
Journal of Lie Theory
Volume 18 (2008) 837–847
c© 2008 Heldermann Verlag

Covariants and the No-name Lemma
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Abstract. A close connection between the no-name lemma (concerning al-
gebraic groups acting on vector bundles) and the existence of sufficiently many
independent rational covariants is pointed out. In particular, this leads to a new
natural proof of the no-name lemma. For linearly reductive groups, the approach
has a refined variant based on integral covariants. This yields a version of the
no-name lemma that has a constructive nature.
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1. Introduction

The so-called rationality problem asks when k(X)G , the field of invariant rational
functions is purely transcendental over k (an algebraically closed base field), where
G is a group acting linearly on the vector space X . One of the basic principles
in studying this question is the following statement (for simplicity, we state it for
the case char(k) = 0): if the linear algebraic group G acts generically freely and
morphically on the irreducible algebraic variety X , and W is a finite dimensional
G-module, then k(X×W )G is purely transcendental over k(X)G . This statement
(or some variant of it) has gone into the literature as the ”no-name lemma” (see
Remark 1.2 for references).

In this note we point out that the no-name lemma is closely related to the
question about the number of generically independent (rational) covariants from X
to W . In particular, we show that the no-name lemma follows from the following
fact: if the stabilizer Gx of a general x ∈ X acts trivially on W , then there are
dim(W ) generically independent rational covariants from X to W . This latter fact
was proved by Reichstein [11] for generically free actions in characteristic zero; we
extend it to positive characteristic and the above weaker and necessary condition
on stabilizers. The picture is summarized in Theorem 1.1 below (see Section 2
for the terminology), stating the equivalence of various properties expressed in
terms of stabilizers, rational covariants, birational isomorphisms, and generators
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of invariant fields, respectively (see Example 2.5 and Remark 2.6 for the role of
the separability condition):

Theorem 1.1. Let X be an irreducible generically separable G-variety, and
W a d-dimensional G-module. Then the following are equivalent:

(1) The stabilizer Gx acts trivially on W for a general x ∈ X .

(2) There exist d generically independent rational covariants from X to W .

(3) The G-varieties X × W and X × kd (where G acts trivially on kd ) are
birationally isomorphic over X .

(4) There exists a G-equivariant birational isomorphism X × W → X × kd

(where G acts trivially on kd ) of the form (x, w) 7→ (x, Φ(x, w)) which is
linear on W (i.e. the map Φ(x,−) : W → kd is k -linear for a general
x ∈ X ).

(5) The invariant field k(X×W )G is purely transcendental over k(X)G of tran-
scendence degree d, generated by elements of the form

∑d
j=1 Φijεj ,

(i = 1, . . . , d), where Φij ∈ k(X) and ε1, . . . , εd is a basis in the dual space
W ∗ of W .

Remark 1.2. The implication (1) =⇒ (3) (or some version of it) is called
the ”no-name lemma” (after [6]). The first published reference (in characteristic
zero, for a generically free G-variety X ) is [1], see [4] for a survey. A proof for
arbitrary (not necessarily reductive) G is given in the recent paper [3]. A version
for arbitrary base fields (using a concept of scheme theoretically free actions) is
given in [12]. Although these references consider generically free G-varieties X ,
in a remark attributed to Kraft, it is mentioned in [6] that to make the conclusion
(3), it is sufficient to assume that Gx acts trivially on W for a general x ∈ X .

As far as we know, the fact that conclusion (3) can be strengthened to (4)
and (5) has not been emphasized before, except in the case of finite groups (see
the proof of Proposition 1.1 in [7]). For finite groups, this is essentially Speiser’s
Lemma (asserting that a finite dimensional K -vector space endowed with a semi-
linear action of a finite group is spanned by invariant elements; see for example
Lemma 2.3.8 in [8]) applied when K is a function field of a G-variety. So one
may view the implications (1) =⇒ (4) and (1) =⇒ (5) as a generalization of
Speiser’s Lemma for linear algebraic groups.

The main point of our note is bringing (2) into the picture, and pointing out
its equivalence to (4) and (5). Having this in mind, the implication (1) =⇒ (2)
(due to Reichstein when X is generically free and char(k) = 0; see Lemma 7.4
in [11]) appears to be a more fundamental principle than the no-name lemma: its
statement and proof are rather natural, and yield the latter in the above explicit
form as an immediate corollary.

The proof of Theorem 1.1 is presented in Section 2.

