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Abstract. For a compact, smooth Cr orbifold (without boundary), we show
that the topological structure of the orbifold diffeomorphism group is a Banach
manifold for 1 ≤ r < ∞ and a Fréchet manifold if r = ∞ . In each case, the local
model is the separable Banach (Fréchet) space of Cr(C∞, resp.) orbisections of
the tangent orbibundle.
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1. Introduction

Our goal in this paper is to determine the topological structure of the orbifold
diffeomorphism group of a smooth compact orbifold. It is well known that in
the case of a closed smooth Cr manifold, the group of Cr diffeomorphisms (1 ≤
r ≤ ∞) is a smooth manifold whose local model is Dr(M), the space of Cr

tangent vector fields on M . See, for example [Ban97] or [Nit71]. Dr(M) is a
separable Banach space for 1 ≤ r < ∞ and a separable Fréchet space for r = ∞ .
One might naively think that the orbifold diffeomorphism group is itself an infinite
dimensional orbifold, but one only need remember that the orbifold diffeomorphism
group is a (topological) group and hence must be homogeneous. As such, it cannot
be a non-trivial orbifold. In fact, in the case of a smooth compact orbifold, the
structure of the orbifold diffeomorphism group holds no surprises, and we have the
following

Theorem 1.1. Let r ≥ 1 and let O be a compact, smooth Cr orbifold (with-
out boundary). Denote by Diffr

Orb(O) the group of Cr orbifold diffeomorphisms
equipped with the Cr topology. Then Diffr

Orb(O) is a manifold modeled on the topo-
logical vector space Dr

Orb(O) of Cr orbisections of the tangent orbibundle equipped

∗We wish to thank the referee for comments and suggestions that lead to improvements in
the final version of this manuscript.
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with the Cr topology. This separable vector space is a Banach space if 1 ≤ r < ∞
and is a Fréchet space if r = ∞.

This particular result was first conjectured with a plausibility argument
in [BB02]. Here, we provide a complete proof using techniques in the spirit of
the classical result for the manifold case. There are many competing and useful
notions of smooth orbifold map in the literature. In [BB02], the statement of
theorem 1.1 referred to unreduced orbifold diffeomorphisms. The main result of
[BB03] concerned the reduced orbifold diffeomorphism group Diffr

red(O). It is
possible to recover the topology of Diffr

red(O) as a quotient of Diffr
Orb(O). In

fact, we have the following structure theorem for Diffr
red(O) as a corollary of

theorem 1.1.

Corollary 1.2. Let r ≥ 1 and let O be a compact, smooth Cr orbifold (without
boundary). Let ID = {f ∈ Diffr

Orb(O) | f(x) = x for all x ∈ O}. That is, ID is
the set comprised of all lifts of the identity map. Then |ID| < ∞ and there is a
short exact sequence of groups

1 → ID → Diffr
Orb(O) → Diffr

red(O) → 1.

Thus, Diffr
red(O) ∼= Diffr

Orb(O)/ID is a Banach manifold if r < ∞ and a Fréchet
manifold if r = ∞.

Remark 1.3. Using methods detailed in [KM97], it will follow that these
diffeomorphism groups have the structure of smooth manifolds. Furthermore,
composition and inversion in these groups will be continuous, and in the r =
∞ case, both Diff∞

Orb(O) and Diff∞
red(O) will be convenient Fréchet Lie groups.

Details will appear in a future revision to the preprint [BB08] on the topological
structure of the set of smooth mappings between orbifolds O and P .

The next few sections of the paper will define and describe the notions
that appear in the statement of theorem 1.1 and corollary 1.2. In particular, in
section 2, we define the notion of smooth orbifold and its natural stratification. We
also define the notion of product orbifold and suborbifold and give some examples.
In section 3, we define the notion of orbifold map. Section 4 defines the (strong) Cr

topology on maps between smooth orbifolds. In section 5, we define the tangent
orbibundle and its orbisections. The space of orbisections provide the local model
for the orbifold diffeomorphism group. In section 6, we look at smooth Riemannian
structures and define a smooth Riemannian exponential map. Finally, we prove
theorem 1.1 and corollary 1.2 in section 7.

It should be noted that we have chosen not to use the language of Lie
groupoids and Morita equivalence in our description of orbifolds and their maps,
but rather we have chosen a more “classical” approach. The reason for this choice
is that a treatment using groupoids, in our opinion, would not add clarity to the
exposition or enhance our results. In fact, we believe that much of the useful
geometric and topological intuition becomes obscured. A reader interested in the
groupoid approach to orbifolds and its utility should consult the recent monograph
[ALR07] and the references therein, especially the article [Moe02].
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We should also note that our definition of orbifold is modeled on the defi-
nition in Thurston [Thu78]. The orbifolds that concern us here are referred to as
classical effective orbifolds in [ALR07]. While our notion of orbifold map is more
general than that given in [ALR07, Ch. 1], our notion of reduced orbifold map and
reduced orbifold diffeomorphism agrees with that book’s definitions 1.3 and 1.4.

2. Orbifolds

In this section, we review the (classical) definition of smooth orbifold and related
constructions.

Definition 2.1. An n-dimensional (topological) orbifold O , consists of a para-
compact, Hausdorff topological space XO called the underlying space, with the
following local structure. For each x ∈ XO and neighborhood U of x , there is a
neighborhood Ux ⊂ U , an open set Ũx

∼= R
n , a finite group Γx acting continuously

and effectively on Ũx which fixes 0 ∈ Ũx , and a homeomorphism φx : Ũx/Γx → Ux

with φx(0) = x . These actions are subject to the condition that for a neigh-
borhood Uz ⊂ Ux with corresponding Ũz

∼= R
n , group Γz and homeomorphism

φz : Ũz/Γz → Uz , there is an embedding ψ̃zx : Ũz → Ũx and an injective homo-
morphism θzx : Γz → Γx so that ψ̃zx is equivariant with respect to θzx (that is, for
γ ∈ Γz, ψ̃zx(γ · ỹ) = θzx(γ) · ψ̃zx(ỹ) for all ỹ ∈ Ũz ), such that the following diagram
commutes:

Ũz

ψ̃zx
//

²²

Ũx

²²

Ũz/Γz

ψzx=ψ̃zx/Γz
//

φz

²²

Ũx/θzx(Γz)

²²

Ũx/Γx

φx

²²

Uz
⊂

// Ux

Remark 2.2. Note that if δ ∈ Γx then ψzx = δ · ψ̃zx is also an embedding
of Ũz into Ũx . It is equivariant relative to the injective homomorphism θzx(γ) =
δ · θzx(γ) · δ−1 . Thus, we regard ψ̃zx as being defined only up to composition with
elements of Γx , and θzx defined only up to conjugation by elements of Γx . In
general, it is not true that ψ̃zx = ψ̃yx ◦ ψ̃zy when Uz ⊂ Uy ⊂ Ux , but there should
be an element δ ∈ Γx such that δ · ψ̃zx = ψ̃yx◦ ψ̃zy and δ ·θzx(γ) ·δ−1 = θyx◦θzy(γ).
Also, the covering {Ux} of XO is not an intrinsic part of the orbifold structure. We
regard two coverings to give the same orbifold structure if they can be combined
to give a larger covering still satisfying the definitions.

Definition 2.3. We say that an n-dimensional orbifold O is locally smooth if
the action of Γx on Ũx

∼= R
n is topologically conjugate to an orthogonal action

for all x ∈ O . That is, for each x ∈ O , there exists a (faithful) representation
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ρx : Γx → O(n), the orthogonal group, such that if γ · y denotes the Γx action on
Ũx , there exists a homeomorphism h of Ũx such that h◦ (γ ·y) = [ρx(γ)](h(y)) for
all y ∈ Ũx . By standard results, [Wol84, lemma 4.7.1], the class of locally smooth
orbifold remains unchanged if we replace O(n) by the general linear group, GL(n),
in our definition.

Definition 2.4. Let 0 ≤ r ≤ ∞ . An orbifold O is a smooth Cr orbifold if
each Γx acts by Cr diffeomorphisms on Ũx and each embedding ψ̃zx is Cr . When
r = 0, a smooth C0 orbifold is understood to be locally smooth.

Proposition 2.5. If O is a smooth Cr orbifold with r > 0, then it is locally
smooth. Moreover, the action of the local isotropy groups is smoothly Cr conjugate
to an orthogonal action.

Proof. Let Γx be the isotropy group of x , Ux a neighborhood of x with
corresponding neighborhood Ũx of 0 in R

n and homeomorphism φx : Ũx/Γx → Ux

with φx(0) = x . By assumption, Γx acts by Cr diffeomorphisms on Ũx . We denote
the action of Γx by (γ, ỹ) → γ · ỹ for all γ ∈ Γx and ỹ ∈ Ũx . Note that Γx · 0 = 0.
Let Lγ : T0Ũx → T0Ũx be the linearization at 0 of ỹ → γ · ỹ . Note that Lγ ,
being the linearization at 0, is a fixed linear map, and is therefore C∞ . Define
F : Ũx → R

n by

F (ỹ) =
1

|Γx|

∑

η∈Γx

Lη(η
−1 · ỹ)

Then F is Cr since Lη is C∞ and the action of Γx is by Cr diffeomorphisms.
Also, dF (0) = Id and F (γ · ỹ) = Lγ(F (ỹ)). To see the last statement, note that

F (γ · ỹ) =
1

|Γx|

∑

η∈Γx

Lη(η
−1γ · ỹ)

=
1

|Γx|

∑

η∈Γx

Lη((γ
−1η)−1 · ỹ)

=
1

|Γx|

∑

µ∈Γx

Lγµ(µ−1 · ỹ) where µ = γ−1η

=
1

|Γx|

∑

µ∈Γx

Lγ(Lµ(µ−1 · ỹ))

= Lγ

( 1

|Γx|

∑

µ∈Γx

Lµ(µ−1 · ỹ)
)

= Lγ(F (ỹ))

So by the inverse function theorem, there is a neighborhood Ṽx of 0 in Ũx

on which F is an equivariant Cr diffeomorphism. Thus, F conjugates the action
of Γx to the linear action Lγ which in turn is linearly conjugate to an orthogonal
action which we denote by ρx(γ). ρx is the required representation making O
locally smooth.

Definition 2.6. An orbifold chart about x in a (locally) smooth orbifold O is
a 4-tuple (Ũx, Γx, ρx, φx) where Ũx

∼= R
n , Γx is a finite group, ρx is a (faithful)
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representation of Γx : ρx ∈ Hom(Γx, O(n)), and φx is a homeomorphism: φx :
Ũx/ρx(Γx) → Ux , where Ux ⊂ XO is a (sufficiently small) open relatively compact
neighborhood of x , and φx(0) = x .

