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Abstract. We discuss the problem of the existence of a regular invariant Lagrangian for
a given system of invariant second-order ordinary differential equations on a Lie group, using
approaches based on the Helmholtz conditions. Although we deal with the problem directly on
the tangent manifold of the Lie group, our main result relies on a reduction of the system on
the tangent manifold to a system on the Lie algebra of the Lie group. We conclude with some
illustrative examples.
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1. Introduction

The inverse problem of the calculus of variations consists in finding conditions
for the existence of a regular Lagrangian for a given set of second-order ordinary
differential equations on a manifold, q̈i = f i(q, q̇), so that the given equations
are equivalent to the Euler-Lagrange equations of the Lagrangian. In order for a
Lagrangian L(q, q̇) to exist we must be able to find gij(q, q̇), so-called multipliers,
such that

gij(q̈
j − f j) =

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
.

It is shown for example in [9, 21] that the multipliers must satisfy

det(gij) 6= 0, gji = gij,

d

dt
(gij) + 1

2

∂fk

∂q̇j
gik + 1

2

∂fk

∂q̇i
gkj = 0,

gik

(
d

dt

(
∂fk

∂q̇j

)
−2

∂fk

∂qj
−1

2

∂f l

∂q̇j

∂fk

∂q̇l

)
=gjk

(
d

dt

(
∂fk

∂q̇i

)
−2

∂fk

∂qi
−1

2

∂f l

∂q̇i

∂fk

∂q̇l

)
,

∂gij

∂q̇k
=
∂gik

∂q̇j
;

and conversely, if one can find functions satisfying these conditions then the
equations q̈i = f i are derivable from a Lagrangian. These conditions are generally
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referred to as the Helmholtz conditions. The solution (gij) is the Hessian of the
sought-for Lagrangian with respect to the velocity variables, and det(gij) 6= 0 is
the condition for the Lagrangian to be regular. We refer to the recent survey [12]
and the monograph [2] for comments on the history of the problem, milestones in
the literature and accounts of the different paths that have been followed in the
past.

We will focus here on the case where the manifold is a Lie group. An immediate
example is the one where the second-order system is the geodesic spray of the
canonical connection on the group: this connection is specified in terms of left-
invariant vector fields X and Y by ∇XY = 1

2
[X, Y ] . The inverse problem for this

specific type of second-order system has been solved explicitly for almost all Lie
groups up to dimension 6 by Thompson and his collaborators (see [10, 20, 23] and
the references therein): in each case the authors were able to decide if a Lagrangian
exists or not, and to provide a Lagrangian in the affirmative cases.

The second-order equations of the canonical connection are invariant under left
translations. Surprisingly, if a Lagrangian exists, it is not necessarily invariant.
The main goal of this paper is to solve a type of inverse problem which is on the
one hand broader than that discussed in [23] etc. in that it deals with any invariant
system of second-order ordinary differential equations on a Lie group, but on the
other hand more restricted in that the Lagrangian, if it exists, is required to
be invariant also. That is to say, we will deal with the following rather natural
problem: given an invariant second-order system on a Lie group G , when does
there exist a regular Lagrangian for it that is also invariant under G? We call this
the invariant inverse problem. The invariant inverse problem for the specific case
of the geodesic spray of the canonical connection has been studied in [18]. In the
current paper, by contrast, we will deal with the general invariant inverse problem.

It is unfortunately not straightforward to adapt the solution of the inverse problem
by the Helmholtz conditions to the invariant inverse problem. Clearly, if there is an
invariant Lagrangian then the corresponding multiplier matrix (its Hessian) must
itself be invariant (in an appropriate sense). The difficulty is this: one may find
a multiplier which satisfies the Helmholtz conditions and is invariant; one is then
guaranteed that there is a Lagrangian, but not that the Lagrangian is invariant.
Roughly speaking, to obtain the Lagrangian one has to integrate the multiplier,
and invariance may be lost as a result. In fact extra conditions, of a cohomological
nature, must be satisfied. The occurrence of such cohomological conditions was
discussed already nearly twenty years ago, in a similar but more limited context, by
Marmo and Morandi [13]. We will present a version of their result, which amounts
in fact to a small generalization of it, in Theorem 3.1. The conditions also appear
in [1], using the rather different framework of the variational bicomplex.

It is however possible to adopt quite a different approach from these authors, by
taking advantage of invariance to carry out a reduction of the problem, which turns
out to simplify it in concept, and to make the solution considerably more useful
in applications. We next explain this alternative approach in a little more detail.

Because of the invariance of our problem, G will be a symmetry group of the
second-order system. It follows that the space of interest is effectively the Lie
algebra g of G rather than the whole manifold TG , and we can first perform a
reduction. The dynamical vector field Γ corresponding to the system of differential
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equations, namely

Γ = q̇i ∂

∂qi
+ f i ∂

∂q̇i
∈ X(TG),

reduces to a vector field γ on g given in terms of Cartesian coordinates (wi) (so
that the wi are the components of w ∈ g with respect to some chosen basis of g)
by

γ = γi ∂

∂wi
.

On the other hand, if L ∈ C∞(TG) is a regular invariant Lagrangian then its
restriction to g = TeG is a function (also called a Lagrangian) l ∈ C∞(g). We
will take optimal advantage of the following observation (which is proved in [14]
for example, though we will give a different derivation below): finding a solution
g(t) ∈ G of the Euler-Lagrange equations of L is equivalent to finding a solution
w(t) ∈ g of the so-called Euler-Poincaré equations

d

dt

(
∂l

∂w

)
= ad∗

w

∂l

∂w
,

(where ad∗ is the adjoint action of g on its dual), or equivalently if Ck
ij are the

structure constants of g corresponding to the basis used to define the coordinates,

d

dt

(
∂l

∂wj

)
= Ck

ij

∂l

∂wk
wi. (1)

To obtain the corresponding solution g(t) of the Euler-Lagrange equations we need
to solve in addition the equation g(t)−1ġ(t) = w(t).

The invariant inverse problem on a Lie group G has therefore the following
equivalent reduced version: if Γ is invariant, when does there exist a Lagrangian
l ∈ C∞(g) such that its Euler-Poincaré equations (1) are equivalent to the equa-
tions ẇi = γi for the reduced vector field γ on g? As we will show in Theorem 4.1
below, if such a Lagrangian l exists for γ , the original vector field Γ will be the
Euler-Lagrange field for some invariant Lagrangian L . The advantage of such an
approach is that the Lagrangian being sought is simply a function of the coordi-
nates wi on the Lie algebra g = TeG , rather than a function of the coordinates
(qi, q̇i) on TG satisfying invariance conditions. The solution to this existence prob-
lem will be given in part by a set of reduced Helmholtz conditions for γ , involving
a multiplier matrix (kij) which, in the end, is the Hessian of the function l we
want to find. In addition, cohomological conditions will again make their appear-
ance here. It turns out, as we will establish in Theorem 6.1 below, that one of the
functions of the reduced Helmholtz conditions is to ensure that certain cochains
are cocycles, and determine cohomology classes in the cohomology of g . What is
not resolved by the Helmholtz conditions is whether these cocycles can be made
into coboundaries; that they can is the additional requirement for the existence of
a Lagrangian.

The two approaches, leading respectively to Theorem 3.1 and Theorem 6.1, involve
classes in the cohomology of g which, while differently derived, are the same.
Nevertheless there is a subtle difference between the two forms of the inverse
problem, which it is worth pointing out. The procedure described in Theorem 3.1
and [13] associates with a certain set of Lagrangians a pair of cohomology classes,
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whose vanishing is the condition for there to be a Lagrangian in the set which
is invariant. The procedure described in Theorem 6.1 in effect associates with a
certain set of invariant functions a pair of cohomology classes, whose vanishing is
the condition for there to be an invariant function in the set which is a Lagrangian.

The geometrical framework that we will use is based on a reformulation of the
Euler-Lagrange equations and of the Helmholtz conditions in terms of a suitable
adapted frame. The requisite background material is given in Section 2. The solu-
tion of the invariant inverse problem using invariant multipliers in the Helmholtz
conditions on TG is presented in Theorem 3.1 in Section 3. The Euler-Poincaré
equations are derived in Section 4, and the reduced Helmholtz conditions in Sec-
tion 5. Section 6 is devoted to the proof of Theorem 6.1, which is the solution
of the invariant inverse problem using the reduced Helmholtz conditions, and is
the main result of the paper. Next, we investigate the geometric structure of the
reduced space. In Section 7 we show that Equation (1) is a particular example of a
so-called Lagrangian system on a Lie algebroid, where the Lie algebroid at hand is
related in a natural way to the Lie algebra g of the Lie group G . We make the link
between the current set-up and Mart́ınez’s approach [15] to Lagrangian systems
on Lie algebroids. This will result in a coordinate-independent reformulation of
the reduced Helmholtz conditions and of the cohomology conditions. The paper
ends with some examples and some suggestions for future work.

Although the paper focusses entirely on left-invariant Lagrangians, it can easily
be adjusted to the right-invariant case.

2. Calculus along the tangent bundle projection

One can find in the literature several reformulations of the Helmholtz conditions
that are independent of the choice of coordinates on the manifold M : see for
example [6, 17]. We will follow closely the one given in [7, 16], which is based on
a calculus of tensor fields along the tangent bundle projection τ : TM → M . By
a vector field along τ we mean a section of the pullback bundle τ ∗TM → TM ,
and likewise for tensor fields. A section of τ ∗TM → TM can be interpreted as a
map X : TM → TM with the property that τ ◦X = τ , and can be expressed in
terms of local coordinates as

X = X i(q, q̇)
∂

∂qi
∈ X(τ).

There is a 1-1 correspondence between vector fields along τ and vertical vector
fields on TM . This correspondence is made explicit by the so-called vertical lift
XV of X , given by

XV = X i ∂

∂q̇i
.

Any vector field on M induces a vector field along τ in an obvious way. If
X = X i(q)∂/∂qi is a vector field on M , its complete lift XC is the following
vector field on TM :

XC = X i ∂

∂qi
+
∂X i

∂qj
q̇j ∂

∂q̇i
.

Here are some convenient formulae for the brackets of complete and vertical lifts:

[XC, Y C] = [X, Y ]C, [XC, Y V] = [X, Y ]V and [XV, Y V] = 0.
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Here X and Y are vector fields on M throughout.

