H)/G , introduced in Proposition 3.6(iii) and dia-
gram (10) allow us to think of π+

C as the restriction of πC to t∗+ . Consequently, if
V ⊂ g∗/H is an open set such that πC |W : W → V is an isometric diffeomorphism
then π+

C

∣∣
πG(W )

: πG(W ) ' W ∩ t∗+ → π+
G(V ) ' (W ∩ t∗+)/H is an isometry. Notice

that πG(W ) ' W ∩ t∗+ ⊂ t∗+ is an open subset of t∗+ since πG is an open map.

Using the identification t∗+/H ' (g∗/H)/G we can study the convexity
properties of the intersection K(M)∩(t∗+/H) by looking at the convexity properties
of the image of the map k := π+

G ◦K : M → t∗+/H . We will do so by applying
the Local-to-Global Principle for length spaces (Theorem 2.17) to k , that is, by
showing that k is locally open onto its image, locally fiber connected, and has
local convexity data. By Proposition 3.14 there exist an open neighborhood U
of m in M and an open neighborhood V of [µ] in g∗/H such that K(U) ⊂ V ,
πC |W : W → V is a diffeomorphism, and πC |−1

W ◦K|U = JU + c, with c ∈ g∗ a
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constant and JU : U → g∗ a map that has the expression (22). Applying πG to
both sides of this equality, using the commutativity of diagram (10), and recalling
the remarks above, we obtain(

π+
C

∣∣
πG(W )

)−1

◦ k|U = jU + πG(c),

with jU := πG ◦ JU . Two results due to Sjamaar [28, Theorem 6.5] and Knop [18,
Theorem 5.1] show that jU is locally open onto its image, locally fiber connected,
and has local convexity data. Consequently, since π+

C

∣∣
πG(W )

is an isometry, the

maps jU and k|U are related by a distance preserving diffeomorphism. More
explicitly k|U = λ ◦ jU , with λ : πG(W ) ⊂ t∗+ → t∗+/H given by the map π+

C

∣∣
πG(W )

composed with the translation by πG(c). Consequently, since jU is locally open
onto its image and locally fiber connected then so is k|U . Additionally, since jU

has local convexity data and λ is a distance preserving map, Lemma 4.5 guarantees
that k|U also has this property. The statement of the theorem follows then as a
consequence of Theorem 2.17. �

Remark 3.16. The classical convexity theorem of Guillemin-Sternberg-Kirwan
(see [13, 14], [17]) states that if G is a compact connected Lie group acting
symplectically on the compact connected symplectic manifold (M, ω) and this
action has an associated standard coadjoint equivariant momentum map J : M →
g∗ , then J(M) ∩ t∗+ is a compact convex polytope (also called polyhedron in the
literature; e.g., [5]). Recall that, by definition, a polyhedron is an intersection of
finitely many closed half spaces. We deduce this result here from Theorem 3.15
and standard results about polyhedra. First, the last statement of Theorem 3.15
guarantees that J(M) ∩ t∗+ is a convex subset of t∗+ and hence of g∗ , J has
connected fibers, and is a G-open map onto its image. See also [4] where the same
result was obtained in a different manner. Second, since M is compact and t∗+ is
closed in g∗ , it follows that J(M) ∩ t∗+ is compact in g∗ . Third, by [28], J(M) is
locally polyhedral at each point. By definition, a convex subset C of a Euclidean
space is said to be locally polyhedral at a point x ∈ C if there is a neighborhood
of x in C which is a polyhedron. Fourth, a compact convex set in a Euclidean
space that is locally polyhedral at each of its points is a polyhedron ([5], TVS
II.91, Exercise 24,b). Therefore J(M)∩ t∗+ is a compact convex polyhedron, J has
connected fibers, and is a G-open map onto its image, which is the statement of
the Guillemin-Sternberg-Kirwan convexity theorem.

4. Appendix: length spaces and convexity

In this appendix we collect some standard results and we fix the notations that
we use when dealing with convexity in the context of length spaces. Most of the
quoted statements below and their proofs can be found in [6] and [8].

Let (X, d) be a metric space. We recall that the length ld(c) of a curve
c : [a, b] → X induced by the metric d is

ld(c) := sup
∆n

n−1∑
i=0

d(c(ti), c(ti+1)),
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where the supremum is taken over all possible partitions

∆n : a = t0 ≤ t1 ≤ · · · ≤ tn = b

of the interval [a, b] ⊂ R . The length of a curve is a non-negative number or it is
infinite. The curve c is said to be rectifiable if its length is finite.