For convenience we will often refer to the neighborhood Ux or (Ũx, Γx) as
an orbifold chart, and ignore the representation ρx and write Ux = Ũx/Γx . If
necessary, we can assume that Ũx is an open metric ball in R

n centered at the
origin and denote by πx : Ũx → Ũx/ρx(Γx), the quotient map defined by the action
of ρx(Γx) on Ũx .

Proposition 2.7. Let r ≥ 0. If O is a smooth Cr orbifold then in each
orbifold chart Ũx the fixed point set S̃x = {ỹ ∈ Ũx | Γx · ỹ = ỹ} is a connected Cr

submanifold of Ũx .

Proof. Let (Ũx, Γx, ρx, φx) be an orbifold chart about x . Since O is Cr

smooth, the proof of proposition 2.5 gives the existence of Γx -equivariant Cr

diffeomorphism F : Ũx → R
n
ρx

, where R
n
ρx

denotes R
n with the orthogonal Γx -

action induced by the representation ρx . Thus, we have F (γ · ỹ) = [ρx(γ)](F (ỹ)).
If ỹ ∈ S̃x , and z̃ = F (ỹ) then we have that z̃ = [ρx(γ)](z̃), hence F (S̃x) ⊂⋂

γ∈Γx
ker(ρx(γ) − I). Let W̃ =

⋂
γ∈Γx

ker(ρx(γ) − I) and let w̃ ∈ W̃ , with

F (ṽ) = w̃ for some ṽ ∈ Ũx . Then

ṽ = F−1(w̃) = F−1[ρx(γ)](w̃) = F−1[ρx(γ)]F (ṽ) = F−1F (γ · ṽ) = γ · ṽ

for all γ ∈ Γx . Hence ṽ ∈ S̃x . We have shown F (S̃x) = W̃ . Since W̃ is a
subspace, we have that S̃x = F−1(W̃ ) is a connected Cr submanifold of Ũx .

Stratification of an Orbifold.

Definition 2.8. Let O be a connected n-dimensional locally smooth orbifold.
Given a point x ∈ O , there is a neighborhood Ux of x which is homeomorphic to
a quotient Ũx/Γx where Ũx is homeomorphic to R

n and Γx is a finite group acting
orthogonally on R

n . The definition of orbifold implies that the germ of this action
in a neighborhood of the origin of R

n is unique. We define the isotropy group of
x to be the group Γx . The singular set, Σ1 , of O is the set of points x ∈ O with
Γx 6= {e} .

We wish to define the notion of a stratum S of O . Roughly speaking, a
stratum of O is a maximal connected subset S of O for which the Γx action is
constant for x ∈ S . The formal definition is:

Definition 2.9. Two points x , y belong to the same stratum S ⊂ O if
there exists a chain of orbifold charts {Ux = U0, U1, . . . , Um = Uy} so that for
0 ≤ i ≤ m − 1 we have

1. Ui ∩ Ui+1 6= ∅

2. Im(ρi) = Im(ρi+1), and
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3. Γi acts on Ũi ∩ Ũi+1 ; that is, Ũi ∩ Ũi+1 is Γi invariant

Here, ρi ∈ Hom(Γi, O(n)) is the faithful representation of Γi corresponding to
the chart Ui . By construction, the diagram below commutes (horizontal maps are
simply inclusions):

Ũi ∩ Ũi+1
⊂

//

²²

Ũi+1

²²

(Ũi ∩ Ũi+1)/Γi
⊂

//

²²

Ũi+1/Γi+1

²²

Ui ∩ Ui+1
⊂

// Ui+1

It is easy to see that belonging to the same stratum is an equivalence relation
on O . Also, there can only be a finite number of distinct strata on a compact
orbifold. We have the following structure result for strata:

Proposition 2.10. Let S be a stratum of a smooth Cr orbifold O . Then S is
connected and there exists a connected smooth Cr manifold Ũ and a Cr action by
a finite group Γ on Ũ such that Ũ/Γ is a neighborhood of S in O .

Proof. From the definition of smooth orbifold we see that Ũ =
⋃m

i=0 Ũi inherits
the structure of a connected smooth Cr manifold. Let Γ = Γ0 and ρ = ρ0 . By
construction, we have an orthogonal action given by ρ0(Γ) of Γ on Ũ and it is
clear that Ũ/Γ is a neighborhood of S in O . That S is connected follows from
proposition 2.7 and the fact that S is the (continuous) projection of the fixed point
subset S̃ = {ũ ∈ Ũ | Γ · ũ = ũ} .

Definition 2.11. Let O be a smooth Cr orbifold. For x ∈ O , the stratum
containing x will be denoted by Sx . It is a suborbifold of O (see definition 2.13).
The corresponding Cr manifold covering and finite group given in proposition 2.10
will be denoted by ŨSx

and ΓSx
, respectively. The neighborhood ŨSx

/ΓSx
of Sx

will be denoted by USx
and the inverse image of Sx in ŨSx

will be denoted by S̃x .

Products of Orbifolds. Cartesian products of (locally) smooth orbifolds inherit
a natural (locally) smooth orbifold structure:

Definition 2.12. Let Oi for i = 1, 2 be orbifolds. The orbifold product O1×O2

is the orbifold having the following structure:

1. XO1×O2
= XO1

× XO2
.

2. For each (x1, x2) ∈ XO1×O2
and orbifold charts Ui of xi , U1 × U2 is an

orbifold chart around (x1, x2). Explicitly,

(Ũ1 × Ũ2, Γx1
× Γx2

, ρx1
× ρx2

, φx1
× φx2

)

is an orbifold chart around (x1, x2).
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Note that the isotropy group Γ(x1,x2) = Γx1
× Γx2

.

Suborbifolds. The definition of a suborbifold is somewhat more delicate than
the corresponding notion for a manifold.

Definition 2.13. A suborbifold P of an orbifold O consists of the following.

1. A subspace XP ⊂ XO equipped with the subspace topology

2. For each x ∈ XP and neighborhood W of x in XP there is an orbifold
chart (Ũx, Γx, ρx, φx) about x in O with Ux ⊂ W , a subgroup Λx ⊂ Γx

of the isotropy group of x in O and a ρx(Λx) invariant vector subspace
Ṽx ⊂ Ũx = R

n , so that (Ṽx, Λx, ρx|Λx
, ψx) is an orbifold chart for P and

3. Vx = ψx(Ṽx/ρx(Λx)) = Ux ∩ XP = φx(πx(Ṽx)) is an orbifold chart for x in
P where πx : Ũx → Ũx/ρx(Γx) is the quotient map.

Remark 2.14. It is tempting to define the notion of an m–suborbifold P of an
n–orbifold O simply by requiring P to be locally modeled on R

m ⊂ R
n modulo

finite groups. That is, the local action on R
m is induced by the local action on R

n .
This is the definition adopted in [Thu78]. It is equivalent to the added condition
in our definition that Λx = Γx at all x in the underlying topological space of
P . This more restrictive definition is not adequate for our needs as the following
example shows.

Example 2.15. Let O be a smooth Cr orbifold. Let diag(O) = {(x, x) | x ∈
O} ⊂ O × O be the diagonal. Then diag(O) is a suborbifold of O × O with
isotropy group Γ(x,x)

∼= Γx via the diagonal action γ · (x̃, x̃) = (γ · x̃, γ · x̃). See
proposition 3.8. If we had chosen the more restrictive definition of suborbifold
given in the last remark, then diag(O) would not have been a suborbifold. For
example, consider the orbifold R/Z2 where Z2 acts on R via γ · x = −x . The
underlying topological space XO of O is [0,∞) and the isotropy subgroups are {1}
for x ∈ (0,∞) and Z2 for x = 0. The isotropy subgroup of (0, 0) ∈ R/Z2 ×R/Z2

is Z2 × Z2 , whereas the isotropy subgroup of (0, 0) in the diagonal suborbifold
diag(R/Z2) ⊂ R/Z2 × R/Z2 must be isomorphic to Z2 , as diag(R/Z2) is a 1-
dimensional suborbifold.

Remark 2.16. Let P ⊂ O be a suborbifold. Note that even though a point
p ∈ XP may be in the singular set of O , it need not be in the singular set of P .

3. Orbifold Maps

Intuitively, an orbifold map should be a map between underlying topological spaces
that has local lifts, but unfortunately axiomatizing such a simple idea has proven
difficult if one wants to provide a definition that is very flexible. We now discuss one
such natural definition of maps between orbifolds. This definition will elaborate on
the definition that was given in the paper [BB02]. In that paper, these maps were
referred to as unreduced orbifold maps because we distinguished among different
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liftings of the same map of underlying topological spaces. From now on, we will
refer to such maps simply as orbifold maps. In [BB03], our definition of (reduced)
orbifold map did not distinguish among different liftings. We will retain the term
reduced for orbifold maps for which the particular choice of local lifts is ignored.
Thus, a reduced orbifold map agrees with the notion of orbifold map given in
[ALR07, Def. 1.3]. In what follows, we use the notation given in definitions 2.1,
2.6 and 2.11.

Definition 3.1. A C0 orbifold map (f, {f̃x}) between locally smooth orbifolds
O1 and O2 consists of the following:

1. A continuous map f : XO1
→ XO2

of the underlying topological spaces.

2. For each y ∈ Sx , a group homomorphism Θf,y : ΓSx
→ Γf(y) .

3. A Θf,y -equivariant lift f̃y : Ũy ⊂ ŨSx
→ Ṽf(y) where (Ũy, ΓSx

, ρy, φy) is an

orbifold chart at y and (Ṽf(y), Γf(y), ρf(y), φf(y)) is an orbifold chart at f(y).
That is, the following diagram commutes:

Ũy

f̃y
//

²²

Ṽf(y)

²²

Ũy/ΓSx

f̃y/Θf,y(ΓSx )
//

²²

Ṽf(y)/Θf,y(ΓSx
)

²²

Ṽf(y)/Γf(y)

²²

Uy ⊂ USx

f
// Vf(y)

4. (Equivalence) Two orbifold maps (f, {f̃x}) and (g, {g̃x}) are considered
equivalent if for each x ∈ O1 , f̃x = g̃x as germs. That is, there exists
an orbifold chart (Ũx, Γx) at x such that f̃x|Ũx

= g̃x|Ũx
. Note that this

implies that f = g .

Remark 3.2. Note that equivalence of two orbifold maps does not require that
Θf,x = Θg,x . To see that this is justifiable, consider the example where O is the
orbifold R/Z2 where Z2 acts on R via x → −x and f is the constant map f ≡ 0.
The underlying topological space XO of O is [0,∞) and the isotropy subgoups
are trivial for x ∈ (0,∞) and Z2 for x = 0. The map f̃0 ≡ 0 is a local equivariant
lift of f at x = 0 using either of the homomorphisms Θf,0 = Id or Θ′

f,0 = {e} .
We do not wish to consider these as distinct orbifold maps.