The vertical and complete lifts require no additional machinery for their definitions.
However, if we have a second-order differential equation field, or dynamical vector
field, Γ at our disposal, say

Γ = q̇i ∂

∂qi
+ f i ∂

∂q̇i

(representing the second-order equations q̈i = f i ), we can use it to define the so-
called horizontal lift of a vector field along τ . The horizontal lift XH of X ∈ X(τ)
is

XH = X i

(
∂

∂qi
− Γj

i

∂

∂q̇j

)
, Γj

i = −1
2

∂f j

∂q̇i
.

Any vector field Z on TM can be decomposed into a horizontal and vertical
component: Z = XH + Y V , for X, Y ∈ X(τ). In case X is induced by a vector
field on M , the three lifts are related as follows:

XH = 1
2
(XC − [Γ, XV]).

Another useful fact, which it is easy to establish by a coordinate calculation, is
that [Γ, XC] is always vertical.

The Lie brackets of the dynamics Γ with horizontal and vertical vector fields define
important objects for the calculus along τ . It can be shown that the horizontal
and vertical components of these brackets take the form

[Γ, XV] = −XH + (∇X)V and [Γ, XH] = (∇X)H + (Φ(X))V.

The operator Φ is a type (1,1) tensor field along τ and is called the Jacobi
endomorphism. The other operator, ∇ , acts as a derivative on X(τ), in the
sense that for f ∈ C∞(TM) and X ∈ X(τ), ∇(fX) = f∇X + Γ(f)X . It
is therefore called the dynamical covariant derivative. Finally we will need the
vertical derivative DV

X associated with any X ∈ X(τ). This acts on vector fields
along τ , but is completely determined by its actions on vector fields Y on M and
on functions f on TM by the formulae DV

XY = 0 and DV
Xf = XV(f).

In the framework of the calculus along the tangent bundle projection the multiplier
matrix is regarded as an operator g : X(τ)× X(τ) → C∞(TM), that is as a type
(0,2) tensor field along τ , with local expression g = gij(q, q̇)dq

i⊗dqj . The actions
of both the dynamical covariant derivative and the vertical derivative can easily
be extended to (0,2) tensor fields along τ : by definition, for X, Y, Z ∈ X(τ)

∇g(X, Y ) = Γ(g(X, Y ))− g(∇X, Y )− g(X,∇Y )

and
DV

Xg(Y, Z) = XV(g(Y, Z))− g(DV

XY, Z)− g(Y,DV

XZ).

The inverse problem can now be rephrased as the search for a type (0,2) tensor field
g along τ which is non-singular and satisfies for all X, Y, Z ∈ X(τ) the conditions

g(X, Y ) = g(Y,X),

∇g = 0,

g(Φ(X), Y ) = g(X,Φ(Y )),

DV

Xg(Y, Z) = DV

Y g(X,Z).
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These are the Helmholtz conditions in coordinate-independent form.

It will also be desirable to have a coordinate-independent version of the Euler-
Lagrange equations. It is easy to see that the Euler-Lagrange field Γ of a regular
Lagrangian L is uniquely determined by the fact that it is a second-order differ-
ential equation field and satisfies

Γ(XV(L))−XC(L) = 0

for every vector field X on M . In particular, if {Xi} is a basis of vector fields on
M then {XC

i , X
V
i } is an induced basis for vector fields on TM , and the following

set of equations is equivalent to the Euler-Lagrange equations:

Γ(XV

i (L))−XC

i (L) = 0.

We now consider the effect of a diffeomorphism of M on the Euler-Lagrange
equations. Let ϕ be a diffeomorphism of M and Tϕ the induced diffeomorphism
of TM . For any X ∈ X(M), T (Tϕ)(XC) = (TϕX)C and T (Tϕ)(XV) = (TϕX)V

(these are of course the counterparts of the bracket relations quoted earlier).
Moreover, if Γ ∈ X(TM) is a second-order differential equation field so is T (Tϕ)Γ
(this is the counterpart of the fact, stated earlier, that [Γ, ZC] is always vertical).

Let L be a regular Lagrangian with Euler-Lagrange field Γ. Then Tϕ∗L is a
regular Lagrangian; we claim that its Euler-Lagrange field is T (Tϕ)−1Γ. The
proof goes as follows. For any function f , vector field X and diffeomorphism
ϕ , X(ϕ∗f) = ϕ∗((TϕX)(f)). We know that Γ is uniquely determined by the
Euler-Lagrange equations Γ(XV(L)) = XC(L) for all X ∈ X(M). Now

XC(Tϕ∗L) = Tϕ∗ ((TϕX)C(L)) = Tϕ∗ (Γ((TϕX)V(L)))

= T (Tϕ)−1Γ (Tϕ∗((TϕX)V(L)) = T (Tϕ)−1Γ (XV(Tϕ∗L)) .

If L is regular and Tϕ∗L = L then T (Tϕ)Γ = Γ. But although the Lagrangian
uniquely determines the Euler-Lagrange equations, it is not in general true that the
Euler-Lagrange equations uniquely determine the Lagrangian, so if T (Tϕ)Γ = Γ
all we can conclude is that Tϕ∗L is a Lagrangian for Γ; if different from L it
may be called an alternative Lagrangian. That genuinely alternative Lagrangians
(Lagrangians not differing by a total derivative) can exist even in the most familiar
circumstances is well-known: the free particle is the most obvious example, and lest
that look too suspiciously special we could mention also motion in a spherically
symmetric potential in Euclidean 3-space [11].

3. The invariant inverse problem

For the remainder of the paper the configuration manifold M will be a connected
Lie group G . We will use λg and ρg to denote left and right multiplication by
g ∈ G . Both maps can be extended to actions Tλg and Tρg of G on TG .

We assume that we have a left-invariant second-order differential equation field Γ
on TG : thus T (Tλg)Γ = Γ for all g ∈ G . The question under discussion is whether
Γ admits an invariant regular Lagrangian, that is, whether there is a function L
on TG whose Hessian with respect to velocity coordinates is non-singular and
which satisfies Tλ∗gL = L for all g ∈ G , such that Γ is the Euler-Lagrange field
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of L . We can conclude from the analysis at the end of the last section that the
Euler-Lagrange field of an invariant regular Lagrangian is invariant. But if we start
with an invariant second-order differential equation field on the other hand, and
it admits a regular Lagrangian, then all we can conclude is that its left translates
are alternative Lagrangians, possibly different.

We now begin to develop the machinery we need for a deeper study of the problem.

By left-translating a basis {Ei} of the Lie algebra g of G we obtain a left-invariant
basis {Êi} of X(G). Similarly, {Ẽi} will denote the right-invariant basis of X(G)
obtained via right translation. These bases are related by

Êi(g) = Aj
i (g)Ẽj(g), (2)

where (Aj
i (g)) is the matrix representation of adg ; in particular Aj

i (e) = δj
i (where

e is the identity of G). We will identify the Lie algebra with the left-invariant
vector fields: then [Êi, Êj] = Ck

ijÊk where the Ck
ij are the structure constants of

g , and [Ẽi, Ẽj] = −Ck
ijẼk . (This is the convention in [14], for example.)

In the following, a vector vg in TgG will have coordinates (wi) with respect to

{Êi} , so that vg = wiÊi(g). Then (wi) are exactly the coordinates of the Lie
algebra element w = Tλg−1vg with respect to the basis {Ei} of g .

The following property is true for any action of a connected Lie group on a
manifold: a tensor field is invariant under an action if and only if its Lie derivative
by every fundamental vector field vanishes. When the manifold is a Lie group
and the action is left multiplication, the fundamental vector fields are the right-
invariant vector fields, for which {Ẽi} is a basis. A function f on G is left-invariant
if and only if Ẽi(f) = 0 for all i , and a vector field X on G is left-invariant if and
only if [Ẽi, X] = 0. In particular, for the left-invariant Êj , [Ẽi, Êj] = 0. In view
of the bracket relations in the two bases it follows that

Ẽi(A
k
j ) + Al

jC
k
li = 0 and Ak

iA
l
jC

m
kl = Am

n C
n
ij. (3)

The Lagrangian L and the dynamical vector field Γ both live on the tangent
manifold TG . To characterize their invariance we need to know the infinitesimal
generators of the induced action Tλg of G on TG . Given that the flow of a
complete lift is tangent to the flow of the underlying vector field, it is easy to see
that the infinitesimal generators of Tλg are exactly the complete lifts {ẼC

i } of the
infinitesimal generators of the action λg of G on G . So a function F ∈ C∞(TG)
is left-invariant if and only if ẼC

i (F ) = 0, and a vector field Z ∈ X(TG) is left-
invariant if and only if [ẼC

i , Z] = 0. Note that ÊC
i and ÊV

i are invariant vector
fields, by virtue of the bracket relations for complete and vertical lifts given earlier.
The functions wi are also invariant; they are linear fibre coordinates on TG , and
satisfy ÊV

j (wi) = δi
j .

The following observations will be important. First, if a function f satisfies
ÊV

i (f) = 0 for all i the f is (the pull-back to TG of) a function on G . Second, if
ÊV

i (f) = fi is a function on G for all i then f − fiw
i is a function on G .

Recall that we interpret the Hessian of a Lagrangian L as a type (0,2) tensor
field g along the tangent bundle projection τ : TG → G . If L is invariant
then the coefficients Kij = ÊV

i Ê
V
j (L) = g(Êi, Êj) will also be invariant functions.

Now when we use the Helmholtz condition approach to the inverse problem, if we
are interested only in invariant Lagrangians we will certainly need to add to the
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Helmholtz conditions the extra condition that the multiplier g should be invariant.
As we pointed out earlier, if we start from an invariant second-order field, it is
often possible to find non-invariant Lagrangians. Examples of this behaviour can
be found in the papers [10, 20, 23] for the case of the canonical connection. The
reason is that in these examples the extra condition about the invariance of the
multiplier is usually not imposed on the problem. However, as we pointed out
before and will shortly explain in more detail, the invariance of the multiplier,
while necessary for the existence of an invariant Lagrangian, is not sufficient.

The invariance of g can be defined in a coordinate-independent way as follows.
We first define a vector field X along τ to be left-invariant if its vertical lift XV

is left-invariant. Since {Êi} is a basis for X(G), it serves also as a basis for vector
fields along τ . Then a vector field along τ , X = ΞiÊi , is invariant if ẼC

j (Ξi) = 0,
or if its coefficients Ξi ∈ C∞(TG) are invariant functions. We will say that a type
(0,2) tensor field g along τ is invariant if g(X, Y ) is an invariant function for all
invariant vector fields X and Y along τ . It is easy to verify that this holds if and
only if the coefficients of g with respect to {Êi} are invariant.

