Parametrization of Coadjoint Orbits of $\mathbb{R}^n \rtimes \mathbb{R}$

Bechir Dali*

Communicated by J. Ludwig

Abstract. We give an algorithm for an explicit construction of quantizable canonical coordinates on the coadjoint orbits of across entire specific layers and an explicit description for the cross-section of the type I Lie group $\mathbb{R}^n \rtimes \mathbb{R}$. Mathematics Subject Index 2000: 22E25, 53D50.

Keywords and phrases: Coadjoint orbits, parametrization.

1. Introduction

We begin by setting some notations which will be used throughout the paper. Let $G = \mathbb{R}^n \rtimes \mathbb{R}$ be the connected, simply connected, type I Lie group with Lie algebra \mathfrak{g} . Put $\mathfrak{g} = \mathfrak{n} \oplus \mathfrak{a}$, where $\mathfrak{n} = \mathbb{R}^n$ is a *n* dimensional abelian ideal and $\mathfrak{a} = \mathbb{R}$ is a one dimensional subalgebra of \mathfrak{g} . Let \mathfrak{g}^* be the linear dual of \mathfrak{g} . We denote the complexification of \mathfrak{g} by \mathfrak{s} .

In [2], one equips the complexification of the Lie algebra of any exponential Lie group G with an "adaptable basis" (Z_1, \ldots, Z_n) . In order to describe explicitly the structure of the coadjoint action for such an exponential Lie group G, it is algorithmically built in [2], starting from the adaptable basis,

(1) an (ultrafine) layering $\mathcal{L} = \{\Omega\}$; each ultrafine layer Ω in \mathcal{L} is *G*-invariant and all the orbits \mathcal{O} in Ω are isomorphic,

(2) a family of cross-sections for each ultrafine layer Ω with an analytic cross-section mapping, and

(3) a family of analytical functions, p_i, q_i , defined on an open neighborhood of Ω and whose restrictions to any orbit \mathcal{O} in Ω gives canonical coordinates for \mathcal{O} . These functions are called adaptable coordinates.

In this paper we will be concerned with a type I group $G = \mathbb{R}^n \rtimes \mathbb{R}$ not necessarily exponential, that is the set of purely imaginary roots for \mathfrak{g} can be not empty.

In [1], coadjoint orbits of this kind of groups are classified and in this paper we will focus on the construction of layering, cross-sections and canonical coordinates. To do with, we choose a "suitable basis" $(Z_1, \ldots, Z_n, Z_{n+1} = H)$ for \mathfrak{s} , then "suitable layers" $\Omega_{\mathbf{e}, \Psi}$ are defined for which we explicit the description of

ISSN 0949–5932 / \$2.50 (c) Heldermann Verlag

^{*}This work was supported by the DGRSRT-CNRS contract 06/R 15-02.

the cross-section and the construction of canonical coordinates. We finally prove these coordinates are quantizable.

The paper is organized as follows. In Section 2 we recall some results of linear algebra and matrix reduction and we construct a "suitable basis" in \mathfrak{s} . Then we examine the stratification and the "fine" stratification used in [5] and [8]. In Section 3 we describe explicitly the parametrization of a single coadjoint orbit. In Section 4 we complete the stratification procedure of \mathfrak{g}^* and we describe the cross-section and the cross-section mapping. Finally in Section 4, we construct the canonical coordinates and we prove that they are quantizable.

2. Stratification of g^*

2.1. Preliminaries.

Let us begin this section by some results of linear algebra and matrix reduction. One chooses H to be an element in $\mathfrak{g} \setminus \mathfrak{n}$ and consider the restriction of the adjoint action of H on $\mathfrak{n}_{\mathbb{C}}$. Put $A = \operatorname{ad}_{H}|_{\mathfrak{n}_{\mathbb{C}}}$, then we have the following.

(i) If α is an eigenvalue of A, then $\overline{\alpha}$ is also an eigenvalue with the same multiplicity $m(\alpha)$ in the characteristic polynomial $C(X) = \det(A - XI_n)$.

(ii) Let α be an eigenvalue of A and set $(Z_1, \ldots, Z_{m(\alpha)})$ be a basis for the characteristic subspace $F(\alpha) = \operatorname{Ker}(A - \alpha I_n)^{m(\alpha)}$, then $F(\overline{\alpha}) = \overline{F(\alpha)}$ and $(\overline{Z_1}, \ldots, \overline{Z_{m(\alpha)}})$ is a basis in $F(\overline{\alpha})$.

An eigenvalue α of A will thus be denoted $\alpha = 0$ or $\alpha = \lambda$ or $\alpha = \lambda \pm i\omega$ or $\alpha = \pm i\omega$ where λ is in $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ and $\omega > 0$. The collection of eigenvalues is the spectrum Sp(A) of A.

Remark 2.1. The group G is exponential if and only if $Sp(A) \cap i\mathbb{R}^* = \emptyset$.

Let $\{\pm i\omega_1, \ldots, \pm i\omega_s\}$ be the set of purely imaginary eigenvalues of A ($\omega_j > 0$), since G is of type I, then there exists $c \in \mathbb{R}^*$ such that:

$$\forall j = 1, \dots, s, \ \omega_j = ca_j, \text{ with } a_j \text{ rational }$$

Denote \mathbb{Z}^+ the set of strictly positive integral numbers. Thus there is $q \in \mathbb{Z}^+$ and $p_r \in \mathbb{Z}^+$ such that

$$\forall j = 1, \dots, s, \ \omega_j = c \frac{p_j}{q},$$

and then, changing H by $\frac{q}{c}H$, we can suppose that we have

$$\{\omega_1,\ldots,\omega_s\}\subset\mathbb{Z}^+.$$

Now decompose $\mathfrak{n}_{\mathbb{C}}$ into the direct sum of the characteristic subspaces $F(\alpha)$ for A.

$$\mathfrak{n}_{\mathbb{C}} = \bigoplus_{k=1}^{r} F(\alpha_k),$$

where $\text{Sp}(A) = \{\alpha_1, \ldots, \alpha_r\}$. Recall that the matrix J of A in this decomposition has the form

$$J = \begin{pmatrix} J(\alpha_1) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & J(\alpha_r) \end{pmatrix}$$

where each block $J(\alpha_k)$ is the matrix of the endomorphism $A|_{F(\alpha_k)}$ and for each $k = 1, \ldots, r$, there is a Jordan-Hölder basis for $F(\alpha_k)$, on this basis, the matrix $J(\alpha_k)$ has the form

$$J(\alpha_k) = \begin{pmatrix} J_1^{(k)} & 0 & \dots & 0\\ 0 & J_2^{(k)} & 0 & 0\\ \vdots & \ddots & \ddots & \vdots\\ 0 & \dots & 0 & J_{r_k}^{(k)} \end{pmatrix}$$

with

$$J_j^{(k)} = \begin{pmatrix} \alpha_k & 1 & \dots & 0 \\ & \ddots & \ddots & \\ 0 & & \alpha_k & 1 \\ 0 & \dots & & \alpha_k \end{pmatrix} \in M_{m_j^{(k)}}(\mathbb{C})$$

With these notations, the multiplicity of α_k as a root of the characteristic polynomial C_A is $m(\alpha_k) = \sum_{j=1}^{r_k} m_j^{(k)}$, the multiplicity of α_k as a root of the minimal polynomial M_A of A is $m'(\alpha_k) = \max\{m_j^{(k)}, j = 1, \ldots, r_k\}$ and r_k is the dimensionality of the eigenspace $E(\alpha_k)$ associated to the eigenvalue α_k . Let us denote the Jordan-Hölder basis for $F(\alpha_k)$ by

$$\mathcal{B}(\alpha_k) = \left((W_{1,1}^{(k)}, \dots, W_{m_1^{(k)}, 1}^{(k)}), \dots, (W_{1, r_k}^{(k)}, \dots, W_{m_{r_k}^{(k)}, r_k}^{(k)}) \right).$$

Then

$$\operatorname{ad}_{H}(W_{1,j}^{(k)}) = \alpha_{k} W_{1,j}^{(k)}, \quad j = 1, \dots, r_{k}$$

and, if $m_j^{(k)} > 1$,

$$\operatorname{ad}_{H}(W_{i,j}^{(k)}) = \alpha_{k}W_{i,j}^{(k)} + W_{i-1,j}^{(k)}, \quad \text{with} \quad i > 1, j = 1, \dots, r_{k}.$$

Consider now the dual basis

$$\left(((W_{1,1}^{(k)})^*,\ldots,(W_{m_1^{(k)},1}^{(k)})^*),\ldots,((W_{1,r_k}^{(k)})^*,\ldots,(W_{m_{r_k}^{(k)},r_k}^{(k)})^*)\right),$$

then the matrix of $\operatorname{ad}_{H}^{*}|_{\mathfrak{n}_{\mathbb{C}}^{*}}$ on this basis is -tA, we have the following relations: if $m_{j}^{(k)} > 1$, and $i < m_{j}^{(k)}$,

$$\operatorname{ad}_{H}^{*}((W_{i,j}^{(k)})^{*}) = -\alpha_{k}(W_{i,j}^{(k)})^{*} - (W_{i+1,j}^{(k)})^{*},$$

and

$$\operatorname{ad}_{H}^{*}((W_{m_{j}^{(k)},j}^{(k)})^{*}) = -\alpha_{k}(W_{m_{j}^{(k)},j}^{(k)})^{*}.$$

Remark 2.2. Recall that since ad H is a real endomorphism then we can construct a real basis in \mathfrak{n} as follows. If $\alpha_k \in \mathbb{R}$ we can choose the Jordan Hölder basis $(Z_1, \ldots, Z_{m(\alpha_k)})$ for $A|_{F(\alpha_k)}$ in \mathfrak{n} , if $\Im(\alpha_k) = \omega_k > 0$, then

$$(Z_1,\ldots,Z_{m(\alpha_k)},\overline{Z_1},\ldots,\overline{Z_{m(\alpha_k)}})$$

is a Jordan-Hölder basis for $A|_{F(\alpha_K)\oplus F(\overline{\alpha_k})}$.