We will often denote an orbifold map (f, {f̃x}) simply by f for convenience.

Definition 3.3. An orbifold map f : O1 → O2 of Cr smooth orbifolds is Cr

smooth if each of the local lifts f̃x may be chosen to be Cr .
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The next lemma is a technical result that states that a local lift f̃x chosen
on a particular orbifold chart about x uniquely specifies a local lift on any other
orbifold chart about x . Hence, in definition 3.1, the f̃x ’s, once chosen, are
independent of the choice of local charts.

Lemma 3.4. Let f : O1 → O2 be a Cr orbifold map, x ∈ O1 , Ux ⊂ Wx

connected orbifold charts around x and Vf(x) ⊂ Zf(x) connected orbifold charts

around f(x) in O2 with f(Ux) ⊂ Vf(x) and f(Wx) ⊂ Zf(x) . If f̃Ux
is a lift of f

to Ũx , then there is a unique lift f̃Wx
of f to W̃x extending f̃Ux

.

Proof. Let D̃x ⊂ W̃x and D̃f(x) ⊂ Z̃f(x) be Dirichlet fundamental domains for

the actions of the isotropy groups Γx and Γf(x) on W̃x and Z̃f(x) respectively.

Then, D̃x ∩ Ũx and D̃f(x) ∩ Ṽf(x) are also Dirichlet fundamental domains for

the actions of the respective isotropy groups on Ũx and Ṽf(x) respectively. Let

ỹ ∈ Ũx ∩ D̃x be a point in the non-singular set of O1 . Without loss of generality,
we may take D̃f(x) to be the Dirichlet fundamental domain containing f̃Ũx

(ỹ) and

so for any z̃ ∈ D̃x , there is a unique w̃ ∈ D̃f(x) with πf(x)(w̃) = f(πx(z̃)). Now

define the extension f̃W̃x
: W̃x → Z̃f(x) via:

f̃W̃x
(γ · z̃) = Θf,x(γ) · w̃

Uniqueness and continuity of the extension follow from the properties of Dirichlet
domains.

Given two orbifolds Oi , i = 1, 2, the class of Cr orbifold maps from O1

to O2 will be denoted by Cr
Orb(O1,O2). If O1 = O2 = O , we use the notation

Cr
Orb(O) instead. The following was stated as a proposition without proof in

[BB02].

Example 3.5. (Lifts of the Identity Map) Consider the identity map Id : O →
O . Let x ∈ O and (Ũx, Γx) be an orbifold chart at x . From the definition of
orbifold map, it follows (since Γx is finite) that there exists γ ∈ Γx such that a

lift Ĩdx : Ũx → Ũx is given by Ĩdx(ỹ) = γ · ỹ for all ỹ ∈ Ũx . Since Ĩdx is ΘId,x

equivariant we have for δ ∈ Γx :

Ĩdx(δ · ỹ) = ΘId,x(δ) · Ĩdx(ỹ) hence

γδ · ỹ = ΘId,x(δ)γ · ỹ which implies

since Γx acts effectively that

γδ = ΘId,x(δ)γ or, equivalently,

ΘId,x(δ) = γδγ−1

Thus, ΘId,x is an isomorphism of Γx , in fact, an inner automorphism. Since two
inner automorphisms, Iγi

(δ) = γiδγ
−1
i , give rise to the same automorphism of Γx

precisely when γ1 = ζγ2 where ζ ∈ Center(Γx), the number of possible distinct

choices for the homomorphism ΘId,x is
|Γx|

|Center(Γx)|
. In particular, if x is non–

singular, or more generally, if Γx is abelian, ΘId,x is the identity isomorphism on
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Γx , and the identity map has exactly |Γx| local lifts over x . Moreover, we see that
the identity map between Cr orbifolds is Cr . In fact, it is an example of a Cr

orbifold diffeomorphism (definition 3.9).

Example 3.6. Let O be an orbifold and XO its underlying topological space.
Let N be a manifold or manifold with boundary (with trivial orbifold structure).
Let f : XO → N be a (topologically) continuous map; that is f ∈ C0(XO, N).
Then f is naturally an orbifold continuous map; that is f ∈ C0

Orb(O, N). To see
this, note that since N is a trivial orbifold, Γf(x) = {e} for all x ∈ O . Thus,
Θf,x is the constant homomorphism γ 7→ e . Therefore, equivariant local lifts
f̃x : Ũx → Ṽf(x) = Vf(x) may be defined via f̃x(ỹ) = f ◦ πx(ỹ) for ỹ ∈ Ũx . By

construction f̃ is well-defined, continuous and unique, and thus f ∈ C0
Orb(O, N).

Example 3.7. Let O be a smooth orbifold and let N be a smooth manifold or
manifold with boundary (with trivial orbifold structure). If f ∈ Cr

Orb(N,O), then
since Γx = {e} for all x ∈ N the homomorphism Θf,x : Γx → Γf(x) is just e 7→ e .
Thus f is merely a map from N to O with choice of local Cr lifts. In the case
where ∂N 6= ∅ , this means that a local lift is Cr over N − ∂N with continuous
extension to ∂N .

Proposition 3.8. Let f ∈ Cr
Orb(O1,O2), then the graph of f , graph(f), defined

by
graph(f) = {(x, f(x)) ∈ O1 ×O2} ⊂ O1 ×O2

is a Cr suborbifold. Note the isotropy group Γ(x,y)
∼= Γx is acting on Ũx × Ṽy , a

chart in O1 ×O2 , via the twisted diagonal action γ · (x̃, ỹ) = (γ · x̃, Θf,x(γ) · ỹ).

Proof. Let x ∈ O1 , (Ũx, Γx) a chart at x , Θf,x ∈ Hom(Γx, Γf(x)), (Ṽf(x), Γf(x))

a chart at f(x) and equivariant lift f̃x : Ũx → Ṽf(x) of f . That is, Θf,x(γ) · f̃(x̃′) =

f̃(γ · x̃′) for all γ ∈ Γx and x̃′ ∈ Ũx . For (x, f(x)) ∈ graph(f) ⊂ O1 × O2 we
have Γ(x,f(x)) = Γx × Γf(x) . We need to give a suborbifold structure for graph(f).
Define the subgroup

ΓΘ = {(γ, Θf,x(γ)) | γ ∈ Γx} ⊂ Γx × Γf(x) and let W̃x = {(x̃′, f̃(x̃′)) | x̃′ ∈

Ũx} ⊂ Ũx × Ṽf(x) . Note that W̃x is ΓΘ invariant: Suppose (x̃′, f̃(x̃′)) ∈ W̃x and
δ = (γ, Θf,x(γ)) ∈ ΓΘ . Then

δ ·
(
x̃′, f̃(x̃′)

)
=

(
γ · x̃′, Θf,x(γ) · f̃(x̃′)

)
=

(
γ · x̃′, f̃(γ · x̃′)

)
∈ W̃x

Thus,
(
Ũx × Ṽf(x), Γx × Γf(x), ρx × ρf(x), φx × φf(x)

)
is an orbifold chart around

(x, f(x)) with
(
W̃x, ΓΘ, ρx × ρf(x)

∣∣
ΓΘ

, ψx = φx × φf(x)

∣∣
graph(f)

)
the required sub-

orbifold chart around (x, f(x)) ∈ graph(f).

Definition 3.9. For any topological space, let Homeo(X) denote its group of
homeomorphisms. For a C0 orbifold O , denote by HomeoOrb(O) the subgroup
of Homeo(XO) with f, f−1 ∈ C0

Orb(O). If O is a Cr orbifold, Diffr
Orb(O),

the Cr orbifold diffeomorphism group, is the subgroup of HomeoOrb(O) with
f, f−1 ∈ Cr

Orb(O).
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Example 3.10. Consider the case of a so-called Zp -football O = S2/Zp where
Zp acts on S2 ⊂ R

3 by rotation about the z -axis by an angle 2π/p . It is an
example, in the language of Thurston, of a good orbifold O = M/Γ where M is a
smooth manifold and Γ acts effectively on M as a proper discontinuous group of
diffeomorphisms on M . This type of orbifold is referred to as an effective global
quotient in [ALR07]. There are two singular points corresponding to the north and
south poles. Let ID denote the subgroup of Diffr

Orb(O) comprised of all lifts of
the identity map. Then ID ∼= Zp × Zp . If we let Diffr

Zp
(M) ⊂ Diffr

Orb(O) denote
the (global) Zp -equivariant diffeomorphisms of M and let IDZp

⊂ Diffr
Zp

(M)
denote the Zp -equivariant lifts of the identity, then IDZp

∼= Zp . This example
shows that, in general, Diffr

Orb(O) will be strictly larger than Diffr
Γ(M) for a good

orbifold O = M/Γ.

Recall the following terminology [Hir76]: Let R be a Cr smooth structure
on an orbifold O . A Cs smooth structure S on O , s > r , is compatible with R

if S ⊂ R . This means that orbifold charts in (O, S) are orbifold charts in (O,R)
in the sense that the identity map of O is a element of Diffr

Orb(O). As in the
classical case of smooth manifolds [Whi36], we have the following result on raising
the differentiablity of smooth orbifold structures.

Proposition 3.11. Let R be a Cr smooth structure on an orbifold O , r ≥ 1.
For every s, r < s ≤ ∞, there exists a compatible Cs smooth structure S ⊂ R,
and S is unique up to Cs orbifold diffeomorphism.

Proof. In light of definition 2.4 and example 3.5, one merely need use the
results of Palais [Pal70].

4. Function Space Topologies

In this section, we assume that Oi are smooth Cr orbifolds and define the
(strong/fine/Whitney) Cr topology on Cr

Orb(O1,O2). For f ∈ Cr
Orb(O1,O2),

we first define a C0 neighborhood of f and corresponding C0 topology on
Cr

Orb(O1,O2). Although we will introduce a Riemannian structure later, for our
purposes now we make the observation that orbifolds are metrizable: Just let
U = Ũ/Γ = π(U) be any orbifold chart of O . Since Γ is finite, we may define a
metric on U by dU(x, y) = dŨ (π−1(x), π−1(y)) where dŨ is the usual Euclidean
metric on Ũ . This makes O locally metrizable. Since all orbifolds are assumed
paracompact and Hausdorff, the Smirnov metrization theorem [Mun75] implies O
is metrizable and second countable.

