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Abstract. This paper generalizes the classification in [Dimitrov, I., and I.
Penkov, Borel subalgebras of gl(∞), Resenhas 6 (2004) 153–163] of Borel subal-
gebras of gl∞ . Root-reductive Lie algebras are direct limits of finite-dimensional
reductive Lie algebras along inclusions preserving the root spaces with respect to
nested Cartan subalgebras. A Borel subalgebra of a root-reductive Lie algebra
is by definition a maximal locally solvable subalgebra. The main general result
of this paper is that a Borel subalgebra of an infinite-dimensional indecompos-
able root-reductive Lie algebra is the simultaneous stabilizer of a certain type of
generalized flag in each of the standard representations.

For the three infinite-dimensional simple root-reductive Lie algebras
more precise results are obtained. The map sending a maximal closed (isotropic)
generalized flag in the standard representation to its stabilizer hits Borel subal-
gebras, yielding a bijection in the cases of sl∞ and sp∞ ; in the case of so∞ the
fibers are of size one and two. A description is given of a nice class of toral sub-
algebras contained in any Borel subalgebra. Finally, certain Borel subalgebras
of a general root-reductive Lie algebra are seen to correspond bijectively with
Borel subalgebras of the commutator subalgebra, which are understood in terms
of the special cases.
Mathematics Subject Index 2000: 17B65, 17B30, 17B05.
Keywords and phrases: Locally finite Lie algebra, root-reductive Lie algebra,
Borel subalgebra, maximal locally solvable subalgebra.

1. Introduction

The representation theory of root-reductive Lie algebras is currently being ap-
proached through a structure theory program. Root-reductive Lie algebras are di-
rect limits of finite-dimensional reductive Lie algebras along inclusions preserving
the root spaces with respect to nested Cartan subalgebras. The appropriate gener-
alization in this context of the notion of a Borel subalgebra of a finite-dimensional
Lie algebra is that of a maximal locally solvable subalgebra. This paper describes
the Borel subalgebras of root-reductive Lie algebras, generalizing the results of [3]
in the case of gl∞ .

The most general result of this paper, Theorem 4.1, states that a Borel
subalgebra of an infinite-dimensional indecomposable root-reductive Lie algebra
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is the simultaneous stabilizer of a certain type of generalized flag in each of the
standard representations. Any root-reductive Lie algebra is the direct sum of finite-
dimensional Lie algebras and infinite-dimensional indecomposable root-reductive
Lie algebras. Since Borel subalgebras of a direct sum are precisely direct sums of
Borel subalgebras, the theorem can be used to understand Borel subalgebras of
any root-reductive Lie algebra.

Theorems 8.3, 9.7, and 10.6 address the infinite-dimensional simple root-
reductive Lie algebras. As in the case of gl∞ treated in [3], Borel subalgebras of
sl∞ (or so∞ , sp∞ ) are stabilizers of maximal closed (isotropic) generalized flags in
the standard representation. The correspondence between Borel subalgebras and
maximal closed (isotropic) generalized flags is bijective in the cases of gl∞ , sl∞ ,
and sp∞ ; whereas a Borel subalgebra of so∞ corresponds to one or two maximal
closed isotropic generalized flags. This phenomenon should not be surprising, since
every Borel subalgebra of so2n is the stabilizer of a pair of maximal isotropic flags in
the standard representation. We refer to any pair of maximal isotropic generalized
flags corresponding to a single Borel subalgebra of so∞ as twins.

A nice class of toral subalgebras contained in a Borel subalgebra of sl∞ ,
so∞ , or sp∞ is described in Section 11. In these cases any Borel subalgebra is the
span of such a toral subalgebra and the ad hoc nilradical. Thus irreducible repre-
sentations of the Borel subalgebra are given by characters of the toral subalgebra.

Analysis of the general situation continues in Section 13. In Theorem 13.2
certain Borel subalgebras of a root-reductive Lie algebra g are seen to correspond
bijectively to the Borel subalgebras of [g, g] . It remains unknown whether every
Borel subalgebra of g yields a Borel subalgebra of [g, g] when intersected with
[g, g] .

The argument which leads to the classification of Borel subalgebras of sl∞ ,
Theorem 8.3, begins with Theorem 4.1 and Proposition 7.1, and continues with
Lemmas 8.1 and 8.2. Many elements of the proofs are straightforward applications
to sl∞ of work on gl∞ seen in [4]. The proof of Theorem 4.1, by contrast, is
quite different from their proof in the case of gl∞ ; the modified proof allows for
generalization to the isotropic cases.

I wish to acknowledge Ivan Dimitrov and Ivan Penkov for explaining their
work in [3], and for sharing with me the proofs of the results announced there in
the form of a manuscript [4]. The debt I owe Ivan Penkov goes further, for he
introduced me to root-reductive Lie algebras and helped me greatly as I was first
learning about them. I wish to express my gratitude to Joseph Wolf, for his warm
guidance and frequent attention throughout the writing of this paper. I would also
like to thank Vera Serganova and the referee for their helpful comments.

2. Preliminaries

Throughout the paper we fix the ground field to be the field of complex num-
bers C . Let V and V∗ be countable-dimensional vector spaces over C , and let
〈·, ·〉 : V × V∗ → C be a nondegenerate pairing. We denote by gl(V, V∗) the Lie
algebra associated to the associative algebra V ⊗ V∗ . Note that V is a faithful
representation of gl(V, V∗) under the action defined by (x ⊗ y) · v := 〈v, y〉x for
any x, v ∈ V and y ∈ V∗ , and hence gl(V, V∗) is a Lie subalgebra of gl(V ). By
sl(V, V∗) we denote the traceless part of gl(V, V∗), i.e. [gl(V, V∗), gl(V, V∗)]. If
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〈·, ·〉 : V × V → C is a symmetric nondegenerate form, then for any x, y, v, w ∈ V
one may check that [x ⊗ y − y ⊗ x, v ⊗ w − w ⊗ v] ∈

∧2 V , and thus
∧2 V is

a Lie subalgebra of gl(V, V ), denoted so(V ). If 〈·, ·〉 : V × V → C is an anti-
symmetric nondegenerate form, then for any x, y, v, w ∈ V one may check that
[x⊗ y + y ⊗ x, v ⊗ w + w ⊗ v] ∈ Sym2(V ), and thus Sym2(V ) is a Lie subalgebra
of gl(V, V ), denoted sp(V ).

By a result of Mackey [5, p. 171], as long as the pairing 〈·, ·〉 is nondegen-
erate, the above algebras do not depend on the pairing, up to isomorphism. The
usual representatives of these isomorphism classes are called gl∞ , sl∞ , so∞ , and
sp∞ , respectively.

We will need a notion of the closure of a subspace of a vector space, with
respect to a pairing. Let X and Y be vector spaces, and let 〈·, ·〉 : X×Y → C be
any pairing. Given a subspace F ⊆ X , we consider the subspace F⊥⊥ , denoted
F , to be its closure in X . A subspace F ⊆ X is said to be closed if F = F .
One important identity is that F⊥ = F⊥⊥⊥ for any F ⊂ X . As a result, for any
F ⊂ X , the subspace F⊥ ⊂ Y is closed. Furthermore, the closure of any subspace
is closed. One may also check that the arbitrary intersection of closed subspaces
is closed.

If F ⊂ X is a closed subspace and F ⊂ G ⊂ X with dim G/F < ∞ , then
G is closed. This follows from the fact that dim F⊥/G⊥ ≤ dim G/F for arbitrary
subspaces F ⊂ G ⊂ X . Explicitly, consider that

dim G/F ≤ dim G/F = dim G/F = dim(G⊥)⊥/(F⊥)⊥

≤ dim F⊥/G⊥ ≤ dim G/F.

Hence dim G/F = dim G/F < ∞ , and since G ⊂ G , we know G = G .

Now suppose 〈·, ·〉 : V × V → C is a nondegenerate pairing. A subspace
F ⊂ V is said to be isotropic if F ⊂ F⊥ , and coisotropic if F⊥ ⊂ F . If F ⊂ V
is an isotropic subspace, then its closure F is also isotropic. That is, F ⊂ F⊥

implies F ⊂ F⊥ , where F⊥ = F⊥ = F
⊥

.

If 〈·, ·〉 : V × V → C is a symmetric nondegenerate form, an isotropic
subspace M ⊂ V is maximal isotropic if and only if dim M⊥/M ≤ 1 and M is
closed. If 〈·, ·〉 : V × V → C is an antisymmetric nondegenerate form, a subspace
M ⊂ V is maximal isotropic if and only if M = M⊥ .

A Lie algebra g is locally finite if every finite subset of g is contained in a
finite-dimensional subalgebra, i.e. if g is a union of finite-dimensional subalgebras.
One interesting class of locally finite Lie algebras is the root-reductive Lie algebras.

Definition 2.1. 1. An inclusion of finite-dimensional reductive Lie algebras
l ⊆ m is called a root inclusion if, for some Cartan subalgebra h of m , the
subalgebra l ∩ h is a Cartan subalgebra of l and each l ∩ h-root space lα is
also an h-root space of m .

2. A Lie algebra g is called root-reductive if it is isomorphic to a union
⋃

i∈Z>0
gi

of nested reductive Lie algebras with respect to root inclusions for a fixed
choice of nested Cartan subalgebras hi ⊆ gi with hi−1 = hi ∩ gi−1 .

To understand the structure of root-reductive Lie algebras one uses the
following theorem from [2]. The part of the classification in which it is shown
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that there are, up to isomorphism, three infinite-dimensional simple objects in
this category is also given in [6].

Theorem 2.2. Let g be a root-reductive Lie algebra.

1. There is a split exact sequence of Lie algebras 0 → g → g/[g, g] =: a → 0,
i.e. g ' [g, g] D a, with a abelian.

2. The Lie algebra [g, g] is isomorphic to a direct sum of finite-dimensional
simple Lie algebras and copies of sl∞ , so∞ , and sp∞ .

Since there are no nontrivial extensions of of an abelian Lie algebra by a
finite-dimensional simple Lie algebra, any root-reductive Lie algebra is isomorphic
to a direct sum of simple finite-dimensional Lie algebras and a root-reductive Lie
algebra g in which [g, g] is isomorphic to a direct sum of copies of sl∞ , so∞ , and
sp∞ .

Let g be an infinite-dimensional indecomposable root-reductive Lie algebra.
Then [g, g] ∼=

⊕
m sm as Lie algebras, where for each m the component sm is

isomorphic to sl∞ , so∞ , or sp∞ . Let Vm denote the standard representation
of sm , and let (Vm)∗ denote the relevant dual representation. Consider Vm as
a [g, g]-module on which

⊕
n6=m sn acts trivially. By Proposition 4.2 of [1], there

exists a g-module structure on Vm extending the [g, g]-module structure. Likewise,
there exists a g-module structure on (Vm)∗ in which

⊕
n6=m sn acts trivially. One

may check that under this construction, the pairing 〈·, ·〉 : Vm × (Vm)∗ → C is
g-invariant. By the standard representations of g , we mean the representations
Vm together with a choice of g-module structure on each.

If l ⊆ m is a root inclusion, then m is completely reducible as an l-module.
Therefore the Jordan decomposition of any element of l into a sum of commuting
semisimple and nilpotent parts agrees with its Jordan decomposition as an element
of m , and one obtains as a result a notion of Jordan decomposition of elements
of a root-reductive Lie algebra [1]. A subalgebra of a root-reductive Lie algebra
is called a toral subalgebra if it consists of elements which are semisimple in the
sense of Jordan decomposition. We denote the normalizer in g of a subalgebra k

by ng(k).