We now state and prove a theorem which shows what requirements in addition to
the Helmholtz conditions and the invariance of the multiplier are necessary and
sufficient for the existence of an invariant Lagrangian. Let us call a type (0,2)
tensor field g along τ which satisfies the Helmholtz conditions for an invariant
second-order differential equation field Γ and is invariant an invariant multiplier
for Γ.

Theorem 3.1. An invariant multiplier for an invariant second-order differen-
tial equation field Γ determines a cohomology class in H1(g) and one in H2(g).
The field Γ is derivable from an invariant Lagrangian if and only if the corre-
sponding cohomology classes vanish.

Proof. Suppose that g is an invariant multiplier. We set Kij = g(Êi, Êj). By
the very fact that we have a solution of the Helmholtz conditions we know that
there is a regular Lagrangian for Γ, say L , such that Kij = ÊV

i Ê
V
j (L). Now L

need not be invariant; but from the invariance of the Kij we have

0 = ẼC

k (Kij) = ÊV

i Ê
V

j (ẼC

k (L)) = 0,

whence ẼC
k (L) = aklw

l + bk for certain functions akl and bk on G . Since L is
known to be a Lagrangian and Γ is invariant,

0 = ẼC

i

(
Γ(ÊV

j (L))− ÊC

j (L)
)

= Γ(aij)− ÊC

j (aikw
k + bi)

= wk
(
Êk(aij)− Êj(aik)− ailC

l
jk

)
− Êj(bi).

We can set to zero the coefficient of wk and the remaining term separately (both
are functions on G). From the second we see that bi is constant. From the first,

Êk(aij)− Êj(aik)− ailC
l
jk = 0.

Let ϑi be the 1-forms on G dual to the Êi (so that ϑ = ϑiEi is the Maurer-Cartan
form, not that it matters); then for each i the 1-form aijϑ

j is closed, from which
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it follows that aij = Êj(fi) for some functions fi on G . We have

ẼC

i (L) = wjÊj(fi) + bi; (4)

note that this is of the form total derivative plus constant. Next,

0 = ẼC

i Ẽ
C

j (L)− ẼC

j Ẽ
C

i (L) + Ck
ijẼ

C

k (L) = wkÊk

(
Ẽi(fj)− Ẽj(fi) + C l

ijfl

)
+ Ck

ijbk,

from which it follows that

Ẽi(fj)− Ẽj(fi) + C l
ijfl = αij (5)

is constant, and Ck
ijbk = 0. Now we can regard the bi as the coefficients, with

respect to the basis of g∗ dual to the basis of g with which we are working, of a
linear map b : g → R , so that b(ξ) = biξ

i . Similarly, the αij are the coefficients
of an alternating bilinear map α : g× g → R , so that α(ξ, η) = αijξ

iηj . We now
show that, viewed from the perspective of the cohomology of g with values in R ,
b and α are cocycles; that is, they satisfy the cocycle conditions

b({ξ, η}) = 0 and α(ξ, {η, ζ}) + µ(η, {ζ, ξ}) + µ(ζ, {ξ, η}) = 0

({·, ·} is the Lie algebra bracket); or in terms of the structure constants,

bkC
k
ij = 0 and αilC

l
jk + αjlC

l
ki + αklC

l
ij = 0.

Indeed, we have just seen that bkC
k
ij = 0. Operating with Ẽk again on Equation (5)

and taking the cyclic sum we see that αij is a cocycle too. Moreover, fi is
determined only up to the addition of a constant; and the addition of a constant
leaves b unchanged and changes α by a coboundary.

If αij and bi are both cohomologous to zero, then bi = 0, and by choice of additive
constants we can assume that Ẽi(fj) − Ẽj(fi) + C l

ijfl = 0. But then fi = Ẽi(f)

for some function f on G . But then L − wjÊj(f) = L − ḟ is invariant, and of
course has Γ as its Euler-Lagrange field and has the same Hessian as L .

In [13] the authors restrict their attention to Lagrangians satisfying just ẼC
i (L) =

wjÊj(fi), that is, to Lagrangians which change only by addition of a total deriva-
tive under the action of G ; they call such Lagrangians quasi-invariant, and appeal
to physics to justify this choice. From a purely mathematical point of view such a
restriction is unnecessary, and the more general situation is easily analysed, as we
have seen. One possible interpretation of the significance of the element of H1(g)
is this: it is not difficult to see that bi = −ẼC

i (E), where E is the energy of L ; so
bi = 0 is the condition for the energy to be invariant (even though L itself might
not be). We will have more to say about the significance of bi later.

4. The Euler-Poincaré equations

We now turn to the reduction of Γ to the Lie algebra g .

Left-invariant functions on TG are in 1-1 correspondence with functions on the Lie
algebra: on the one hand restriction of any function on TG to TeG determines a
function on TeG = g ; on the other hand, any function on g = TeG can be extended
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to a left-invariant function on the whole of TG by requiring it to be constant along
each orbit of the action. From now on we will use the following convention: capital
letters such as F stand for left-invariant functions, vector fields, etc. on TG ; the
corresponding small letters such as f stand for their restrictions to TeG = g .

A vector field Z = ΞjÊC
j +F jÊV

j ∈ X(TG) is left-invariant if and only if [ẼC
i , Z] =

0, that is, if and only if ẼC
i (Ξj) = 0 and ẼC

i (F j) = 0. Thus Z is invariant if and
only if its components Ξj and F j are all invariant functions. We can therefore
identify them with functions ξj and f j on the Lie algebra. Note that f jÊV

j |e can
be identified with a vector field on TeG , since it is vertical; the same is not true
for ξjÊC

j |e , however: it is defined on TeG , but as a vector field it is transverse to
it.

A set {ξj} of n = dim g functions on g can be interpreted in two equivalent ways.
First, the elements of the set could be viewed as the coefficients of a C∞(g, g)-map,
namely the map ξ : w 7→ ξi(w)Ei . A second interpretation is to view them as the
components of a vector field ξ̄ on g , where ξ̄ = ξj∂/∂wj . This equivalence of
interpretations is a manifestation of the fact that the vector bundles Tg → g and
g× g → g are isomorphic, so there is a 1-1 correspondence between their sections.

The two sets {ξj} and {f j} together define a section of the vector bundle g×Tg →
g , or equivalently the bundle g×g×g → g . We will adopt the following convention:
an invariant vector field Z = ΞjÊC

j + F jÊV
j ∈ X(TG) reduces to the section

z = (ξ, f) of g × Tg → g where the first element ξ = ξjEj is interpreted as a
C∞(g, g)-map and the second f = f j∂/∂wj is a vector field on g . In particular,
for an invariant second-order field

Γ = wjÊC

j + ΓjÊV

j ∈ X(TG)

the first invariance condition, ẼC
i (wj) = 0, is trivially satisfied, so the only

condition is ẼC
i (Γj) = 0. Let ∆ be the identity map in C∞(g, g); then Γ reduces

to the section (∆, γ) of g× Tg → g , where

γ = γi ∂

∂wi
∈ X(g)

will be often called the reduced vector field on g .

Let L ∈ C∞(TG) be a left-invariant regular Lagrangian with Euler-Lagrange field
Γ. We have shown in Section 2 that this second-order differential equation field
can be characterized by the equations

Γ(ÊV

i (L))− ÊC

i (L) = 0. (6)

We have also shown that if L is left-invariant then so also is Γ. We now compute
its reduced vector field γ on g .

The Euler-Lagrange equations (6) are of the form

wkÊC

k Ê
V

i (L) + ΓkÊV

k Ê
V

i (L)− ÊC

i (L) = 0.

With the help of (3), the relations between the complete and vertical lifts of
elements in the two bases is given by

ÊC

i = Aj
i Ẽ

C

j + wkCj
kiÊ

V

j and ÊV

i = Aj
i Ẽ

V

j . (7)
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As a consequence the first term in the Euler-Lagrange equations vanishes:

wkÊC

k Ê
V

i (L) = wkAj
kẼ

C

j Ê
V

i (L) = wkAj
kÊ

V

i Ẽ
C

j (L) + wkAj
k[Ẽ

C

j , Ê
V

i ](L) = 0.

On the other hand, for the last term we get

ÊC

i (L) = wkCj
kiÊ

V

j (L).

The Euler-Lagrange equations, adapted to the frame {Êi} , are therefore

ΓkÊV

k Ê
V

i (L) = wkCj
kiÊ

V

j (L).

Notice that when L is globally defined and smooth, and regular, Γ must vanish
when wk = 0, that is, on the zero section of TG . So a necessary condition for an
invariant second-order differential equation Γ to be derivable from a global regular
invariant Lagrangian (or even one smooth and regular in a neighbourhood of the
zero section) is that Γ should vanish on the zero section. In fact this is just the
requirement that bi = 0 in Theorem 3.1, since

bi = ẼC

i (L)|wk=0 = Γwk=0(Ẽ
V

i (L)). (8)

Let l ∈ C∞(g) be the restriction of the left-invariant Lagrangian L ∈ C∞(TG) to
the Lie algebra. Then the restriction of ÊV

k (L) to g is ∂l/∂wk , and so on. The
defining relation for the reduced vector field γ ∈ X(g) of Γ is therefore

γ
( ∂l

∂wl

)
= Cj

mlw
m ∂l

∂wj
. (9)

These are the so-called Euler-Poincaré equations [14].

Evidently if l is globally defined, smooth and regular on g then γ must vanish
at the origin (this is the counterpart of the property of Γ noted above). So for a
vector field γ on g to be derivable via the Euler-Poincaré equations from a smooth
and regular (reduced) Lagrangian it is necessary that γ(0) = 0. We will come back
to this point later.

The Euler-Poincaré equations should be interpreted as differential equations with
solution w(t) in the Lie algebra. We have chosen the coordinates (wi) in such
a way that they are not only the coordinates for w = wiEi in g , but also
the fibre coordinates of any translate vg = Tλgw ∈ TgG . To find the solution
(g(t), ġ(t)) ∈ TG of the Euler-Lagrange equations that corresponds to w(t), one
simply needs to integrate the equation g−1(t)ġ(t) = w(t).

So far as the inverse problem is concerned, we can use the foregoing analysis to
reduce the problem to one on g , as set out in the following theorem.