An additional benefit from paying attention to covariants is that for linearly
reductive groups acting on affine varieties, it leads to a finer variant of the no-name
lemma (see Proposition 3.1, Theorem 3.5). This is developed in Section 3, where
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we find exact conditions ensuring the supply of integral covariants to produce
G-equivariant isomorphisms over invariant affine open sets defined by the non-
vanishing of some relative invariant (see Propostition 3.3).

2. Rational covariants

Let G be a linear algebraic group over an algebraically closed field k of arbitrary
characteristic, denote by G0 the connected component of the identity. By a G-
variety X we mean an algebraic variety with a G-action such that the action map
G×X → X is a morphism of algebraic varieties. Write k[X] for the ring of regular
functions on X , and when X is irreducible, write k(X) for the field of rational
functions on X . As usual, k[X]G is the subring of G-invariants, and k(X)G is
the subfield of G-invariants. When X is affine, k[X] is called the coordinate ring
of X , and k(X) is the field of fractions of k[X] in this case. By a G-module we
mean a G-variety V which is a finite dimensional vector space, on which G acts
via linear transformations. We shall write kd for the d-dimensional vector space
endowed with the trivial G-action. We say that some property holds for a general
x ∈ X if it holds for all x ∈ U , where U is a Zariski dense open subset of X .

Let X be an irreducible G-variety and W a G-module. A covariant
F : X → W is a G-equivariant morphism of algebraic varieties. Write CovG(X, W )
for the set of covariants from X to W ; this is contained in RCovG(X, W ), the set of
rational covariants (i.e. rational G-equivariant maps). Note that RCovG(X, W ) is
naturally a vector space over k(X)G , whereas CovG(V, W ) is a k[X]G -submodule.

We say that the (rational) covariants F1, . . . , Fd are generically independent,
if F1(x), . . . , Fd(x) are linearly independent vectors in W for some x ∈ X . Note
that in this case F1(x), . . . , Fd(x) are linearly independent for a general x ∈
X . Obviously, the existence of d = dim(W ) generically independent (rational)
covariants from X to W is equivalent to the existence of a G-equivariant (rational)
morphism X → GL(W ), where G acts by left translation on GL(W ).

For f ∈ k[X] denote by Xf the Zariski open subset {x ∈ X | f(x) 6= 0} .
Recall that f ∈ k[X] is a relative invariant if g · f = θ(g)f for some character
θ : G → k× . In this case Xf is a G-stable subset of X . Let us introduce
the following ad hoc terminology: we say that the G-varieties X × Y and
X×Z are (birationally) isomorphic over X if there is a G-equivariant (birational)
isomorphism between them that commutes with the projection onto X .

We start with an elementary lemma:

Lemma 2.1. Let X be an irreducible G-variety, W a d-dimensional G-module,
and F1, . . . , Fd ∈ CovG(X, W ) generically independent covariants. Then there ex-
ists a non-zero relative invariant f ∈ k[X] such that

Xf = {x ∈ X | F1(x), . . . , Fd(x) are linearly independent}

and the G-varieties Xf×W and Xf×kd (G acting trivially on the vector space kd )
are isomorphic over Xf (via an isomorphism constructed explicitly in the proof).

Proof. Suppose F1, . . . , Fd ∈ CovG(X, W ) are generically independent. Let
e1, . . . , ed be a basis in W , and ε1, . . . , εd the corresponding dual basis in W ∗ .
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Then Fj(x) =
∑d

i=1 Fij(x)ei for some Fij ∈ k[X] . Write F for the d × d matrix
whose (i, j)-entry is Fij . The covariance of the Fj and multiplicativity of the
determinant imply that f := det(Fij)d×d is a relative invariant in k[X] of weight
g 7→ det(gW )−1 , where gW is the matrix of g acting on W with respect to the
chosen basis. Moreover, Xf is the locus of x ∈ X where the F1(x), . . . , Fd(x) span
W . Define Φ = (Φ1, . . . , Φd) : Xf ×W → kd by

w =
d∑

i=1

Φi(x, w)Fi(x). (1)

Applying g ∈ G to both sides, and taking into account the linearity of the action
of G on W one gets that the maps Φi : Xf × W → k are G-invariant, so the
morphism (idXf

× Φ) : Xf ×W → Xf × kd is indeed G-equivariant.