Definition 4.1. Let f : O1 → O2 be a Cr orbifold map. Let C = {Ci} be a
locally finite covering of O1 by relatively compact, open sets such that Ci ⊂ Ui and
f(Ci) ⊂ Vi where Ui and Vi are (open) relatively compact orbifold charts. Let {εi}
be a collection of positive constants. Let N0(f, εi; C) consist of all g ∈ Cr

Orb(O1,O2)
such that for all i , g(Ci) ⊂ Vi and ‖f̃x(ỹ) − g̃x(ỹ)‖Ṽi

< εi for all x ∈ Ci and
ỹ ∈ π−1

x (Ci ∩ Ux). The sets N0(f, εi; C) form a neighborhood base for a topology
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on Cr
Orb(O1,O2), which we call the (orbifold) C0 topology relative to C and we

refer to Cr
Orb(O1,O2) with this topology as Cr

Orb(O1,O2; C).

To define the (strong/fine/Whitney) Cs topology on Cr
Orb(O1,O2) for 1 ≤

s ≤ r , we simply require, in addition, that local lifts are Cs close in the usual Cs

topology. In particular we have,

Definition 4.2. Let f : O1 → O2 be a Cr orbifold map. Define Ns(f, εi; C) to
be those maps g ∈ N0(f, εi; C) such that for all 1 ≤ k ≤ s , ‖∂kf̃x(ỹ)− ∂kg̃x(ỹ)‖ <
εi for all x ∈ Ci and ỹ ∈ π−1

x (Ci ∩ Ux). This means that the local lifts of
f and g have all partial derivatives of order ≤ s within εi at each point of
ỹ ∈ π−1

x (Ci ∩ Ux). Sets of this type form a neighborhood base for the (orbifold)
Cs topology on Cr

Orb(O1,O2) relative to the atlas C . The C∞ topology relative
to C on C∞

Orb(O1,O2) is defined to be the union of the topologies induced by the
inclusion maps C∞

Orb(O1,O2; C) →֒ Cr
Orb(O1,O2; C) for finite r and as above, and

C∞
Orb(O1,O2) with this topology will be denoted by C∞

Orb(O1,O2; C) as above.

Remark 4.3. If both O1 and O2 are compact, then the coverings {Ci} are
finite and εi may be chosen to be a constant ε for all i . The resulting topologies
induced by the neighborhood base Ns(f, ε) on Cr

Orb(O1,O2) are equivalent to the
topologies in definitions 4.1 and 4.2 given above.

Proposition 4.4. The topology on Cr
Orb(O1,O2) is independent of the cover

C . That is, the spaces Cr
Orb(O1,O2; C) and Cr

Orb(O1,O2; C
′) are homeomorphic for

any two covers C and C′ as in definition 4.2 and any value of r where 0 ≤ r ≤ ∞.

The proof depends on the following lemma. To aid both the statement
and proof of the following lemma, the following notation will be useful. For
f ∈ Cr

Orb(O1,O2), U a chart about x ∈ O1 , V a chart about f(x) ∈ O2 and

relatively compact connected open sets x ∈ C ′ ⊂ C
′
⊂ C ⊂ C ⊂ U , define

N
s(f, ε; C) = {g ∈ Cr

Orb(O1,O2) such that

‖∂kf̃(ỹ) − ∂kg̃(ỹ)‖ < ε for all ỹ ∈ C̃ and all k ≤ s}

N
s(f, ε; C,C ′) = {g ∈ N

s(f, ε; C ′) such that

‖∂kf(y) − ∂kg(y)‖ < ε for all y ∈ C − Σ1 and

‖f(y) − g(y)‖ < ε for all y ∈ C}

Lemma 4.5. Let f , x, U , C and C ′ ⊂ C be as above, then for each ε > 0
there is a δ > 0 so that

N
r(f, δ; C,C ′) ⊂ N

r(f, ε; C)

Proof. The proof is by contradiction. Assuming the contrary implies that
there is an ε > 0 and a sequence {gn} ⊂ Cr

Orb(O1,O2) so that

gn ∈ N
r(f, 2−n; C,C ′) and gn /∈ N

r(f, ε; C)
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For each y ∈ C , let Γf(y) to be the isotropy group of f(y) and θf(y)f(x) : Γf(y) →
Γf(x) the injective homomorphism of definition 2.1. Let N(x, y) denote the index
of θf(y)f(x)(Γf(y)) in Γf(x) ,

∣∣Γf(x) : θf(y)f(x)(Γf(y))
∣∣ and let γi , i = 1, . . . , N(x, y)

the corresponding coset representatives. Then there is a neighborhood, Ṽf̃(ỹ) of

f̃(ỹ) in Ṽ so that γi · Ṽf̃(y) ∩ γj · Ṽf̃(ỹ) = ∅ if i 6= j . Thus, the projection

π : Ṽ /θf(x)f(y)(Γf(y)) → V is a local isometry over Ṽf(y) by our choice of metric.

For any ỹ ∈ C̃ let W̃ỹ = f̃−1
(
Ṽf̃(ỹ)

)
.

{
W̃ỹ

}
is an open cover of C̃ . Compactness

of C̃ yields a finite subcover W̃ỹ1
, . . . , W̃ỹM

. Without loss of generality, we may
also uniformly bound the radii of the neighborhoods Vf(y) in the range so that this
cover is non-trivial.

Now let D̃ ⊂ C̃ be the maximal domain defined by

D̃ = {z̃ ∈ C̃ | g̃n(z̃) → f̃(z̃) pointwise}

A Cantor diagonal argument shows that the limit point of any sequence z̃n → z̃
is also in D̃ and so D̃ is closed and therefore a compact set containing C̃ ′ . Thus,
there are points ỹα1

, . . . , ỹαk
⊂ {ỹ1, . . . , ỹM} so that W̃ỹα1

, . . . , W̃ỹαk
cover D̃ and

D̃ ∩ W̃ỹαi
6= ∅ for i = 1, . . . , k . By shrinking the W̃ỹαi

’s we may assume that they

still cover D̃ and they also satisfy g̃n(W̃ỹαi
) ⊂ Ṽf̃(ỹαi

) for n sufficiently large and

all i . Picking z̃i ∈ D̃ ∩ W̃ỹαi
for each i we have by definition of the W̃ ’s that

‖g̃n(z̃) − γi · f̃(z̃)‖ = ‖gn(z) − f(z)‖

for all z̃ ∈ W̃ỹαi
and some coset representative γi of θf(x)f(y)(Γf(y)) in Γf(x) . By

evaluating at some z̃i ∈ D̃∩W̃ỹαi
, the definition of D̃ implies we must have γi = e

and thus, g̃n(z̃) → f̃(z̃) for all z̃ ∈ W̃ỹαi
. Since this holds for each i = 1, . . . , k ,

g̃n(z̃) → f̃(z̃) for all z̃ ∈
⋃k

i=1 W̃ỹαi
of which D̃ is a proper subset. This contradicts

the maximality of D̃ .

Proof. (Proof of proposition 4.4) Given two open covers C and C ′ , take an
open cover C′′ that refines them both. Clearly the inclusion maps

Cr
Orb(O1,O2; C) →֒ Cr

Orb(O1,O2; C
′′) and Cr

Orb(O1,O2; C
′) →֒ Cr

Orb(O1,O2; C
′′)

induced by restriction to the common refinement C ′′ in each of the covers C and C′

show that the topology on Cr
Orb(O1,O2; C

′′) is coarser than either of the topologies
induced by C or C′ . We now show that Cr

Orb(O1,O2; C
′′) is, in fact, homeomorphic

to Cr
Orb(O1,O2; C).

Since sets of the form Nr(f, ε; C) for C ∈ C form a subbase for the topology
of Cr

Orb(O1,O2; C), it suffices to find a neighborhood of f in Cr
Orb(O1,O2; C

′′)
contained in Nr(f, ε; C). Let C ′′

1 , . . . , C ′′
k ∈ C′′ be a cover of C ∈ C . For any δ > 0

k⋂

i=1

N
r(f, δ; C ′′

k ) ⊂ N
r(f, δ; C,C ′′

i )

Therefore, by lemma 4.5, Nr(f, ε; C) is open in Cr
Orb(O1,O2; C

′′) and thus we may
conclude that Cr

Orb(O1,O2; C
′′) and Cr

Orb(O1,O2; C) are homeomorphic. Similarly,
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Cr
Orb(O1,O2; C

′′) and Cr
Orb(O1,O2; C

′) are homeomorphic. Thus, Cr
Orb(O1,O2; C)

and Cr
Orb(O1,O2; C

′) are homeomorphic as claimed.

From now on, we drop the dependence of topology on Cr
Orb(O1,O2; C) on

the cover C , and will simply use the notation Cr
Orb(O1,O2) for the set of orbifold

functions with the Cr topology as in definition 4.2. For the remainder of the
paper, whenever function spaces between orbifolds are mentioned, we will assume
that the source orbifolds are compact.

Definition 4.6. For a fixed cover C by orbifold charts and any ε > 0, put

N
s(f, ε) = {g ∈ Cr

Orb(O1,O2) | g ∈ N
s(f, ε; C) for all C ∈ C}

As in the case for compact manifolds, for a compact orbifold O1 , we define for f
and g ∈ Cr

Orb(O1,O2) a distance

ds(f, g) = inf{ε > 0 | f ∈ N
s(g, ε) and g ∈ N

s(f, ε)}

where the dependence on the orbifold atlas used has been supressed.

Remark 4.7. Compactness of O1 implies (as in the usual manifold case) that
the metric topology induced by the metric ds as above is equivalent to the Cs

topology on Cr
Orb(O1,O2) given by the orbifold atlas C (and hence to the topology

induced by any other atlas by proposition 4.4).

Proposition 4.8. Let Oi be compact Cr orbifolds, 1 ≤ r ≤ ∞. For 1 ≤ s ≤ r ,
Cr

Orb(O1,O2) with the Cs topology relative to C is a separable metric space. If
s = r , then this metric space is complete.

Proof. Let {fn} ⊂ Cr
Orb(O1,O2) be a Cauchy sequence in the Cr topology.