Put $Z_1 = U_1 + iV_1, \ldots, Z_{m(\alpha_k)} = U_{m(\alpha_k)} + iV_{m(\alpha_k)}$ where $U_j, V_j \in \mathfrak{g}$. Now we replace this basis by the real basis

$$(U_1, V_1, \ldots, U_{m(\alpha_k)}, V_{m(\alpha_k)})$$

and we finally get a basis for \mathfrak{n} on which the matrix of A has the following form

$$S = \begin{pmatrix} S(\alpha_1) & 0 & \dots & 0 \\ 0 & S(\alpha_2) & \dots & 0 \\ & & \ddots & \\ 0 & & \dots & S(\alpha_s) \end{pmatrix}$$

where $S(\alpha_k) = J(\alpha_k)$, if α_k is real, while if $\Im(\alpha_k) = \omega_k > 0$,

$$S(\alpha_k) = \begin{pmatrix} S_1^{(k)} & 0 & \dots & 0\\ 0 & S_2^{(k)} & 0 & 0\\ \vdots & \ddots & \ddots & \vdots\\ 0 & \dots & 0 & S_{r_k}^{(k)} \end{pmatrix}$$

where

$$S_{j}^{(k)} = \begin{pmatrix} A_{k} & I_{2} & \dots & 0 \\ & \ddots & \ddots & \\ 0 & \dots & A_{k} & I_{2} \\ 0 & \dots & & A_{k} \end{pmatrix} \quad \text{and} \quad A_{k} = \begin{pmatrix} \Re(\alpha_{k}) & \omega_{k} \\ -\omega_{k} & \Re(\alpha_{k}) \end{pmatrix}$$

Note that each $S(\alpha_k)$ is a $(2m(\alpha_k)) \times (2m(\alpha_k))$ real matrix and $S_j^{(k)}$ is a $(2m_j^{(k)}) \times (2m_j^{(k)})$ real matrix. This reduction is known as the Schur reduction.

2.2. Suitable basis.

In this step, we shall define and construct a suitable basis for $\mathfrak{s} = \mathfrak{g}_{\mathbb{C}}$.

Fix *H* in $\mathfrak{g} \setminus \mathfrak{n}$ with spectrum:

$$\operatorname{Sp}(\operatorname{ad}_H) = \operatorname{Sp}^1(\operatorname{ad}_H) \cup \operatorname{Sp}^2(\operatorname{ad}_H) \cup \operatorname{Sp}^3(\operatorname{ad}_H), \tag{1}$$

where

$$Sp^{1}(ad_{H}) = \{\alpha_{0} = 0, \lambda_{1}, \dots, \alpha_{a} = \lambda_{a}\},\$$

$$Sp^{2}(ad_{H}) = \{\alpha_{a+1} = \lambda_{a+1} + i\omega_{a+1}, \overline{\alpha_{a+1}}, \dots, \alpha_{b-1} = \lambda_{a+s} + i\omega_{a+s}, \alpha_{b} = \overline{\alpha_{b-1}}\},\$$

$$Sp^{3}(ad_{H}) = \{\alpha_{b+1} = i\omega_{b+1}, -i\omega_{b+1}, \dots, i\omega_{b+t}, \alpha_{r} = -i\omega_{b+t}\}$$

with $\lambda_i \in \mathbb{R}^*, \omega_j \in \mathbb{R}^+$ $(1 \le j \le s)$ and $\omega_j \in \mathbb{Z}^+$ (s < j). Then $\mathfrak{n}_{\mathbb{C}} = \mathfrak{n}^1 \oplus \mathfrak{n}^2 \oplus \mathfrak{n}^3$, where

$$\mathfrak{n}^{1} = F(0) \oplus \bigoplus_{1 \le k \le a} F(\lambda_{k}),$$

$$\mathfrak{n}^{2} = \bigoplus_{k=a+2j+1 \le b} \left(F(\lambda_{k} + i\omega_{k}) \oplus F(\lambda_{k} - i\omega_{k}) \right),$$

$$\mathfrak{n}^{3} = \bigoplus_{k=b+2j+1 \le r} \left(F(i\omega_{k}) \oplus F(-i\omega_{k}) \right).$$

A suitable basis contains an union of basis for these subspaces.

For $F(\lambda_k) \subset \mathfrak{n}^1$ and eventually F(0), we choose a real basis $(Z_1, \ldots, Z_{m(\lambda_k)})$ for which the matrix of $\operatorname{ad}_{H|F(\lambda_k)}$ has a normal Jordan form $J(\lambda_k)$. The suitable basis for \mathfrak{n}^1 is the concatenation of these basis (for instance, we can order the eigenvalues $\lambda_k \neq 0$ following the natural ordering in \mathbb{R}).

For $F(\lambda_k + i\omega_k) \oplus F(\lambda_k - i\omega_k) \subset \mathfrak{n}^2$, we choose first a complex basis $(Z_1, \ldots, Z_{m(\lambda_k + i\omega_k)})$ for $F(\lambda_k + i\omega_k)$, for which the matrix of $\operatorname{ad}_{H_{|F(\lambda_k + i\omega_k)}}$ has a normal Jordan form $J(\lambda_k + i\omega_k)$, then we get the basis:

$$(Z_1, \overline{Z_1}, \ldots, Z_{m(\lambda_k + i\omega_k)}, \overline{Z_{m(\lambda_k + i\omega_k)}}).$$

The suitable basis for n^2 is the concatenation of these basis.

For $F(i\omega_k) \oplus F(-i\omega_k) \subset \mathfrak{n}^3$, we choose first a complex basis $(Z_1, \ldots, Z_{m(i\omega_k)})$ for $F(+i\omega_k)$, for which the matrix of $\operatorname{ad}_{H|F(i\omega_k)}$ has a normal Jordan form $J(i\omega_k)$, then we get the basis:

$$(Z_1, \overline{Z_1}, \ldots, Z_{m(\lambda_k + i\omega_k)}, \overline{Z_{m(\lambda_k + i\omega_k)}}).$$

But now, the suitable basis for \mathfrak{n}^3 is not a simple concatenation: after performing the union of these basis, we change the ordering by putting at the end the last vector of each Jordan block, recall these vectors were denoted $W_{m_j^{(k)},j}^{(k)}$. For sim-

plicity, with the definition of a, b and t in 1, put $c = n - \sum_{j=1}^{t} r_{b+j}$. Thus the end of our suitable basis is

$$(Z_{c+1},\ldots,Z_n) = \left(W_{m_1^{(b+1)},1}^{(b+1)}, \overline{W_{m_1^{(b+1)},1}^{(b+1)}}, \ldots, W_{m_{r_{b+t},r_{b+t}}^{(b+t)}}^{(b+t)}, \overline{W_{m_{r_{b+t},r_{b+t}}^{(b+t)}}^{(b+t)}} \right).$$

Definition 2.3. We call suitable basis any basis $(Z_1, \ldots, Z_n, Z_{n+1})$ for \mathfrak{s} such that the purely imaginary roots of \mathfrak{s} take integral values on $Z_{n+1} = H \in \mathfrak{g} \setminus \mathfrak{n}$ and (Z_1, \ldots, Z_n) is a basis for $\mathfrak{n}_{\mathbb{C}}$ obtained through the preceding procedure, by putting the matrix of ad_H in a normal Jordan form and choosing a good ordering on vectors.

Remark 2.4. Let us remark that if the set of purely imaginary roots of \mathfrak{g} is empty, then a suitable basis is a good basis (see [6]) and even an adaptable basis in the sense of [2] for \mathfrak{s} .

From now on we fix once and for all a suitable basis (Z_1, \dots, Z_{n+1}) for \mathfrak{s} .

2.3. Primary stratification.

Staring with our suitable basis $(Z_1, \ldots, Z_{n+1} = H)$ for \mathfrak{s} , we apply the stratification procedure of [6] to \mathfrak{g}^* . Consider the flag of ideals in \mathfrak{s} :

$$\mathfrak{s}_i = \operatorname{span}\{Z_1, \dots, Z_i\}, \text{ and } \mathfrak{s}_0 = \{0\}.$$

We identify an element ℓ belonging to the complex dual \mathfrak{s}^* with the (n + 1)tuple $(\ell_1, \ell_2, \ldots, \ell_{n+1})$ where $\ell_j = \ell(Z_j)$, and we set $Z_j^* = (0, 0, \ldots, 0, 1, 0, \ldots, 0)$ (where 1 is in the *j*-th position). We embed \mathfrak{g}^* in \mathfrak{s}^* in the natural way so that $\mathfrak{g}^* = \{\ell \in \mathfrak{s}^*, \ \ell(\overline{Z}) = \overline{\ell(Z)}\}$. Let $\mu_k : G \to \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ be defined by $gZ_k^* = \mu_k(g)Z_k^* \mod \mathfrak{s}_k^{\perp}$, and let $\alpha_k : \mathfrak{g} \to \mathbb{C}$ be the differential of μ_k .

To each $\ell \in \mathfrak{g}^*$ there is associated a set $\mathbf{e}(\ell) \subset \{1, 2, \dots, n+1\}$ of "jump indices" defined by

$$\mathbf{e}(\ell) = \{1 \le j \le n+1, \ \mathfrak{s}_j \not\subset \mathfrak{s}_{j-1} + \mathfrak{s}(\ell)\}.$$

It is easily seen that

$$\mathbf{e}(\ell) = \{j, \ \mathfrak{s}_j^\ell \neq \mathfrak{s}_{j-1}^\ell\} = \{j, \ Z_j \notin \mathfrak{s}_{j-1} + \mathfrak{s}^\ell\}.$$

One can see that if $\mathbf{e}(\ell) \neq \emptyset$ then $\mathbf{e}(\ell) = \{k, n+1\}$ with k < n+1. In fact the index k is given by the following equation

$$k = \min\{1 \le j \le n+1, \ \mathfrak{s}_j \not\subset \mathfrak{s}^\ell\}.$$

Put:

$$\mathfrak{h}(\ell) = \mathfrak{s}_k^\ell = \mathfrak{n}_\mathbb{C}.$$

The subalgebra $\mathfrak{h}(\ell)$ is the Vergne polarization associated with the sequence $\{\mathfrak{s}_j\}$: $\mathfrak{h}(\ell) = \sum_{j} \mathfrak{s}_j(\ell)$, and n+1 is the unique index j such that $\mathfrak{s}_j \not\subset \mathfrak{h}(\ell)$.

For a subset \mathbf{e} of $\{1, \ldots, n+1\}$, the set $\Omega_{\mathbf{e}} = \{\ell \in \mathfrak{g}^*, \mathbf{e}(\ell) = \mathbf{e}\}$ is *G*-invariant, and the collection of non-empty $\Omega_{\mathbf{e}}$ is a stratification of \mathfrak{g}^* , which we shall call the "coarse stratification" of \mathfrak{g}^* . The $\Omega_{\mathbf{e}}$ are determined by polynomials as follows:

Lemma 2.5. [5],[8] If $e = \{k, n+1\}$, we have

 $\Omega_{\mathbf{e}} = \{ \ell \in \mathfrak{g}^*, \ \langle \ell, [H, Z_k] \rangle \neq 0 \quad and \ for \ all \quad j < k, \ \langle \ell, [H, Z_j] \rangle = 0 \}.$

Each $\Omega_{\mathbf{e}}$ is a *G*-invariant algebraic set, the collection $\{\Omega_{\mathbf{e}}\}$ constitutes a partition of \mathfrak{g}^* , and for each $\mathbf{e} = \{k, n+1\}$ and $\mathbf{e}' = \{k', n+1\}$, the set $\bigcup_{\mathbf{e}', k' \geq k} \Omega_{\mathbf{e}'}$ is a Zariski-open subset of \mathfrak{g}^* (see [5], [8]). The collection of non-empty $\{\Omega_{\mathbf{e}}\}$ is referred to herein as the "primary stratification" of \mathfrak{g}^* ("coarse stratification" in [5] and [6]). As the name suggests, this partition is too coarse for some purposes,

3. Parametrizing an orbit

and we will see in the sequel the refinement of this stratification.