Theorem 4.1. Let Γ be an invariant second-order differential equation field
on a Lie group G, and γ the corresponding reduced vector field on g. Then Γ
admits a regular invariant Lagrangian L on TG if and only if γ admits a regular
Lagrangian on g, in the sense that there is a smooth function l whose Hessian
is non-singular, such that γ is the vector field uniquely determined by the Euler-
Poincaré equations of l .
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Proof. Clearly, if L is a regular invariant Lagrangian for Γ, its restriction l to
g is a regular Lagrangian for γ . Conversely, suppose that l is a regular Lagrangian
for γ on g , and let L be the unique invariant function on TG which agrees with
l on TeG = g . Consider the functions

ϕi = ΓkÊV

k Ê
V

i (L)− wkCj
kiÊ

V

j (L),

where Γ = wkÊC
k + ΓkÊV

k . We showed earlier that Γk is invariant, and so is wk .
Since ẼC

i commutes with ÊV
j , both ÊV

j (L) and ÊV
k Ê

V
i (L) are invariant. So ϕi is

invariant. But the restriction of ϕi to g vanishes, by the Euler-Poincaré equations;
so ϕi vanishes everywhere on TG . But as we showed earlier, the vanishing of ϕi

is equivalent to the Euler-Lagrange equations for L . Moreover, L is regular since
l is. Thus L is a regular invariant Lagrangian and Γ is its Euler-Lagrange field.

5. The reduced Helmholtz conditions

In this section we will show that in the case of an invariant Lagrangian, not only
the Euler-Lagrange equations, but also the Helmholtz conditions can be restated
as conditions at the level of the Lie algebra.

Recall that we interpret the Hessian of a Lagrangian as a type (0,2) tensor field
g along the tangent bundle projection τ : TG → G . Due to the invariance of
the Lagrangian the coefficients Kij = ÊV

i Ê
V
j (L) = g(Êi, Êj) will also be invariant

functions. In what follows we will denote the restrictions of these functions to g

by kij .

Let us now evaluate the Helmholtz conditions, which we have stated in a coordinate
free way in the second section, in the basis {Êi} . The first conditions are simply

det(Kij) 6= 0, Kij = Kji. (10)

The Jacobi endomorphism and the dynamical derivative are determined by the
horizontal structure on TG . Since [Γ, ÊV

i ] = −ÊC
i + (wjCk

ji − ÊV
i (Γk))ÊV

k , it is

easy to see that the horizontal lift of Êi is

ÊH

i = ÊC

i + 1
2

(
−wjCk

ji + ÊV

i (Γk)
)
ÊV

k = ÊC

i − Λk
i Ê

V

k

say. Now both ẼC
i (wj) = 0 and ẼC

i (Γj) = 0, so all ẼH
i are invariant. From now

on

λk
i = −1

2

(
∂γk

∂wi
− wjCk

ji

)
denotes the restriction of the invariant function Λk

i to g . It is easy to see that the
horizontal lift of an invariant vector field along τ is invariant, and vice versa.

We next consider the dynamical covariant derivative ∇ . We have [Γ, ÊV
i ] =

−ÊH
i + (∇Êi)

V . Now both Γ and ÊV
i are invariant, so by the Jacobi identity

[Γ, ÊV
i ] must be invariant also. Since the horizontal part of the bracket, −ÊH

i , is
invariant, (∇Êi)

V and therefore (∇Êi) must be invariant in turn. In general, if
X = X iÊi ∈ X(τ) is invariant, then ∇X = X i∇Êi + Γ(X i)Êi is also invariant.
We may summarize this result by saying that ∇ itself is invariant. Furthermore,
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the coefficients of ∇ with respect to the invariant basis are invariant functions,
which can be reduced to functions on g . In fact we can calculate [Γ, ÊV

i ] explicitly,
obtaining [Γ, ÊV

i ] = −ÊH
i + Λk

i Ê
V
k , so that

∇Êi = 1
2
(wjCk

ji − ÊV

i (Γk))Êk = Λk
i Êk,

and the coefficients are just the functions Λk
i which we know already to be invari-

ant.

Given that ẼC
k (Kij) = 0 the Helmholtz condition ∇g = 0, when evaluated on the

pair (Êi, Êj), gives

ΓkÊV

k (Kij)−KkjΛ
k
i −KikΛ

k
j = 0. (11)

The components of the Jacobi endomorphism with respect to the current basis can
be calculated from [Γ, ÊH

j ] . One finds that

Φ(Êj) =
(

1
2
ΓiÊV

i Ê
V

j (Γl) + 1
2
ΓiC l

ij − 1
4
ÊV

j (Γi)ÊV

i (Γl)

− 3
4
Ck

ijw
iÊV

k (Γl) + 1
4
wiC l

ikÊ
V

j (Γk)− 1
4
wmwnCk

mjC
l
nk

)
Êl = Φl

jÊl.

Again, the coefficients Φl
j are invariant functions, and restrict to functions on g

given by

φl
j = 1

2
γi ∂2γl

∂wi∂wj
+ 1

2
γiC l

ij− 1
4

∂γi

∂wj

∂γl

∂wi
− 3

4
Ck

ijw
i ∂γ

l

∂wk
+ 1

4
wiC l

ik

∂γk

∂wj
− 1

4
wmwnCk

mjC
l
nk.

This somewhat uncouth-looking formula can be civilized by expressing it in terms
of the quantities

ψi
j = 1

2

(
∂γi

∂wj
+ Ci

kjw
k

)
,

when it becomes

φl
j = γ(ψl

j)− wkCi
kjψ

l
i + wkC l

kiψ
i
j − ψk

jψ
l
k.

Again, for any invariant X , Φ(X) is an invariant vector field along τ . The
Helmholtz condition involving the Jacobi endomorphism is simply

KijΦ
i
k = KikΦ

i
j. (12)

Finally, the DV -condition is

ÊV

l (Kij) = ÊV

i (Klj). (13)

The conditions (10), (11), (12) and (13) are all invariant; it is therefore enough
to find a solution kij ∈ C∞(g) of the restriction of these conditions to g = TeG ,
which may be called the reduced Helmholtz conditions. The solution of the full
conditions on TG can then be found by left translating the solution on g .

For any γ = γi∂/∂wi ∈ X(g), we call a matrix (kij) of functions on g a multiplier
matrix for γ if it satisfies the reduced Helmholtz conditions

det(kij) 6= 0, kij = kji,

γk ∂kij

∂wk
− kkjλ

k
i − kikλ

k
j = 0,

kijφ
i
k = kikφ

i
j,

∂kij

∂wl
=
∂klj

∂wi
.
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We have shown

Theorem 5.1. Suppose given an invariant second-order differential equation
field Γ, with reduced vector field γ . Then there is an invariant multiplier matrix
(Kij) for Γ on TG if and only there is a multiplier matrix (kij) for γ on g.

6. The reduced inverse problem

Theorem 4.1 shows that the problem of finding an invariant regular Lagrangian
for an invariant second-order differential equation field on TG can be reduced
to that of finding a regular Lagrangian for the reduced vector field on g . From
Theorem 5.1 we can infer that the existence of a multiplier matrix, that is, a
solution of the reduced Helmholtz conditions, for the reduced vector field on g

is a necessary condition for it to admit a Lagrangian. However, as we know,
the relationship between Helmholtz conditions and Lagrangians in the invariant
inverse problem is a little more complicated than is the case for the ordinary inverse
problem. While the existence of a multiplier matrix on g is sufficient to guarantee
the existence of an invariant multiplier matrix on TG , the existence of an invariant
multiplier matrix on TG is not sufficient to guarantee the existence of an invariant
Lagrangian on TG . The following theorem supplies in effect the extra conditions,
working now entirely in terms of reduced quantities on g .

Theorem 6.1. A multiplier matrix for γ ∈ X(g) determines a cohomology class
in H1(g) and one in H2(g). The vector field γ is derivable from a Lagrangian if
and only if the corresponding cohomology classes vanish.

Proof. Suppose the functions kij on g satisfy the reduced Helmholtz condi-
tions, so that (kij) is a multiplier matrix. From the last of the Helmholtz condi-
tions,

∂kik

∂wj
=
∂kij

∂wk
,

and the assumed symmetry of kij in its indices, it follows that there is a function
l on g such that

kij =
∂2l

∂wi∂wj
;

l is determined up to the addition of a term linear in the wk (and the addition of
a constant, but this we can ignore). Then

∂

∂wi

(
γ

(
∂l

∂wj

)
− C l

kjw
k ∂l

∂wl

)
= γk ∂kij

∂wk
+
∂γk

∂wi
kjk − Ck

ij

∂l

∂wk
− C l

kjw
kkil.

Let us denote the term in brackets on the left-hand side (whose vanishing is the
Euler-Poincaré equations) by Vj . Then the Helmholtz condition

γk ∂kij

∂wk
− kkjλ

k
i − kikλ

k
j = 0

is equivalent to
∂Vi

∂wj
+
∂Vj

∂wi
= 0.
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It follows that

∂2Vi

∂wj∂wk
= − ∂2Vj

∂wi∂wk
=

∂2Vk

∂wi∂wj
= − ∂2Vi

∂wk∂wj
,

whence
∂2Vi

∂wj∂wk
= 0.

But this says that there are constants µij and νi , the µij being skew in their
indices, such that

Vi = γk ∂2l

∂wi∂wk
− C l

kiw
k ∂l

∂wl
= µjiw

j + νi. (14)

As before, we can regard the νi as the coefficients of a linear map ν : g → R ,
and the µij as the coefficients of an alternating bilinear map µ : g × g →
R . We now show that ν and µ satisfy the cocycle conditions νlC

l
ij = 0 and

µilC
l
jk+µjlC

l
ki+µklC

l
ij = 0. In fact these conditions hold by virtue of the Helmholtz

conditions, especially the condition kilφ
l
j = kjlφ

l
i .

Now µij is half of the skew part of

∂Vj

∂wi
= γk ∂kij

∂wk
+
∂γk

∂wi
kjk − Ck

ij

∂l

∂wk
− C l

kjw
kkil,

so that

µij = 1
2

(
∂γl

∂wi
+ C l

kiw
k

)
kjl − 1

2

(
∂γl

∂wj
+ C l

kjw
k

)
kil − Ck

ij

∂l

∂wk
.

Earlier, we set

1
2

(
∂γl

∂wi
+ C l

kiw
k

)
= ψl

i;

we now put

χij = ψl
ikjl − ψl

jkil = µij + Ck
ij

∂l

∂wk
.

We now consider φl
ikjl − φl

jkil , where (as we showed earlier)

φl
i = γ(ψl

i)− wkCj
kiψ

l
j + wkC l

kjψ
j
i − ψk

i ψ
l
k.