In terms of coordinates, Φi =
∑d

j=1(F
−1)ijεj , where (F−1)ij is the (i, j)-

entry of the inverse of F . This shows that (idXf
× Φ) : Xf × W → Xf ×

kd is a morphism of algebraic varieties, and Φ(x,−) : W → kd is a k -linear
isomorphism for all x ∈ Xf . Moreover, formula (1) shows that idXf

×Φ is in fact an

isomorphism, with inverse sending (x, a) ∈ Xf×kd to (x,
∑d

i=1 aiFi(x)) ∈ Xf×W .

Lemma 2.1 has the following converse:

Lemma 2.2. Let Y be an irreducible G-variety, W a d-dimensional G-module,
and suppose that the G-varieties Y ×W and Y ×kd are isomorphic over Y . Then
there is a G-equivariant isomorphism over Y between them which restricts to a
k -linear isomorphism {x} ×W ∼= W → kd ∼= {x} × kd for all x ∈ Y , and there
exist d covariants Fi : Y → W (i = 1, . . . , d) such that F1(x), . . . , Fd(x) are
linearly independent for all x ∈ Y .

Proof. Let (x, w) 7→ (x, Φ(x, w)) be a G-isomorphism Y × W → Y × kd .
Consider the coordinate functions Φi (i = 1, . . . , d) of Φ. Then Φi ∈ k[Y ×W ]G .
View k[Y ×W ] as a polynomial ring in the variables ε1, . . . , εd (a basis of W ∗ ) with
coefficients in k[Y ] . The linear component of Φi is

∑d
j=1 Φijεj with Φij ∈ k[Y ] .

Since the action of G is homogeneous, we have that
∑d

j=1 Φijεj is G-invariant.
Moreover, for all x ∈ Y , the matrix (Φij(x))d×d is invertible, being the matrix of
the differential at zero of the isomorphism Φ(x,−) : W → kd , so det(Φij)d×d is a

unit in k[Y ] . The d desired covariants are x 7→
∑d

i=1 Fij(x)ei , j = 1, . . . , d , where
Fij(x) is the (i, j)-entry of the inverse of the matrix (Φst(x))d×d , and e1, . . . , ed is
the basis dual to ε1, . . . , εd . Indeed, the G-invariance of the Φi can be expressed
as the matrix equality

(gΦij)d×d = (Φij)d×d · gW , (2)

where gW is the matrix of g ∈ G acting on W with respect to a basis e1, . . . , ed

dual to εi . Formula (2) shows that Fj : x 7→
∑d

i=1 Fij(x)ej is a covariant for
j = 1, . . . , d . Moreover, since det(Fij)d×d is a unit in k[Y ] , the Fj(x) (j = 1, . . . , d)
are linearly independent for all x ∈ Y .

It is a bit less obvious, but turns out from Theorem 1.1 that under mild
technical conditions, if the G-varieties X ×W and X × kdim(W ) are birationally
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isomorphic over X , then there is a G-equivariant birational isomorphism over X
between them which is linear on W , i.e. for a general x ∈ X , the restriction
{x} ×W ∼= W → kd ∼= {x} × kd is k -linear.

The G-variety X is generically free if the stabilizer Gx of a general x ∈ X
is trivial. The action of G on X is generically separable if for a general x ∈ X the
orbit morphism G0 → G0x , g 7→ gx is separable (i.e. its differential is surjective;
this holds automatically when char(k) = 0). Note that if X is a generically
free G-variety, then generic separability is equivalent to the following: the map
G × X → X × X , (g, x) 7→ (x, gx) is birational between G × X and the graph
{(x, gx) | g ∈ G, x ∈ X} of the action. We refer to Chapter AG in [2] for the
definition and basic properties of separability.

Proof of Theorem 1.1. The implication (4) =⇒ (3) is trivial.

(3) =⇒ (1): The G-equivariant birational isomorphism X×W → X×kd

restricts to a Gx -equivariant birational isomorphism Φ(x,−) : W → kd for a
general x ∈ X ; since Gx acts trivially on kd , it acts trivially on W .

(2) =⇒ (4): Suppose F1, . . . , Fd ∈ RCovG(X, W ) are generically indepen-
dent. Denote by U the subset in X where F1(x), . . . , Fd(x) are all defined, it is a
G-stable dense open subset in X . Apply Lemma 2.1 for the G-variety U .

(4) =⇒ (5) is straightforward: Suppose (x, w) 7→ (x, Φ(x, w)) is a G-
equivariant birational isomorphism X×W → X×kd , which is linear on W . Then
Φ(x, w) = (Φ1(x, w), . . . , Φd(x, w)) with Φi =

∑d
j=1 Φijεj ∈ k(X × W )G , where

Φij ∈ k(X). Moreover, since k(X × kd)G is obviously generated over k(X)G by
the coordinate functions on kd , we get that k(X ×W )G is generated over k(X)G

by the d algebraically independent elements Φi .