A locally finite Lie algebra g is locally solvable (respectively locally nilpo-
tent) if every finite subset of g is contained in a solvable (resp. nilpotent) subalge-
bra, i.e. if g is a union of finite-dimensional solvable (resp. nilpotent) subalgebras.
The ad hoc nilradical of a locally solvable subalgebra s of a root-reductive Lie
algebra is defined to be the set of all elements of s which are nilpotent in the sense
of Jordan decomposition. The ad hoc nilradical of a locally solvable subalgebra s

of a root-reductive Lie algebra contains [s, s] , and thus the ad hoc nilradical is a
subalgebra. Note that the ad hoc nilradical of a locally solvable subalgebra s of
a root-reductive Lie algebra is a locally nilpotent subalgebra of s . The following
lemma is an essential result about representations of locally solvable Lie algebras,
and its proof is reproduced from [4] with the permission of the authors.

Lemma 2.3. Let s be a locally finite locally solvable Lie algebra, i.e. s =
⋃

i si

with si finite-dimensional and solvable. If W is an irreducible s-module which is
a union of finite-dimensional si -modules Wi , then dim W = 1.
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Proof. Assume for the sake of a contradiction that dim W > 1. Thus there
exist linearly independent vectors w1, w2 ∈ W . Since W is an irreducible module
over the universal enveloping algebra U(s) of s , the Jacobson density theorem
implies that there exist elements Xij ∈ U(s) such that Xij · wk = δjkwi for
i, j ∈ {1, 2} . There is a finite-dimensional subalgebra s0 ⊂ s for which Xij ∈ U(s0)
for i, j ∈ {1, 2} . Denote by W0 the s0 -module generated by w1 . Since W0 is finite
dimensional, Lie’s Theorem implies that s0 stabilizes a maximal flag

0 = F0 ( F1 ( · · · ( Fn−1 ( Fn = W0

in W0 . By construction, w1 /∈ Fn−1 . The vector w2 is an element of W0 since
X21 · w1 = w2 . Thus w2 can be written uniquely in the form w2 = cw1 + w′

2 with
w′

2 ∈ Fn−1 . Clearly one has X12 · w′
2 = w1 , which contradicts the fact the Fn−1 is

stable under s0 .

Finally, a subalgebra of a root-reductive Lie algebra is called a Borel subal-
gebra if it is a maximal locally solvable subalgebra.

3. Generalized flags and isotropic generalized flags

Generalized flags and closed generalized flags were defined in [3] to study Borel
subalgebras of gl∞ . Let X be a complex vector space. A chain in X is a set
of subspaces of X totally ordered by inclusion. A generalized flag F in X is a
chain in X such that each subspace F ∈ F has an immediate predecessor or an
immediate successor in the inclusion ordering, and for every nonzero x ∈ X there
exists an immediate predecessor-successor pair F ′ ⊂ F ′′ ∈ F with x ∈ F ′′\F ′ . Let
A be the set of immediate predecessor-successor pairs of F , and denote by F ′

α the
predecessor and by F ′′

α the successor of each pair α ∈ A . The inclusion ordering
on F induces the following ordering on A : for any α, β ∈ A , we define α ≤ β if
F ′

α ⊂ F ′
β . Since every subspace in F is either the immediate predecessor or the

immediate successor of another subspace, a generalized flag F may be considered
as F = {F ′

α, F ′′
α}α∈A .

Let x ∈ X be nonzero. Then we denote by F ′
x and F ′′

x the predecessor
and successor, respectively, of the immediate predecessor-successor pair such that
x ∈ F ′′

x \ F ′
x , obtained from the definition of a generalized flag. A generalized

flag G is considered to be a refinement of F if F ′
x ⊂ G′

x ⊂ G′′
x ⊂ F ′′

x for every
nonzero x ∈ X . A generalized flag F = {F ′

α, F ′′
α}α∈A is maximal (with respect to

refinements) if dim F ′′
α/F ′

α = 1 for all α ∈ A [3].

Suppose C is a chain of subspaces in X satisfying the property that for each
x ∈ X , there exists a subspace C ∈ C containing x , as well as a subspace C ∈ C
not containing x . (This is not terribly restrictive, as one sufficient condition is
that 0 and X be elements of C .) Then one may obtain a generalized flag fl(C) by
defining:

fl(C) := {
⋃

x/∈C∈C

C,
⋂

x∈C∈C

C}0 6=x∈X .

If F = fl(C), then for each nonzero x ∈ X , one has F ′
x =

⋃
x/∈C∈C C and

F ′′
x =

⋂
x∈C∈C C . The generalized flag obtained from a chain is not necessarily

a subset of that chain, nor must it contain every subspace in the chain. Take as
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an example a chain of the form

0 ( V1 ( V2 ( V3 ( · · · (
⋃

Vi ( · · · ( W3 ( W2 ( W1 ( X.

If on the one hand
⋃

i Vi 6=
⋂

j Wj , then the generalized flag obtained from this
chain is

0 ( V1 ( V2 ( V3 ( · · · (
⋃

Vi (
⋂

Wj ( · · · ( W3 ( W2 ( W1 ( X.

If on the other hand
⋃

i Vi =
⋂

j Wj , then the generalized flag obtained from this
chain is

0 ( V1 ( V2 ( V3 ( · · · ( · · · ( W3 ( W2 ( W1 ( X.

Now suppose that there is a bilinear form X × Y → C . For any chain C of
subspaces of X , one may consider the set of subspaces given by C⊥ := {C⊥}C∈C ,
which is a chain in Y . A generalized flag F is said to be closed if F = fl(F⊥⊥).
A generalized flag is closed if and only if every immediate succesor is closed
while every immediate predecessor has as its closure either itself or its immediate
successor [3]. In the context of closed generalized flags, we use the term good pair
to refer to any immediate predecessor-successor pair of which the predecessor is
closed. A closed generalized flag is a maximal closed generalized flag if and only
if every good pair has codimension 1 [3].

We say that a closed generalized flag F is bivalent if every good pair has
codimension 1 or ∞ . Let F be a bivalent closed generalized flag in X . A
generalized flag G refining F is called a Borel generalized flag2 if whenever a
nonzero x ∈ X yields a good pair with infinite codimension F ′

x ⊂ F ′′
x in F , it

holds that dim G′′
x/G

′
x = 1 and G′

x = F ′′
x ; and otherwise F ′

x = G′
x ⊂ G′′

x = F ′′
x .

Note that maximal closed generalized flags are a subset of the bivalent closed
generalized flags, and that any maximal closed generalized flag may be considered
as a Borel generalized flag refining itself.

The following statement appears in [3], and its proof is replicated from [4].

Lemma 3.1. If F = {F ′
α, F ′′

α} is a generalized flag in V , then the stabilizer of
F in gl(V, V∗) is StF =

∑
α F ′′

α ⊗ (F ′
α)⊥ .

Proof. If v ∈ F ′′
α and w ∈ (F ′

α)⊥ , then (v ⊗ w) · V ⊂ Cv ⊂ F ′′
α and

(v ⊗ w) · F ′
α = 0. Thus the generalized flag F is stable under v ⊗ w . As a

result
∑

α F ′′
α ⊗ (F ′

α)⊥ ⊂ StF .

Conversely, let X ∈ StF . We have X =
∑n

i=1 vi ⊗ wi , and we may assume
α1 ≤ α2 ≤ · · · ≤ αn , where vi ∈ F ′′

αi
\ F ′

αi
. We may also assume that if k

is such that αk−1 < αk = αk+1 = · · · = αn , then the images of the vectors
vk, vk+1, . . . , vn are linearly independent in F ′′

αn
/F ′

αn
. For any v ∈ F ′

αn
, one has

X ·v = (
∑n

i=1 vi⊗wi) ·v =
∑n

i=1〈v, wi〉vi ∈ F ′
αn

Since vi ∈ F ′
αn

for i = 1, . . . , k−1
and the vectors vk , vk+1 , . . . , vn are linearly independent modulo F ′

αn
, one obtains

that 〈v, wk〉 = 〈v, wk+1〉 = · · · = 〈v, wn〉 = 0. This show that wi ∈ (F ′
αi

)⊥ for
i = k, k + 1, . . . , n . Since X −

∑n
i=k vi ⊗ wi is also an element of StF , a simple

induction argument shows that X ∈
∑

α F ′′
α ⊗ (F ′

α)⊥ .

2It may turn out that the only Borel generalized flags which are of interest are the maximal
closed generalized flags.
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Also, the span of the nilpotent elements of StF (that is to say its ad hoc
nilradical, since StF is locally solvable as seen below) is given by the formula∑

α F ′′
α ⊗ (F ′′

α)⊥ [3].

The following proposition is a consequence of a more complicated statement
in [4], and I present an alternative proof.

Proposition 3.2. Let F be a maximal generalized flag in V . Then the stabi-
lizer in gl(V, V∗) of F is a locally solvable subalgebra.

Proof. Let X ⊂ V and Y ⊂ V∗ be finite-dimensional subspaces such that the
restriction of 〈·, ·〉 to X × Y is nondegenerate. Let d denote the dimension of X ,
and of course X ⊗ Y ∼= gld . Observe that gl(V, V∗) may be exhausted by such
subalgebras.

Let A be the set of immediate predecessor-successor pairs of F , and recall
the notation F = {F ′

α, F ′′
α}α∈A . We claim that for i = 1, . . . , d there exists αi ∈ A

such that dim(X ∩ F ′′
αi

) = i . To see this, consider that since d < ∞ , there exists
αd ∈ A such that

dim(X ∩ F ′′
αd

) = dim(X ∩
⋃
α∈A

F ′′
α) = dim(X ∩ V ) = d.

Similarly, since d < ∞ , there exists αmin ∈ A such that

dim(X ∩ F ′′
αmin

) = dim(X ∩
⋂
α∈A

F ′′
α) ≤ dim(

⋂
α∈A

F ′′
α) ≤ 1.

Now suppose that α, β ∈ A are such that dim(X ∩F ′′
α) < dim(X ∩F ′′

β ). It suffices
to show that there exist α′, β′ ∈ A such that

dim(X ∩ F ′′
α) ≤ dim(X ∩ F ′′

α′) < dim(X ∩ F ′′
β′) ≤ dim(X ∩ F ′′

β ),

with dim(X ∩ F ′′
β′) = dim(X ∩ F ′′

α′) + 1. Let x ∈ (X ∩ F ′′
β ) \ (X ∩ F ′′

α). For some
β′ ∈ A one has x ∈ F ′′

β′ \ F ′
β′ . It follows that

dim(X ∩ F ′′
α) ≤ dim(X ∩ F ′

β′) < dim(X ∩ F ′′
β′) ≤ dim(X ∩ F ′′

β ),

and that dim(X ∩ F ′′
β′) = dim(X ∩ F ′

β′) + 1. Since F ′
β′ =

⋃
γ<β′ F

′′
γ , there exists

α′ < β′ such that dim(X∩F ′′
α′) = dim(X∩F ′

β′). Thus we have proved the existence
of αi ∈ A such that dim(X ∩ F ′′

αi
) = i for i = 1, . . . , d .