Given a metric space (X, d) we can construct a new map d : X×X → [0,∞]
in the following way:

d(x, y) := inf
Rx,y

ld(γ),

with Rx,y = {rectifiable curves joining x and y} . If there are no such curves we
set d(x, y) := ∞ .

Proposition 4.1. (Bridson and Haefliger [6]) The map d has the following
properties:

(i) d is a metric. We will refer to it as the length metric induced by d.

(ii) d(x, y) ≥ d(x, y) for all x, y ∈ X .

(iii) If c : [a, b] → X is continuous with respect to the topology induced by d, then
it is continuous with respect to the topology induced by d. (The converse is
false, in general).

(iv) If a map c : [a, b] → X is a continuous and rectifiable curve in (X, d), then
it is a continuous and rectifiable curve in (X, d).

(v) The length of a curve c : [a, b] → X in (X, d) is the same as its length in
(X, d).

(vi) d = d.

The assertion in point (iii) of the above proposition is a consequence of the
fact that the topology induced by the metric d is coarser than the topology induced
by the metric d . We say that (X, d) is a length metric space (also called length
space, or path metric space or inner space in the literature) whenever d = d . Note
that in a length metric space the distance between every pair of points x, y ∈ X
is equal to the infimum of the lengths of rectifiable curves joining them. It is well
known that every Riemannian metric on a manifold makes it into a length space.
Length metrics share many properties with Riemannian metrics but they can be
defined in more general settings. For various properties and characterizations of
length metrics see [6], [8], and [12].

A curve c : [a, b] → (X, d) is called a shortest path if its length is minimal
among all the curves with the same endpoints. Shortest paths in length spaces
are also called distance minimizers. If (X, d) is a length space then a curve
c : [a, b] → X is a shortest path if and only if its length is equal to the distance
between endpoints, that is, ld(c) = d(c(a), c(b)). Next we introduce the notion of
geodesic in length spaces that generalizes the one in Riemannian geometry.
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Definition 4.2. Let (X, d) be a length space. A curve c : I ⊂ R → X is called
geodesic if for every t ∈ I there exists a subinterval J containing a neighborhood
of t in I such that c|J is a shortest path. In other words, a geodesic is a curve
which is locally a distance minimizer. A length space (X, d) is called a geodesic
metric space if for any two points x, y ∈ X there exists a shortest path between
x and y .

In a length space a shortest path is a geodesic. The extension of the Hopf-
Rinow theorem from Riemannian geometry to the case of length metric spaces is
due Cohn-Vossen and is a key result needed in the developments of this paper. Its
proof can be found in [6] or [8].

Theorem 4.3. (Hopf-Rinow-Cohn-Vossen) For a locally compact length
space (X, d), the following assertions are equivalent:

(i) X is complete,

(ii) every closed metric ball in X is compact.

If one of the above assertions holds, then for any two points x, y ∈ X there exists
a shortest path connecting them. In other words, (X, d) is a geodesic metric space.

Having introduced the notion of shortest path we can define the key concept of
metric convexity.

Definition 4.4. A subset C in a length metric space (X, d) is said to be convex
if for any two points x, y ∈ C there exists a rectifiable shortest path in (X, d)
connecting x and y which is entirely contained in C .

Notice that if C is convex in the length metric space (X, d) then (C, dC) is a
length metric space, where dC = d|C×C .

Lemma 4.5. Assume that (X, dX) and (Y, dY ) are two geodesic metric spaces
and f : X → Y a distance-preserving map. If dX is finite then the image
Im(f) := f(X) is a convex subset of Y .

Proof. Since f is a distance preserving map it is injective. Let y1, y2 ∈ f(X)
and x1, x2 ∈ X be the corresponding preimages. Then there exists a shortest
geodesic between x1 and x2 , namely a curve c : [a, b] → X satisfying c(a) = x1 ,
c(b) = x2 and ldX

(c) = dX(x1, x2) < ∞ . Since f is distance preserving we have
that ldX

(c) = ldY
(f ◦ c). Consequently ldY

(f ◦ c) = dY (y1, y2) < ∞ , which proves
that f ◦ c is a shortest geodesic connecting y1 and y2 entirely contained in f(X).
Therefore, f(X) is a convex subset of Y . �
Acknowledgments We thank the referee for useful remarks and suggestions
and A. Alekseev for patiently answering our questions about Lie group valued
momentum maps over the years. P.B. has been supported by a grant of the Région
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Université de Franche-Comté
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