(5) =⇒ (2): Suppose that k(X × W )G is purely transcendental over
k(X)G generated by Φi =

∑d
j=1 Φijεj , i = 1, . . . , d , where ε1, . . . , εd is a basis of

W ∗ . Write gW for the matrix of g ∈ G acting on W with respect to the basis
e1, . . . , ed dual to εi . The G-invariance of the Φi can be expressed as the matrix
equality

(gΦij)d×d = (Φij)d×d · gW . (3)

We claim that det(Φij)d×d 6= 0 ∈ k(X). Indeed, assume on the contrary that the
rows of (Φij)d×d are linearly dependent over k(X). After a possible reordering of
the Φi , we may assume that the first r rows are linearly independent, whereas

(Φr+1,1, . . . , Φr+1,d) =
r∑

i=1

fi · (Φi1, . . . , Φid) (4)

with fi ∈ k(X). Next we show that all the fi are G-invariant: apply g ∈ G
to (4); Taking into account (3) and multiplying both sides of the resulting vector
equality by g−1

W we obtain

(Φr+1,1, . . . , Φr+1,d) =
r∑

i=1

(gfj)(Φi1, . . . , Φid). (5)

Take the difference of (4) and (5):

(0, . . . , 0) =
r∑

i=1

(fj − gfj)(Φi1, . . . , Φid).
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Since the first r rows of the matrix (Φij)d×d are linearly independent over k(X),
it follows that fi = gfi for i = 1, . . . , r . This holds for all g ∈ G , hence
f1, . . . , fr ∈ k(X)G . Consequently, we have

Φr+1 =
r∑

i=1

fiΦi ∈ k(X ×W )G,

contradicting the assumption that Φ1, . . . , Φd are algebraically independent over
k(X)G .

Thus we proved that the matrix (Φij) ∈ k(X)d×d is invertible; denote
by Fij ∈ k(X) the (i, j)-entry of its inverse. Then formula (3) shows that

Fj : x 7→
∑d

i=1 Fij(x)ej is a covariant for j = 1, . . . , d . Moreover, these covariants
are generically independent, since det(Fij)d×d = det(Φij)

−1
d×d 6= 0.

(1) =⇒ (2): Our first step is to reduce to the case when the action of G
on X is generically free, and W is a faithful G-module. Denote by N the kernel
of the action of G on W . Then N is a closed normal subgroup of G , and the
stabilizer Gx is contained in N for a general x ∈ X , and G/N acts faithfully on
W . In fact we may assume Gx ≤ N for all x by omitting a proper closed G-
stable subset of X . Let π : X → X/N be a rational quotient; i.e., X/N is a model
(defined up to birational isomorphism) of k(X)N , and π the dominant rational
map corresponding to the field inclusion k(X)N → k(X). There is a unique
rational G-action (factoring through G/N ) on X/N such that π is G-equivariant
(see for example Theorem 5 in [13]). By a theorem of Weil [15] (see [13] for the
case when G is not connected) we may assume that G/N acts morphically (not
just rationally) on X/N .

Now observe that the action of G/N on X/N is generically free. Indeed,
let U be an N -stable dense open subset of X such that π|U : U → π(U) = U/N
is a geometric quotient morphism (i.e. it is an open morphism whose fibers are
N -orbits); such an U exists by Rosenlicht’s Theorem [13]. It is easy to see that
π|U extends to a G-equivariant morphism π : ∪g∈GgU → ∪g∈Ggπ(U), which
is a geometric quotient with respect to the action of N . In other words, we may
assume that U is G-stable, hence passing from X to a G-stable dense open subset
if necessary, we may assume that the G-equivariant morphism π : X → X/N is a
geometric quotient with respect to the action of N . Suppose g ∈ Gπ(x) for some
x ∈ X . Then gx = nx for some n ∈ N , hence g−1n ∈ Gx ≤ N , implying that
g ∈ N . So for all y ∈ X/N we have Gy = N .

By Lemma 2.3 below, the action of G/N on X/N is generically separable.