Let Xi := X ∩ F ′′
αi

. Then

0 ⊂ X1 ⊂ · · · ⊂ Xd−1 ⊂ Xd = X

is a maximal flag in X . Choose for each i an element xi ∈ Xi \Xi−1 . For each i
there exists βi ∈ A such that xi ∈ F ′′

βi
\ F ′

βi
. Then one has

StF ∩ (X ⊗ Y ) =
d∑

i=1

Xi ⊗ ((F ′
βi

)⊥ ∩ Y ).

One may check that (F ′
βi

)⊥ ∩ Y ⊂ X⊥
i−1 , where the perpendicular com-

plement of F ′
βi

is taken in V∗ and the perpendicular complement of Xi−1 is
taken in Y . This follows immediately from the fact that Xi−1 ⊂ F ′

βi
. There-

fore StF ∩ (X ⊗ Y ) ⊂
∑d

i=1 Xi ⊗ X⊥
i−1 . The latter expression is the stabilizer of

the maximal flag 0 ⊂ X1 ⊂ · · · ⊂ Xd−1 ⊂ X in X ⊗ Y , which is solvable since it
is a Borel subalgebra. Therefore StF ∩ (X ⊗ Y ) is solvable. It follows that StF is
locally solvable.



222 Dan-Cohen

Now let 〈·, ·〉 : V × V → C be a bilinear form. We will say that F is an
isotropic generalized flag in V if every F ∈ F is an isotropic subspace of V , and F

is a generalized flag in
⋃

F∈F F . As before, we say an isotropic generalized flag F

is closed if F = fl(F⊥⊥). Again, an isotropic generalized flag is closed if and only
if every immediate succesor is closed while every immediate predecessor has as its
closure either itself or its immediate successor. A closed isotropic generalized
flag F in V is a maximal closed isotropic generalized flag if and only if the
subspace

⋃
F∈F F is a maximal isotropic subspace of V , and every good pair

has codimension 1.

If F is a generalized flag in V , let Fiso denote the pairs of F which are
isotropic, i.e. Fiso := {F ′

α, F ′′
α : F ′′

α ⊂ (F ′′
α)⊥} .

4. Stable generalized flags in the standard representations

The following result motivates the definition given in Section 3 of a Borel general-
ized flag.

Theorem 4.1. Any Borel subalgebra of an infinite-dimensional indecomposable
root-reductive Lie algebra is the simultaneous stabilizer of a Borel generalized flag
in each of the standard representations.

Proof. Let g be an infinite-dimensional indecomposable root-reductive Lie
algebra, and let b ⊂ g be a Borel subalgebra. Let [g, g] ∼=

⊕
m sm be the

decomposition into simple root-reductive Lie algebras, where sm is isomorphic to
one of sl∞ , so∞ , and sp∞ for each m . Let Vm denote the standard representations
of g , as defined in Section 2. For each m , let Cm be a maximal chain of closed
b-stable subspaces in Vm . Take Fm := fl(Cm).

Let F ′ ⊂ F ′′ be any immediate predeccessor-successor pair in Fm . One
can see immediately that there are no closed subspaces properly between F ′

and F ′′ . Observe that F ′′ is closed, since it is obtained as the intersection of
closed subspaces of Vm . If F ′ is not closed, then F ′ = F ′′ because there are no
closed subspaces properly between F ′ and F ′′ . This implies that Fm is a closed
generalized flag.

If F ′ is closed, then dim F ′′/F ′ is either 1 or infinite. In detail, let G be
any b-stable subspace F ′ ⊂ G ⊂ F ′′ . If dim F ′′/F ′ < ∞ , then dim G/F ′ < ∞ ,
and hence G is closed, which implies that G is equal to either F ′ or F ′′ . That is,
if dim F ′′/F ′ < ∞ , then F ′′/F ′ is an irreducible b-module, and because F ′′/F ′

satisfies the hypotheses of Lemma 2.3, it is necessarily 1-dimensional. Thus Fm is
a bivalent closed generalized flag.

Let Dm be obtained from Fm by adding a maximal chain of b-stable
subspaces between every pair good F ′ ⊂ F ′′ with dim F ′′/F ′ = ∞ . Define
Gm := fl(Dm). Clearly Gm is a refinement of Fm . Let 0 6= x ∈ Vm be such that
F ′

x closed and dim F ′′
x /F ′

x = ∞ . The maximality of Dm implies dim G′′
x/G

′
x = 1.

Moreover, F ′
x ( G′

x , otherwise G′′
x would be a closed b-stable subspace. Similarly,

G′
x is a closed b-stable subspace with F ′

x ( G′
x ⊂ F ′′

x , and therefore G′
x = F ′′

x .
Thus Gm is a Borel generalized flag refining Fm .

Consider sm ⊂ gl(Vm, (Vm)∗). Observe that the stabilizer in gl(Vm, (Vm)∗)
of Gm is equal to the stabilizer in gl(Vm, (Vm)∗) of any maximal generalized flag
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refining Gm , which by Proposition 3.2 is locally solvable. As a result, StGm ∩ sm

is locally solvable.

Since each flag Gm is stable under b , indeed b ⊂
⋂

m StGm . Calculate[⋂
m

StGm ,
⋂
m

StGm

]
⊂

( ⋂
m

StGm

)
∩ [g, g]

=
⊕
m

(StGm ∩ sm).

Since each StGm ∩ sm is locally solvable, it follows that
⊕

m(StGm ∩ sm) is locally
solvable. Therefore

⋂
m StGm is a locally solvable subalgebra of g . Since b is

maximal locally solvable, finally b =
⋂

m StGm .

The general case is resumed in Section 13.

5. Isotropic subspaces in the standard representation of so∞

In this section we assume b is a Borel subalgebra of so(V ).

Lemma 5.1. Suppose M ⊂ V is a maximal b-stable isotropic subspace. If G
is a b-stable subspace with M ⊂ G ⊂ M⊥ , then G ∩G⊥ = M .

Proof. Observe that M ⊂ G⊥ ⊂ M⊥ . Since G∩G⊥ is b-stable and isotropic,
and moreover M ⊂ G ∩G⊥ , the maximality of M implies G ∩G⊥ = M .

Proposition 5.2. A maximal b-stable isotropic subspace of V is maximal
isotropic.

Proof. Since M is isotropic, its closure M is also isotropic. Moreover, M is
stable under b because M is stable under b , by the g-invariance of 〈·, ·〉 . By the
maximality of M , indeed M is closed.

Let C be a maximal chain of b-stable subspaces of V between M and
M⊥ . Let F := fl(C), so that 0 ⊂ M ⊂ F ⊂ M⊥ ⊂ V is a generalized flag in V .
Write F = {F ′

α, F ′′
α}α∈A . By Lemma 2.3, irreducible b-modules of this type are

one dimensional, so it must be that dim F ′′
α/F ′

α = 1 for all α ∈ A .

Suppose Y ∈ b . Since Y stabilizes the generalized flag

0 ⊂ M ⊂ F ⊂ M⊥ ⊂ V,

it follows from Lemma 3.1 that Y ∈ M ⊗ V +
∑

α F ′′
α ⊗ (F ′

α)⊥ + V ⊗ M . I will
show that in fact Y ∈ M ⊗ V + V ⊗M .

Now Y =
∑

i vi ⊗ wi + Z , for some vi ∈ F ′′
αi
\ F ′

αi
and wi ∈ (F ′

αi
)⊥ \ M

and Z ∈ M ⊗ V + V ⊗M . One may safely assume that the set {vi} is linearly
independent modulo M and modulo F ′

β for all β .

Let σ : V ⊗V → V ⊗V denote the linear map which swaps the two factors.
Since Y ∈

∧2 V , we calculate −Y = σ(Y ) =
∑

i wi ⊗ vi + σ(Z). Hence∑
i

vi ⊗ wi + wi ⊗ vi = −Z − σ(Z). (1)
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Looking at the left hand side of (1), one can see that
∑

i vi ⊗ wi + wi ⊗ vi is an
element of M⊥⊗M⊥ , whereas the right hand side is an element of M⊗V +V ⊗M .
Hence the right hand side of (1) is an element of

(M⊥ ⊗M⊥) ∩ (M ⊗ V + V ⊗M) = M ⊗M⊥ + M⊥ ⊗M.

For each i we have wi ∈ M⊥ \ M , so there exists βi ∈ A such that
wi ∈ F ′′

βi
\ F ′

βi
. Since wi ∈ F ′′

βi
∩ (F ′

αi
)⊥ , Lemma 5.1 implies that βi ≥ αi .

Assume, for the sake of a contradiction, that
∑

i vi ⊗ wi is nonzero. Let
β := maxi{βi} , where this set is nonempty by hypothesis. So β = β1 = · · · = βk

and β > βi for i 6= 1, . . . , k . Meanwhile β ≥ αi for all i . By assumption {vi} is
linearly independent modulo F ′

β , so in fact αi = β for at most one i .

1. First suppose that α1 = β . Then αi < β for i 6= 1, i.e. vi ∈ F ′
β for i 6= 1.

Equation (1) yields

v1 ⊗ w1 + w1 ⊗ v1 = −
∑
i6=1

(vi ⊗ wi + wi ⊗ vi)− Z − σ(Z)

∈ F ′
β ⊗M⊥ + M⊥ ⊗ F ′

β.

This contradicts the fact that v1, w1 ∈ F ′′
β \ F ′

β .

2. Now suppose that αi < β for all i . For i = 1, . . . , k , there exist unique
bi ∈ C and w′

i ∈ F ′
β such that wi = biw1 + w′

i . Then equation (1) yields

w1 ⊗ (b1v1 + · · ·+ bkvk)

= −
k∑

i=1

w′
i ⊗ vi −

∑
i6=1,...,k

wi ⊗ vi −
∑

i

vi ⊗ wi − Z − σ(Z)

∈ F ′
β ⊗M⊥ + M⊥ ⊗M.

Since w1 /∈ F ′
β , it follows that b1v1 + · · · + bkvk ∈ M . The fact that

b1 = 1 contradicts the assumption that the set {vi} is linearly independent
modulo M .

Either case leads to a contradiction. Therefore
∑

i vi ⊗ wi = 0, and
Y = Z ∈ M ⊗ V + V ⊗M .

Thus Y ·M⊥ ⊂ M . Since Y ∈ b was arbitrary, indeed b ·M⊥ ⊂ M . Let
L be any isotropic subspace containing M . Then M ⊂ L ⊂ M⊥ , so L is stable
under b . Since M is a maximal b-stable isotropic subspace, L = M . Therefore
M is a maximal isotropic subspace.

Proposition 5.3. There exists a maximal isotropic subspace M ⊂ V which is
stable under b. Furthermore, there exists a maximal chain C of closed b-stable
subspaces in V containing M , with the additional property that C⊥ ⊂ C .
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Proof. As a corollary to Proposition 5.2, there exists a maximal isotropic
subspace M ⊂ V which is stable under b . (Observe that 0 is a b-stable isotropic
subspace of V , and that the union of nested b-stable isotropic subspaces is a
b-stable isotropic subspace. Hence there exists a subspace M ⊂ V which is a
maximal b-stable isotropic subspace. By Proposition 5.2, M is a maximal isotropic
subspace of V .)