For any x ∈ O1 , orbifold charts Ux about x and V ⊂ O2 containing
⋃

n fn(Ux),

the lifts {f̃n : Ũx → Ṽ } are a sequence of Γx -equivariant functions converging
uniformly in the Cr topology on compact subsets of Ũx . Therefore they converge
to a Cr , Γx -equivariant function f̃ : Ux → Ṽ which is a lift of the function
f(x) = lim fn(x). Thus, the limit function f ∈ Cr

Orb(O1,O2) which proves
completeness. For separability, note that for any f ∈ Cr

Orb(O1,O2), each lift
f̃x : Ũx → Ṽf(x) may be approximated by a polynomial g̃x : Ũx → Ṽf(x) . To get
a Γx -equivariant approximation by a polynomial we average g̃x over Γx . That is,
we define G̃x : Ũx → Ṽf(x) by

G̃x(z̃) =
1

|Γx|

∑

γ∈Γx

Θf,x(γ) · g̃x(γ
−1 · z̃)
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Since

G̃x(δ · z̃) =
1

|Γx|

∑

γ∈Γx

Θf,x(γ) · g̃x(γ
−1δ · z̃)

=
1

|Γx|

∑

γ∈Γx

Θf,x(δ)Θf,x(δ
−1γ) · g̃x((δ

−1γ)
−1

· z̃)

= Θf,x(δ) ·
1

|Γx|

∑

µ∈Γx

Θf,x(µ) · g̃x(µ
−1 · z̃) where µ = δ−1γ

= Θf,x(δ) · G̃x(z̃)

we see that G̃x satisfies the same equivariance relation as f̃x and thus G̃x ∈
Cr

Orb(O1,O2). Since averaging is distance nonincreasing, we have produced an
approximation of f̃x by Γx -equivariant polynomials. Furthermore, because there
can be only finitely many lifts of f over any orbifold chart, compactness of O1

implies that the space Cr
Orb(O1,O2) is separable as the equivariant polynomials

form a countable dense set.

5. The Tangent Orbibundle and its Sections

We now define the tangent orbibundle of a smooth Cr+1 orbifold. It is a special
case of the more general notion of a linear orbibundle given in [BB02].

Definition 5.1. Let O be an n–dimensional Cr+1 orbifold. The tangent
orbibundle of O , p : TO → O , is the Cr orbibundle defined as follows. If (Ũx, Γx)
is an orbifold chart around x ∈ O then p−1(Ux) ∼= (Ũx × R

n)/Γx where Γx acts
on Ũx × R

n via γ · (ỹ, ṽ) = (γ · ỹ, dγỹ(ṽ)). In keeping with tradition, we denote
the fiber p−1(x) over x ∈ Ux by TxO ∼= R

n/Γx . Note that, in general, if Γx is
non-trivial then TxO will be a convex cone rather than a vector space. Locally we
have the diagram:

Ũx × R
n

Πx
//

pr1
²²

(Ũx × R
n)/Γx

p

²²

Ũx

πx
// Ux

where pr1 : Ũx × R
n → Ũx denotes the projection onto the first factor (ỹ, ṽ) 7→ ỹ

(which is a specific choice of lift of p).

Definition 5.2. A Cr orbisection of the tangent orbibundle TO is a Cr orbifold
map σ : O → TO such that p ◦ σ = IdO and for any x ∈ O and chart Ux about
x , we have pr1 ◦ σ̃x = IdŨx

. In particular, it follows that Θσ,x = Id : Γx → Γx and
thus orbisections have unique equivariant lifts over orbifold charts.

We have the following structure result which was first stated in [BB02].
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Proposition 5.3. The set Dr
Orb(O) of Cr orbisections of the tangent orbi-

bundle TO is naturally a real vector space with the vector space operations being
defined pointwise.

Proof. Let σ ∈ Dr
Orb(O). Locally we have the diagram:

Ũx

σ̃x
//

πx

²²

Ũx × R
n

Πx

²²

Ux
σx

//

Id

++W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W p−1(Ux) = (Ũx × R
n)/Γx

p

²²

Ux

and we can write for y ∈ Ux , σ(y) = (y, s(y)) where s(y) ∈ TyO ∼= R
n/θy(Γy)

(θy is the injective homomorphism which appears in definition 2.1). Let σ̃x

be the lift of σ . Then σ̃x(ỹ) = (ỹ, s̃(ỹ)), where s̃ : Ũx → R
n is such that

s̃(δ · ỹ) = dδỹ(s̃(ỹ)). In particular, since x̃ is a fixed point of the Γx action
on Ũx , we have s̃(x̃) = s̃(δ · x̃) = dδx̃(s̃(x̃)). Thus s̃(x̃) is a fixed point of the
(linear) action of Γx on R

n . Note that the set of such fixed points forms a vector
subspace of R

n . As a result we may define a real vector space structure on Dr
Orb(O)

as follows: For σi ∈ Dr
Orb(O), let σ̃i,x be local lifts at x as above. Define

(σ1 + σ2)(y) = Πx

(
(σ̃1,x + σ̃2,x)(ỹ)

)
= Πx

(
(ỹ, s̃1(ỹ) + s̃2(ỹ))

)
= σ1(y) + σ2(y)

(λσ)(y) = Πx

(
(λσ̃x)(ỹ)

)
= Πx

(
(ỹ, λs̃(ỹ))

)
= λ(σ(y))

In light of the previous proposition, we make the following

Definition 5.4. Let O be a smooth orbifold. Let x ∈ O . Denote by AxO the
set of admissible tangent vectors at x

AxO =
{
v ∈ TxO | (x, v) = σ(x) for some σ ∈ D

0
Orb(O)

}
⊂ TxO

By proposition 5.3, AxO is a vector space for each x , and a suborbifold of TxO .
The admissible tangent bundle of O is the subset AO =

⋃
x∈O AxO ⊂ TO with

the subspace topology. It is not hard to see that, in general, AO is not an orbifold.
See example 5.5.

Example 5.5. Let O be the orbifold R/Z2 where Z2 acts on R via x → −x .
The underlying topological space XO of O is [0,∞) and the isotropy subgoups
are trivial for x ∈ (0,∞) and Z2 for x = 0. The tangent orbibundle TO is
given by (R × R)/Z2 with the Z2 action being given by (x, y) → (−x,−y), with
underlying topological space the quotient of [0,∞)×R by the equivalence relation
(0, y) ∼ (0,−y). Note that TxO = R if x 6= 0 but that T0O = [0,∞). It also
follows from proposition 5.3 that the set of admissible vectors at x = 0 consists
only of the zero vector. Thus, all orbisections σ ∈ Dr

Orb(O) must vanish at 0.
In particular, AO ∼= {(0, 0)} ∪ {(0,∞) × R} and a neighborhood of (0, 0) is not
covered by an orbifold chart, and thus AO is not an orbifold. See Figure 1.
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Figure 1: The tangent and admissible tangent bundles of example 5.5

Proposition 5.6. For a compact orbifold O , the inclusion Dr
Orb(O) →֒

Cr
Orb(O, TO) induces a separable Banach space structure on Dr

Orb(O) for 1 ≤
r < ∞ and a separable Fréchet space structure if r = ∞.

Proof. Let C = {Ci}
N
i=1 be a cover of O by a finite number of compact charts

(obtained by passing to a finite subcover of a covering by orbifold charts and then
shrinking if necessary), equipped with trivializations Ψi : TCi

O → (C̃i × R
n)/Γi

of the tangent orbibundle over Ci where the lifts Ψ̃i are linear in the fiber. Let
Vi,r = Cr(C̃i, R

n) for i = 1, . . . , N and 0 ≤ r ≤ ∞ with topology of uniform
convergence of derivatives of order ≤ r . This is a Banach space for finite r and a
Fréchet space for r = ∞ . For finite r , let ‖ ‖i,r be a Cr norm on Vi,r . Define a

linear map T : Dr
Orb(O) →

⊕N
i=1 Vi,r by

T (σ) =
(
pr2(Ψ̃1(χ̃1σ̃)), . . . , pr2(Ψ̃N(χ̃N σ̃))

)

where χi ∈ Cr
Orb(O, [0, 1]), i = 1, . . . , N , is a partition of unity subordinate to

the cover C (see proposition 6.1 for a proof of the existence of such partitions
of unity) and pr2 : C̃i × R

n → R
n is bundle projection onto the second factor.

Continuity of T is immediate from the definitions of the Cr topology on Dr
Orb(O)

and the topology on
⊕N

i=1 Vi,r . Moreover, given a neighborhood of the zero section
0 ∈ Dr

Orb(O) of the form Nr(0, εi; C), it is apparent that there is a neighborhood
of the zero section 0 in

⊕N
i=1 Vi,r of the form max{‖s1‖1,r, . . . , ‖sN‖N,r} < δ

where δ ≤ min{ε1, . . . , εN} contained in T (Nr(0, εi; C)). Thus, with the subspace
topology on T (Dr

Orb(O)), T : Dr
Orb(O) → T (Dr

Orb(O)) is a linear homeomorphism.
Since Dr

Orb(O) ⊂ Cr
Orb(O, TO) is a closed subset, we see that T (Dr

Orb(O)) is a
closed subspace of the direct sum and thus Dr

Orb(O) inherits a Banach space
structure if r < ∞ and a Fréchet space structure if r = ∞ .

Curves in Orbifolds. In this paragraph we study the notion of curves in
orbifolds. As a special case of example 3.7 we make the following
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Definition 5.7. Let I be an interval (finite or infinite, closed, open or half-
open) with trivial orbifold structure and O a smooth orbifold. Then elements of
Cr

Orb(I,O) are the Cr orbifold curves in O .

Definition 5.8. Let O be a smooth Cr+1 orbifold, and let c ∈ Cr
Orb(I,O) be

an orbifold curve. Suppose c̃x̃ is a Cr lift of c to a chart Ũx . Let c̃′x̃(t) be the
tangent vector at t . If Πx (c̃x̃(t), c̃

′
x̃(t)) = (c(t), v) ∈ TUx , then v ∈ Tc(t)Ux is

called the tangent vector to c at t and we denote it by c′(t).

Proposition 5.9. If c ∈ Cr
Orb(I,O), then the tangent vector c′(t) is well-

defined.

Proof. Let x0 = c(t0) and consider an orbifold chart (Ũx0
, Γx0

) at x0 . Let
t0 ∈ J ⊂ I be an interval such that c(t) ∈ Ux0

for all t ∈ J . Let ĉ(t) be a Cr lift
of c(t) to Ũx0

. If x0 is non-singular, then Γx0
is trivial and ĉ(t) is unique. Thus,

c′(t0) is well defined when x0 is non-singular.

Now suppose that x0 is singular. If t0 ∈ ∂I , it is not hard to see (since
Γx0

is finite, acts discretely, and lifts are continuous) that there is a subinterval
t0 ∈ J ′ ⊂ J such that any other lift of c(t) is of the form c̃(t) = γ · ĉ(t). This is a
Cr lift of c for any γ ∈ Γx0

. The tangent vector c̃′(t0) = dγĉ(t0)ĉ
′(t0). Thus, c̃′(t0)

is in the same orbit as ĉ′(t0) of the Γx0
action on Tx̃0

Ũx0
and so their projections

to Tx0
Ux0

are equal and thus c′(t0) is well-defined. If t0 is an interior point of I ,
then it is possible to build a C0 lift of c by concatenation:

c̃(t) =

{
ĉ(t) for t ≤ t0

γ · ĉ(t) for t ≥ t0

Note that by our previous observations this is the only way to produce another lift
around t0 . The condition that c̃ be at least C1 implies that ĉ′(t0) = dγĉ(t0)ĉ

′(t0).
Thus, like above, we see that c′(t0) is well defined and furthermore that ĉ′(t0) is
fixed by the action of γ on Tx̃0

Ũx0
. Note that c′(t0) is not necessarily an admissible

tangent vector, as ĉ′(t0) is not necessarily fixed by all elements of Γx0
.