Note that if F1, . . . , Fd ∈ RCovG/N(X/N, W ) are generically independent,
then F1 ◦ π, . . . , Fd ◦ π are generically independent rational covariants from X
to W . Therefore it is sufficient to deal with the case when G acts generically
freely and separably on X , and faithfully on W . From now on we assume
that this is the case. Replacing X by a G-stable dense open subset, we may
assume that a geometric quotient π : X → X/G =: Y exists. It is explained
in Section 2.5 in [10] that π has a quasisection. That is, there exists a finite
rational Galois covering α : Z → Y (with Galois group Γ) and a rational map
σ : Z → X with π ◦ σ = α (the characteristic is assumed to be zero in [10],
but the argument given there remains valid if one replaces ”algebraic closure”
by ”separable closure”). Consider the fibre product X̃ := X ×Y Z , and the
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pullback π̃ : X̃ → Z of π . Then the map Z → X̃ , z 7→ [σ(z), z] is a rational
section for π̃ . Therefore by Lemma 2.4 below, the map (g, z) 7→ [gσ(z), z]
is a G-equivariant birational isomorphism G × Z ∼= X̃ (G acts trivially on
Z and by left multiplication on itself). Identify X̃ and G × Z accordingly.
Then the action of Γ on G × Z is given by γ(g, z) = (gcγ(z)−1, γ(z)), where
cγ : Z → G is a rational map characterized by the equality σ(γ(z)) = cγ(z)σ(z).
This equality shows that the 1-cocycle condition holds: cγρ = (cγ ◦ ρ)cρ for all
γ, ρ ∈ Γ. Set dγ := R ◦ cγ : Z → GL(W ), where R : G → GL(W ) is the given
representation of G on W . Since the Galois cohomology H1(Γ, GL(W ⊗k(Z))) is
trivial (see for example the section on Galois descent in [8]), there is a rational map
A : Z → GL(W ) with dγ(z) = A(γ(z))−1A(z). Now consider the G-equivariant
rational map X̃ = G × Z → GL(W ), (g, z) 7→ R(g)A(z)−1 . One checks easily
that this map is Γ-invariant, hence factors through a rational G-equivariant map
F : X → GL(W ).

The following two Lemmas were used in the preceding proof. These techni-
cal statements relating mainly separability must be well known. We include their
proof, since we did not find a convenient reference.

Lemma 2.3. Let X be an irreducible G-variety, N a closed normal subgroup
of G such that Gx ≤ N for all x ∈ X , and let π : X → Y be a morphism
of G-varieties, which is a rational quotient with respect to the action of N . If
the G-variety X is generically separable, then the G/N -variety Y is generically
separable.

Proof. Write G := G/N . We may assume that the fibers of π are N -orbits
(see the proof of (1) =⇒ (2) in Theorem 1.1), and so G acts freely on Y .
The field k(X) is a separable extension of k(X)N (see for example [2]), so the
differential dxπ : TxX → Tπ(x)Y is surjective for a general x ∈ X , hence

dim(ker(dxπ)) = dim(X)− dim(Y ) = dim(Nx).

On the other hand, ker(dxπ) ⊇ ker(dxπ|TxGx) ⊇ Tx(Nx), and dim(TxNx) =
dim(Nx). It follows that

ker(dx(π)) = Tx(Nx) = ker(dxπ|TxGx) = ker(dx(π|Gx)).

Hence (for a general x ∈ X ) we have

dim(Im(dxπ|Gx)) = dim(Gx)− dim(Nx) = dim(Gπ(x))

(in the last equality we use that the stabilizer of π(x) in G is N ). So
dx(π|Gx) : TxGx → Tπ(x)Gπ(x) is surjective. The differential of the morphism
G → Gx , g 7→ gx is also surjective (by the assumption on generic separability
of the action of G on X ), hence the differential of G → Gπ(x), g 7→ gπ(x) is
surjective at 1 ∈ G . This morphism is the composition of the natural surjection
G → G and the morphism G → Gπ(x), g 7→ gπ(x), implying that the differential
at 1 ∈ G of the latter is surjective. This holds for a general point π(x) ∈ Y , thus
the action of G on Y is indeed generically separable.
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Lemma 2.4. Let X be a a generically free and separable G-variety, π : X → Y
a morphism whose fibres are G-orbits, and σ : Y → X is a morphism with
π ◦ σ = idY . Then G× σ(Y ) → X , (g, s) 7→ gs is a birational isomorphism.

Proof. Set S := σ(Y ), and µ : G×S → X , (g, s) 7→ gs . A routine calculation
shows that µ is a separable morphism. The generic freeness of the action implies
that µ is bijective. It follows that µ is birational, see eg. Chapter AG in [2].