Suppose C is a chain of closed b-stable subspaces with M ∈ C and C⊥ ⊂ C .
Suppose further that D is a closed b-stable subspace such that C∪{D} is a chain.
Then D := C ∪ {D, D⊥} is a chain of closed b-stable subspaces with M ∈ D and
such that D⊥ ⊂ D . To see that D is a chain, consider first the fact that since
M and M⊥ are elements of C , the subspace D is either isotropic or coisotropic,
i.e. either D ⊂ D⊥ or D⊥ ⊂ D . It remains to show that for any C ∈ C , either
C ⊂ D⊥ or D⊥ ⊂ C . But this follows immediately from the fact that either
D ⊂ C⊥ or C⊥ ⊂ D , since C⊥ ∈ C and C is closed. Hence a chain which is
maximal with respect to chains C of closed b-stable subspaces containing M such
that C⊥ ⊂ C is in fact a maximal chain of closed b-stable subspaces.

6. Isotropic subspaces in the standard representation of sp∞

In this section we assume b is a Borel subalgebra of sp(V ). The propositions
in this case are completely analogous to those in the previous section, but their
proofs admit significant simplifications.

Lemma 6.1. Suppose M ⊂ V is a maximal b-stable isotropic subspace. If G′

and G′′ are b-stable subspaces with M ⊂ G′ ⊂ G′′ ⊂ M⊥ and dim G′′/G′ = 1,
then G′′ ∩ (G′)⊥ = M .

Proof. Observe that M ⊂ (G′)⊥ ⊂ M⊥ . Since G′ ∩ (G′)⊥ is b-stable and
isotropic, and moreover G′∩ (G′)⊥ contains M , the maximality of M implies that
G′ ∩ (G′)⊥ = M . The inclusion M = G′ ∩ (G′)⊥ ⊂ G′′ ∩ (G′)⊥ has codimension
0 or 1. Suppose, for the sake of a contradiction, that G′′ ∩ (G′)⊥ = M ⊕ Cx.
Then x ∈ M⊥ , and 〈x, x〉 = 0 since the pairing 〈·, ·〉 is antisymmetric. Hence
〈M ⊕ Cx, M ⊕ Cx〉 = 0, and M ⊕ Cx is isotropic. It is also b-stable. This
contradicts the maximality of M . Hence G′′ ∩ (G′)⊥ = M .

Proposition 6.2. A maximal b-stable isotropic subspace of V is maximal
isotropic.

Proof. Let F = {F ′
α, F ′′

α}α be defined in the same fashion as in the proof of
Proposition 5.2. Suppose Y ∈ b . Again, Y ∈ M ⊗ V +

∑
α F ′′

α ⊗ (F ′
α)⊥ + V ⊗M ,

so Y =
∑

i vi ⊗ wi + Z , for some vi ∈ F ′′
αi
\ F ′

αi
and wi ∈ (F ′

αi
)⊥ \ M and

Z ∈ M ⊗ V + V ⊗ M . One may safely assume that the set {vi} is linearly
independent modulo M and modulo F ′

β for all β .

Since Y ∈ Sym2(V ), we calculate Y = σ(Y ) =
∑

i wi ⊗ vi + σ(Z). Hence∑
i

vi ⊗ wi − wi ⊗ vi = Z − σ(Z). (2)
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As in the proof of Proposition 5.2, the right hand side of (2) is an element of
M ⊗M⊥ + M⊥ ⊗M .

For each i we have wi ∈ F ′′
βi
\ F ′

βi
, where M ⊂ F ′

βi
⊂ F ′′

βi
⊂ M⊥ . Since

wi ∈ F ′′
βi
∩ (F ′

αi
)⊥ , we obtain from Lemma 6.1 that βi > αi . The rest of the proof

follows the same outline as the proof of Proposition 5.2, with the simplification
that Case (1) has already been ruled out.

Proposition 6.3. There exists a maximal isotropic subspace M ⊂ V which is
stable under b. Furthermore, there exists a maximal chain C of closed b-stable
subspaces in V containing M , with the additional property that C⊥ ⊂ C .

The proof is identical to that of Proposition 5.3.

7. Maximal closed generalized flags

The following proposition is an improvement of Theorem 4.1 in the special cases of
the infinite-dimensional simple root-reductive Lie algebras. The method of proof
works also for Borel subalgebras of gl(V, V∗).

Proposition 7.1. Any Borel subalgebra of sl(V, V∗) is the stabilizer of a max-
imal closed generalized flag in V . Any Borel subalgebra of so(V ) or sp(V ) is the
stabilizer of a maximal closed generalized flag F in V with F ∪ F⊥ ∪ {M, M⊥} a
chain for some maximal isotropic subspace M ⊂ V .

Proof. If g = sl(V, V∗), let C be a maximal chain of closed b-stable subspaces
in V . If g = so(V ), let M be a b-stable maximal isotropic subspace in V ,
and let C be a maximal chain of closed b-stable subspaces in V , with M ∈ C
and C⊥ ⊂ C , as in Proposition 5.3. If g = sp(V ), let M be a b-stable maximal
isotropic subspace in V , and let C be a maximal chain of closed b-stable subspaces
in V , with M ∈ C and C⊥ ⊂ C , as in Proposition 6.3.

Let F := fl(C), as in the proof of Theorem 4.1. Observe that if g is one of
so(V ) and sp(V ), then F ∪ F⊥ ∪ {M, M⊥} is a chain. That is, the maximality
of C implies that F ∪ C is a chain, and that F⊥ ⊂ C . Since M, M⊥ ∈ C , indeed
F ∪ F⊥ ∪ {M, M⊥} is a chain.

We will show that F is a maximal closed generalized flag. By the proof of
Theorem 4.1, F is a bivalent closed generalized flag, so it remains to show that
every good pair of F has codimension 1.

Suppose, for the sake of a contradiction, that there exists a good pair
F ′ ⊂ F ′′ of F with dim F ′′/F ′ = ∞ . Let D be a maximal chain of b-stable
subspaces between F ′ and F ′′ , and let G := fl(D). Consider G = {G′

β, G′′
β}β .

It was seen in the proof of Theorem 4.1 that G′
β = F ′′ for all β . That is,

(G′
β)⊥ = (F ′′)⊥ for all β .

Of course b stabilizes the generalized flag 0 ⊂ F ′ ⊂ G ⊂ F ′′ ⊂ V . Now
consider g ⊂ gl(V, V∗), where in the isotropic cases V∗ = V . By Lemma 3.1, the



Dan-Cohen 227

stabilizer in gl(V, V∗) of the generalized flag 0 ⊂ F ′ ⊂ G ⊂ F ′′ ⊂ V is

St0⊂F ′⊂G⊂F ′′⊂V = F ′ ⊗ V∗ +
∑

β

G′′
β ⊗ (G′

β)⊥ + V ⊗ (F ′′)⊥

= F ′ ⊗ V∗ +
∑

β

G′′
β ⊗ (F ′′)⊥ + V ⊗ (F ′′)⊥

= F ′ ⊗ V∗ + V ⊗ (F ′′)⊥.

Hence b · F ′′ ⊂ F ′ , i.e. b stabilizes any subspace between F ′ and F ′′ . This
contradicts the fact that there are no closed b-stable subspaces between F ′ and
F ′′ .

This concludes the proof that F is a maximal closed generalized flag in V .
It was previously noted that if g is so(V ) or sp(V ), then F ∪ F⊥ ∪ {M, M⊥} is a
chain. Moreover, the proof of Theorem 4.1 gives that b = StF .

8. Borel subalgebras of sl∞

In this section it is shown that Borel subalgebras of sl∞ correspond to maximal
closed generalized flags in the standard representation. Let b ⊂ sl(V, V∗) be a Borel
subalgebra. Here we denote by StF the stabilizer in sl(V, V∗) of any generalized
flag F in V .

Lemma 8.1. Let F be a maximal closed generalized flag in V . For any u ∈ V ,
one of the following cases occurs:

StF · u =


F ′

u if F ′
u = F ′′

u ;

F ′
u if F ′

u ⊂ F ′′
u is the only good pair of F;

F ′′
u otherwise.

Proof. Fix u ∈ V . Consider F = {F ′
α, F ′′

α}α∈A . There are three cases to
consider.

Suppose first that there exists α ∈ A for which (F ′
α)⊥ ∩u⊥ * (F ′′

α)⊥ . Then
there exists y ∈ (F ′

α)⊥ ∩ u⊥ such that y /∈ (F ′′
α)⊥ . Hence there exists x ∈ F ′′

α such
that 〈x, y〉 = 1. Then StF = Spanα∈A{v⊗w−〈v, w〉x⊗y : v ∈ F ′′

α , w ∈ (F ′
α)⊥} . Let

v ∈ F ′′
α and w ∈ (F ′

α)⊥ . Since (v⊗w−〈v, w〉x⊗y)·u = 〈u, w〉v−〈u, y〉x = 〈u, w〉v ,
indeed StF · u =

⋃
u/∈F ′

α
F ′′

α . It is easy to check that

StF · u =

{
F ′

u if F ′
u = F ′′

u ;

F ′′
u otherwise.

Suppose second that (F ′
α)⊥ = (F ′′

α)⊥ for all α ∈ A . Then the stabilizer of
F in gl(V, V∗) is traceless because it is given by the formula

∑
α F ′′

α ⊗ (F ′
α)⊥ . Let

v ∈ F ′′
α and w ∈ (F ′

α)⊥ . Since (v ⊗ w) · u = 〈u, w〉v , indeed StF · u =
⋃

u/∈F ′
α
F ′′

α .
Again

StF · u =

{
F ′

u if F ′
u = F ′′

u ;

F ′′
u otherwise.
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Suppose third that (F ′
α)⊥ ∩u⊥ ⊂ (F ′′

α)⊥ for all α ∈ A and that there exists
γ ∈ A for which (F ′

γ)
⊥ 6= (F ′′

γ )⊥ . Then (F ′
γ)
⊥ ∩ u⊥ ⊂ (F ′′

γ )⊥ ( (F ′
γ)
⊥ implies that

(F ′
γ)
⊥ ∩ u⊥ = (F ′′

γ )⊥ . Thus (F ′′
γ )⊥ ⊂ u⊥ , and hence u ∈ F ′′

γ = F ′′
γ . If u ∈ F ′

γ ,
then u⊥ ∩ (F ′

γ)
⊥ = (F ′

γ)
⊥ . Hence u ∈ F ′′

γ \ F ′
γ . This argument implies that F has

exactly one good pair. One may check that

StF = (
∑
α∈A

F ′′
α ⊗ (F ′

α)⊥) ∩ sl(V, V∗) =
∑

γ 6=α∈A

F ′′
α ⊗ (F ′

α)⊥ + F ′′
γ ⊗ (F ′′

γ )⊥.

In this case, StF · u = F ′
u .

Lemma 8.2. If F and G are maximal closed generalized flags in V with
StF ⊂ StG , then F = G.

Proof. Let F = {F ′
α, F ′′

α}α∈A and G = {G′
β, G′′

β}β∈B . For each α ∈ A choose

uα ∈ F ′′
α \ F ′

α . If there is exactly one γ ∈ A such that G′
γ = G′

γ , define
A′ := A \ {γ} . Otherwise, let A′ := A .

Since StF ⊂ StG , it follows that

StF · uα ⊂ StG · uα.

For any α ∈ A′ , Lemma 8.1 implies that StF · uα = F ′′
α . Therefore for any α ∈ A′ ,

indeed F ′′
α = F ′′

uα
= StF · uα ⊂ StG · uα ⊂ G′′

uα
.

We will show that F ′′
α = G′′

uα
for all α ∈ A′ . There are two cases to consider.