Set $\Omega = \Omega_{\mathbf{e}}$ a layer in which the dimensional orbits is 2 with $\mathbf{e} = \{k, n+1\}$ and let $\ell \in \Omega_{\mathbf{e}}$. We denote by \mathcal{O}_{ℓ} the orbit of ℓ . Set

$$\mathcal{U} = \{\ell \in \mathfrak{s}^*, \ \langle \ell, [H, Z_k] \rangle \neq 0\}.$$

Note that Z_k may be in $\mathfrak{s} \setminus \mathfrak{g}$ and in this situation write $Z_k = Y_1 + iY_2$. For $\epsilon = 1, 2$ put

$$\mathcal{U}^{\epsilon} = \{ \ell \in \mathcal{U}, \ \langle \ell, [H, Y_{\epsilon}] \rangle \neq 0 \},\$$

and

$$\Omega^{\epsilon} = \Omega \cap \mathcal{U}^{\epsilon}.$$

Put $Q^{\epsilon} : \mathbb{R}^2 \times \mathcal{U}^{\epsilon} \to \mathfrak{s}^*$ be defined by

$$Q^{\epsilon}(t,\ell) = \exp t_1 H \exp t_2 Y_{\epsilon} \ell,$$

then if $k \leq c$, the map $t \mapsto Q^{\epsilon}(t, \ell)$ is a diffeomorphism between \mathbb{R}^2 and \mathcal{O}_{ℓ} , for each $\ell \in \Omega_{\mathbf{e}}$. If k > c, this mapping is only surjective. Then we have functions $Q_i^{\epsilon} : \mathbb{R}^2 \times \mathcal{U}^{\epsilon} \to \mathfrak{s}^*$ whose restriction to $\mathbb{R}^2 \times \Omega^{\epsilon}$ generates each orbit:

$$\mathcal{O}_{\ell} = \{ Q^{\epsilon}(t,\ell), \ t = (t_1, t_2) \in \mathbb{R}^2 \}.$$

More precisely, write $Q^{\epsilon}(t, \ell) = \sum_{j=1}^{n+1} Q_j^{\epsilon}(t, \ell) Z_j^*$, then the functions Q_j^{ϵ} are as follows.

Proposition 3.1. Let $\ell \in \Omega_{\mathbf{e}}$ with $\mathbf{e} = \{k, n+1\}$. Then we have:

$$Q_{n+1}^{\epsilon}(t,\ell) = \ell_{n+1} + t_2 \langle \ell, [H, Y_{\epsilon}] \rangle = Q_{n+1}^{\epsilon}(t_2,\ell).$$

and

Case 1: $1 \le k \le c$ (i) $\forall j = 1, \dots, k-1, \ Q_j^{\epsilon}(t, \ell) = \ell_j.$ (ii) If $\alpha_k = 0$, then we have

$$Q_k^{\epsilon}(t,\ell) = \ell_k - t_1 \ell_{k-1}.$$

(iii) If $\alpha_k \neq 0$, then we have

$$Q_k^{\epsilon}(t,\ell) = \ell_k + \frac{e^{-t_1\alpha_k} - 1}{\alpha_k} \langle \ell, [H, Z_k] \rangle = e^{-t_1\alpha_k} \ell_k$$

(iv) Finally for j such that k < j < n+1, then

$$Q_{j}^{\epsilon}(t,\ell) = e^{-t_{1}\alpha_{j}} \left(\ell_{j} + P_{j}(t_{1},\ell_{k-1},\ldots,\ell_{j-1}) \right),$$

where P_j is linear on $\ell_{k-1}, \ldots, \ell_{j-1}$ and a polynomial in t_1 with degree less then j - k with $P_j(0, \ell_{k-1}, \ldots, \ell_{j-1}) = 0$.

Case 2: $c+1 \le k \le n$

In this case $t \mapsto Q^{\epsilon}(t, \ell)$ is no more a diffeomorphism between \mathbb{R}^2 and \mathcal{O}_{ℓ} , for each $\ell \in \Omega_{\mathbf{e}}$. But nevertheless we have

$$\mathcal{O}_{\ell} = \{ Q^{\epsilon}(t,\ell), \ t = (t_1, t_2) \in \mathbb{R}^2 \}.$$

The functions $Q_i^{\epsilon}(t, \ell)$ are given as follows:

$$Q_j^{\epsilon}(t,\ell) = \ell_j \quad \forall j, \quad j \le k-1,$$

and

$$Q_j^{\epsilon}(t,\ell) = e^{-it_1\omega_j}\ell_j \quad \forall j, \ k \le j \le n.$$

In any case, we shall write:

$$Q^{\epsilon}(t,\ell) = Q_{n+1}^{\epsilon}(t_2,\ell)Z_{n+1}^* + \mathcal{Q}(t_1,\ell),$$

where \mathcal{Q} is an analytic (real) function defined on $\mathbb{R} \times \mathcal{U}$, with values in \mathfrak{n}^* .

Proof. The value of Q_{n+1}^{ϵ} is usual and easy to compute. For the other coordinates, we get:

Case 1: $1 \le k \le c$

In this case we have the two following subcases.

Case 1-1: $\alpha_k \notin i\mathbb{R}^* \ (k \leq b)$

The map Q^{ϵ} is a diffeomorphism between \mathbb{R}^2 and \mathcal{O}_{ℓ} and the expression of Q_j^{ϵ} are as in [6], [9] and [8].

Case 1-2: $\alpha_k \in i\mathbb{R}^*$ $(b < k \le c)$

In this case we have the same expressions for Q_j^{ϵ} as in the preceding case and the map Q^{ϵ} is still a diffeomorphism between \mathbb{R}^2 and \mathcal{O}_{ℓ} , this is consequence of the fact that Z_k^* is not an eigenvector of ad_H^* . In this case $\mathrm{ad}_H^* Z_k^* = -i\omega_k Z_k^* - Z_h^*$, where h = k + 2 or h > c. In any case, we have

$$Q_k^{\epsilon}(t,\ell) = e^{-it_1\omega_k}\ell_k$$
 and $Q_h^{\epsilon}(t,\ell) = e^{-it_1\omega_k}(\ell_h - t_1\ell_k).$

Since $\ell_k \neq 0$, this formula proves that Q^{ϵ} is still a global diffeomorphism from \mathbb{R}^2 to \mathcal{O}_{ℓ} .

Case 2: $c+1 \le k \le n$

In this case Z_k^* is an eigenvector of ad_H^* . The map Q^{ϵ} is not a diffeomorphism between \mathbb{R}^2 and \mathcal{O}_{ℓ} (Q^{ϵ} is not one to one). In this case the orbit \mathcal{O}_{ℓ} is diffeomorphic to $\mathbb{R} \times S^1$ where

$$S^1 = \{ z \in \mathbb{C}, \ |z| = 1 \},\$$

since the non constant coordinates in \mathfrak{n}^* correspond to $c < j \leq n$, and they have the form $Q_j^{\varepsilon}(t, \ell) = e^{-it_1\omega_j}\ell_j$.

It is clear from the preceding that for each j, Q_j^{ϵ} is analytic (real) on $\mathbb{C}^2 \times \mathcal{U}_{\epsilon}$.

Given an $\ell \in \Omega_{\mathbf{e}}$ with $\mathbf{e} = \{k, n+1\}$ such that c < k and looking for the coordinates $(Q_j(t, \ell)^{\epsilon})_{k \leq j \leq n}$, we see that if we need to construct a family of diffeomorphisms between some collection of \mathcal{O}_{ℓ} and the two dimensional manifold $\mathbb{R} \times S^1$ then we must refine our primary stratification.

4. Suitable layering and cross-section

4.1. Suitable layering.

As usual, we are concerned with $G = \mathbb{R}^n \rtimes \mathbb{R}$ not exponential that is the set of purely imaginary roots of \mathfrak{g} is non empty set. More precisely, keeping our preceding notations, we are interested in refining a primary layer $\Omega_{\mathbf{e}}$, with $\mathbf{e} = \{k, n+1\}$ with k > c as a disjoint union of sublayers.

Recall that our suitable basis $(Z_1, \ldots, Z_n, Z_{n+1})$ in \mathfrak{s} verifies $Z_{n+1} = H$ and the eigenvectors of ad_H^* corresponding to purely imaginary eigenvalues are ordered at the end of the dual basis: they are $(Z_{c+1}^*, \ldots, Z_n^*)$. Recall that we have also

$$Z_{c+2} = \overline{Z_{c+1}}, \dots, Z_n = \overline{Z_{n-1}}.$$

Put

$$J = \{c + 1, c + 3, \dots, n - 1\}.$$

Let $\mathbf{e} = \{k, n+1\}$, with c < k < n+1. For each $\ell \in \Omega_{\mathbf{e}}$, we associate

 $\Psi(\ell) = \{ j \in J, \ k \le j \quad \text{and} \quad \ell_j \ne 0 \}.$

For any other layer, if $\ell \in \Omega_{\mathbf{e}}$, $\mathbf{e} = \emptyset$ or $\mathbf{e} = \{k, n+1\}$ with $k \leq c$, we put $\Psi(\ell) = \emptyset$.

Then we have the following

Lemma 4.1. For any $\ell \in \Omega_{\mathbf{e}}$, and for any $s \in G$, we have

$$\Psi(s\ell) = \Psi(\ell).$$

Proof. Let $\ell \in \Omega_{\mathbf{e}}$. Let us remark that in fact $\Psi(\ell) = \Psi(\ell|_{\mathfrak{n}_{\mathbb{C}}})$, then if $s \in \exp(\mathfrak{n})$, it is easily seen that

$$\Psi(\ell) = \Psi(s\ell).$$

Now, since $\ell \in \Omega_{\mathbf{e}}$, then $\langle \ell, [H, Z_{k'}] \rangle = 0$ holds for any k' < k and, for $t \in \mathbb{R}$ and $j \in J$,

$$\langle Ad^*(exptH)\ell, Z_j \rangle = e^{-\imath t \omega_j} \ell_j.$$

and thus the conclusion holds.