We look first at the terms in φl
ikjl − φl

jkil which involve γ(ψl
i): these are

γ(ψl
i)kjl − γ(ψl

j)kil = γ(χij)− ψl
iγ(kjl) + ψl

jγ(kil).

We substitute for the γ(kil) terms from the appropriate Helmholtz condition, and
find in the end that

φl
ikjl − φl

jkil = γ(χij) + wkC l
kiχjl − wkC l

kjχil = 0.

Now since µij is constant,

γ(χij) = C l
ijγ

(
∂l

∂wl

)
= C l

ijνl + C l
ij

(
µkl + Cm

kl

∂l

∂wm

)
wk,
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so that

0 = γ(χij) + (χilC
l
jk + χjlC

l
ki)w

k

= C l
ijνl + C l

ij

(
µkl + Cm

kl

∂l

∂wm

)
wk + (χilC

l
jk + χjlC

l
ki)w

k

= C l
ijνl + (µklC

l
ij + µilC

l
jk + µjlC

l
ki)w

k + (C l
ijC

m
kl + C l

jkC
m
il + C l

kiC
m
jl )w

k ∂l

∂wm

= C l
ijνl + (µilC

l
jk + µjlC

l
ki + µklC

l
ij)w

k.

Since this expression is affine in wk with constant coefficients, these coefficients
must vanish. Therefore both C l

ijνl = 0 and µilC
l
jk + µjlC

l
ki + µklC

l
ij = 0, as

required.

If we change l to l′ = l + θkw
k , the corresponding change in the cocycles is

from (ν, µ) to (ν ′, µ′) where ν ′i = νi and µ′ij = µij − θkC
k
ij , or ν ′ = ν and

µ′(ξ, η) = µ(ξ, η) − θ({ξ, η}). That is, both components of (ν, ν ′) and (µ, µ′)
belong to the same cohomology class, respectively. If the cohomology classes of ν
and µ vanish then we can find θ such that l′ = l + θkw

k is a Lagrangian.

By setting wi = 0 in Equation (14) we see that

νi = γk(0)
∂2l

∂wi∂wk
(0).

But as we pointed out earlier, it is a necessary condition for γ to be derivable from
a Lagrangian l on g that γ(0) = 0. The significance of the vanishing of ν as a
condition for γ to be derivable from a Lagrangian is clear.

We have derived two sets of conditions for the existence of an invariant Lagrangian,
each involving a pair of cohomology classes. One would hope that the two pairs
of cohomology classes are the same. This is in fact the case, as we now show.

First we show that bi and νi are the same constants. From Equation (8) we have

bi = Γwk=0(Ẽ
V

i (L)) = (ΓjÊV

j Ẽ
V

i (L))|wk=0.

Since bi is constant it is enough to evaluate the right-hand side at e ; here the
distinction between ẼV

i and ÊV
i disappears, and we obtain

bi = γk(0)
∂2l

∂wi∂wk
(0) = νi.

To find the relationship between αij and µij it turns out to be convenient to
work entirely in terms of the right-invariant fields Ẽi ; in the end we will evaluate
everything at e , using the constancy of the αij , and again we can take advantage

of the fact that at e the distinction between Ẽi and Êi disappears. The relations
between the complete and vertical lifts of Ẽi and Êi given in Equation (7) now
come into play. In particular, Γ = wjAj

i Ẽ
C
i + ΓjAj

i Ẽ
V
i ; we set Ai

jw
j = vi ,

Ai
jΓ

j = Γ̃i .

It follows from Equation (4) that Êi(fj) = ÊV
i (ẼC

j (L)), whence

Ẽi(fj) = ẼV

i (ẼC

j (L)) = ẼV

i (Γ(ẼV

j (L))).
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Using the expression above for Γ, and the evident fact that ẼV
i (vj) = δj

i , we find
that

ẼC

i (ẼV

j (L)) + vkẼV

i (ẼC

k (ẼV

j (L)))

+ ẼV

i (Γ̃k)ẼV

k (ẼV

j (L)) + Γ̃kẼV

k (ẼV

i (ẼV

j (L)))− ẼV

i (ẼC

j (L)) = 0,

or (remembering that [Ẽi, Ẽj] = −Ck
ijẼk )

ẼV

i (ẼC

j (L))− ẼV

j (ẼC

i (L)) + Ck
ijẼ

V

k (L)

= Γ(ẼV

i (ẼV

j (L))− C l
ikv

kẼV

l (ẼV

j (L)) + ẼV

i (Γ̃k)ẼV

k (ẼV

j (L)).

On taking the skew part we find that

ẼV

i (ẼC

j (L))− ẼV

j (ẼC

i (L)) + Ck
ijẼ

V

k (L)

= 1
2

(
ẼV

i (Γ̃k) + Ck
liv

l
)
ẼV

k (ẼV

j (L))− 1
2

(
ẼV

j (Γ̃k) + C l
ljv

l
)
ẼV

k (ẼV

i (L)).

The left-hand side is αij + Ck
ij(Ẽ

V
k (L)− fk). At e , the right-hand side is

1
2

(
∂γk

∂wi
+ Ck

liw
l

)
kjk − 1

2

(
∂γk

∂wj
+ Ck

ljw
l

)
kik = ψk

i kjk − ψk
j kik = χij.

Thus
αij = χij − Ck

ij(Ẽ
V

k (L)− fk)|e.
Now let l be the restriction of L to TeG . Of course L is not assumed to be
invariant, so this differs from the association between l and L given earlier;
nevertheless, it is true that

∂2l

∂wi∂wj
= kij,

where (kij) satisfies the reduced Helmholtz conditions. So we can write αij =
µij + Ck

ijfk(e). It is apparent that αij and µij define the same cohomology class
(they differ by a coboundary).

7. The Lie algebroid

Our policy while working on TG in earlier sections was to write everything in
terms of G-invariant quantities, that is, quantities determined by their values on
TeG = g . This paves the way towards expressing the whole theory in terms of g ,
or more accurately in terms of a vector bundle over g , namely g×Tg → g . We can
identify invariant vector fields on TG , via their restrictions to TeG , with sections
of g×Tg → g , as we pointed out earlier. The bracket of two invariant vector fields
remains invariant, and so the bracket of vector fields on TG determines a bracket
of sections of g× Tg → g . This is evidently R-bilinear and skew, and it satisfies
the Jacobi identity by construction. We will now obtain an explicit formula for
this bracket, and deduce that it is a Lie algebroid bracket, i.e. a bracket with the
above properties that satisfies an appropriate Leibniz rule when sections are being
multiplied with functions on the base manifold.

Let ξiÊC
i +X iÊV

i and ηiÊC
i +Y iÊV

i be two invariant vector fields, so that ẼC
j (ξi) =

ẼC
j (X i) = ẼC

j (ηi) = ẼC
j (Y i) = 0. These invariance conditions, when expressed in
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terms of the vector fields of the invariant basis, become for example ÊC
j (ξi) =

wkC l
kjÊ

V
l (ξi), using Equation (7). Thus

[ξiÊC

i , η
jÊC

j ] =
(
ξiηjCk

ij + ξiwjC l
jiÊ

V

l (ηk)− ηiwjC l
jiÊ

V

l (ξk)
)
ÊC

k ,

while

[ξiÊC

i , Y
jÊV

j ] = −Y jÊV

j (ξk)ÊC

k +
(
ξiY jCk

ij + ξiwjC l
jiÊ

V

l (Y k)
)
ÊV

k .

The bracket may be written as follows. We identify ξ , η with g-valued functions
on g , X , Y with vector fields on g ; ξ̄ is the vector field corresponding to ξ . We
think of wkCi

kj as the components of a type (1,1) tensor field on g which we denote
by A : thus

A = wkCi
kj

∂

∂wi
⊗ dwj.

The Lie algebra bracket {·, ·} extends naturally to an algebraic bracket on g-valued
functions on g , so that {ξ, η} = ξjηkCi

jkEi . Then

[[(ξ,X), (η, Y )]] =
(
{ξ, η}+A(ξ̄)(η)−A(η̄)(ξ) +X(η)− Y (ξ),

[A(ξ̄), Y ]− [A(η̄), X] +A(Y (ξ))−A(X(η)) + [X, Y ]
)
.

For any function f on g we have

[[(ξ,X), f(η, Y )]] = f [[(ξ,X), (η, Y )]] + ρ(ξ,X)(f)(η, Y ),

as required, where the so-called anchor of the Lie algebroid is given by

ρ(ξ,X) = A(ξ̄) +X ∈ X(g).

Thus the bracket [[·, ·]] does indeed define a Lie algebroid structure on g×Tg → g .

We denote by ei the section (Ei, 0) of g×Tg → g , and Wi the section (0, ∂/∂wi);
then {ei,Wi} is a basis of sections, and we have

[[ei, ej]] = Ck
ijek, [[ei,Wj]] = Ck

ijWk, [[Wi,Wj]] = 0.

We denote by δ the induced exterior derivative operator on sections of exterior
powers of the dual of the algebroid, and by {ei,W i} the basis dual to {ei,Wi} .
Then for any function f on g ,

δf =
∂f

∂wi
(wkCi

kje
j +W i),

while
δei = −1

2
Ci

jke
j ∧ ek, δW i = −Ci

jke
j ∧W k.

Using these formulae we can express the Euler-Poincaré equations in terms of
the Lie algebroid structure, as follows. The vertical endomorphism S on the Lie
algebroid is just S(ξ,X) = (0, ξ̄). The invariant Lagrangian is represented by a
function l on g . We define, in analogy to the usual case, a Cartan form θ and an
energy function E by

θ = S(δl), E = 〈∆̄, δl〉 − l,
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where ∆ = wiei and ∆̄ = wiWi . As we will show by a direct calculation, provided
that l is regular (in the sense that its Hessian is non-singular) the equation

iΓδθ = −δE

determines a unique section Γ, which is of second-order differential equation type,
so that it takes the form wiei + γiWi , and the γi satisfy the Euler-Poincaré
equations for l . In fact

θ =
∂l

∂wi
ei

δθ =

(
∂2l

∂wj∂wl
wkC l

ki − 1
2

∂l

∂wk
Ck

ij

)
ei ∧ ej − ∂2l

∂wi∂wj
ei ∧W j

E = wi ∂l

∂wi
− l

δE = wl ∂2l

∂wi∂wl
(wkCi

kje
j +W i).