1. Suppose F ′
α = F ′′

α . Then Lemma 8.1 implies that for any u /∈ F ′′
α , indeed

F ′′
α ⊂ StF · u . Observe that G′

uα
is stable under StF and uα /∈ G′

uα
. It

follows that G′
uα
⊂ F ′′

α . Thus G′
uα
⊂ F ′′

α ⊂ G′′
uα

. Since uα ∈ F ′′
α , it must be

that G′
uα

( F ′′
α . Since G is a maximal closed generalized flag, necessarily

F ′′
α = G′′

uα
.

2. Suppose F ′
α is closed. Then Lemma 8.1 implies that for any u /∈ F ′

α , indeed
F ′′

α ⊂ StF ·u . Observe that G′
uα

is stable under StF and uα /∈ G′
uα

. It follows
that G′

uα
⊂ F ′

α . Thus G′
uα
⊂ F ′

α ⊂ F ′′
α ⊂ G′′

uα
. Since G is a maximal closed

generalized flag, necessarily F ′′
α = G′′

uα
.

If A = A′ , then the proof is done, since a generalized flag is determined
by its set of successors. Assume therefore that A 6= A′ , in which case it remains
to show that F ′′

γ = G′′
uγ

. Observe first that F ′
γ =

⋃
α<γ F ′′

α =
⋃

α<γ G′′
uα

. Since
dim F ′

α/F ′′
γ = ∞ for any α > γ , it must hold that

F ′′
γ =

⋂
α>γ

F ′
α =

⋂
α>γ

F ′′
α =

⋂
α>γ

G′′
uα

.

Since dim F ′′
γ /F ′

γ = 1, it follows that F ′
γ ⊂ F ′′

γ is a pair in G . Thus F ′′
γ = G′′

uγ
,

and consequently F = G .

The following result fully describes Borel subalgebras of sl(V, V∗).
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Theorem 8.3. A subalgebra of sl(V, V∗) is a Borel subalgebra if and only if it
is the stabilizer of a maximal closed generalized flag in V . Furthermore, the map
F 7→ StF is a bijection between maximal closed generalized flags in V and Borel
subalgebras of sl(V, V∗).

Proof. Let F be an arbitrary maximal closed generalized flag in V . Because
StF equals the stabilizer of any maximal generalized flag refining F , Proposition
3.2 yields that StF is locally solvable. Hence there exists a Borel subalgebra b

with StF ⊂ b . By Proposition 7.1, there is a maximal closed generalized flag G in
V with b = StG . It follows from Lemma 8.2 that F = G . As a result, StF = b is
a Borel subalgebra. Hence F 7→ StF gives a map from maximal closed generalized
flags in V to Borel subalgebras of sl(V, V∗). Proposition 7.1 implies that the map
is surjective, and Lemma 8.2 implies that it is injective.

9. Borel subalgebras of so∞

In this section it is shown that Borel subalgebras of so∞ almost correspond to
maximal closed isotropic generalized flags in the standard representation. Let
b ⊂ so(V ) be a Borel subalgebra. Here we denote by StF the stabilizer in so(V )
of any generalized flag F in V , and we denote by StF,gl the stabilizer of F in
gl(V, V ). Of course, StF = StF,gl ∩ so(V ).

Definition 9.1. Let F = {F ′
α, F ′′

α}α∈A and G = {G′
β, G′′

β}β∈B be maximal
closed isotropic generalized flags. We say that F and G are twins if A and B
have maximal elements, denoted ∞ , such that:

1. {F ′
α, F ′′

α}α∈A\{∞} = {G′
β, G′′

β}β∈B\{∞} ;

2. F ′
∞ is closed and dim(F ′

∞)⊥/F ′
∞ = 2; and

3. F ′′
∞ 6= G′′

∞ are the two maximal isotropic subspaces containing F ′
∞ .

Condition (1) of this definition forces F ′
∞ = G′

∞ . As for condition (3),
it makes sense after condition (2) because whenever L ⊂ V is a closed isotropic
subspace with dim L⊥/L = 2, there are exactly two maximal isotropic subspaces
containing L . We say that F has a twin if F = {F ′

α, F ′′
α}α∈A is a maximal closed

isotropic generalized flag with a maximal element ∞ , such that F ′
∞ is closed and

(F ′′
∞)⊥ = F ′′

∞ . If F has a twin, let tw(F) denote the twin of F . That is, tw(F)
is obtained from F by replacing F ′′

∞ with the other maximal isotropic subspace
containing F ′

∞ . Note that tw is an involution on the set of maximal closed isotropic
generalized flags that have twins. Generalizing a phenomenon already present in
the case of so2n , the maximal closed isotropic generalized flags F and tw(F) have
the same stabilizer in so(V ).

Lemma 9.2. Let F be a maximal generalized flag in V , and assume that
F ∪ F⊥ ∪ {M, M⊥} is a chain for some maximal isotropic subspace M ⊂ V .
Then StFiso

= StF .
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Proof. Clearly StF ⊂ StFiso
. Let Z ∈ StFiso

be arbitrary.

Let F = {F ′
α, F ′′

α}α∈A . One first shows that StF =
∑

α∈A,F ′′
α⊂M F ′′

α ∧ (F ′
α)⊥ .

For any x ∈ F ′′
α and y ∈ (F ′

α)⊥ , on the one hand x ⊗ y ∈ StF,gl , but on
the other hand since F ∪ F⊥ is a chain, in fact y ⊗ x ∈ StF,gl . In detail, there
exists β ∈ A for which y ∈ F ′′

β \ F ′
β . Since F ∪ F⊥ is a chain, and y ∈ (F ′

α)⊥ and

y /∈ F ′
β , it follows that F ′

β ( (F ′
α)⊥ . Moreover since dim(F ′

α)⊥/(F ′′
α)⊥ ≤ 1, it must

be that F ′
β ⊂ (F ′′

α)⊥ , and thus F ′′
α = (F ′′

α)⊥⊥ ⊂ (F ′
β)⊥ . So x ∈ (F ′

β)⊥ , and hence

y ⊗ x ∈ F ′′
β ⊗ (F ′

β)⊥ ⊂ StF,gl . Thus the map of vector spaces (which is not a map
of Lie algebras):

ϕ :
∑
α∈A

F ′′
α ⊗ (F ′

α)⊥ →
∧2

V

x⊗ y 7→ x⊗ y − y ⊗ x

in fact has its image in StF . As ϕ|StF
= 2 · Id, indeed ϕ maps surjectively onto

StF . Because
∑

F ′′
α⊗(F ′

α)⊥ is spanned by elements of the form x⊗y , with x ∈ F ′′
α

and y ∈ (F ′
α)⊥ for some α ∈ A , likewise StF is spanned by elements of the form

x⊗ y − y ⊗ x , with x ∈ F ′′
α and y ∈ (F ′

α)⊥ for some α ∈ A .

Suppose M 6= M⊥ . Observe that M ⊂ M⊥ is a pair in the generalized
flag F . In this case, StF is in fact spanned by elements of the form x⊗ y− y⊗ x ,
with x ∈ F ′′

α and y ∈ (F ′
α)⊥ for α ∈ A which are not equal to the pair M ⊂ M⊥ .

To see this, consider that the term in StF corresponding to the pair M ⊂ M⊥ is
M⊥ ⊗M⊥ . Let m ∈ M⊥ \M . Observe that

M⊥ ⊗M⊥ = M⊥ ⊗M + M ⊗M⊥ + C(m⊗m).

Now M⊥ ⊗M + M ⊗M⊥ ⊂
∑

(M⊂M⊥) 6=α∈A F ′′
α ⊗ (F ′

α)⊥ and m⊗m ∈ Sym2(V ).

Since σ fixes M⊥ ⊗M + M ⊗M⊥ and m⊗m , it follows that

StF =
( ∑

(M⊂M⊥) 6=α∈A

F ′′
α ⊗ (F ′

α)⊥
)
∩

∧2
V.

Moreover, the stabilizer StF is spanned by elements of the form x⊗y−y⊗x
with x ∈ F ′′

α ⊂ M and y ∈ (F ′
α)⊥ . (Explicitly, if M⊥ ⊂ F ′

α , then one has
(F ′

α)⊥ ⊂ M⊥⊥ = M .) This concludes the proof that StF =
∑

α∈A,F ′′
α⊂M F ′′

α∧(F ′
α)⊥ .

Now
StFiso,gl =

∑
F ′′

α⊂M

F ′′
α ⊗ (F ′

α)⊥ + V ⊗M⊥,

because it is the stabilizer of Fiso ∪ {M ⊂ V } , which is a generalized flag in V .
Then Z = X + Y for some X ∈

∑
F ′′

α⊂M F ′′
α ⊗ (F ′

α)⊥ and Y ∈ V ⊗M⊥ .

Note that Z = −σ(Z), i.e. X + Y = −σ(X) − σ(Y ). A rearrangement
yields Y + σ(X) = −σ(Y )−X , and the left hand side of this equation is clearly
an element of V ⊗M⊥ , while the righthand side is clearly an element of M⊥⊗V .
So Y + σ(X) ∈ (V ⊗M⊥) ∩ (M⊥ ⊗ V ) = M⊥ ⊗M⊥ . Now

σ(Y + σ(X)) = σ(Y ) + X = −(Y + σ(X)),

and therefore Y + σ(X) ∈ (M⊥ ⊗M⊥) ∩
∧2(V ) =

∧2 M⊥ . Let η := Y + σ(X),
so Z = X − σ(X) + η . Clearly X − σ(X) ∈ StF . Observe that either M ⊂ M⊥

is a pair in F , in which case M⊥ ⊗M⊥ ⊂ StF,gl , or else M = M⊥ , in which case
M ⊗M ⊂ StF,gl . Since η ∈

∧2 M⊥ ⊂ StF , it follows that Z ∈ StF .
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Lemma 9.3. Let F = {F ′
α, F ′′

α}α∈A be a maximal closed isotropic generalized
flag in V . Then StF =

∑
α∈A F ′′

α ∧ (F ′
α)⊥ , and moreover StF is locally solvable.

Proof. Let M denote
⋃

α∈A F ′′
α , which is a maximal isotropic subspace of V .

Let C be any maximal chain in V containing F ∪ F⊥ , and let H := fl(C). Note
that Hiso is a refinement of F . We will show that H ∪ H⊥ ∪ {M, M⊥} is a
chain. Then Lemma 9.2 gives that StH = StHiso

. Since Hiso is a refinement of
F , and moreover since F is a maximal closed isotropic generalized flag in M , it
holds that StHiso

= StF . By Proposition 3.2, StH,gl is locally solvable. Hence
StF = StHiso

= StH ⊂ StH,gl is locally solvable. The formula for StF is seen in the
proof of Lemma 9.2 to be a formula for StH = StHiso

.

It remains to show that H ∪ H⊥ ∪ {M, M⊥} is a chain. Clearly M and
M⊥ =

⋂
F∈F F⊥ are automatically compatible with C , and they remain compatible

with H , and consequently also with H⊥ . Now suppose H, I ∈ H , and one must
show that either H⊥ ⊂ I or I ⊂ H⊥ . If H and I are both isotropic, then
I ⊂ M ⊂ M⊥ ⊂ H⊥ . If H and I are both coisotropic, then H⊥ ⊂ M ⊂ M⊥ ⊂ I .
It remains to deal with the cases

• H ⊂ M ⊂ M⊥ ⊂ I ;

• I ⊂ M ⊂ M⊥ ⊂ H .