We now complete the definition of the suitable layering \mathcal{P} . For any set $\mathbf{e} \subset \{1, \ldots, n+1\}$ and any set $\Psi \subset J$, set

$$\Omega_{\mathbf{e},\Psi} = \{\ell, \ \ell \in \Omega_{\mathbf{e}} \quad \text{such that} \quad \Psi(\ell) = \Psi\}.$$

Then $\Omega_{\mathbf{e},\Psi}$ is an algebraic subset of $\Omega_{\mathbf{e}}$. Let

$$\mathcal{P} = \{ \Omega_{\mathbf{e}, \Psi} \neq \emptyset, \ \mathbf{e} \subset \{ 1, \dots, n+1 \} \text{ and } \Psi \subset J \};$$

each $\Omega \in \mathcal{P}$ is an invariant subset of \mathfrak{g}^* . The layering \mathcal{P} will be called suitable layering of \mathfrak{g}^* defined from the suitable basis (Z_1, \ldots, Z_{n+1}) . \mathcal{P} has a partial ordering given as follows:

$$\Omega_{\mathbf{e},\Psi} \ll \Omega_{\mathbf{e}',\Psi'}$$

if and only if

$$\begin{cases} |\mathbf{e}| > |\mathbf{e}'|, \\ \text{or} \\ \mathbf{e} = \{k, n+1\}, \quad \mathbf{e}' = \{k', n+1\} \quad \text{and} \quad k \le c, \quad k < k', \\ \text{or} \\ \mathbf{e} = \{k, n+1\}, \quad \mathbf{e}' = \{k', n+1\}, \quad \{k, k'\} \subset \{c+1, \dots, n\} \qquad \text{and} \quad \Psi' \subset \Psi. \end{cases}$$

4.2. Cross-section.

Now let us consider $\Omega_{\mathbf{e},\Psi}$ with $\mathbf{e} = \{k, n+1\}$ and k > c. Then $\Psi \neq \emptyset$, we call ω_{Ψ} the greatest common divisor (*GCD*) of $\{\omega_j, j \in \Psi\}$, and

$$\Gamma_{\Psi} = \frac{2\pi}{\omega_{\Psi}} \mathbb{Z} = \bigcap_{j \in \Psi} \frac{2\pi}{\omega_j} \mathbb{Z}.$$

We call the number $\frac{2\pi}{\omega_{\Psi}}$ the period of each $\ell \in \Omega_{\mathbf{e},\Psi}$. Since $\omega_{\Psi} = GCD(\omega_j)$ then there exist $a_j \in \mathbb{Z}$ $(j \in \Psi)$ such that

$$\omega_{\Psi} = \sum_{j \in \Psi} a_j \omega_j$$

Fix these numbers a_i and define the function

$$u_{\Psi}(\ell) = \prod_{j \in \Psi} \ell_j^{a_j}$$

The rational function u_{Ψ} is regular and semi-invariant on $\Omega_{\mathbf{e},\Psi}$ Lemma 4.2. with

$$u_{\Psi}(Ad^*(\exp tH\ell)) = e^{-i\omega_{\Psi}t}u_{\Psi}(\ell).$$

Proof. Note that

$$u_{\Psi}(\ell) = u_{\Psi}(\ell|_{\mathfrak{n}}),$$

and thus we can easily see that for any $s \in \exp(\mathfrak{n}) = \mathbb{R}^n$ we have

$$u_{\Psi}(s\ell) = u_{\Psi}(\ell).$$

Now, for $t \in \mathbb{R}$, we have

$$u_{\Psi}(Ad^*(\exp tH\ell) = \prod_{j \in \Psi} e^{-i\omega_j a_j t} \ell_j^{a_j} = e^{-it\sum_{j \in \Psi} \omega_j a_j} u_{\Psi}(\ell) = e^{-it\omega_{\Psi}} u_{\Psi}(\ell).$$

We can now describe a cross-section for the G action on any layer in \mathcal{P} with the following

Let G be the type I semi-direct product $\mathbb{R}^n \rtimes \mathbb{R}$ and g its Lie Theorem 4.3. algebra. Choose a suitable basis for the complexification \mathfrak{s} of \mathfrak{g} as in Section 2. Let $\Omega_{\mathbf{e},\Psi}$ be a layer belonging to the resulting suitable stratification of \mathfrak{g}^* .

If $\mathbf{e} = \emptyset$, then the cross-section $\Sigma_{\mathbf{e},\Psi}$ for $\Omega_{\mathbf{e},\Psi}$ is $\Sigma_{\mathbf{e},\Psi} = \Omega_{\mathbf{e},\Psi}$.

If $\mathbf{e} = \{k, n+1\}$, and $\alpha_k = 0$, then the cross-section $\Sigma_{\mathbf{e},\Psi}$ for $\Omega_{\mathbf{e},\Psi}$ is the set

$$\Sigma_{\mathbf{e},\boldsymbol{\Psi}} = \{\ell \in \Omega_{\mathbf{e},\boldsymbol{\Psi}}, \ \ell_k = \ell_{n+1} = 0\}.$$

If $\mathbf{e} = \{k, n+1\}$, and $\alpha_k \notin i\mathbb{R}$, then the cross-section $\Sigma_{\mathbf{e},\Psi}$ for $\Omega_{\mathbf{e},\Psi}$ is the

set

$$\Sigma_{\mathbf{e}, \Psi} = \left\{ \ell \in \Omega_{\mathbf{e}, \Psi}, \ |\ell_k| = 1, \quad and \quad \ell_{n+1} = 0 \right\}.$$

If $\mathbf{e} = \{k, n+1\}, \ \alpha_k \in i\mathbb{R}^*, \ and \ k \leq c \ then \ the \ cross-section \ \Sigma_{\mathbf{e},\Psi} \ for \ \Omega_{\mathbf{e},\Psi}$ is the set

$$\Sigma_{\mathbf{e},\boldsymbol{\Psi}} = \left\{ \ell \in \Omega_{\mathbf{e},\boldsymbol{\Psi}}, \ \Re(\ell_k \overline{\ell_h}) = 0, \quad and \quad \ell_{n+1} = 0 \right\},$$

where h is defined by $\operatorname{ad}_{H}^{*}(Z_{k}^{*}) = -\alpha_{k}Z_{k}^{*} - Z_{h}^{*}$.

If $\mathbf{e} = \{k, n+1\}$, and k > c then the cross-section $\Sigma_{\mathbf{e},\Psi}$ for $\Omega_{\mathbf{e},\Psi}$ is the set

$$\Sigma_{\mathbf{e},\boldsymbol{\Psi}} = \left\{ \ell \in \Omega_{\mathbf{e},\boldsymbol{\Psi}}, \ u_{\boldsymbol{\Psi}}(\ell) > 0, \quad and \quad \ell_{n+1} = 0 \right\}.$$

Proof. Let $\ell \in \Omega_{\mathbf{e},\Psi}$. If $\mathbf{e} = \emptyset$ or $\mathbf{e} = \{k, n+1\}$ with $\alpha_k \notin i\mathbb{R}^*$, then $\Psi = \emptyset$ since each orbit in $\Omega_{\mathbf{e},\Psi}$ is isomorphic to its projection on $(\mathfrak{n}_2 \oplus \mathbb{R}H)^*$, we can conclude from [6] for the cross-section, in fact $\Omega_{\mathbf{e},\Psi} = \Omega_{\mathbf{e}}$. There remain two cases. **Case 1**: $\mathbf{e} = \{k, n+1\}$ with k > c, or $\Psi \neq \emptyset$.

Let $\mathcal{O} \subset \Omega_{\mathbf{e},\Psi}$ a coadjoint orbit in $\Omega_{\mathbf{e},\Psi}$. Suppose ℓ and $\ell' \in \mathcal{O} \cap \Sigma_{\mathbf{e},\Psi}$. First, since k is the first jump index, we have $\ell_j = \ell'_j$ for j < k. Moreover, by definition of Γ_{Ψ} , the stabilizer of ℓ (and ℓ') contains $\exp \Gamma_{\Psi} H$.

If $t \in \Gamma_{\Psi}$, for all $j \in \Psi$, there is $c_j \in \mathbb{Z}$ such that $t\omega_j = 2c_j\pi$ thus $(\exp(tH)\ell)_j = e^{-it\omega_j}\ell_j = \ell_j$. If $b < j \le n$ and $j \notin \Psi$, $\ell_j = 0$ and $(\exp(tH)\ell)_j = e^{-it\omega_j}\ell_j = 0$. Finally, $(\exp(tH)\ell)_{n+1} = \ell_{n+1} = 0$:

$$\exp(tH) \in G(\ell), \ \forall t \in \Gamma_{\Psi}.$$

Now put

$$\ell' = Ad^*(\exp(sX))Ad^*(\exp(tH))\ell$$
 with $t, s \in \mathbb{R}$ and $X \in \mathfrak{n}$

Then, we get

$$u_{\Psi}(\ell') = e^{-it\omega_{\Psi}}u_{\Psi}(\ell) > 0, \text{ and } u_{\Psi}(\ell) > 0.$$

Thus $t\omega_{\Psi} \in 2\pi\mathbb{Z}$, t belongs to Γ_{Ψ} , and $\ell' = Ad^*(\exp(sX))\ell$. Thus $\ell'_j = \ell_j$ for all $j \leq n$. Now using $\ell_{n+1} = \ell'_{n+1} = 0$ we get $\ell = \ell'$. **Case 2**: $\alpha_k \in i\mathbb{R}^*$ and $k \leq c$.

Let $\mathcal{O} \subset \Omega_{\mathbf{e}, \Psi}$ be a coadjoint orbit in $\Omega_{\mathbf{e}, \Psi}$. Suppose ℓ and $\ell' \in \mathcal{O} \cap \Sigma_{\mathbf{e}, \Psi}$. Put

$$\ell' = Ad^*(\exp(sX))Ad^*(\exp(tH))\ell \quad \text{with} \quad t, \ s \in \mathbb{R} \quad \text{and} \quad X \in \mathfrak{n}.$$

Then

$$\ell'_k = \langle \ell', Z_k \rangle = \langle \ell, e^{-t \operatorname{ad}_H} Z_k \rangle = e^{-it\omega_k} \ell_k$$

and

$$\ell'_h = \langle \ell, e^{-t \operatorname{ad}_H} Z_h \rangle = e^{-it\omega_k} (-t\ell_k + \ell_h)$$

Thus

$$\Re(\ell'_k\overline{\ell'_h}) = -t|\ell_k|^2 + \Re(\ell_k\overline{\ell_h}),$$

but since

$$\Re(\ell_k \overline{\ell_h}) = 0, \text{ and } \Re(\ell'_k \overline{\ell'_h}) = 0,$$

then t = 0 and $\ell' = Ad^*(\exp sX\ell)$. Now using $\ell_{n+1} = \ell'_{n+1} = 0$, then with the same arguments of the first case we get $\ell = \ell'$.