Example 5.10. Let O be the orbifold R
2/Z2 where Z2 acts on R

2 via (x, y) →
(x,−y). The underlying topological space XO of O is the closed upper half-plane
and the isotropy subgoups at (x, y) are Z2 if y = 0 and trivial otherwise. Let
I = [−1, 1] and consider the curves b(t) = (t, |t|) and c(t) = (t, t2). It’s easy to
see that b and c have four C0 lifts. They are of the form:

b̃±±(t) =

{
(t,±t) for t ≤ 0

(t,±t) for t ≥ 0
c̃±±(t) =

{
(t,±t2) for t ≤ 0

(t,±t2) for t ≥ 0

b has two Cr lifts, b+
+ and b−− for r ≥ 1. However, all four lifts of c are C1 while

only two, c+
+ and c−− , are Cr for r ≥ 2. One sees that in the case of b the C1

lifts do not arise from a non-trivial concatenation. Note that the tangent vectors
of these lifts at t = 0 are not fixed by the action of Z2 . On the other hand, two of
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the four C1 lifts of c do arise as non-trivial concatenations. Their tangent vectors
at t = 0 are fixed by the Z2 action.

6. Smooth Riemannian Orbifold Structures

In this section we show that any smooth orbifold admits a smooth Riemannian
orbifold structure. Although orbifolds are metrizable, this is not sufficient for our
needs as we will need to make use of a smooth orbifold Riemannian exponential
map: exp : TO → O . In order to do this, we proceed as in the classical situation
of Riemannian manifolds.

Proposition 6.1. Let O be a smooth orbifold and let U = {Uα}α∈I be a locally
finite open covering of O by orbifold charts. Then there exists a C∞ partition of
unity subordinate to U.

Proof. Paracompactness of O implies the existence of the covering U . Without
loss of generality, by proposition 3.11, we may assume that O is a C∞ orbifold. Let
Ũ = {(Ũα, Γα)}α∈I be the corresponding covering charts and let πα : Ũα → Uα be
the quotient map. Since O is paracompact and Hausdorff, we let {χ′

α} : O → [0, 1]
be a C0 partition of unity subordinate to the cover {Uα} . If we give [0, 1] the trivial
orbifold structure, we may regard each χ′

α as an element of C0
Orb(O, [0, 1]) (See

example 3.6). That is, each local lift of χα , χ̃′
α,β : Ũβ → [0, 1], is C0 equivariant

and χ̃′
α,β(x̃) = χ′

α ◦ πβ(x̃) for all x̃ ∈ Ũβ . Note that for fixed x ∈ O , π−1
β (x) 6= ∅

for only finitely many β and furthermore, χ̃′
α,β

(
π−1

β (x)
)
6= 0 for all but a finite

number of α . In order to produce a C∞ partition of unity we choose, for each pair
(α, β), a nonnegative C∞ map χ̃′′

α,β : Ũβ → [0, 1] which is sufficiently C0 close to

χ̃′
α,β . For x̃ ∈ Ũβ define

χ̂α,β(x̃) =
1

|Γβ|

∑

γ∈Γβ

χ̃′′
α,β(γ · x̃)

By defining χ̃α,β =
χ̂α,β∑

µ,ν∈I χ̂µ,ν

we get a C∞ Γβ -equivariant map on Ũβ that is

C0 close to χ̃′
α,β for each pair (α, β). Thus the map

χα(x) =

{∑
β χ̃α,β

(
π−1

β (x)
)

for x ∈ Uα

0 for x ∈ O − Uα

is well-defined, each χα ∈ C∞
Orb(O, [0, 1]) and the collection {χα} is a smooth

partition of unity subordinate to the cover {Uα} .

We now prove the existence of a smooth orbifold Riemannian metric. We
could, of course, do this by defining appropriate notions of tensor bundles over
orbifolds and their sections. However, since our needs are limited, we choose to do
this in an elementary way following the classical development. Since the tangent
space TxO ∼= R

n/Γx is, in general, a convex cone rather than a vector space, we
make the following
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Definition 6.2. A function gx : TxO × TxO → R is a positive definite, real,
orbifold inner product if it has a Γx × Γx equivariant lift g̃x : R

n ×R
n → R which

is a positive definite real inner product on R
n . Note that we gave the natural

product orbifold structure to TxO × TxO .

Definition 6.3. Let O be a smooth Cr+1 orbifold. A smooth Cr orbifold
Riemannian metric on O is a collection g = {gx}x∈O of positive definite real
orbifold inner products so that the functions g(σ, τ) : x 7→ gx(σ(x), τ(x)) are
elements of Cr

Orb(O, R) for all orbisections σ, τ ∈ Dr
Orb(O). An orbifold equipped

with a Cr Riemannian metric will be called a Cr Riemannian orbifold.

Proposition 6.4. Let O be a smooth orbifold. Then there exists on O a smooth
C∞ orbifold Riemannian metric.

Proof. Without loss of generality, by proposition 3.11, we may assume that
O is a C∞ orbifold. Using the notation from proposition 6.1, let {χα} be a C∞

partition of unity and let g̃′
α be a C∞ Riemannian metric on Ũα . Define

g̃α(ṽ, w̃) =
1

|Γα|2

∑

(γ,µ)∈Γα×Γα

g̃′
α(dγx̃(ṽ), dµx̃(w̃))

for ṽ, w̃ ∈ Tx̃Ũα . Then g̃α is a C∞ , Γα×Γα equivariant positive definite, real inner
product on each Tx̃Ũα which descends to a smooth orbifold Riemannian metric gα

on Uα . Thus, g =
∑

α χαgα is the required C∞ orbifold Riemannian metric on
O .

Remark 6.5. Note that the proof of proposition 6.4 shows that the action of
Γα on Ũα is by isometries relative to g̃α , and that the equivariant transition maps
ψ̃ that appear in definition 2.1 are isometric embeddings. By shrinking the cover
{Uα} if necessary, we may assume that each orbifold covering chart Ũα is convex
making O a Riemannian orbifold as defined in [Bor93] and [Bor92]. Recall that for
a Riemannian manifold to be convex means there exists a unique minimal geodesic
joining any two points.

If O is a smooth Cr Riemannian orbifold, then we may give O the structure
of a length space. A general reference is [Gro99]. In particular, given two points
x, y ∈ O we may define the distance between x and y to be

d(x, y) = inf{Length(c) | c ∈ C0
Orb(I,O) and c joins x to y}

The length of a curve c is defined by adding up the lengths of local lifts in each
orbifold chart Ũα . This can be shown to be well-defined and independent of the
choice of lift [Bor92]. This length metric structure generates a topology that is the
same as the as the topology of the underlying space of O . If (O, d) is complete
any two points can be joined by a minimal geodesic realizing the distance d(x, y)
[Gro99], since O is locally compact. Moreover, the local lifts of any such minimal
geodesic must be a smooth Cr minimal geodesic in each Ũα , justifying the use of



Borzellino and Brunsden 999

the terminology. Additionally, if c ∈ Cr
Orb(I,O) is a minimal geodesic it can be

shown that Γc(t) = Γc(t′) for all t, t′ ∈ I − ∂I [Bor93].

We now proceed to define the exponential map for a Riemannian orbifold.
For a general reference for standard results of Riemannian geometry that we need
see [Pet98]. As in the proof of proposition 6.4, assume the collection {Uα} is a
locally finite open covering of O by orbifold charts that are relatively compact.
Let TUα

∼= (Ũα × R
n)/Γα be a local trivialization of the tangent bundle over Uα .

Denote the Riemannian exponential map on T Ũα by ẽxpŨα
: TŨα → Ũα . Thus,

for x̃ ∈ Ũα and ṽ ∈ Tx̃Ũα we have ẽxpŨα
(x̃, tṽ) = c̃x̃,ṽ(t) where c̃x̃,ṽ is the unit

speed geodesic in Ũα which starts at x̃ and has initial velocity ṽ . Recall that
there is an open neighborhood Ω̃Ũα

⊂ TŨα of the 0-section of T Ũα such that

c̃x̃,ṽ(1) is defined for ṽ ∈ Tx̃Ũα ∩ Ω̃Ũα
. Furthermore, by shrinking Ω̃Ũα

if necessary,

we may assume that on Tx̃Ũα ∩ Ω̃Ũα
, ẽxpŨα

(x̃, ·) is a local diffeomorphism onto a

neighborhood of x̃ ∈ Ũα for each x̃ ∈ Ũα . Let Ωα = Πα(Ω̃Ũα
), an open subset of

TO , and define Ω =
⋃

α Ωα . Ω is an open neighborhood of the 0-orbisection of
TO .

Definition 6.6. Let x ∈ Uα , and (x, v) ∈ Ωα . Choose (x̃, ṽ) ∈ Π−1
α (x, v).

Then the Riemannian exponential map exp : Ω ⊂ TO → O is defined by
exp(x, v) = πα ◦ ẽxpŨα

(x̃, ṽ).

Proposition 6.7. Let O be a Cr+1 Riemannian orbifold. Then the exponential
map exp(x, v) = πα ◦ ẽxpŨα

◦ Π−1
α (x, v) is well–defined.

Proof. Since the metric g̃α is equivariant relative to the action of Γα by
isometries on Ũα we see that (since isometries map geodesics to geodesics) ẽxpŨα

[γ ·

(x̃, ṽ)] = γ · ẽxpŨα
(x̃, ṽ). Thus, ẽxpŨα

: Ω̃α ⊂ TŨα → Ũα is equivariant and hence

exp is well-defined for each Ũα . If x ∈ Uα ∩ Uβ , then there is an orbifold chart
Uαβ ⊂ Uα ∩ Uβ of x , and equivariant isometric embeddings ψ̃α : Ũαβ → Ũα and
ψ̃β : Ũαβ → Ũβ . This observation is enough to show that exp is independent of
local chart.

As usual we denote by expx the restriction of exp to a single tangent cone
TxO . We let B(x, r) denote the metric r -ball centered at x and use tildes to
denote corresponding points in local coverings.