In the first case, F ′ ⊂ H ⊂ F ′′ for some immediate predecessor-successor
pair F ′ ⊂ F ′′ in F . Thus (F ′′)⊥ ⊂ H⊥ ⊂ (F ′)⊥ . Since dim(F ′)⊥/(F ′′)⊥ ≤ 1, it
must be the case that H⊥ is either (F ′)⊥ or (F ′′)⊥ . Since F⊥ ∪ {I} is a chain,
H⊥ either contains or is contained in I .

In the second case, F ′ ⊂ I ⊂ F ′′ for some immediate predecessor-successor
pair F ′ ⊂ F ′′ in F . Since dim(F ′)⊥/(F ′′)⊥ ≤ 1, either H ⊂ (F ′′)⊥ or (F ′)⊥ ⊂ H .
If H ⊂ (F ′′)⊥ , then I ⊂ F ′′ = F ′′ ⊂ H⊥ , i.e. I ⊂ H⊥ .

Now assume that (F ′)⊥ ⊂ H . Suppose there exists F ∈ F with F⊥ ⊂ H
and F ( F ′ . Then H ⊂ F ⊂ F ′ ⊂ I , and there is nothing left to show. It
remains to treat the case when H ⊂ F⊥ for all F ∈ F with F ( F ′ . Of course
F ′ =

⋃
F(F ′ F . Hence (F ′)⊥ = (

⋃
F(F ′ F )⊥ =

⋂
F(F ′ F⊥ . So

H ⊂
⋂

F(F ′

F⊥ = (F ′)⊥ ⊂ H.

Hence H = (F ′)⊥ , i.e. H⊥ = F ′ which is either F ′ or F ′′ . Since F ∪ {I} is a
chain, H⊥ either contains or is contained in I .

Lemma 9.4. Let F be a maximal closed isotropic generalized flag in V . Sup-
pose u ∈

⋃
F∈F F . Then

StF · u =

{
F ′′

u if F ′
u = F ′

u

F ′
u if F ′

u = F ′′
u .

Thus StF · u = F ′′
u .
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Proof. Let F = {F ′
α, F ′′

α}α∈A , and let u ∈
⋃

α F ′′
α . Lemma 9.3 states that

StF =
∑

α F ′′
α ∧ (F ′

α)⊥ . Fix β ∈ A , and let x ∈ F ′′
β and y ∈ (F ′

β)⊥ . Then
(x⊗ y− y⊗ x) · u = 〈u, y〉x− 〈u, x〉y = 〈u, y〉x , since 〈

⋃
α F ′′

α ,
⋃

α F ′′
α〉 = 0. Hence

StF · u =
⋃

u/∈F ′
β
F ′′

β . The lemma follows easily.

Lemma 9.5. Suppose F = {F ′
α, F ′′

α}α∈A and G = {G′
β, G′′

β}β∈B are maximal
closed isotropic generalized flags in V with StF ⊂ StG . If

⋃
α∈A F ′′

α is not equal to⋃
β∈B G′′

β , then A and B have maximal elements ∞ with F ′
∞ = G′

∞ closed and

dim(F ′
∞)⊥/F ′

∞ = 2.

Proof. Let M :=
⋃

F∈F F and N :=
⋃

G∈G G , and suppose M 6= N . The
maximality of F and G implies that both M and N are maximal isotropic
subspaces. Thus neither M nor N contains the other, and there exist m ∈ M \N
and n ∈ N \M . There exists α ∈ A for which m ∈ F ′′

α \ F ′
α . For any y ∈ (F ′

α)⊥ ,
it holds that m⊗ y − y ⊗m ∈ StF ⊂ StG . Since m /∈ N , indeed y − cm ∈ N for
some c ∈ C . Hence (F ′

α)⊥ ⊂ N ⊕Cm . As a result M ⊂ M⊥ ⊂ (F ′
α)⊥ ⊂ N ⊕Cm .

Hence M = (M ∩ N) ⊕ Cm . Of course M ∩ N is necessarily closed, being the
intersection of two closed subspaces of V .

Consider the chain M∩N ⊂ M ⊂ M⊥ ⊂ (M∩N)⊥ . Since dim M⊥/M ≤ 1,
and dim M/(M ∩N) = dim(M ∩N)⊥/M⊥ = 1, it must be that the dimension of
(M ∩N)⊥/(M ∩N) is either 2 or 3.

Also note that n ∈ (M ∩N)⊥ , since N is isotropic. Observe that

M ∩N ⊂ N ⊂ N⊥ ⊂ (M ∩N)⊥,

and since dim N⊥/N ≤ 1, and dim N/(M ∩N) = dim(M ∩N)⊥/N⊥ , it must be
the case that dim N/(M ∩N) = 1. Thus N = (M ∩N)⊕ Cn .

Suppose, for the sake of a contradiction, that dim(M ∩N)⊥/(M ∩N) = 3.
Then there exist u ∈ M⊥ \M and v ∈ (M ∩N)⊥ \M⊥ with the properties that
〈u, u〉 = 〈m, v〉 = 1 and 〈u, v〉 = 〈v, v〉 = 0. So n = am + bu + cv + x for some
a, b, c ∈ C and x ∈ M ∩N . Now m⊗ u− u⊗m ∈ StF ⊂ StG , and StG ·N ⊂ N ,
so

(m⊗ u− u⊗m) · n = (m⊗ u− u⊗m) · (am + bu + cv + x)

= 〈am + bu + cv + x, u〉m− 〈am + bu + cv + x, m〉u
= bm− cu

∈ N = (M ∩N)⊕ C(am + bu + cv + x).

Therefore (bm − cu) − λ(am + bu + cv) ∈ M ∩ N for some λ ∈ C . Equivalently
one has (b − λa)m − (c + λb)u − λcv = 0, which implies b = c = 0. It follows
that N = M . This contradicts the hypothesis that M 6= N . It follows that
dim(M ∩N)⊥/(M ∩N) = 2.

Since n ∈ (M ∩N)⊥ \M⊥ , necessarily 〈m, n〉 6= 0. Assume without loss of
generality that 〈m,n〉 = 1. It remains to show that A and B have elements ∞
such that F ′

∞ = G′
∞ = M ∩N .

We will show that if F ′′
α * M ∩ N , then F ′′

α = M . Suppose there
exists z ∈ F ′′

α \ M ∩ N . Rescaling z , it holds that z = m + w for some
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w ∈ M ∩ N . For any x ∈ M ∩ N , observe that x ⊗ n − n ⊗ x ∈ StF , and
(x⊗ n− n⊗ x) · z = (x⊗ n− n⊗ x) · (m + w) = 〈m + w, n〉x− 〈m + w, x〉n = x .
Hence M ∩ N ⊂ StF · F ′′

α ⊂ F ′′
α ⊂ M . Since z ∈ F ′′

α and z /∈ M ∩ N , it must be
that F ′′

α = M .

Likewise, if G′′
β * M ∩ N then G′′

β = N . Suppose there exists an element
z ∈ G′′

β \M ∩N . The proof that M ∩N ⊂ StF ·G′′
β is analogous to the argument in

the above paragraph. So M ∩N ⊂ StF ·G′′
β ⊂ StG ·G′′

β ⊂ G′′
β ⊂ N . Since z ∈ G′′

β

and z /∈ M ∩N , it must be that G′′
β = N .

Thus each of A and B has a maximal element ∞ with F ′
∞ = G′

∞ =
M ∩N . It was already observed that M ∩N is closed, and it was also shown that
dim(M ∩N)⊥/(M ∩N) = 2.

Lemma 9.6. Suppose F and G are maximal closed isotropic generalized flags
in V with StF ⊂ StG . If F 6= G, then F and G are twins; in either case,
StF = StG .

Proof. Let F = {F ′′
α , F ′

α}α∈A and G = {G′′
β, G′′

β}β∈B . If
⋃

α∈A F ′′
α 6=

⋃
β∈B G′′

β ,
then let ∞ ∈ A, B be as in Lemma 9.5, and take A′ := A\{∞} and B′ := B\{∞} .
Otherwise, let A′ := A and B′ := B . For each α ∈ A′ choose uα ∈ F ′′

α \ F ′
α .

Since StF ⊂ StG , of course

StF · uα ⊂ StG · uα.

Lemma 9.5 implies that uα ∈
⋃

β∈B′ G′′
β , so by Lemma 9.4 that is F ′′

α = F ′′
uα
⊂ G′′

uα
.

We will show that F ′′
α = G′′

uα
for all α ∈ A′ . There are two cases to consider.

1. Suppose F ′
α = F ′′

α . Then Lemma 8.1 implies that for any u /∈ F ′′
α , indeed

F ′′
α ⊂ StF · u . Observe that G′

uα
is stable under StF and uα /∈ G′

uα
. It

follows that G′
uα
⊂ F ′′

α . Thus G′
uα
⊂ F ′′

α ⊂ G′′
uα

. Since uα ∈ F ′′
α , it must be

that G′
uα

( F ′′
α . Since G is a maximal closed generalized flag, necessarily

F ′′
α = G′′

uα
.

2. Suppose F ′
α is closed. Then Lemma 8.1 implies that for any u /∈ F ′

α , indeed
F ′′

α ⊂ StF ·u . Observe that G′
uα

is stable under StF and uα /∈ G′
uα

. It follows
that G′

uα
⊂ F ′

α . Thus G′
uα
⊂ F ′

α ⊂ F ′′
α ⊂ G′′

uα
. Since G is a maximal closed

generalized flag, necessarily F ′′
α = G′′

uα
.

On the one hand, if
⋃

α∈A F ′′
α =

⋃
β∈B G′′

β , then F = G , since a generalized
flag is determined by its successors. If, on the other hand,

⋃
α∈A F ′′

α 6=
⋃

β∈B G′′
β ,

then we have shown that {F ′
α, F ′′

α : α ∈ A′} = {G′
β, G′′

β : β ∈ B′} . Lemma 9.5

implies that F ′
∞ = G′

∞ is a closed isotropic subspace with dim(F ′
∞)⊥/F ′

∞ = 2.
There are precisely two maximal isotropic subspaces containing F ′

∞ , and they
must be F ′′

∞ and G′′
∞ , respectively. Therefore G = tw(F). We omit the proof of

the fact that StF = Sttw(F) .

The following result fully describes Borel subalgebras of so(V ).
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Theorem 9.7. A subalgebra of so(V ) is a Borel subalgebra if and only if it is
the stabilizer of a maximal closed isotropic generalized flag in V . Furthermore, a
fiber of the map

F 7→ StF

from maximal closed isotropic generalized flags in V to Borel subalgebras of so(V )
is either a single maximal closed isotropic generalized flag which has no twin, or a
pair of twins.

Proof. Let b be a Borel subalgebra of so(V ). Proposition 7.1 states that b is
the stabilizer of a maximal closed generalized flag F in V with F∪F⊥∪{M, M⊥}
being a chain for some maximal isotropic subspace M ⊂ V . By Lemma 9.2,
b = StFiso

. Observe that Fiso is a maximal closed isotropic generalized flag in V ,
since the union of the isotropic subspaces in F must be M . Hence every Borel
subalgebra of so(V ) is the stabilizer of a maximal closed isotropic generalized flag
in V .

Let F be an arbitrary maximal closed isotropic generalized flag in V . By
Lemma 9.3, StF is locally solvable. Hence there exists a Borel subalgebra b with
StF ⊂ b . We have seen that there is a maximal closed isotropic generalized flag G

with b = StG . It follows from Lemma 9.6 that StF = StG . This means that StF

is a Borel subalgebra. Hence F 7→ StF gives a map from maximal closed isotropic
generalized flags in V to Borel subalgebras of so(V ). Proposition 7.1 implies that
the map is surjective. Lemma 9.6 implies that if StF = StG , then either F = G ,
or F and G are twins. Since StF = Sttw(F) whenever F has a twin, we have shown
that a fiber of the map is either a single maximal closed isotropic generalized flag
which has no twin, or a pair of twins.