4.3. Cross-section mapping.

We use the notations of Section 3 First, if $\mathbf{e} = \{k, n+1\}, \mathcal{U} = \{\ell, \langle \ell, [H, Z_k] \rangle \neq 0\}.$ The step here is to define a function σ defined on an open neighborhood $\mathcal{U}_{\mathbf{e},\Psi}$ of $\Omega_{\mathbf{e},\Psi}, \sigma: \mathcal{U}_{\mathbf{e},\Psi} \to \mathfrak{s}^*$ which satisfy the following

- (i) σ is analytic on $\mathcal{U}_{\mathbf{e},\Psi}$.
- (ii) $\sigma(\Omega_{\mathbf{e},\Psi}) = \Sigma_{\mathbf{e},\Psi}$.
- If $\mathbf{e} = \emptyset$, we just use $\mathcal{U}_{\mathbf{e},\Psi} = \mathfrak{g}^*$ and $\sigma = id_{\mathfrak{g}^*}$.

Suppose now $\mathbf{e} \neq \emptyset$. In our very simple situation, we can summarize the methods of construction of σ used in [6] (when $\alpha_k \notin i\mathbb{R}^*$) in an easy way. In fact, we do not need to perform a complete substitution, that is to find $t(\ell) =$

 $(t_1(\ell), t_2(\ell))$ such that $Q^{\epsilon}(t(\ell), \ell)$ is in the cross-section. Indeed, we saw, that if $\mathbf{e} \neq \emptyset$, the points ℓ^* in the cross-section satisfy $\ell_{n+1}^* = 0$. Therefore, for our mapping σ ,

$$\sigma(\ell) = \sum_{j=1}^{n} \sigma_j(\ell) Z_j^*$$

holds. So we just look to the real number $t_1(\ell)$ such that $\mathcal{Q}(t_1(\ell), \ell)$ belongs to the cross-section. Let us put $\mathcal{Q}(t_1, \ell) = \sum_{j=1}^n \mathcal{Q}_j(t_1, \ell) Z_j^*$.

Define now the substitution function $t_1(\ell)$ on $\Omega_{\mathbf{e},\Psi}$, so that σ is given as follows:

$$\sigma(\ell) = \mathcal{Q}(t_1(\ell), \ell) = \sum_{j=1}^n \mathcal{Q}_j(t_1(\ell), \ell) Z_j^* \in \Sigma_{\mathbf{e}, \Psi}$$

In order to compute this substitution function $t_1(\ell)$, we examine \mathcal{Q}_k . We have the following cases

Case 1: $\alpha_k = 0$ Here we have $\ell_{k-1} = -\langle \ell, [H, Z_k] \rangle \neq 0$ and

$$\mathcal{Q}_k(t_1,\ell) = \ell_k - t_1 \ell_{k-1}.$$

The substitution function is such that $Q_k(t_1(\ell), \ell) = 0$ then we get $t_1(\ell) = \frac{\ell_k}{\ell_{k-1}}$.

Case 2: $\alpha_k \in \mathbb{C} \setminus i\mathbb{R} \ (0 < k \leq b)$ In this case we have $\ell_k = e^{t_1 \alpha_k} \langle \ell, [H, Z_k] \rangle \neq 0$ and

$$\mathcal{Q}_k(t_1,\ell) = e^{-t_1\alpha_k}\ell_k$$

The $t_1(\ell)$ substitution function is such that $|\mathcal{Q}_k(t_1(\ell), \ell)| = 1$. Then we get

$$t_1(\ell) = \frac{\ln |\ell_k|}{\Re(\alpha_k)}.$$

Finally, in any case, we can write

$$\sigma(\ell) = \sum_{j=1}^{n} \mathcal{Q}_j(t_1(\ell), \ell) Z_j^*$$

It is clear that the substitution function is analytic on $\mathcal{U}_{\mathbf{e},\Psi} = \mathcal{U}$ and then the mapping σ is analytic at each point ℓ in \mathcal{U} .

We are now in a position to construct the mapping σ in the case when $\alpha_k \in i\mathbb{R}^*$. Like in the preceding cases we make the substitution function $t_1(\ell)$. We have the following cases.

Case 3: $\alpha_k \in i\mathbb{R}^*$ and $k \notin \Psi$ $(b < k \le c)$ In this case, as above, $\ell_k \neq 0$ and the equation for $t_1(\ell)$ is

$$\Re\left(\mathcal{Q}_k(t_1(\ell),\ell)\overline{\mathcal{Q}_h(t_1(\ell),\ell)}\right) = -t_1|\ell_k|^2 + \Re(\ell_k\overline{\ell_h}) = 0$$

So we get the following substitution

$$t_1(\ell) = \frac{\Re(\ell_k \ell_h)}{|\ell_k|^2}.$$

The substitution function $t_1(\ell)$ and the cross-section function $\sigma(\ell) = \mathcal{Q}(t_1(\ell), \ell)$ are analytic real on $\mathcal{U}_{\mathbf{e},\Psi} = \mathcal{U}$.

In each of the preceding case, the orbit of $\ell \in \Omega_{\mathbf{e},\Psi}$ is diffeormorphic with \mathbb{R}^2 . In fact, we got a global system of coordinates on the coadjoint orbit \mathcal{O} in $\Omega_{\mathbf{e},\Psi}$ with the functions t_1 and ℓ_{n+1} .

Case 4: $\alpha_k \in i\mathbb{R}^*$ and $k \in \Psi$ (c < k)

In this case, we have to restrict ourselves to the open neighborhood $\mathcal{U}_{\mathbf{e},\Psi}$ of $\Omega_{\mathbf{e},\Psi}$ defined by:

$$\mathcal{U}_{\mathbf{e},\Psi} = \{ \ell \in \mathfrak{g}^*, \ \ell_j \neq 0, \ \forall j \in \Psi \}.$$

On $\mathcal{U}_{\mathbf{e},\Psi}$, we get $u_{\Psi}(\ell) \neq 0$ and the following equation to define $t_1(\ell)$:

$$u_{\Psi}\left(\mathcal{Q}(t_1(\ell),\ell) = e^{-i\omega_{\Psi}t_1(\ell)}u_{\Psi}(\ell) > 0.$$

This equation can be written as

$$e^{-i\omega_{\Psi}t_1(\ell)} = \frac{|u_{\Psi}(\ell)|}{u_{\Psi}(\ell)}.$$

Put $b_j = \frac{\omega_j}{\omega_{\Psi}} \in \mathbb{Z}$. The generalized substitution function $\zeta(\ell) = e^{-i\omega_{\Psi}t_1(\ell)}$ and the cross-section function:

$$\sigma(\ell) = \mathcal{Q}(t_1(\ell), \ell) = \sum_{j \in \Psi} e^{-i\omega_j t_1(\ell)} \ell_j Z_j^* = \sum_{j \in \Psi} \zeta(\ell)^{b_j} \ell_j Z_j^*$$

are analytic real on $\mathcal{U}_{\mathbf{e},\Psi}$. Moreover the 1-form dt_1 is well defined on $\mathcal{U}_{\mathbf{e},\Psi}$ by:

$$dt_1 = \frac{i}{\omega_\Psi} \frac{d\zeta}{\zeta}.$$

This defines $t_1(\ell)$ on $\mathcal{U}_{\mathbf{e},\Psi}$, only modulo $\frac{2\pi}{\omega_{\Psi}}\mathbb{Z}$. If we want to have a local analytic function, for any ℓ_0 , we choose a branch of the logarithm on \mathbb{C} that is analytic on $Arg(z) \in]Arg(u_{\Psi}(\ell_0)) - \pi, Arg(u_{\Psi}(\ell_0)) + \pi[$ then we obtain a local analytic expression for $t_1(\ell)$ defined for $\ell \in \mathcal{U}_{\mathbf{e},\Psi}$ such that $Arg(u_{\Psi}(\ell))$ belongs to $]Arg(u_{\Psi}(\ell_0)) - \pi, Arg(u_{\Psi}(\ell_0)) + \pi[$.

Since the orbit is diffeomorphic to a cylinder, we can see any smooth function on \mathcal{O} as a smooth function f in the two variables (t_1, ℓ_{n+1}) and periodic in the first variable:

$$f\left(t_1 + \frac{2\pi}{\omega_{\Psi}}, \ell_{n+1}\right) = f(t_1, \ell_{n+1}), \qquad \forall t_1, \ell_{n+1} \in \mathbb{R}^2.$$

This allows us to define the differential operator $\frac{\partial}{\partial t_1}$ as the well-defined projection of the corresponding operator on \mathbb{R}^2 .

5. Construction of canonical coordinates

5.1. Canonical coordinates.

In this section, we are looking for the structure of symplectic manifold for coadjoint orbits in the dual \mathfrak{g}^* of \mathfrak{g} . Let us recall how is this structure, defined by the Kirillov-Kostant-Souriau 2-form ω .

Fix $\ell \in \mathfrak{g}^*$. We identify the tangent space $T_{\ell}(\mathfrak{g}^*)$ with \mathfrak{g}^* in the canonical way. Complexifications are naturally identified: $T_{\ell}(\mathfrak{g}^*)_{\mathbb{C}}$ is identified with \mathfrak{s}^* , and the complex dual space of $T_{\ell}(\mathfrak{g}^*)_{\mathbb{C}}$ is identified with \mathfrak{s} . For $X \in \mathfrak{g}$, let ξ_{ℓ}^X denote the tangent vector at ℓ defined by $\ell[X, \cdot]$; we also have

$$\xi_{\ell}^{X} f = \left. \frac{d}{dt} \right|_{t=0} f(\exp(-tX)\ell)$$

where f is any smooth function defined in a neighborhood of ℓ . Let \mathcal{O} be the coadjoint orbit through ℓ and note that $T_{\ell}(\mathcal{O}) = \xi_{\ell}^{\mathfrak{g}} = \{\ell[X, \cdot], X \in \mathfrak{g}\}$. Of course $X \mapsto \xi_{\ell}^X$ extends to the complexification \mathfrak{s} and the image of \mathfrak{s} under ξ_{ℓ} is the complexification $T_{\ell}(\mathcal{O})_{\mathbb{C}}$ of $T_{\ell}(\mathcal{O})$. The real Kirillov-Kostant-Souriau 2-form ω is thus:

$$\omega_{\ell}(\xi_{\ell}^X,\xi_{\ell}^Y) = \langle \ell, [X,Y] \rangle \qquad \forall X,Y \in \mathfrak{g}.$$

For each $X \in \mathfrak{s}$, denote the resulting vector field on \mathfrak{g}^* by ξ^X ; recall that $X \mapsto \xi^X$ is a Lie algebra homomorphism.