Proposition 6.8. Let O be a Cr+1 Riemannian orbifold. Then expx is a
local (topological) homeomorphism. That is, there exists ε > 0 such that expx :
B(0, ε) ⊂ TxO → B(x, ε) ⊂ O is a (topological) homeomorphism with Cr local
lifts for each x ∈ O .

Proof. First note that a lift of expx to Ũx is of the form ẽxpŨx
(x̃, ·). Since

the classical Riemannian exponential map is as smooth as its tangent bundle, we
see that expx has local Cr lifts.

Choose ε > 0 so that B(0̃, ε) ⊂ Ω̃Ũx
∩Tx̃Ũx . Then ẽxpŨα

(x̃, ·) is a local Cr

diffeomorphism from B(0̃, ε) ⊂ Tx̃Ũx onto B(x̃, ε) ⊂ Ũx . By construction of the
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length metric on O , it is easy to see that πx

(
B(x̃, ε)

)
= B(x, ε), thus expx maps

B(0, ε) ⊂ TxO onto B(x, ε) ⊂ O .

To see that expx is injective, suppose that expx(v) = expx(w) for v, w ∈
B(0, ε). Then there is γ ∈ Γx such that ẽxpŨx

(x̃, ṽ) = γ · ẽxpŨx
(x̃, w̃) =

ẽxpŨx
(γ · x̃, dγx̃w̃) = ẽxpŨx

(x̃, dγx̃w̃). Thus, ṽ = dγx̃w̃ , since ẽxpŨx
(x̃, ·) is a

local diffeomorphism and therefore v = w .

Finally since expx is continuous, bijective and B(0, ε) is compact, we see
that expx is a local homeomorphism.

If we restrict the exponential map expx to admissible vectors at x , we can
say a little more.

Proposition 6.9. Let O be a Cr+1 Riemannian orbifold. Let ε > 0 be as
in proposition 6.8. Then the restriction of expx to B(0, ε) ∩ AxO is a Cr local
diffeomorphism of AxO (with trivial suborbifold structure) onto a neighborhood of
x in the stratum Sx (with trivial suborbifold structure).

Proof. Let v ∈ B(0, ε) ∩AxO , and choose (x̃, ṽ) ∈ Π−1
x (x, v) ∩B(0̃, ε). Then,

by the proof of proposition 5.3, dγx̃ṽ = ṽ for all γ ∈ Γx . Thus, by equivariance of
ẽxpŨx

, we have for t ∈ [0, 1],

ẽxpŨx
(x̃, tṽ) = ẽxpŨx

[γ · (x̃, tṽ)] = γ · ẽxpŨx
(x̃, tṽ)

Hence, ẽxpŨx
(x̃, tṽ) is fixed by the action of Γx for all t ∈ [0, 1]. This implies that

for all t ∈ [0, 1] we have, expx(tv) = exp(x, tv) = πx ◦ ẽxpŨx
(x̃, tṽ) ∈ B(x, ε) ∩ Sx .

Thus, expx maps onto B(x, ε) ∩ Sx . In fact, since the restriction of the action
of Γx to S̃x is trivial (Γx · s̃ = s̃ for all s̃ ∈ S̃x ), we may identify Sx ⊂ O with
S̃x ⊂ Ũx and under this identification our restriction of expx to AxO is nothing
more than the map ẽxpŨx

(x̃, ·) restricted to Tx̃S̃x ∩ Tx̃Ũx . Hence expx is a local
Cr (manifold) diffeomorphism.

The composition of the exponential map with an orbisection turns out to
be a smooth orbifold map.

Proposition 6.10. Let O be a Cr+1 Riemannian orbifold. Let σ be a Cr

orbisection of TO . Then the map Eσ(x) = (exp ◦σ)(x) : O → O is a smooth Cr

orbifold map, provided σ(x) ∈ Ω. That is, Eσ ∈ Cr
Orb(O).

Proof. Let (Ũx, Γx) be an orbifold chart at x ∈ O . For y ∈ Ux , σ(y) =
(y, s(y)) where s(y) ∈ AyO . Then as in the proof of proposition 5.3, if σ̃x is a lift
of σ , then Θσ,x(δ) = δ for all δ ∈ Γx and σ̃x(ỹ) = (ỹ, s̃(ỹ)), where s̃ : Ũx → R

n

satisfies s̃(δ · ỹ) = (dδ)ỹs̃(ỹ).

The map Ẽσ
x = ẽxpŨx

◦ σ̃x is a Cr lift of Eσ and thus we need to check



Borzellino and Brunsden 1001

equivariance:

Ẽσ
x (δ · ỹ) = ẽxpŨx

(
δ · ỹ, s̃(δ · ỹ)

)

= ẽxpŨx

(
δ · ỹ, (dδ)ỹs̃(ỹ)

)

= ẽxpŨx

[
δ ·

(
ỹ, s̃(ỹ)

)]

= δ · ẽxpŨx

(
ỹ, s̃(ỹ)

)

= δ · Ẽσ
x (ỹ)

Thus, Ẽσ
x is ΘEσ,x equivariant if we define ΘEσ,x(δ) = δ . Hence Eσ ∈

Cr
Orb(O).

Denote by 0 : O → TO , 0(x) = 0x ∈ TxO , the 0-orbisection of TO . The
next proposition shows that if σ is sufficiently C1 close to the 0-orbisection 0 ,
then Eσ is a local orbifold diffeomorphism.

Proposition 6.11. Let O be a Cr+1 Riemannian orbifold and Uα ⊂ O , where
Uα is a relatively compact orbifold chart. Then there is a open neighboorhood
Λα ⊂ Ωα ⊂ TUα of Uα × {0} ⊂ TUα , such that if σ is a Cr orbisection with
σ(x) ∈ Λα and σ is sufficiently C1 close to 0 on Uα , then Eσ|Uα

is a Cr orbifold
diffeomorphism onto its image. That is, Eσ|Uα

is an orbifold embedding.

Proof. Without loss of generality, we may assume by shrinking Uα and Λα if
necessary that Uα and Eσ(Uα) are contained in a single relatively compact orbifold

chart (Ũ , Γ). Let Λα = Πα

(
Ω̃Ũ ∩ Ω̃Ũα

)
. By proposition 6.10, we know already

that Eσ(x) is a Cr orbifold map. We need to show that Eσ has an inverse that
is also a Cr orbifold map. We first show that Eσ(x) is injective.

There exists γ ∈ Γ such that
(
ẽxpŨu

◦ 0̃u

)
(x̃) = γ · x̃ since this map is a

lift of the identity map. If σ is C1 close enough to 0 with lift 0̃u = (x̃, 0), then
σ̃u = (x̃, s̃(x̃)) for u ∈ U . Suppose that Eσ(x) = Eσ(y) = u for x, y, u ∈ U . (This
implies that the isotropy groups of x, y, u are equal, by proposition 6.9). Then
there exists δ ∈ Γ such that Ẽσ

u (x̃) = δ · Ẽσ
u (ỹ). Thus,

(
ẽxpŨu

◦ σ̃u

)
(x̃) = δ ·

[(
ẽxpŨu

◦ σ̃u

)
(ỹ)

]

= δ ·
(
ẽxpŨu

(
ỹ, s̃(ỹ)

))

= ẽxpŨu

(
δ · ỹ, (dδ)ỹs̃(ỹ)

)

= ẽxpŨu

(
w̃, s̃(w̃)

)
where w̃ = δ · ỹ

=
(
ẽxpŨu

◦ σ̃u

)
(w̃)

Since a sufficiently small C1 neighborhood of an embedding is an embedding
[Mun66], by choosing σ sufficiently C1 close to 0 , we may conclude that x̃ = w̃
which in turn implies that x̃ and ỹ are in the same orbit of the Γ action on Ũ .
Thus x = y .

We now show that (Eσ)−1 is a Cr orbifold map. Denote by ẽxp−1

Ũu,x̃
the Cr

map
[
ẽxpŨu

(x̃, ·)
]−1

: Ũ → Tx̃Ũ . Also, let pr1 : TŨ → Ũ be the bundle projection
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(x̃, ṽ) 7→ x̃ . Suppose ỹ = Ẽσ
u (x̃). We claim that

(
Ẽσ

u

)−1

(ỹ) = pr1

(
ẽxp−1

Ũu,γx̃
(ỹ)

)
,

a composition of Cr maps. To see the formula is correct we compute:

pr1

(
ẽxp−1

Ũu,γx̃
(ỹ)

)
= pr1

(
ẽxp−1

Ũu,γx̃

(
Ẽσ

u (x̃)
))

= pr1

(
ẽxp−1

Ũu,γx̃

(
ẽxpŨu

◦ σ̃u(x̃)
))

= pr1

(
ẽxp−1

Ũu,γx̃

(
ẽxpŨu

(x̃, s̃(x̃)
))

= pr1 (x̃, s̃(x̃))

= x̃

Now we need to check equivariance. From the computation in proposi-
tion 6.10, for any δ ∈ Γ, we have Ẽσ

u (δ · x̃) = δ · ỹ . Thus,

(
Ẽσ

u

)−1

(δ · ỹ) = pr1

(
ẽxp−1

Ũu,δγx̃

(
Ẽσ

u (δ · x̃)
))

= pr1

(
ẽxp−1

Ũu,δγx̃

[
ẽxpŨu

(δ · x̃, s̃ (δ · x̃))
])

= pr1 ((δ · x̃, s̃ (δ · x̃)))

= δ · x̃

= δ ·
(
Ẽσ

u

)−1

(ỹ)

Thus,
(
Ẽσ

u

)−1

is Θ(Eσ)−1,u equivariant if we define Θ(Eσ)−1,u(δ) = δ . Note

that Θ(Eσ)−1,u = (ΘEσ,u)
−1 as to be expected.

The next lemma is a standard result of differential topology adapted to
orbifolds:

Lemma 6.12. Let Id : O → O be the identity map. Then there is a C0

neighborhood of Id such that if f lies in this neighborhood, then f is surjective.

Proof. The proof is essentially a minor modification of the argument in
[Mun66, lemma 3.11]. For completeness, we give it here. Let {Ci} be a locally
finite covering of O by compact sets whose interiors also cover O . Assume further
that the corresponding orbifold charts (C̃i, Γi) have C̃i = unit ball Bn ⊂ R

n , and

let (Ṽi, Γi) be an orbifold chart with C̃i ⊂ int(Ṽi). Let Ĩdi be the corresponding
lift of the identity map Id to Ṽi and let Bn(r) denote the metric r -ball centered

at 0 in R
n . Choose εi small enough so that if D̃i = Ĩd

−1

i (B(1 − εi)) then the
collection {Di = πi(D̃i)} covers O and also that B(1 + εi) ⊂ Ṽi .