Let us write Γ = ξiei+f
iWi . Then the vanishing of the Wi component of iΓδθ+δE

gives

(−ξj + wj)
∂2l

∂wi∂wj
= 0,

whence ξi = wi when l is regular. When this result is inserted in iΓδθ+δE several
terms cancel, and the remaining terms in the ei component reduce to

γj ∂2l

∂wi∂wj
− wkCj

ki

∂l

∂wj
,

as required.

The above derivation of the Euler-Poincaré equations was inspired by Mart́ınez’
framework [15] for Lagrangian systems on a Lie algebroid. This framework is based
on the so-called prolongation algebroid of the underlying Lie algebroid. It should
be remarked that although the underlying algebroid of the current system is just
the Lie algebra g , the algebroid we have defined in this section does not coincide
with the prolongation algebroid of the Lie algebra. The prolongation algebroid
can most easily be defined as follows. Observe that both components of a section
of g×Tg → g have a natural bracket structure. For the first, we have the natural
extension of the Lie algebra bracket to C∞(g, g)-functions, and for the second
component we have the Lie bracket of vector fields. The easiest way to combine
these two into one Lie bracket structure is as follows:

[[(ξ,X), (η, Y )]]1 = ({ξ, η}+X(η)− Y (ξ), [X,Y ]). (15)

It is easy to check that this is a Lie algebroid whose anchor map ρ1 : g×Tg → Tg

is simply the projection on the second component. In our basis

[[ei, ej]]
1 = Ck

ijek, [[ei,Wj]]
1 = 0, [[Wi,Wj]]

1 = 0.

A short calculation reveals that indeed the expression iΓδ
1θ1 = −δ1E leads again

to the Euler-Poincaré equations. It is, however, easy to guess the relationship
between the two algebroid structures: the section map (ξ,X) 7→ (ξ,A(ξ̄) + X)
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is an isomorphism of the first of the Lie algebroids with the second. The more
complicated structure of the first Lie algebroid (or of that presentation of the
common Lie algebroid if one regards isomorphic algebroids as identical in principle)
arises from our desire to work always with invariant objects on TG and objects
on g derived from them by restriction.

We conclude this section by showing that the restrictions of the horizontal lift, the
Jacobi endomorphism and the dynamical derivative to g have a direct interpreta-
tion in the first Lie algebroid.

At the level of the Lie algebra, g-valued functions on g (sections of g × g → g)
play the role that the vector fields along the tangent bundle projection played at
the level of TG . That is, there is a well-defined vertical lift of such a function
ξ = ξi(w)Ei to the section ξV = ξiWi of the Lie algebroid. Moreover, one can
easily verify that each vector field γ on g defines a horizontal lift

ξH = ξi(ei − λj
iWj)

to sections of the Lie algebroid, or equivalently, a splitting of the short exact
sequence

0 → {0} × Tg → g× Tg → g× g → 0

of vector bundles over g . Observe that the restriction to g of the horizontal lift of
an invariant vector field along τ is in fact the horizontal lift of the restriction to
g of that vector field along τ .

The functions ψj
i we have introduced in previous sections have a nice interpretation

in the algebroid set-up. The projection by the anchor map of the horizontal
algebroid section EH

i = ei − λj
iWj to a vector field on g is exactly

ρ(EH

i ) = (wkC l
ki − λl

i)
∂

∂wl
= ψl

i

∂

∂wl
.

As before, we can define a Jacobi endomorphism and a dynamical derivative by
considering the horizontal and vertical parts of the brackets of the algebroid section
Γ = wiei + γiWi :

[[Γ, ηV]] = −ηH + (∇η)V, [[Γ, ηH]] = (∇η)H + (Φ(η))V,

where ∇ acts like a derivative in the sense that for f ∈ C∞(g), ∇(fη) = f∇η +
γ(f)η , and Φ is tensorial with coefficients φi

j as before. We have ∇Ei = λk
iEk ,

and in fact in both cases the operators are nothing but the original operators
restricted to g = TeG .

We define the vertical derivative for ξ ∈ C∞(g, g) as the map DV
ξ : C∞(g, g) →

C∞(g, g), determined by DV
ξ f = ξ̄(f) for f ∈ C∞(g), DV

ξ η = 0 for a vector η of g

(in other words a constant element of C∞(g, g)), and the obvious Leibniz rule for
multiplication by functions.

We can now restate the reduced Helmholtz conditions in a coordinate-free form.
The multiplier (kij) is a matrix of functions on g , or equivalently a map k :
C∞(g, g)× C∞(g, g) → C∞(g), which satisfies the conditions

det k 6= 0, k(ξ, η) = k(η, ξ),

∇k = 0,

k(Φ(η), ζ) = k(η,Φ(ζ)),

DV

ξ k(η, ζ) = DV

ηk(ξ, ζ).
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for all ξ, η, ζ ∈ C∞(g, g).

Suppose that the Hessian of l ∈ C∞(g) is k . Then if θ = (∂l/∂wi)ei as before, we
can define a 2-form δHθ on the algebroid by requiring it to vanish whenever one
of its arguments is a vertical section (i.e. it is semi-basic) and by setting

δHθ(ξH, ηH) = ρ(ξH)(θ(ηH))− ρ(ηH)(θ(ξH))− θ([[ξH, ηH]]).

Then δHθ = 1
2
µije

i ∧ ej , where

µij = ρ(EH

i )(θ(EH

j ))− ρ(EH

j )(θ(EH

i ))− θ([[EH

i , E
H

j ]])

= ψl
iklj − ψl

jkli − Ck
ij

∂l

∂wk
.

These coefficients are exactly those we have encountered in the previous section.
Recall from the proof of Theorem 4 that the reduced Helmholtz conditions ensure
that the µij are constants and that they form a cocycle. A necessary condition
for a Lagrangian to exist is that µij is a coboundary. We can now re-express this
statement in terms of the Lie algebroid. For a 2-form µ = δHθ with constant
coefficients we get that δµ = −1

2
µijC

i
lke

l ∧ ek ∧ ej . Therefore, δ -closure of the
2-form µ amounts to the cocycle condition. On the other hand, the condition
that the µij are of the form αkC

k
ij for some αk is equivalent to µ being exact.

Similarly, the reduced Helmholtz conditions ensure that the semi-basic 1-form
ν = iΓδθ + δE − iΓµ has constant coefficients νi that form a cocycle, or that
δν = 0. Theorem 6.1 states that ν should vanish for a Lagrangian to exist.

8. Examples and applications

The method of reduced Helmholtz conditions really comes into its own when one
has to deal with any specific problem. In practice — certainly, if the following
examples are representative — the cohomological conditions do not play much
of a role. Where there is no invariant Lagrangian this is because the reduced
Helmholtz conditions fail, often at the level of regularity. Where one is able to find
a solution of the Helmholtz conditions one is usually able to integrate it by hand,
and check directly for which integration constants the Euler-Poincaré equations
are equivalent to the equations associated with the vector field γ .

To save space, in the following examples we will write kijl for ∂kij/∂w
l , and we

will implicitly assume that the conditions kij = kji , kijl = kilj and so on are
satisfied.

8.1. The canonical connection on a Lie group.

The canonical connection on a Lie group is defined as a covariant derivative
operator by ∇XY = 1

2
[X, Y ] , where X and Y are any two left-invariant vector

fields on G . As we mentioned in the Introduction, the invariant inverse problem
for the canonical connection has been studied by Muzsnay in [18]; however, he uses
methods different from ours.

The connection coefficients of the canonical connection with respect to the left-
invariant basis {Êi} of X(G) are just 1

2
Ci

jk . So the coefficients Γi of the corre-
sponding second-order differential equation field (the geodesic spray) are in this
case Γi = 1

2
Ci

jkw
jwk = 0. The reduced equations are therefore simply ẇi = 0. In

fact the geodesics through the identity of G are just the 1-parameter subgroups.
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If a left-invariant Lagrangian L exists, then

Ck
ijÊ

V

k (L)wi = 0 or Ck
ij

∂l

∂wk
wi = 0. (16)

In view of relation (7), L must also be right-invariant, i.e. ÊC
j (L) = 0, and thus

bi-invariant. At the level of the Lie algebra, this means that l ∈ C∞(g) will be
ad-invariant. This observation is in fact Proposition 2 in [18]. Thus a Lagrangian
is a function which is constant on the adjoint orbits in g and whose Hessian is
non-singular.

We will use our methods to investigate the invariant inverse problem for the canon-
ical connection. The first observation is that in this case the reduced Helmholtz
condition kilφ

l
j = kjlφ

l
i is a consequence of the other conditions. Since γi = 0,

γk ∂kij

∂wk
− kkjλ

k
i − kikλ

k
j = 1

2
wl(kkjC

k
li + kikC

k
lj) = 0. (17)

On the other hand, φl
j = −1

4
wmwnCk

mjC
l
nk . But

wmwnCk
mjC

l
nkkil − wmwnCk

miC
l
nkkjl = −wmwnCk

mjC
l
nikkl + wmwnCk

miC
l
njkkl = 0,

so the condition kilφ
l
j = kjlφ

l
i holds by virtue of condition (17) and the symmetry

of kkl .

A second general remark concerns the cohomological conditions. In this case
Equation (14) reads

µjiw
j + νi = −C l

kiw
k ∂l

∂wl
,

from which immediately νi = 0. Moreover

µij = −Ck
ij

∂l

∂wk
(0),

so µij is a coboundary. Thus the cohomological conditions are automatically
satisfied for the canonical connection. Any function l whose Hessian satisfies
the reduced Helmholtz conditions and is such that Ck

ij∂l/∂w
k(0) = 0 will be a

Lagrangian; in particular, if l satisfies the reduced Helmholtz conditions and we
set

l′ = l − wk ∂l

∂wk
(0)

then l′ will be a Lagrangian. So the inverse problem for the canonical connection
reduces essentially to the analysis of condition (17), in the form wl(kkjC

k
li +

kikC
k
lj) = 0, and the condition kijk = kikj . Where there is no Lagrangian this will

often become apparent by the fact that there is no non-singular (kij) satisfying
the first of these conditions.

We will examine two specific situations, one in which there is no Lagrangian, one
in which there is one.

The first case is that of the Heisenberg algebra, which is a 3-dimensional algebra
with the single non-trivial bracket relation {E1, E3} = E2 . Condition (17) amounts
simply to

k12w
3 = k22w

3 = k22w
1 = k32w

1 = −k12w
1 + k32w

3 = 0.
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Evidently k12 = k22 = k32 = 0, and there is no non-singular 3 × 3 matrix (kij)
satisfying the Helmholtz conditions.