For any open set \mathcal{U} of \mathfrak{g}^* let $\mathcal{E}(\mathcal{U})$ be the space of all smooth complex valued functions on \mathcal{U} and $\mathcal{V}(\mathcal{U})$ the space of all smooth vector fields on \mathcal{U} . For $\phi \in \mathcal{E}(\mathcal{U})$ and $\ell \in \mathcal{U}$, let X_{ℓ}^{ϕ} be the element of \mathfrak{s} identified with $d\phi(\ell)$. Each function $\phi \in \mathcal{E}(\mathcal{U})$ gives rise to the Hamiltonian vector field ξ^{ϕ} defined on \mathcal{U} by $\xi_{\ell}^{\phi} = \xi_{\ell}^{X_{\ell}^{\phi}}$. Recall that if \tilde{X} denotes the coordinate function $\ell \mapsto \langle \ell, X \rangle$ on \mathfrak{g}^* for $X \in \mathfrak{s}$, then $\xi^{\tilde{X}} = \xi^X$.

The Poisson bracket on $\mathcal{E}(U)$ is defined by

$$\{\phi,\psi\} = \langle \ell, [X^{\phi}_{\ell}, X^{\psi}_{\ell}] \rangle = \omega_{\ell}(\xi^{\phi}_{\ell}, \xi^{\psi}_{\ell}),$$

and one has $\xi^{\{\phi,\psi\}} = [\xi^{\phi}, \xi^{\psi}]$ and thus $\{\tilde{X}, \tilde{Y}\} = [X, Y]$ for any X, Y in \mathfrak{s} . In the context of this paper, the non trivial orbits \mathcal{O} are

(1) either diffeomorphic to a 2 dimensional plane and we shall say that 2 functions p and q, defined on \mathcal{O} are canonical coordinates if they have values in \mathbb{R} , if the mapping $\ell \mapsto (q(\ell), p(\ell))$ is a global diffeomorphism between \mathcal{O} and \mathbb{R}^2 and if, through this diffeomorphism, the 2 form ω is simply $dq \wedge dp$.

(2) or diffeomorphic to a 2 dimensional cylinder, in this case, we shall say that 2 functions q and p, defined on \mathcal{O} are canonical coordinates if q has values in \mathbb{R}/Γ , where Γ is a discret subgroup of \mathbb{R} (then, as above, dq is a well-defined 1-form on \mathcal{O}) and p in \mathbb{R} , if the mapping $\ell \mapsto (q(\ell), p(\ell))$ is a global diffeomorphism between \mathcal{O} and $\mathbb{R}/\Gamma \times \mathbb{R}$ and if, through this diffeomorphism, the 2-form ω is simply $dq \wedge dp$.

Now fix a layer $\Omega_{\mathbf{e},\Psi}$ whose dimensional orbits are 2. We want in this section build couple of functions (q, p), defined and analytic on an open neighborhood of $\Omega_{\mathbf{e},\Psi}$ and such that the restrictions of q and p to any orbit \mathcal{O} in $\Omega_{\mathbf{e},\Psi}$ are canonical coordinates for \mathcal{O} .

Recall we defined on the open neighborhood $\mathcal{U}_{\mathbf{e},\Psi}$ of $\Omega_{\mathbf{e},\Psi}$ the functions σ , t_1 and ℓ_{n+1} and we have:

$$\sigma(\ell) = \mathcal{Q}(t_1(\ell), \ell) = \exp(t_1(\ell)H) \sum_{j=1}^n \ell_j Z_j^*, \quad \sum_{j=1}^n \ell_j Z_j^* = \exp(-t_1(\ell)H)\sigma(\ell).$$

Thus, for j from 1 to n, we can see the function \tilde{Z}_j on $\Omega_{\mathbf{e},\Psi}$ as a function f_j of $t_1 \in \mathbb{R}$ and $\sigma^* \in \Sigma_{\mathbf{e},\Psi}$, smooth in t_1 :

$$\tilde{Z}_j(\ell) = f_j(t_1(\ell), \sigma(\ell)), \quad \text{with} \quad f_j(t_1, \sigma^*) = \tilde{Z}_j(\exp(-t_1H)\sigma^*)$$

(in the case c < k, these functions are $\frac{2\pi}{\omega_{\Psi}}$ -periodic). Of course, the last coordinate is the function $\tilde{Z}_{n+1} = \ell_{n+1}$.

Put now $q(\ell) = t_1(\ell)$ and $p(\ell) = \ell_{n+1}$. Consider the 2-form $\beta = dq \wedge dp$ on any orbit \mathcal{O} in $\Omega_{\mathbf{e},\Psi}$, β is a symplectic form and the Poisson bracket associated to β is just:

$$\{\phi,\psi\}_{eta} = rac{\partial\phi}{\partial p}rac{\partial\psi}{\partial q} - rac{\partial\phi}{\partial q}rac{\partial\psi}{\partial p}.$$

For the linear functions \tilde{Z}_j , we get then

$$\{\tilde{Z}_i, \tilde{Z}_j\}_{\beta} = 0, \quad \forall i, j \le n,$$

and

$$\{\tilde{Z}_{n+1}, \tilde{Z}_j\}_{\beta}(\ell) = \left(\frac{\partial f_j}{\partial t_1}\right)(t_1(\ell), \sigma(\ell)), \quad \forall j \le n.$$

But for the Poisson bracket coming from the Kirillov-Kostant-Souriau form ω , we saw that:

$$\{\tilde{Z}_i, \tilde{Z}_j\}(\ell) = [\widetilde{Z_i, Z_j}](\ell) = 0 \quad \forall i, j \le n,$$

and

$$\{\tilde{Z}_{n+1}, \tilde{Z}_j\}(\ell) = \widetilde{[H, Z_j]}(\ell) = \xi_\ell^H \tilde{Z}_j = \frac{d}{ds}|_{s=0} \tilde{Z}_j(\exp - sH\ell)$$

But, with our notations, $\tilde{Z}_j(\ell) = \tilde{Z}_j(\exp -t_1(\ell)H\sigma(\ell)) = f_j(t_1,\sigma(\ell))$, thus

$$\{\tilde{Z}_{n+1}, \tilde{Z}_j\}(\ell) = \frac{d}{ds}|_{s=0}\tilde{Z}_j(\exp -sH\exp -t_1H\sigma(\ell)) = \left(\frac{\partial f_j}{\partial t_1}\right)(t_1(\ell), \sigma(\ell)).$$

These relations prove that, for any couple of linear functions on \mathcal{O} , $\{\phi, \psi\}_{\beta} = \{\phi, \psi\}$. Since Poisson bracket are biderivations, the same holds for any smooth functions in the variables ℓ_i , $1 \leq i \leq n+1$. Since, for symplectic manifolds, Poisson bracket characterizes the 2-form, the forms ω and β do coincide and we have:

Theorem 5.1. Fix a layer $\Omega_{\mathbf{e},\Psi}$ whose dimensional orbits are 2. Let $\mathbf{e} = \{k, n+1\}$. Let $q : \Omega_{\mathbf{e},\Psi} \to \mathbb{R}$ or $q : \Omega_{\mathbf{e},\Psi} \to \mathbb{R} / \frac{2\pi}{\omega_{\Psi}}\mathbb{Z}$ be the unique function for which

$$\exp q(\ell)H\ell \in \Sigma_{\mathbf{e},\Psi}$$

holds for each ℓ in $\Omega_{\mathbf{e},\Psi}$. Then $(q(\ell), p(\ell) = \ell_{n+1})$ are common canonical coordinates for all the orbits in $\Omega_{\mathbf{e},\Psi}$. More precisely,

(i) If $\alpha_k = 0$, then

$$q(\ell) = \frac{\ell_k}{\ell_{k-1}}$$
 and $p(\ell) = \ell_{n+1}$.

(ii) If $k \leq b$ and $\alpha_k \neq 0$, then

$$q(\ell) = \frac{\ln |\ell_k|}{\Re(\alpha_k)} \quad and \quad p(\ell) = \ell_{n+1}.$$

(iii) If $b < k \leq c$ $(k \notin \Psi)$, then $q(\ell) \in \mathbb{R}$,

$$q(\ell) = \frac{\Re(\ell_k \ell_h)}{|\ell_k|^2} \quad and \quad p(\ell) = \ell_{n+1}.$$

(iv) If c < k ($k \in \Psi$), then $q(\ell)$ belongs to \mathbb{R}/Γ_{Ψ} and

$$e^{i\omega_{\Psi}q(\ell)} = \frac{u_{\Psi}(\ell)}{|u_{\psi}(\ell)|}$$
 and $p(\ell) = \ell_{n+1}$

5.2. Quantizable canonical coordinates.

We fix, as we have throughout, a suitable basis $\{Z_1, Z_2, \ldots, Z_{n+1}\}$ for \mathfrak{s} and a corresponding suitable layering $\Omega_{\mathbf{e},\Psi}$ in \mathfrak{g}^* with $\mathbf{e} = \{k, n+1\}$. Recall that we have defined an open neighborhood $\mathcal{U}_{\mathbf{e},\Psi}$ for $\Omega_{\mathbf{e},\Psi}$.

Denote by $\mathcal{E}(\Omega_{\mathbf{e},\Psi})$ the space of complex-valued functions on $\Omega_{\mathbf{e},\Psi}$ that are restrictions of functions in $\mathcal{E}(\mathcal{U}_{\mathbf{e},\Psi})$. Similarly we define $\mathcal{V}(\Omega_{\mathbf{e},\Psi})$.

Recall that we have the complex Vergne polarizations $\mathfrak{h}(\ell) = \mathfrak{n}_{\mathbb{C}}, \ (\ell \in \Omega_{\mathbf{e},\Psi})$ naturally associated with the layer $\Omega_{\mathbf{e},\Psi}$. In particular, the mapping $\ell \mapsto \mathfrak{h}(\ell)$ is constant in a sense that is evident. For each $\ell \in \Omega_{\mathbf{e},\Psi}$, put

$$\mathcal{F}(\ell) = \{\xi_{\ell}^{Y}, Y \in \mathfrak{h}(\ell)\} \subset T_{\ell}(\mathfrak{g}^{*})_{\mathbb{C}}.$$

Since $\mathfrak{sh}(\ell) = \mathfrak{h}(\mathfrak{s\ell})$ holds for all $\ell \in \Omega_{\mathbf{e},\Psi}$, $\mathfrak{s} \in G$, it follows that for each coadjoint orbit \mathcal{O} in $\Omega_{\mathbf{e},\Psi}$, $\mathcal{F}|_{\mathcal{O}}$ is a *G*-invariant complex (geometric) polarization of the symplectic manifold (\mathcal{O}, ω) .