10. Borel subalgebras of sp∞

In this section it is shown that Borel subalgebras of sp∞ correspond to maximal
closed isotropic generalized flags in the standard representation. Let b ⊂ sp(V )
be a Borel subalgebra. Here we denote by StF the stabilizer in sp(V ) of any
generalized flag F in V , and we denote by StF,gl the stabilizer of F in gl(V, V ).
Of course, StF = StF,gl ∩ sp(V ). If X and Y are subspaces of V , we denote their
symmetrizer by X&Y := {x⊗ y + y ⊗ x : x ∈ Y, y ∈ Y } ⊂ Sym2(V ).

Lemma 10.1. Let F be a maximal generalized flag in V such that F∪F⊥∪{M}
is a chain for some maximal isotropic subspace M ⊂ V . Then StFiso

= StF .

Proof. Clearly StF ⊂ StFiso
. Let Z ∈ StFiso

be arbitrary.

Let F = {F ′
α, F ′′

α}α∈A . We first show that StF =
∑

α∈A,F ′′
α⊂M F ′′

α&(F ′
α)⊥ .

For any x ∈ F ′′
α and y ∈ (F ′

α)⊥ , we know on the one hand that x⊗y ∈ StF,gl ,
but on the other hand from the fact that F ∪ F⊥ is a chain, we find that also
y ⊗ x ∈ StF,gl . In detail, we have y ∈ F ′′

β \ F ′
β for some β ∈ A . Since F ∪ F⊥

is a chain, and y ∈ (F ′
α)⊥ and y /∈ F ′

β , we have F ′
β ( (F ′

α)⊥ . Moreover since

dim(F ′
α)⊥/(F ′′

α)⊥ ≤ 1, we have F ′
β ⊂ (F ′′

α)⊥ , and thus F ′′
α ⊂ (F ′′

α)⊥⊥ ⊂ (F ′
β)⊥ . So
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x ∈ (F ′
β)⊥ , and we see that y⊗ x ∈ F ′′

β ⊗ (F ′
β)⊥ ⊂ StF,gl . Hence the map of vector

spaces (which is not a map of Lie algebras):

ϕ :
∑
α∈A

F ′′
α ⊗ (F ′

α)⊥ → Sym2(V )

x⊗ y 7→ x⊗ y + y ⊗ x

in fact has its image in b . From the fact that ϕ|b = 2 · Id, we find that ϕ maps
surjectively onto b . Since

∑
F ′′

α⊗(F ′
α)⊥ is spanned by elements of the form x⊗y ,

with x ∈ F ′′
α and y ∈ (F ′

α)⊥ , we see that b is spanned by elements of the form
x⊗ y + y ⊗ x , with x ∈ F ′′

α and y ∈ (F ′
α)⊥ .

In fact, b is spanned by elements of the form x⊗y+y⊗x , with x ∈ F ′′
α ⊂ M

and y ∈ (F ′
α)⊥ . (Explicitly, if M ⊂ F ′

α , then y ∈ (F ′
α)⊥ ⊂ M⊥⊥ = M .)

Now

StFiso,gl =
∑

F ′′
α⊂M

F ′′
α ⊗ (F ′

α)⊥ + V ⊗M,

because it is the stabilizer of Fiso ∪ {M ⊂ V } , which is a generalized flag in V .
Then Z = X + Y for some X ∈

∑
F ′′

α⊂M F ′′
α ⊗ (F ′

α)⊥ and Y ∈ V ⊗M .

Since Z = σ(Z), we have X + Y = σ(X) + σ(Y ). A rearrangement yields
Y − σ(X) = σ(Y ) − X , and the left hand side of the equation is clearly an
element of V ⊗M , while the righthand side is clearly an element of M ⊗ V . So
Y − σ(X) ∈ (V ⊗M) ∩ (M ⊗ V ) = M ⊗M . Now

σ(Y − σ(X)) = σ(Y )−X = Y − σ(X),

and therefore Y − σ(X) ∈ (M ⊗M)∩ Sym2(V ) = Sym2(M). Let η := Y − σ(X),
so Z = X + σ(X) + η . Clearly X + σ(X) ∈ StF . Since η ∈ Sym2(M) ⊂ StF , we
have Z ∈ StF .

Lemmas 10.2, 10.3, and 10.5 may be proved in the same manner as the
analogous statements in Section 9, needing straightforward modifications only, so
the proofs are omitted.

Lemma 10.2. Let F = {F ′
β, F ′′

β }β∈B be a maximal closed isotropic generalized

flag in V . Then StF =
∑

β F ′′
β &(F ′

β)⊥ , and moreover StF is locally solvable.

Lemma 10.3. Let F be a maximal closed isotropic generalized flag in V . If
u ∈

⋃
F∈F F , then

StF · u =

{
F ′′

u if F ′
u = F ′

u

F ′
u if F ′

u = F ′′
u .

Thus StF · u = F ′′
u .

Proposition 10.4. If F and G are maximal closed isotropic generalized flags
in V with StF ⊂ StG , then

⋃
F∈F F =

⋃
G∈G G.
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Proof. Let M :=
⋃

F∈F F and N :=
⋃

G∈G G . The maximality of F and G

implies that both M and N are maximal isotropic subspaces. We will show that
〈M, N〉 = 0. Suppose, for the sake of a contradiction, that there exist m ∈ M and
n ∈ N such that 〈m, n〉 6= 0. Then (m⊗m)·n = 〈n, m〉m . Since Sym2(M) ⊂ StF ,
we have shown that m ∈ StF ·N ⊂ StG ·N ⊂ N . But 〈m,n〉 6= 0, which contradicts
the fact that N is isotropic. Hence 〈M, N〉 = 0, and N ⊂ M⊥ = M . By the
maximality of N , we have M = N .

Lemma 10.5. If F and G are maximal closed isotropic generalized flags in V
with StF ⊂ StG , then F = G.

The following result fully describes Borel subalgebras of sp(V ).

Theorem 10.6. A subalgebra of sp(V ) is a Borel subalgebra if and only if it
is the stabilizer of a maximal closed isotropic generalized flag in V . Futhermore,
the map from maximal closed isotropic generalized flags of V to Borel subalgebras
of sp(V )

F 7→ StF

is bijective.

Proof. Let b be a Borel subalgebra of sp(V ). Proposition 7.1 states that b is
the stabilizer of a maximal closed generalized flag F in V with F∪F⊥∪{M} being
a chain for some maximal isotropic subspace M ⊂ V . By Lemma 9.2, b = StFiso

.
Observe that Fiso is a maximal closed isotropic generalized flag in V , since the
union of the isotropic subspaces in F must be M . Hence every Borel subalgebra
of sp(V ) is the stabilizer of a maximal closed isotropic generalized flag in V .

Now let F be an arbitrary maximal closed isotropic generalized flag in V .
By Lemma 10.2, StF is locally solvable. Hence there exists a Borel subalgebra b

with StF ⊂ b . We have seen that there is a maximal closed isotropic generalized
flag G with b = StG . It follows from Lemma 9.6 that F = G . As a result, StF = b

is a Borel subalgebra. Hence F 7→ StF gives a map from maximal closed isotropic
generalized flags in V to Borel subalgebras of sp(V ). Proposition 7.1 gives that
the map is surjective, and Lemma 10.5 implies that it is injective.

11. Recapitulation of simple cases

One can find a nice kind of toral subalgebra in any Borel subalgebra b of one
of the simple infinite-dimensional root-reductive Lie algebras. In each case, there
exist toral subalgebras t ⊂ b such that b = t + n , where n denotes the ad hoc
nilradical of b . Hence irreducible representations of b are given by characters of t .
The relevant formulas are shown in Figure 1. A similar analysis is seen in the case
of gl∞ in [3]. For more about toral subalgebras, see [1].

If b ⊂ sl(V, V∗) is a Borel subalgebra, then b is the stabilizer in sl(V, V∗)
of a unique maximal closed generalized flag F = {F ′

α, F ′′
α}α∈A in V . It is also the

stabilizer in sl(V, V∗) of a unique maximal closed generalized flag G = {G′
β, G′′

β}β∈B

in V∗ . Let C denote the good pairs of A , and we may also identify C with the
subset of good pairs of B . There exist 1-dimensional subspaces Lγ ⊂ V and
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Figure 1: Formulas for the stabilizer b ⊂ g of a maximal closed (isotropic)
generalized flag {F ′

α, F ′′
α} in V , the ad hoc nilradical n of b , and the toral

subalgebra t associated to lines Lγ and Mγ .

g b n t

gl(V, V∗)
∑

α F ′′
α ⊗ (F ′

α)⊥
∑

α F ′′
α ⊗ (F ′′

α)⊥
⊕

γ∈C Lγ ⊗Mγ

sl(V, V∗) g ∩
∑

α F ′′
α ⊗ (F ′

α)⊥
∑

α F ′′
α ⊗ (F ′′

α)⊥ g ∩
⊕

γ∈C Lγ ⊗Mγ

so(V )
∑

α F ′′
α ∧ (F ′

α)⊥
∑

α F ′′
α ∧ (F ′′

α)⊥
⊕

γ∈C Lγ ∧Mγ

sp(V )
∑

α F ′′
α&(F ′

α)⊥
∑

α F ′′
α&(F ′′

α)⊥
⊕

γ∈C Lγ&Mγ

Mγ ⊂ V∗ for γ ∈ C such that 〈Lγ, Mc〉 = δγcC , and such that F ′′
γ = F ′

γ ⊕ Lγ and
(F ′

γ)
⊥ = (F ′′

γ )⊥⊕Mγ . In fact, one can go so far as to require that there exist vector
space complements Xα of F ′

α in F ′′
α for α ∈ A \C , and vector space complements

Yβ of G′
β in G′′

β for β ∈ B \ C , such that V = (
⊕

γ∈C Lγ) ⊕ (
⊕

α∈A\C Xα) and

V∗ = (
⊕

γ∈C Mγ)⊕ (
⊕

β∈B\C Yβ). The associated toral subalgebra of b is

t =
( ⊕

γ∈C

Lγ ⊗Mγ

)
∩ sl(V, V∗).

The same construction produces toral subalgebras inside of Borel subalgebras of
gl(V, V∗) as well, and the formulas for gl(V, V∗) are also given in Figure 1.

If b ⊂ so(V ) is a Borel subalgebra, then b is the stabilizer in so(V ) of
a maximal closed isotropic generalized flag F = {F ′

α, F ′′
α}α∈A in V . Consider

G := fl(F⊥ ∪ {V }) = {G′
β, G′′

β}β∈B . There exist 1-dimensional subspaces Lγ ⊂ V
and Mγ ⊂ V for γ ∈ C such that 〈Mγ, Mc〉 = 0 and 〈Lγ, Mc〉 = δγcC , and such
that F ′′

γ = F ′
γ ⊕ Lγ and (F ′

γ)
⊥ = (F ′′

γ )⊥ ⊕ L−γ for all γ ∈ C . In fact, one can go
so far as to require that there exist vector space complements Xα of F ′

α in F ′′
α for

α ∈ A \C , and vector space complements Yβ of G′
β in G′′

β for β ∈ B \C , as well
as a vector space complement S (necessarily of dimension 0 or 1) of

⋃
α F ′′

α in
(
⋃

α F ′′
α)⊥ , such that V = (

⊕
γ∈C Lγ ⊕Mγ) ⊕ (

⊕
α∈A\C Xα) ⊕ (

⊕
β∈B\C Yβ) ⊕ S .