For our second example we take the 4-dimensional Lie algebra with bracket rela-
tions

{E2, E3} = E1, {E2, E4} = E2, {E3, E4} = −E3

(this is the algebra A4,8 in the classification of Patera et al. [19]). Condition (17)
says in this case that the matrix

k11 k12 k13 k14

k12 k22 k23 k24

k13 k23 k33 k34

k14 k24 k34 k44




0 w3 −w2 0
0 w4 0 −w2

0 0 −w4 w3

0 0 0 0


must be skew-symmetric. This leads to the following 7 independent equations for
the 10 unknowns kij (with i ≤ j ):

k11w
3 + k12w

4 = 0 = k11w
2 + k13w

4,

k12w
3 + k22w

4 = 0 = k13w
2 + k33w

4,

k24w
2 + k34w

3 = 0,

k22w
2 − k24w

4 = (k14 + k23)w
3

k33w
3 − k34w

4 = (k14 + k23)w
2.

Evidently k44 is unconstrained by these equations. It turns out that k24 = k34 = 0.
The remaining unknowns can conveniently be expressed in terms of k11 and k23 .
If for convenience we set k11 = (w4)2F (for w4 6= 0), k23 = G and k44 = H then
(kij) is 

(w4)2F −w3w4F −w2w4F w2w3F −G
−w3w4F (w3)2F G 0
−w2w4F G (w2)2F 0
w2w3F −G 0 0 H

 .
We next look at the conditions kijk = kikj . From k124 = k241 = 0 we find that

w3∂(w4F )

∂w4
= 0.

¿From k224 = k242 = 0 we obtain

(w3)2 ∂F

∂w4
= 0.

It follows that F = 0, except possibly where w3 = 0 or w4 = 0. Thus k11 = 0,
except possibly where w3 = 0 or w4 = 0; but then by continuity k11 = 0
everywhere; and similarly for the other coefficients involving F . We are left with

0 0 0 −G
0 0 G 0
0 G 0 0
−G 0 0 H

 .
This is evidently non-singular provided that G is non-zero, whatever H may be.
Continuing to analyse the consequences of the condition kijk = kikj we find that G
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must be constant and H must be a function of w4 alone. This gives as potential
Lagrangians

l(w1, w2, w3, w4) = λ(w2w3 − w1w4) + α1w
1 + α2w

2 + α3w
3 + h(w4)

where λ and the α s are constants with λ non-zero, and h is an arbitrary smooth
function of its argument. According to the general remarks made earlier, l will
in fact be a Lagrangian if and only if α1 = α2 = α3 = 0 (h doesn’t play a role
here because C4

ij = 0). It is easy to check this directly. In fact for the potential
Lagrangian above it is easy to see by direct calculation that all νi and almost all
µij vanish, except that µ23 = −α1 , µ24 = −α2 and µ34 = α3 (and their skew
counterparts). We have shown that there will exist a Lagrangian l′ = l + θkw

k

whose Euler-Poincaré equations are exactly the equations associated to γ if we
can find θk such that µij = θkC

k
ij . One easily verifies that this condition is only

satisfied for θk = −αk . The sought-for Lagrangian l′ is therefore the one above
where one sets αk = 0.

It is interesting to note that the most general Lagrangian in this case is not just a
quadratic form.

The method used by Muzsnay in [18] deals directly with the equation

wjCk
ij

∂l

∂wk
= 0

as a set of partial differential equations for l . In effect, Muzsnay derives an
integrability condition for this equation by differentiating it, to obtain

Ck
ij

∂l

∂wk
+ wlCk

il

∂2l

∂wj∂wk
= 0.

The part of this equation symmetric in i and j is our Helmholtz condition (17),
the skew part states that the cocycle µij must vanish. The examples we have
considered above are two of the many examples dealt with in [18]. Muzsnay’s
results are of course broadly the same as ours; however, in the second case though
he shows that a Lagrangian exists he does not indicate how to find one, whereas
we have obtained the most general one. As Muzsnay points out, the example is
also treated in [10]. By using only the unreduced Helmholtz conditions on TG ,
the authors of [10] look for a (not necessarily invariant) Lagrangian L for the
canonical geodesic flow on any 4 dimensional Lie group. Although they are not
able to give an expression of the most general Lagrangian, they observe in the case
of the Lie algebra A4,8 that the quadratic part of the Lagrangian above (written in
terms of invariant forms on G in their set-up) generates the flow of the canonical
connection. They also notice that the quadratic part is a bi-invariant metric (as
the theory predicts).

8.2. The Bloch-Iserles equations.

These equations appear in e.g. [3, 4]. The space of interest is Sym(n), the linear
space of symmetric n× n matrices. The equation is

ẇ = [w2, N ], (18)

where w ∈ Sym(n), N is a skew-symmetric n × n matrix, and the right-hand
side is the commutator of matrices. With the help of N one can give Sym(n) the
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structure of a Lie algebra, the Lie algebra bracket being

{w1, w2} = w1Nw2 − w2Nw1, w1, w2 ∈ Sym(n).

Can we find a Lagrangian l ∈ C∞(Sym(n)) for which Equation (18) is of Euler-
Poincaré type with respect to the above Lie algebra? The answer is in fact given
in [4]: a corresponding Lagrangian is

l(w) = 1
2
tr(w2). (19)

We will show that the reduced Helmholtz conditions, applied to the current Lie
algebra and dynamical system, lead to the correct Lagrangian.

To make things more accessible we will consider only the case n = 2. For a basis
of the Lie algebra we take the matrices

Ex =

[
1 0
0 0

]
, Ey =

[
0 1
1 0

]
and Ez =

[
0 0
0 1

]
.

Further, without loss of generality we can take N to be[
0 1

−1 0

]
.

The non-vanishing Lie algebra brackets are then {Ex, Ey} = 2Ez , {Ex, Ez} = Ey

and {Ey, Ez} = 2Ez . An arbitrary element of the Lie algebra is of the form

w = xEx + yEy + zEz =

[
x y
y z

]
,

and Equation (18) is[
ẋ ẏ
ẏ ż

]
=

[
−2y(x+ z) x2 − z2

x2 − z2 2y(x+ z)

]
.

We use now the notation of the Lie algebroid formulation of the Helmholtz condi-
tions from Section 7. For Φ we find

Φ(Ex) = (−3y2 + 1
2
z2)Ex + (3

2
xy − 2yz)Ey + (4y2 − 1

2
xz)Ez,

Φ(Ey) = (3xy − 4yz)Ex + (4xz − 3
2
x2 − 3

2
z2)Ey + (3yz − 4xy)Ez,

Φ(Ez) = (4y2 − 1
2
xz)Ex + (3

2
yz − 2xy)Ey + (−3y2 + 1

2
x2)Ez,

and for ∇

∇Ex = −(x+ 1
2
z)Ey − yEz,

∇Ey = (2x+ z)Ex − (x+ 2z)Ez,

∇Ez = yEx + (z + 1
2
x)Ey.

The ∇-equations in this case (taking the symmetry of kij into account) are

γ(kxx) + (2x+ z)kxy + 2ykxz = 0,

γ(kxy) + (x+ 1
2
z)kyy + ykyz − (2x+ z)kxx + (x− 2z)kxz = 0,

γ(kxz) + (x+ 1
2
z)kyz + ykzz − ykxx − (z + 1

2
x)kxy = 0,

γ(kyy)− 2(2x+ z)kxy + 2(x+ 2z)kyz = 0,

γ(kyz)− (2x+ z)kxz + (x+ 2z)kzz − ykxy − (z + 1
2
x)kyy = 0,

γ(kzz)− 2ykxz − (2z + x)kyz = 0.

(20)
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The Φ-equations are

kxx(3yx− 4yz) + kxy(−3
2
x2 + 4xz − 3

2
z2) + kxz(−4yx+ 3yz)

= kxy(−3y2 + 1
2
y2) + kyy(

3
2
yx− 2yz) + kyz(4y

2 − 1
2
xz),

kxx(4y
2 − 1

2
xz) + kxy(−2yx+ 3

2
yz) + kxz(−3y2 + 1

2
x2)

= kxz(−3y2 + 1
2
z2) + kyz(

3
2
xy − 2yz) + kzz(4y

2 − 1
2
xz),

kxy(4y
2 − 1

2
xz) + kyy(−2xy + 3

2
yz) + kyz(−3y2 + 1

2
x2)

= kxz(3xy − 4yz) + kyz(−3
2
x2 + 4xz − 3

2
z2) + kzz(−4xy + 3yz).

(21)

We will first try to find a solution of (20) in which all kij are constants. In that
case, adding one half times the (y, y)-equation to the (x, x)- and (z, z)-equations
gives kxy = 0 from which also kxz = 0 and kyz = 0. Then the (x, z)-equation
gives kxx = kzz and the (y, z)-equation gives kzz = 1

2
kyy . So the solutions of (20)

with constant coefficients are of the form

k = c

 1 0 0
0 2 0
0 0 1

 . (22)

It is easy to see that a multiplier k of this form also satisfies Equations (21). The
Hessian of the function

l(x, y, z) = 1
2
(x2 + 2y2 + z2)

takes the above form; this is exactly the Lagrangian (19).

An expression for the most general solution of Equations (20) and (21) is beyond
the scope of the current paper. However, instead of looking for constant solutions
kij as above, we could use an additional symmetry assumption. For example,
it seems natural to require that kxx = kzz (but that they are not necessarily
constants). A tedious calculation reveals that in that case the only possible solution
of the reduced Helmholtz conditions is again the multiplier in (22) with constant
coefficients.

8.3. An illustrative example on the Lie group of the affine line.

There are only two distinct Lie algebras of dimension 2. In this example we will
use the Lie group of the affine line (the Euclidean group). An element of this group
is an affine map R → R : t 7→ exp(q1)t+ q2 and can be represented by the matrix[

exp(q1) q2
0 1

]
.

The corresponding Lie algebra is given by the set of matrices of the form[
x y
0 0

]
.

A basis for this algebra is

Ex =

[
1 0
0 0

]
, Ey =

[
0 1
0 0

]
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for which {Ex, Ey} = Ey . Let A = aEx + bEy be a constant vector in the Lie
algebra. We will determine whether there exists a regular Lagrangian for the
dynamical system

ẇ = {w, {w,A}},

or, in the above basis,
ẋ = 0, ẏ = x(bx− ay).

For this system

Φ(Ex) = 1
4
(a− 1)2xyEy, ∇Ex = (−bx+ 1

2
(a− 1)y)Ey,

Φ(Ey) = −1
4
(a− 1)2x2Ey, ∇Ey = 1

2
(a+ 1)xEy.