Set

$$\mathcal{V}^{0}(\Omega_{\mathbf{e},\Psi}) = \{ \xi \in \mathcal{V}(\Omega_{\mathbf{e},\Psi}), \ \xi_{\ell} \in \mathcal{F}(\ell) \text{ holds for all } \ell \in \Omega_{\mathbf{e},\Psi} \}$$

and

$$\mathcal{E}^{0}(\Omega_{\mathbf{e},\Psi}) = \{ \phi \in \mathcal{E}(\Omega_{\mathbf{e},\Psi}) \mid \xi^{\phi} \in \mathcal{V}^{0}(\Omega_{\mathbf{e},\Psi}) \}.$$

For any orbit \mathcal{O} in $\Omega_{\mathbf{e},\Psi}$, we define $\mathcal{V}^0(\mathcal{O})$ as in [7] and it is clear that for any $\phi \in \mathcal{E}(\Omega_{\mathbf{e},\Psi})$, we have $\phi \in \mathcal{E}^0(\Omega_{\mathbf{e},\Psi})$ if and only if $\phi \in \mathcal{E}^0(\mathcal{O})$ holds for all orbits \mathcal{O} in $\Omega_{\mathbf{e},\Psi}$. It is easily seen that

$$\mathcal{E}^{0}(\Omega_{\mathbf{e},\Psi}) = \{ \phi \in \mathcal{E}(\Omega_{\mathbf{e},\Psi}), \ \xi(\phi) = 0 \text{ holds for all } \xi \in \mathcal{V}^{0}(\Omega_{\mathbf{e},\Psi}) \}.$$

We shall call a function in $\mathcal{E}^0(\Omega_{\mathbf{e},\Psi})$ a polarized function.

Similarly, we define $\mathcal{E}^1(\Omega_{\mathbf{e},\Psi})$ as the space of function $\psi \in \mathcal{E}(\Omega_{\mathbf{e},\Psi})$ such that $\{\phi,\psi\}$ is a polarized function, or which is equivalent, the space of function $\psi \in \mathcal{E}(\Omega_{\mathbf{e},\Psi})$ such that $\xi(\psi)$ is in $\mathcal{E}^0(\Omega_{\mathbf{e},\Psi})$, for all $\xi \in \mathcal{V}^0(\Omega_{\mathbf{e},\Psi})$.

We shall call a function in $\mathcal{E}^1(\Omega_{\mathbf{e},\Psi})$ a quantizable function.

Theorem 5.2. Let G be a type I semi-direct product $\mathbb{R}^n \rtimes \mathbb{R}$ and fix a suitable basis $(Z_1, \ldots, Z_n, Z_{n+1} = H)$ for the complexification \mathfrak{s} of the Lie algebra \mathfrak{g} of G. Let \mathcal{P} be the suitable layering corresponding to this basis. Let $\Omega_{\mathbf{e},\Psi}$ be a layer with $\mathbf{e} = \{k, n+1\}$ and $\Sigma_{\mathbf{e},\Psi}$ be the corresponding cross-section. Then our explicit construction for a system of coordinates (p,q) for any orbit \mathcal{O} in $\Omega_{\mathbf{e},\Psi}$ satisfies the following:

(i) p and q can be extended on analytic functions on the open subset $\mathcal{U}_{\mathbf{e},\Psi}$ containing $\Omega_{\mathbf{e},\Psi}$.

(ii) the coordinate q is polarized on $\Omega_{\mathbf{e},\Psi}$: $q \in \mathcal{E}^0(\Omega_{\mathbf{e},\psi})$.

(iii) the coordinate p is quantizable on $\Omega_{\mathbf{e},\Psi}$: $p \in \mathcal{E}^1(\Omega_{\mathbf{e},\psi})$.

(iv) the coordinates (q, p) are canonical, that is

$$dq \wedge dp(\xi_{\ell}^X, \xi_{\ell}^Y) = \langle \ell, [X, Y] \rangle$$

for all $X, Y \in \mathfrak{s}, \ \ell \in \Omega_{\mathbf{e}, \Psi}$.

Proof. We proved that (p,q) is a canonical system of coordinates for any orbit \mathcal{O} in $\Omega_{\mathbf{e},\Psi}$. Suppose the orbit is running through $\sigma^* \in \Sigma_{\mathbf{e},\Psi}$. Then, for any X in $\mathfrak{h}(\ell) = \mathfrak{n}$, we saw that the restriction of \tilde{X} to $\Omega_{\mathbf{e},\Psi}$ is a function $f(q,\sigma^*)$ of the variables q and σ^* only. Then, for any smooth function on $\Omega_{\mathbf{e},\Psi}$,

$$\xi^X \phi = \{ \tilde{X}, \phi \} = -\frac{\partial f}{\partial q} (q, \sigma^*) \frac{\partial}{\partial p}.$$

The function q is thus polarized, since $\xi^X q = 0$ for any X in \mathfrak{n} implies $\xi q = 0$ for any ξ in $\mathcal{V}^0(\Omega_{\mathbf{e},\Psi})$. Thus any function $\phi(q,\sigma^*)$ is polarized also.

Similarly, the function p is quantizable, since $\xi^X p = -\frac{\partial f}{\partial q}(q, \sigma^*) \in \mathcal{E}^0(\Omega_{\mathbf{e},\Psi})$ for any X in \mathfrak{n} implies ξp is polarized for any ξ in $\mathcal{V}^0(\Omega_{\mathbf{e},\Psi})$.

Finally we have the following.

Proposition 5.3. Let G be a type I Lie group of the form $\mathbb{R}^n \rtimes \mathbb{R}$ and \mathfrak{g} its Lie algebra. Choose a suitable basis (Z_1, \ldots, Z_{n+1}) for $\mathfrak{s} = \mathfrak{g}_{\mathbb{C}}$. Let $\Omega_{\mathbf{e},\Psi}$ be a layer in the corresponding layering with $\mathbf{e} = \{k, n+1\}$, set (p,q) the canonical coordinates built in Theorem 5.1 and σ the cross-section mapping built in Section 4. Put $M = \mathbb{R}$ if $k \notin \Psi$ and $M = \mathbb{R}/\Gamma_{\Psi}$ if $k \in \Psi$, then the following occurs

(i) The map

$$\begin{array}{ll} P: \Omega_{\mathbf{e}, \Psi} & \longrightarrow \Sigma_{\mathbf{e}, \Psi} \times \mathbb{R} \times M \\ \ell & \longmapsto \left(\sigma(\ell), p(\ell), q(\ell) \right) \end{array}$$

is a bijection and a global parametrization of $\Omega_{\mathbf{e},\Psi}$ in the sense of ([4] Théorème 1.6).

(ii) The Vergne geometrical polarization is given by

$$\mathcal{F}(\ell) = \mathbb{C} \quad -span\{(\partial_p)_\ell\}.$$

iii) For each orbit \mathcal{O} in $\Omega_{\mathbf{e},\Psi}$ and for each $X \in \mathfrak{g}$, $X = \sum_{k=1}^{n+1} x_k Z_k$, the

function \tilde{X} has the form

$$\tilde{X}(\ell) = \langle \ell, X \rangle = x_{n+1}p(\ell) + \sum_{i=1}^{n} x_i f_i(q(\ell), \sigma(\ell)), \quad \ell \in \Omega_{\mathbf{e}, \Psi}$$

where for each *i* the function $f_i(q, \sigma^*)$ is real analytic in the variable *q*.

6. Examples

6.1. Example 1.

Let $\mathfrak{g} = \operatorname{span}_{\mathbb{R}} \{ X_1, Y_1, X_2, Y_2, H \}$ where

$$[H, (X_1 + iY_1)] = 2i(X_1 + iY_1)$$
 and $[H, (X_2 + iY_2)] = 4i(X_2 + iY_2)$

Choose the suitable basis (Z_1, Z_2, Z_3, Z_4, H) of \mathfrak{s} with

$$Z_1 = X_1 + iY_1$$
, $Z_2 = X_1 - iY_1$, $Z_3 = X_2 + iY_2$, $Z_4 = X_2 - iY_2$

The basis coordinates for $\ell \in \mathfrak{g}^*$ are $\ell = (z_1, z_2 = \overline{z_1}, z_3, z_4 = \overline{z_3}, h)$.

1. $\mathbf{e} = \{1, 5\}$ and $\Psi = \{1, 3\}, \ \Omega = \Omega_{\mathbf{e}, \Psi} = \{\ell \in \mathfrak{g}^*, z_1 z_3 \neq 0\}.$

In this case, $\omega_{\Psi} = 2$, $\Gamma_{\Psi} = \pi \mathbb{Z}$ and we can choose $u_{\Psi}(\ell) = z_1$, then applying the q-function formula of Theorem 5.1, we obtain:

$$e^{2iq(\ell)} = \frac{z_1}{|z_1|}, \qquad p(\ell) = h.$$

and thus

$$q(\ell) = \frac{1}{2i} \ln \frac{z_1}{|z_1|} \mod \pi, \qquad p(\ell) = h$$

We can write coordinates for $\ell \in \Omega$:

$$\ell = (r_1 e^{2iq}, r_1 e^{-2iq}, r_2 e^{i\theta} e^{4iq}, r_2 e^{-i\theta} e^{-4iq}, p),$$

with

$$r_1 > 0, r_2 > 0$$
 and $\theta \in \mathbb{R}/2\pi\mathbb{Z}$.