The associated toral subalgebra is

t =
⊕
γ∈C

Lγ ∧Mγ.

If b ⊂ sp(V ) is a Borel subalgebra, then b is the stabilizer in sp(V ) of a
unique maximal closed isotropic generalized flag F = {F ′

α, F ′′
α}α∈A in V . Consider

G := fl(F⊥ ∪ {V }) = {G′
β, G′′

β}β∈B . Let C denote the good pairs of A , and
we may also consider C as a subset of B . There exist 1-dimensional subspaces
Lγ ⊂ V and Mγ ⊂ V for γ ∈ C such that 〈Lγ, Mc〉 = δγcC and 〈Mγ, Mc〉 = 0,
and such that F ′′

γ = F ′
γ ⊕ Lγ and (F ′

γ)
⊥ = (F ′′

γ )⊥ ⊕ Mγ . In fact, one can go so
far as to require that there exist vector space complements Xα of F ′

α in F ′′
α for

α ∈ A \ C , and vector space complements Yβ of G′
β in G′′

β for β ∈ B \ C , such
that V = (

⊕
γ∈C Lγ ⊕Mγ)⊕ (

⊕
α∈A\C Xα)⊕ (

⊕
β∈B\C Yβ). The associated toral

subalgebra is

t =
⊕
γ∈C

Lγ&Mγ.
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12. Three examples

Let V be the vector space with basis {xi : i ∈ Z6=0} , and let V∗ be the span
of the elements {x∗i ∈ V ∗ : i ∈ Z6=0} , where 〈·, ·〉 : V × V∗ → C is defined by
〈xi, x

∗
j〉 := δij . Consider for i ∈ Z6=0 the subspace Fi := Span{xj : j ≤ i} ⊂ V .

For each i the subspace Fi ⊂ V is closed. The chain

· · · ⊂ F−2 ⊂ F−1 ⊂ F1 ⊂ F2 ⊂ · · ·

is a maximal closed generalized flag in V , and let b denote its stabilizer in sl(V, V∗),
which is a Borel subalgebra of sl(V, V∗). This example arises naturally from the
finite-dimensional situation, since b is the union of Borel subalgebras of finite-
dimensional subalgebras isomorphic to sln exhausting sl(V, V∗). Explicitly, let
Vn := Span{xj : −n ≤ j ≤ n} ⊂ V and (Vn)∗ := Span{x∗j : −n ≤ j ≤ n} ⊂ V∗ ,
and define gn := sl(V, V∗)∩ (Vn⊗ (Vn)∗). Then gn

∼= sl2n , and one may check that
b ∩ gn is a Borel subalgebra of gn .

For the second example, let g be the Lie algebra sl(V, V∗) D CX , where
the element X is taken to have the same commutation relations as the formal sum∑

i>0 xi ⊗ (x∗i + x∗−i), in the notation of the first example. One may check that g

is a root-reductive Lie algebra. The Borel subalgebra b of the first example is a
locally solvable subalgebra of g . In fact b is a Borel subalgebra of g . To check this
claim, it suffices to show that b is self-normalizing in g , in light of Proposition 13.1
below. Suppose Y ∈ sl(V, V∗) and a ∈ C are such that Y + aX ∈ ng(b). Then
Y ∈ gn for some n . Consider the element Z := xn+1 ⊗ x∗n+1 − xn+2 ⊗ x∗n+2 ∈ b ,
and compute

[Y + aX, Z] = a[X, Z]

= a[xn+1 ⊗ (x∗n+1 + x∗−n−1) + xn+2 ⊗ (x∗n+2 + x∗−n−2), Z]

= a(−xn+1 ⊗ x∗−n−1 + xn+2 ⊗ x∗−n−2).

Since −xn+1 ⊗ x∗−n−1 + xn+2 ⊗ x∗−n−2 /∈ b , it must be that a = 0. Hence
ng(b) ⊂ sl(V, V∗), so ng(b) = b . Thus b is an example of a Borel subalgebra of
sl(V, V∗) which remains maximal locally solvable when considered as a subalgebra
of sl(V, V∗) D CX .

With the third example we will see that a Borel subalgebra of gl∞ may in
fact be locally nilpotent. Suppose F is a maximal closed generalized flag in the
standard representation with no good pairs. Then F ′ = F ′′ , and consequently
(F ′)⊥ = (F ′′)⊥ , for all immediate predecessor-successor pairs F ′ ⊂ F ′′ in F . It
follows from the formulas in Figure 1 that the ad hoc nilradical n of b = StF

is equal to b . Thus every element of b is traceless, i.e. b ⊂ sl∞ . Such an
example is constructed explicitly in [3], as follows. Let V and V∗ be the vector
spaces with bases {vq}q∈Q and {wq}q∈Q , respectively. A nondegenerate pairing
〈·, ·〉 : V × V∗ → C is defined by

〈vr, ws〉 :=

{
1 if r > s

0 if r ≤ s.

Define F = {Span{vr : r < q}, Span{vr : r ≤ q}}q∈Q . One may check that

Spanr<q{vr} = Spanr≤q{vr}
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for all q ∈ Q . Thus F is a maximal closed generalized flag in V with no good
pairs, and StF = Span{vr ⊗ ws : r ≤ s} is a locally nilpotent Borel subalgebra of
gl(V, V∗).

13. General case

Theorem 4.1 states that any Borel subalgebra of an infinite-dimensional indecom-
posable root-reductive Lie algebra is the simultaneous stabilizer of a Borel gener-
alized flag in each of the standard representations. That is, if g is an infinite-
dimensional indecomposable root-reductive Lie algebra, the image of the map
{Fm} 7→

⋂
m StFm from families of Borel generalized flags in the standard rep-

resentations of g to subalgebras of g contains the Borel subalgebras of g . At
the same time, the image of the map {Fm} 7→

⋂
m StFm from families of maximal

closed generalized flags in the standard representations of g to subalgebras of g is
contained in the Borel subalgebras of g . It is not the case that the simultaneous
stabilizer of any family of Borel generalized flags in the standard representations is
a Borel subalgebra. For instance, there exist Borel generalized flags in V which are
not maximal closed, and the stabilizer of any such flag is not a Borel subalgebra
of sl(V, V∗).

We can calculate the intersection of a Borel subalgebra b of an infinite-
dimensional indecomposable root-reductive Lie algebra g with any simple direct
summand of [g, g] . Let [g, g] ∼=

⊕
m sm be the decomposition into simple direct

summands, and let Vm be the standard representations of g . Using Theorem 4.1,
we know that for each m there exist a bivalent closed generalized flag Fm in Vm

and a Borel generalized flag Gm refining Fm such that b =
⋂

m StGm . Fix m , and
consider Fm = {F ′

α, F ′′
α}α∈A . Let B ⊂ A denote the pairs α such that F ′

α is closed
and dim F ′′

α/F ′
α = ∞ . Then one may check via a calculation similar to one in the

proof of Proposition 7.1 that

b ∩ sm = StGm ∩ sm =
( ∑

α∈A\B

F ′′
α ⊗ (F ′

α)⊥ +
∑
β∈B

F ′′
β ⊗ (F ′′

β )⊥
)
∩ sm.

Clearly if B is nonempty, then b ∩ sm is not a Borel subalgebra of sm .

Proposition 13.1. If b ⊂ [g, g] is a Borel subalgebra of [g, g], then the nor-
malizer ng(b) is the unique Borel subalgebra of g containing b.

Proof. Note that b ⊂ ng(b)∩ [g, g] . For any X ∈ ng(b)∩ [g, g] , it must be that
b+CX is a locally solvable subalgebra of [g, g] , since [b+CX, b+CX] ⊂ b . By the
maximality of b , we know b = b + CX , i.e. X ∈ b . Therefore b = ng(b) ∩ [g, g] .

Compute [ng(b), ng(b)] ⊂ ng(b) ∩ [g, g] = b . As a result ng(b) is a locally
solvable subalgebra of g .

Let b′ be any Borel subalgebra of g containing b . Then b′ ∩ [g, g] is a
locally solvable subalgebra of [g, g] containing b . By the maximality of b , it holds
that b = b′ ∩ [g, g] . Therefore [b′, b] ⊂ [b′, b′] ⊂ b′ ∩ [g, g] = b , i.e. b′ ⊂ ng(b).
By the maximality of b′ , we have b′ = ng(b). Thus ng(b) is the unique Borel
subalgebra of g containing b .
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As a corollary of Proposition 13.1, the simultaneous stabilizer in g of a
maximal closed (isotropic) generalized flag in each of the standard representations
is independent of the choices made in defining the action of g on its standard
representations. Another easy conseqence is the following theorem.

Theorem 13.2. Let g be an arbitrary root-reductive Lie algebra. The map
b 7→ ng(b) yields a bijection from the set of Borel subalgebras of [g, g] to the set of
Borel subalgebras of g whose intersection with [g, g] is a Borel subalgebra of [g, g].

Proof. Proposition 13.1 implies that the map b 7→ ng(b) from Borel subal-
gebras of [g, g] to subalgebras of g lands inside the set of Borel subalgebras of
g . It was also seen in the proof that if b is a Borel subalgebra of [g, g] , then
ng(b)∩[g, g] = b . That is, the composition of the first map with the map from Borel
subalgebras of g to subalgebras of [g, g] given by intersecting, i.e. b 7→ b ∩ [g, g] ,
is the map b 7→ b . The image of the map b 7→ ng(b) is precisely the set of Borel
subalgebras of g which yield Borel subalgebras when intersected with [g, g] .

This yields a large class of Borel subalgebras of g which are in bijection
with the Borel subalgebras of [g, g] . Since [g, g] decomposes into a direct sum of
simple root-reductive Lie algebras, Borel subalgebras of [g, g] can be understood
as direct sums of Borel subalgebras of the simple direct summands of [g, g] . This
is a good context in which to view the results of this paper on Borel subalgebras
of sl∞ , so∞ , and sp∞ , the three infinite-dimensional simple root-reductive Lie
algebras.

The question remains open whether there exists a root-reductive Lie algebra
g containing a Borel subalgebra b ⊂ g such that b∩ [g, g] is not a Borel subalgebra
of [g, g] . If one could show that no such examples exist, then Theorem 13.2 would
become a classification of the Borel subalgebras of root-reductive Lie algebras. This
outcome would be nice in a way, yet it seems to me unlikely. I would conjecture that
this phenomenon does occur. Such Borel subalgebras might seem pathological, but
I do not see any simple way to preclude their existence. Indeed, the commutator
subalgebra [g, g] is not as large in g as one might think. As an illustration, a root-
reductive Lie algebra g and a maximal toral subalgebra t ⊂ g are constructed in
[1] with t∩ [g, g] = 0, a far cry from a maximal toral subalgebra of [g, g] . In light
of this, one might reasonably hope to construct explicitly an example of a Borel
subalgebra b ⊂ g such that b ∩ [g, g] is not a Borel subalgebra of [g, g] . This
last remaining gap in a basic understanding of Borel subalgebras of root-reductive
Lie algebras would be closed by either producing such an example or proving that
none exists.
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