The ∇-equations are therefore

x(bx− ay)kxxy − 2(−xb+ 1
2
(a− 1)y)kxy = 0,

x(bx− ay)kxyy − 1
2
(a+ 1)xkxy − (−bx+ 1

2
(a− 1)y)kyy = 0,

x(bx− ay)kyyy − (a+ 1)xkyy = 0,

and the only Φ-equation is

−(a− 1)2x2kxy = (a− 1)2xykyy.

If we differentiate the Φ-equation with respect to x and y we obtain two more
equations for the kijk :

−(a− 1)2(x2kxxy + 2xkxy) = (a− 1)2(xykxyy + ykyy),

−(a− 1)x2kxyy = (a− 1)2(xykyyy + xkyy).

The component kxx of the Hessian and its derivative kxxx are absent from these
equations, and they will also not show up in any derived equation; there will
therefore always remain freedom of choice for the x-derivative of kxx . We get 6
homogeneous linear equations in the 5 unknowns kxy , kyy , kxxy , kxyy and kyyy .
If the rank of this system is less than 5 the system will have a non-zero solution.
When a = 1, the rank is clearly 3. It can easily be verified that in all other cases
the rank is 4.

For reasons of clarity, we will deal first with the case where a = 1.

1. The case where a = 1. In this case the Φ-equation is identically satisfied.
The ∇-equations are now

x(bx− y)kxxy + 2bxkxy = 0,
x(bx− y)kxyy − xkxy + bxkyy = 0,
x(bx− y)kyyy − 2xkyy = 0.

¿From the first and the last of these equations, we find that

kxy =
f1(y)

(bx− y)2
and kyy =

f2(x)

(bx− y)2

respectively, as long as x 6= 0 and bx − y 6= 0. By substituting this result in the
second equation and by interpreting kxyy once as ∂kyy/∂x and once as ∂kxy/∂y ,
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we get a system of ODE’s from which we can determine f1(y) and f2(x). They
are

f1(y) = −bα2 − α1y and f2(x) = α1x+ α2.

The solution of the ∇-equations is therefore of the form

k =

[
b2α2−bα1(bx−y)

2(bx−y)2
+ f(x) − bα2+α1y

(bx−y)2

− bα2+α1y
(bx−y)2

α1x+α2

(bx−y)2

]
, det(k) =

f(x)(α1x+ α2)− α2
1

(bx− y)2
.

This matrix is, however, not defined on the whole of R2 . By continuity it exists
on x = 0 but it is not defined on bx− y = 0. So, there is no regular multiplier on
R2 .

This is not the end of the story, however. The dynamical equations are now
ẋ = 0 and ẏ = x(bx − y). Notice that the lines x = 0 and bx − y = 0 are
both invariant under the flow. They divide the space R2 into regions, each
invariant under the flow of the dynamical system. The matrix above is well-
defined on the invariant region with bx−y 6= 0. It will be a multiplier provided its
determinant is not zero, that is, provided f(x)(α1x+ α2)− α2

1 6= 0. The function
l(x, y) = −α2 ln |bx− y| −α1x ln |bx− y|+α3y+ h(x), with h′′(x) = f(x), has the
above matrix as its Hessian. However, for l to give the required Euler-Poincaré
equations, α2 and α3 must vanish. A non-degenerate Lagrangian on bx − y 6= 0
is therefore

l(x, y) = −α1x ln |bx− y|+ h(x),

where α1 is a non-vanishing constant, and h(x) is an arbitrary function which is
not of the form α1(x ln |x| − x) + α4x+ α5 for any constants α4 and α5 .

In the following cases it will happen that there is no regular Lagrangian defined
on the whole of R2 , but it may be possible to find Lagrangians for subsets of R2

invariant under the dynamical flow.

2. The case where a 6= 1. In this case, the Φ-equations come into play. As
before, we can search first for the most general class of solutions of the ∇-equations,
and then restrict to only those that also satisfy the Φ-equation. Notice that e.g.
the last of the ∇-equations leads to a further division of this case in subcases. We
have

kyy =


f2(x)(bx− ay)−

1
a
−1, a 6= 0,

f2(x) exp
( y

bx

)
, a = 0, b 6= 0,

0, a = 0, b = 0.

We will only summarize the results.

2A. The case where a 6= 0. There is a regular Lagrangian of the form

l(x, y) =
α1

1− a
|ay − bx|1−

1
a |x|

1
a + h(x),

where α1 is a non-zero constant and h(x) is an arbitrary, but non-affine function.
The lines x = 0 and ay − bx = 0 are invariant under the flow.

2B. The case where a = 0 and b 6= 0. There is a regular Lagrangian of the form

l(x, y) = α1b
2x exp

( y

bx

)
+ h(x),
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where α1 is a non-zero constant and h(x) is an arbitrary but non-affine function.
The line x = 0 is invariant under the flow.

2C. The case where a = 0 and b = 0. This is a degenerate case, there is no regular
multiplier.

Having decided in all cases whether a Lagrangian l on the Lie algebra g exists or
not, it is instructive to give an expression for the corresponding Lagrangians L at
the level of the Lie group G . If (q1, q2) are coordinates on the Lie group, then a
left-invariant basis of vector fields is given by

Êx =
∂

∂q1
, Êy = exp(q1)

∂

∂q2
.

Fibre coordinates (wi) = (x, y) with respect to this basis and (q̇1, q̇2) with respect
to the coordinate field basis are related as x = q̇1, y = exp(−q1)q̇2 . A right-
invariant basis is

Ẽx =
∂

∂q1
+ q2

∂

∂q2
, Ẽy =

∂

∂q2
.

The complete and vertical lifts of the left-invariant basis fields are

ÊC

x=
∂

∂q1
, ÊC

y = exp(q1)

(
∂

∂q2
+ q̇1

∂

∂q̇2

)
, ÊV

x =
∂

∂q̇1
, ÊV

y = exp(q1)
∂

∂q̇2
.

We can now rewrite a second-order field Γ in any of the following forms

Γ = q̇1
∂

∂q1
+ q̇2

∂

∂q2
+ f1

∂

∂q̇1
+ f2

∂

∂q̇2

= q̇1
∂

∂q1
+ exp(−q1)q̇2

(
exp(q1)

(
∂

∂q2
+ q̇1

∂

∂q̇2

))
+ f1

∂

∂q̇1
+ (exp(−q1)(f2 − q̇1q̇2)) exp(q1)

∂

∂q̇2

= xÊC

x + yÊC

y + ΓxÊ
V

x + ΓyÊ
V

y .

In the example under consideration, Γx = 0 and Γy = x(bx− ay), so

f1 = 0, f2 = (1− a)q̇1q̇2 + exp(q1)bq̇
2
1).

Let’s look, for example, at case 2B (a = 0), where we have stated above that there
exist a regular Lagrangian on the Lie algebra of the form

l(x, y)=α1b
2x exp(y/bx)+h(x), (α1 6= 0, h non-affine).

By using left translations we can extend this to a Lagrangian on the whole of TG :

L(q1, q2, q̇1, q̇2) = α1b
2q̇1 exp

(exp(−q1)q̇2
bq̇1

)
+ h(q̇1).

Obviously, this Lagrangian is invariant:

ẼC

1 (L) =
∂L

∂q1
+ q2

∂L

∂q2
+ q̇2

∂L

∂q̇2
= 0 and ẼC

2 (L) =
∂L

∂q2
= 0.
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A short calculation shows that the Euler-Lagrange equations for the above La-
grangian do indeed return the differential equations q̈1 = 0 and q̈2 = q̇1q̇2 +
b exp(q1)q̇

2
1 , as they should.

Our analysis reveals only whether there is an invariant Lagrangian. In the case 2C
(a = b = 0) where no such Lagrangian exists there could still be a (necessarily non-
invariant) Lagrangian for the second-order system q̈1 = 0, q̈2 = q̇1q̇2 on the two-
dimensional Lie group. In [9] Douglas gave a more-or-less complete classification of
the inverse problem for two-dimensional systems. A modern geometric approach
to Douglas’s classification can be found in [22]. A meticulous analysis using the
methods described there shows that a regular Lagrangian must exist, even in the
case 2C where we concluded that there is no invariant Lagrangian. In more detail,
our case 1 belongs to Douglas’s case I, and our cases 2A, 2B and 2C to his case IIa1.

Observe that if a = b = 0 we are back in the example of the canonical connection.
According to [23], the most general Lagrangian for the case 2C, subject to the
regularity condition, is given by

L(q1, q2, q̇1, q̇2) = q̇1θ(q1, q2, z) + ψ(q̇1), z = q̇2/q̇1,

where ψ is an arbitrary function and θ is a solution of the PDE

zθzz + zθzq2 + θq1z − θq2 = 0

(subscripts denote derivatives, as usual). For example, the function

L(q1, q2, q̇1, q̇2) = 1
2
q̇2
1 + exp(−q1)

q̇2
2

2q̇1

is a Lagrangian for the system in 2C. It is clearly not invariant since

ẼC

1 (L) = exp(−q1)
q̇2
2

2q̇1
.

In fact, there does not exist a function θ for which the Lagrangian is invariant
and regular. The relations ẼC

1 (L) = 0 and ẼC
2 (L) = 0 imply that θq1 + zθz = 0

and θq2 = 0, respectively. By taking the z -derivative of the first relation and by
applying the second in the defining relation of θ , we can conclude that also θz = 0
and θq1 = 0. But then θ is a constant and the Lagrangian is clearly degenerate.

9. Outlook

We discuss briefly two possible extensions of the current framework. First of all,
let M be a manifold with a given symmetry group G . One can then set up an
inverse problem for G-invariant Lagrangians on M . In that case, it has been
shown in [5] that the Euler-Lagrange equations reduce to the so-called Lagrange-
Poincaré equations. On the other hand, the technique of adapted frames can be
easily extended to manifolds with a symmetry group; a description of the reduced
equations for arbitrary second-order equations can be found in [8]. So the question
would be when these reduced equations are of Lagrange-Poincaré form.

The second extension can be situated at the level of Lie algebroids. In this paper,
we have discussed the inverse problem for Lagrangians on a Lie algebra g . The
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original inverse problem deals with Lagrangians on TM . Both g and TM are
the two simplest cases of a Lie algebroid. So it seems natural to study an inverse
problem for arbitrary Lie algebroids (the corresponding Lagrangian equations were
given in e.g. [15]). The situation in the previous paragraph then coincides with
the case that the Lie algebroid is TM/G , the so-called Atiyah algebroid.
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