The cross-section is:

$$\Sigma = \{\ell \in \Omega, \mid \ell = (r_1, r_1, r_2 e^{i\theta}, r_2 e^{-i\theta}, 0)\} \simeq]0, +\infty[\times(\mathbb{R}^2 \setminus \{0\})]$$

2. $\mathbf{e} = \{1, 5\}$ and $\Psi = \{1\}$, $\Omega = \Omega_{\mathbf{e}, \Psi} = \{\ell \in \mathfrak{g}^*, z_1 \neq 0 \text{ and } z_3 = 0\}$. In this case, we have also, $\omega_{\Psi} = 2$, $u_{\Psi}(\ell) = z_1$ and $\Gamma_{\Psi} = \pi \mathbb{Z}$. Applying the *q*-function formula of Theorem 5.1, we obtain the same definition for *q* and *p* as in the preceding case, however the coordinates for $\ell \in \Omega$ are:

$$\ell = (re^{2iq}, re^{-2iq}, 0, 0, p), \text{ with } r > 0.$$

The cross-section is:

$$\Sigma = \{\ell \in \Omega, \mid \ell = (r, r, 0, 0, 0) \quad \text{with} \quad r > 0\} \simeq]0, +\infty[$$

3. $\mathbf{e} = \{3, 5\}$ and $\Psi = \{3\}$, $\Omega = \Omega_{\mathbf{e}, \Psi} = \{\ell \in \mathfrak{g}^*, z_1 = 0 \text{ and } z_3 \neq 0\}$. In this case, $\omega_{\Psi} = 4$, $u_{\Psi}(\ell) = z_3$ and $\Gamma_{\Psi} = \frac{\pi}{2}\mathbb{Z}$. Then applying the *q*-function formula of Theorem 5.1 we obtain:

$$e^{4iq(\ell)} = \frac{z_3}{|z_3|}, \qquad p(\ell) = h.$$

and so

$$q(\ell) = \frac{1}{4i} \ln \frac{z_3}{|z_3|} \mod \frac{\pi}{2}, \qquad p(\ell) = h$$

The canonical coordinates for $\ell \in \Omega$ are:

$$\ell = (0, 0, re^{4iq}, re^{-4iq}, p), \text{ with } r > 0.$$

The cross-section is:

$$\Sigma = \{\ell \in \Omega, \mid \ell = (0, 0, r, r, 0) \quad \text{with} \quad r > 0\} \simeq]0, +\infty[.$$

6.2. Example 2.

Let $\mathfrak{g} = \operatorname{span}_{\mathbb{R}} \{ X_1, Y_1, X_2, Y_2, H \}$ where

$$[H, (X_1 + iY_1)] = i(X_1 + iY_1)$$
 and $[H, (X_2 + iY_2)] = i(X_2 + iY_2) + X_1 + iY_1$

Choose the suitable basis (Z_1, Z_2, Z_3, Z_4, H) of \mathfrak{s} with

$$Z_1 = X_1 + iY_1$$
, $Z_2 = X_1 - iY_1$, $Z_3 = X_2 + iY_2$, $Z_4 = X_2 - iY_2$.

Again we use the basis coordinates $\ell = (z_1, z_2 = \overline{z_1}, z_3, z_4 = \overline{z_3}, h)$. Here there are: 1. $\Omega = \Omega_{\mathbf{e}}$ with $\mathbf{e} = \{1, 5\}$. Applying the *q*-function formula of Theorem 5.1, we obtain

$$q(\ell) = \frac{\Re(z_1\overline{z_3})}{|z_1|^2}, \qquad p(\ell) = h$$

Thus the coordinates for $\ell \in \Omega$ can be written as:

$$\ell = (re^{i(\theta+q)}, re^{-i(\theta+q)}, e^{i(\theta+q)}(ia+rq), e^{-i(\theta+q)}(-ia+rq), p),$$

with

$$r > 0, \ \theta \in \mathbb{R}/2\pi\mathbb{Z}$$
 and $a \in \mathbb{R}$.

The cross-section is

$$\Sigma = \{\ell \in \Omega, |\ell = (re^{i\theta}, re^{-i\theta}, iare^{i\theta}, -iare^{-i\theta}, 0), \text{ with } re^{i\theta} \neq 0, a \in \mathbb{R}\}$$
$$\simeq (\mathbb{R}^2 \setminus \{0\}) \times \mathbb{R}.$$

2. $\mathbf{e} = \{3, 5\}$, then $\Omega = \Omega_{\mathbf{e}, \Psi} = \{\ell \in \mathfrak{g}^*, z_1 = 0, z_3 \neq 0\}$ where $\Psi = \{3\}$. In this case $\omega_{\Psi} = 1$ and $\Gamma_{\Psi} = 2\pi\mathbb{Z}$. Again applying the *q*-function formula of Theorem 5.1, we get:

$$e^{iq(\ell)} = \frac{z_3}{|z_3|}, \qquad p(\ell) = h,$$

and then

$$q(\ell) = -i \ln \frac{z_3}{|z_3|} \mod 2\pi, \qquad p(\ell) = h,$$

so that ℓ is just

$$\ell = (0, 0, re^{iq}, re^{-iq}, p) \quad \text{with} \quad r > 0.$$

The cross-section is:

$$\Sigma = \{\ell \in \Omega, \mid \ell = (0, 0, r, r, 0) \quad \text{with} \quad r > 0\} \simeq]0, +\infty[.$$

6.3. Example 3.

Let $\mathfrak{g} = \operatorname{span}_{\mathbb{R}} \{ X_1, Y_1, X_2, Y_2, H \}$ where

$$[H, (X_1 + iY_1)] = 2i(X_1 + iY_1)$$
 and $[H, (X_2 + iY_2)] = 3i(X_2 + iY_2)$

Choose the suitable basis (Z_1, Z_2, Z_3, Z_4, H) of \mathfrak{s} with

$$Z_1 = X_1 + iY_1$$
, $Z_2 = X_1 - iY_1$, $Z_3 = X_2 + iY_2$, $Z_4 = X_2 - iY_2$.

The basis coordinates for $\ell \in \mathfrak{g}^*$ are $\ell = (z_1, z_2 = \overline{z_1}, z_3, z_4 = \overline{z_3}, h)$.

1. $\mathbf{e} = \{1, 5\}$ and $\Psi = \{1, 3\}$, $\Omega = \Omega_{\mathbf{e}, \Psi} = \{\ell \in \mathfrak{g}^*, z_1 z_3 \neq 0\}$. In this case, $\omega_{\Psi} = 1$, $\Gamma_{\Psi} = 2\pi\mathbb{Z}$ and we can choose $u_{\Psi}(\ell) = \frac{z_1^2}{z_3}$, then applying the *q*-function formula of Theorem 5.1, we obtain:

$$e^{iq(\ell)} = \frac{\frac{z_1^2}{z_3}}{|\frac{z_1^2}{z_3}|}, \qquad p(\ell) = h$$

so that

$$q(\ell) = -i \ln\left(\frac{z_1^2|z_3|}{z_3|z_1|^2}\right) \mod 2\pi, \qquad p(\ell) = h.$$

We can write coordinates for $\ell \in \Omega$:

$$\ell = (r_1 e^{i(\theta + 2q)}, r_1 e^{-i(\theta + 2q)}, r_2 e^{i(2\theta + 3q)}, r_2 e^{-i(2\theta + 3q)}, p)$$

with

$$r_1 > 0, r_2 > 0$$
 and $\theta \in \mathbb{R}/2\pi\mathbb{Z}$.

The cross-section is:

$$\Sigma = \{\ell \in \Omega, | \ell = (r_1 e^{i\theta}, r_1 e^{-i\theta}, r_2 e^{2i\theta}, r_2 e^{-2i\theta}, 0)\} \simeq (\mathbb{R}^2 \setminus \{0\}) \times]0, +\infty[.$$

2. $\mathbf{e} = \{1, 5\}$ and $\Psi = \{1\}$, $\Omega = \Omega_{\mathbf{e}, \Psi} = \{\ell \in \mathfrak{g}^*, z_1 \neq 0 \text{ and } z_3 = 0\}$. In this case, $\omega_{\Psi} = 2$, $u_{\Psi}(\ell) = z_1$ and $\Gamma_{\Psi} = \pi \mathbb{Z}$. Applying the *q*-function formula of Theorem 5.1, we obtain

$$e^{2iq(\ell)} = \frac{z_1}{|z_1|}, \qquad p(\ell) = h,$$

and thus

$$q(\ell) = \frac{1}{2i} \ln \frac{z_1}{|z_1|} \mod \pi, \qquad p(\ell) = h.$$

However the coordinates for $\ell \in \Omega$ are:

$$\ell = (re^{2iq}, re^{-2iq}, 0, 0, p), \text{ with } r > 0.$$

The cross-section is:

$$\Sigma=\{\ell\in\Omega,\mid \ell=(r,r,0,0,0)\quad\text{with}\quad r>0\}\simeq]0,+\infty[.$$

3. $\mathbf{e} = \{3, 5\}$ and $\Omega = \Omega_{\mathbf{e}, \Psi} = \{\ell \in \mathfrak{g}^*, z_1 = 0 \text{ and } z_3 \neq 0\}$ with $\Psi = \{3\}$.

In this case, $\omega_{\Psi} = 3$, $\Gamma_{\Psi} = \frac{2\pi}{3}\mathbb{Z}$ and $u_{\Psi}(\ell) = z_3$. Applying the *q*-function formula of Theorem 5.1, we obtain:

$$e^{3iq(\ell)} = \frac{z_3}{|z_3|}, \qquad p(\ell) = h,$$

and thus

$$q(\ell) = \frac{1}{3i} \ln \frac{z_3}{|z_3|} \mod \frac{2\pi}{3}, \qquad p(\ell) = h.$$

We can write coordinates for $\ell \in \Omega$:

$$\ell = (0, 0, re^{3iq}, re^{-3iq}, p), \text{ with } r > 0.$$

The cross-section is:

$$\Sigma = \{\ell \in \Omega, | \ell = (0, 0, r, r, 0) \text{ with } r > 0\} \simeq]0, +\infty[.$$

Acknowledgements

The author would like to thank D. Arnal from the university of Dijon for his interest in the work and helpful comments.

References

- [1] Abdelmoula, L., D. Arnal, and M. Selmi, Separation of unitary representations of type I solvable Lie groups of the form $\mathbb{R} \ltimes \mathbb{R}^d$, Journal of Lie Theory **14** (2004), 427–441.
- [2] Arnal, D., M. Ben Ammar, B. Currey, and B. Dali, *Canonical coordinates for coadjoint orbits of completely solvable Lie groups*, Journal of Lie Theory 2 (2005), 521–560.
- [3] Arnal, D., B. Currey, and B. Dali, *Construction of canonical coordinates* for exponential Lie groups, Preprint.
- [4] Arnal, D., and J. C. Cortet, *Representations* * des groupes exponentiels, Jour. Funct. Anal. **92** (1990), 103–135.
- [5] Currey, B., Explicit orbital parameters and the Plancherel measure for exponential Lie groups, Pac. Jour. Math. **219** (2005), 101–142.
- [6] —, The structure of the space of coadjoint orbits of an exponential solvable Lie group, Trans. Amer. Math. Soc. **332** (1992), 241–269.
- [7] Pedersen, N. V., On the symplectic structure of coadjoint orbits of (solvable) Lie groups and applications, Math. Ann. **281** (1988), 633–669.
- [8] —, Geometric quantization and the universal enveloping algebra of a nilpotent Lie group, Trans. Amer. Math. Soc. **315** (1989), 511–563.

[9] Pukanszky, L., Unitary representations of solvable Lie groups, Ann. Sci. Ec. Norm. Sup. 4 (1971), 457–608.

Béchir Dali Department of Mathematics Faculty of sciences of Bizerte 7021 Zarzouna, Bizerte Tunisia bechir.dali@yahoo.fr

Received June 22, 2007 and in final form November 14, 2007