Let f : O → O be a map such that ‖f̃i(x̃) − Ĩdi(x̃)‖Ṽi
< εi for x̃ ∈ C̃i and

all i . We want to show that f is surjective.

Define g̃i = f̃i ◦ Ĩd
−1

i . Then g̃i is a map from Bn = C̃i into R
n and the

image of the unit sphere Sn−1 = ∂Bn under g̃i lies outside B(1 − εi). We will
show that D̃i ⊂ g̃i(B

n). Since {Di} cover O and Di = πi(D̃i) ⊂ πi ◦ g̃i(B
n) =

πi ◦ f̃i(C̃i) = f(Ci), this will imply that f is surjective.
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Suppose to the contrary that ỹ ∈ B(1 − εi), but ỹ /∈ g̃i(B
n). Let λ :

R
n − {ỹ} → Sn−1 be the radial projection from ỹ . Then λ ◦ g̃i maps Bn into

Sn−1 . On the other hand, the restriction g̃i|Sn−1 : Sn−1 → R
n is homotopic to the

identity map via Ft(x̃) = tg̃i(x̃) + (1 − t)x̃ for x̃ ∈ Sn−1 . This homotopy carries
g̃i(x̃) along the straight line between g̃i(x̃) and x̃ so Ft(x̃) lies outside B(1− εi).
Thus, λ ◦ Ft is a well-defined homotopy between (λ ◦ g̃i)|Sn−1 : Sn−1 → Sn−1 and
the identity map. It is not necessary that Ft and λ be equivariant. Now consider
the homology sequence of the pair (Bn, Sn−1):

0 // Hn(Bn, Sn−1) //

(λ◦g̃i)∗
²²

Hn−1(S
n−1) //

((λ◦g̃i)|Sn−1)
∗

²²

0

0 // Hn(Bn, Sn−1) // Hn−1(S
n−1) // 0

(λ ◦ g̃i)∗ is the zero homomorphism since (λ ◦ g̃i) sends Bn into Sn−1 . However,
((λ ◦ g̃i)|Sn−1)∗ is the identity homomorphism since (λ ◦ g̃i)|Sn−1 is homotopic to
the identity map. Since Hn(Bn, Sn−1) ∼= Z and the diagram commutes we have a
contradiction. Thus, f is surjective.

The following is a culmination of the results of this section.

Theorem 6.13. Let O be a Cr+1 Riemannian orbifold. If σ is a Cr orbisection
sufficiently C1 close to the 0-orbisection 0 of TO then Eσ is a Cr orbifold
diffeomorphism. That is, Eσ ∈ Diffr

Orb(O).

Proof. Let {Ci} be a locally finite covering of O by compact sets. By
proposition 6.11, there exist positive constants εi such that if σ is C1 εi -close
to 0 on Ci , then Eσ|Ci

is a Cr orbifold embedding. Since Id = E0 = (exp ◦0),
by choosing εi smaller if necessary, we may conclude that Eσ is surjective by
lemma 6.12. We need only to show that Eσ is globally injective. To do this, we
modify the argument in [Mun66, theorem 3.10].

Let {Di} be a covering of O by compact sets with Di ⊂ int(Ci). Let
δi = d (Di,O − int(Ci)) > 0. By choosing εi smaller if necessary, we may assume
that Eσ is C1 1

2
δi -close to Id for x ∈ Di and that Eσ(Di) ⊂ Ci . Suppose that

Eσ(x) = Eσ(y), where x ∈ Di and y ∈ Dj and δi ≤ δj . Then

d(x, y) ≤ d(x,Eσ(x)) + d(Eσ(x), Eσ(y)) + d(Eσ(y), y) <
1

2
δi +

1

2
δj ≤ δj

However, since Eσ is injective on Cj , x /∈ Cj . Thus, d(x, y) ≥ δj , a contradiction.
Hence Eσ is injective and thus a Cr orbifold diffeomorphism.

7. Proof of Theorem 1.1 and Corollary 1.2

Throughout this section, we assume that O is a smooth compact orbifold (without
boundary). Without loss of generality, we may assume, by propositions 3.11 and
6.4, that O is a C∞ orbifold with C∞ Riemannian metric. We let Br(σ, ε) =
Nr(σ, ε) ∩ Dr(O). That is, Br(σ, ε) is the set of Cr orbisections ε-close to σ in
the Cr topology on Cr

Orb(O, TO). We prove theorem 1.1 in a series of propositions.
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Proposition 7.1. There exists ε > 0 such that Eσ = exp ◦σ ∈ Diffr
Orb(O) for

σ ∈ Br(0, ε). That is, there exists a map E : Br(0, ε) → Diffr
Orb(O) defined by

E(σ) = Eσ .

Proof. This follows from compactness of O and theorem 6.13.

Proposition 7.2. The map E : Br(0, ε) → Diffr
Orb(O) is injective.

Proof. Suppose E(σ) = E(τ) for σ, τ ∈ Br(0, ε). Then (exp ◦σ)(x) =
(exp ◦τ)(x) for all x ∈ O . Thus, in each orbifold chart (Ũx, Γx), we have πx ◦
ẽxpŨx

(x̃, ṽ) = πx ◦ ẽxpŨx
(x̃, w̃). Since ẽxpŨx

(x̃, ·) is a local Cr diffeomorphism we
must have ṽ = (dγ)x̃(w̃) for some γ ∈ Γx . Thus, v = w ∈ AxO . Hence σ = τ
and E is injective.

Proposition 7.3. The map E : Br(0, ε) → N0(Id, ε)∩Diffr
Orb(O) is surjective.

Proof. Let f ∈ N0(Id, ε) ∩ Diffr
Orb(O). Let {Ci} be a finite covering of O

by compact sets such that Ci is an orbifold chart and f(Ci) ⊂ Vi where Vi is a
relatively compact orbifold chart. Let x ∈ Ci , and Ũx ⊂ int C̃i an orbifold chart at
x where the local lift f̃x to Ũx is C0 ε-close to the lift Ĩdx = IdŨx

of the identity

map and not ε-close to any other lift of the identity over Ũx . For ε small enough
it follows that Θf,x(δ) = ΘId,x(δ) = δ for all δ ∈ Γx . This is because for each
δ ∈ Γx we have

‖f̃x(δ · ỹ) − Ĩdx(δ · ỹ)‖Ṽi
< ε ⇐⇒

‖Θf,x(δ) · f̃x(ỹ) − δ · ỹ‖Ṽi
< ε ⇐⇒

‖δ−1Θf,x(δ) · f̃x(ỹ) − ỹ‖Ṽi
< ε ⇐⇒ (since Γx acts by isometries)

‖δ−1Θf,x(δ) · f̃x(ỹ) − Ĩdx(ỹ)‖Ṽi
< ε

Thus, by our choice of local lift of the identity map over Ũx , it follows that
δ−1Θf,x(δ) = e which implies that Θf,x(δ) = δ .

We wish to define a Cr orbisection σ so that E(σ) = f . We do this by
defining appropriate local lifts σ̃x . In particular, let

σ̃x(ỹ) =
(
ỹ, ẽxp−1

Ũx,ỹ

(
f̃x(ỹ)

))
∈ TŨx

Before we show that σ̃x satisfies the correct equivariance relation observe that, in
general, ẽxp−1

Ũx,ỹ
(γ · z̃) = (dγ)γ−1ỹ ◦ ẽxp−1

Ũx,γ−1ỹ
(z̃) = γ · ẽxp−1

Ũx,γ−1ỹ
(z̃). Thus,
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σ̃x(δ · ỹ) =
(
δ · ỹ, ẽxp−1

Ũx,δỹ

(
f̃x(δ · ỹ)

))

=
(
δ · ỹ, ẽxp−1

Ũx,δỹ

(
δ · f̃x(ỹ)

))

=
(
δ · ỹ, δ · ẽxp−1

Ũx,δ−1δỹ

(
f̃x(ỹ)

))

=
(
δ · ỹ, δ · ẽxp−1

Ũx,ỹ

(
f̃x(ỹ)

))

= δ · σ̃x(ỹ)

which is the correct equivariance relation for an orbisection. As a result we see
that the map σ(x) = Πx◦σ̃x(x̃) defines a Cr orbisection of TO and that E(σ) = f

since σ̃x(x̃) =
(
x̃, ẽxp−1

Ũx,x̃

(
f̃x(x̃)

))
.

The following proposition is the last ingredient needed to complete the proof
of theorem 1.1.

Proposition 7.4. The map E : Br(0, ε) → N0(Id, ε) ∩ Diffr
Orb(O) is a homeo-

morphism.

Proof. Propositions 7.2 and 7.3 show that E is bijective. Continuity of E
follows from the formula for a local lift of E given in Propositon 6.10 and continuity
of E−1 follows from the formula for σ̃x given in the last line of proposition 7.3.

Proof of Theorem 1.1.

Proof. Let f ∈ Diffr
Orb(O). By proposition 7.4, the map

f ◦ E : B
r(0, ε) → N

0(f, ε) ∩ Diffr
Orb(O)

is a homeomorphism giving a local chart about f . Let Nfg = N0(f, ε)∩N0(g, ε)∩
Diffr

Orb(O) denote a chart overlap, and let Bfg = (f ◦E)−1(Nfg) ⊂ Br(0, ε). Then
the corresponding transition map

(g ◦ E)−1 ◦ (f ◦ E)
∣∣
Bfg

: Bfg ⊂ B
r(0, ε) → (g ◦ E)−1(Nfg) ⊂ B

r(0, ε)

is a homeomorphism. This gives the desired C0 manifold structure to Diffr
Orb(O)

where the model space is the topological vector space of Cr orbisections of the
tangent orbibundle with the Cr topology.

Proof of Corollary 1.2.

Proof. It follows from the arguments in example 3.5 that for a given f ∈ ID

and any x ∈ O with orbifold chart Ux of x there is a γx ∈ Γx so that f̃(ỹ) = γx · ỹ
for all ỹ ∈ Ũx . A finite cover of O by charts {Ux1

, . . . , UxM
} shows that ID is a

subgroup of
∏M

i=1 Γxi
and is therefore finite. Clearly ID is a normal subgroup

of Diffr
Orb(O) as g̃ ◦ f̃ ◦ g̃−1 covers the identity for any g ∈ Diffr

Orb(O) and
f ∈ ID . Also, any two lifts h̃0 and h̃1 of h ∈ Diffr

red(O) by definition must
satisfy h̃0 ◦ h̃−1

1 ∈ ID from which follows the existence of the short exact sequence.
Moreover, the finiteness of ID shows that the quotient topology on Diffr

red(O) is
again that of a Banach manifold if r < ∞ and of a Fréchet manifold if r = ∞ .
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