Example 2.5. The equivalence of (2), (4), (5), and the implications (4) =⇒
(3) =⇒ (1) in Theorem 1.1 obviously hold without the generic separability
assumption. On the other hand, the following example shows that the assumption
on generic separability is necessary to have the implication (1) =⇒ (3). Indeed,
assume that the characteristic of k is p > 0. Let G be the multiplicative
group of the base field k , acting on X = k by g · x = gpx . Then X is a
generically free G-variety. However, consider W = k with G acting by scalar
multiplication g · w = gw . Then k(X × W )G = k(s/tp), where s, t denote
coordinates on X and W , respectively. Obviously, k(s, s/tp) is a proper subfield
of k(X ×W ). Consequently, a birational isomorphism X ×W → X × k of the
form (x, w) 7→ (x, Φ(x, w)) with Φ ∈ k(X ×W )G does not exist.

Remark 2.6. E. B Vinberg has communicated to me the following general-
ization of Theorem 1.1, not assuming that the action of G on X is generically
separable: Each of the assertions (2), (3), (4), (5) in Theorem 1.1 is equivalent to

(1’) The scheme theoretic stabilizer of a general point of X acts on W
trivially.

To prove (1′) =⇒ (2) one first reduces to the case when the scheme theoretic
stabilizer of a general point in X is trivial, i.e. the action is generically free and
separable (one should replace N in the first step of the proof (1) =⇒ (2) by the
scheme theoretic kernel of the action of G on W ). The implication (3) =⇒ (1′)
is obvious: if the action of G on W is trivial, then the action on W of any scheme
theoretic subgroup is also trivial.

3. Linearly reductive groups

For linearly reductive groups acting on affine varieties, the results of Theorem 1.1
have a counterpart using integral covariants.

Proposition 3.1. Let G be a linearly reductive group, X an irreducible affine
G-variety, and W a G-module. If for some x ∈ X having closed orbit, the
stabilizer Gx acts trivially on W , then there exists a relative invariant f ∈ k[X]
such that f(x) 6= 0 and the G-varieties Xf × W → Xf × kdim(W ) (G acting
trivially on kdim(W ) ) are isomorphic over X .

Proof. By Theorem 1 from [9] (see also Proposition 4.2.5 in [5]), our assump-
tions imply the existence of d = dimk(W ) covariants F1, . . . , Fd ∈ CovG(X, W )
such that F1(x), . . . , Fd(x) are linearly independent over k . Now apply Lemma 2.1.
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Remark 3.2. When X is a G-module, Proposition 3.1 has a constructive
nature in the following sense: if the group G and the G-modules X and W are
given as in section 4.2.3 in [5], then there is an algorithm that either produces a non-
zero relative invariant f ∈ k[X] and an explicit isomorphism Xf ×W → Xf × kd ,
or proves that there are no d generically independent covariants from X to
W (and hence the assumptions of Proposition 3.1 do not hold). Indeed, an
algorithm to compute k[X]G -module generators of CovG(X, W ) is explained on
page 157 of [5]. The output of the algorithm is a collection Fij of polynomials

in k[X] (i = 1, . . . , d , j = 1, . . . ,m), such that Fj : x 7→
∑d

i=1 Fij(x)ei

(j = 1, . . . ,m) is a k[X]G -module generating system of CovG(X, W ) (here
e1, . . . , ed is a basis of W ). If the d×m matrix (Fij) has a d× d minor with non-
zero determinant f ∈ k[X] , then the covariants corresponding to the d columns
of this minor are generically independent. Using these covariants one obtains an
explicit isomorphism Xf ×W → Xf × kd as in Lemma 2.1. If m < d or all the
d× d minors of (Fij) have determinant zero in k[X] , then clearly there are no d
generically independent integral covariants from X to W .

The equivalent conditions in Theorem 1.1 have the following analogues in
this context:

Proposition 3.3. Let G be a linearly reductive group, X an irreducible affine
G-variety, and W a G-module. The following are equivalent:

(1) There is a non-zero relative invariant f ∈ k[X] such that Gx acts trivially
on W for all x ∈ Xf .

(2) There is a non-zero relative invariant f ∈ k[X] and an x ∈ Xf whose
G-orbit is closed in Xf , and Gx acts trivially on W .

(3) There is a non-zero relative invariant f ∈ k[X] such that there are d :=
dim(W ) covariants Fi : Xf → W (i = 1, . . . , d) with F1(x), . . . , Fd(x)
linearly independent for some x ∈ Xf .

(4) There is a non-zero relative invariant f ∈ k[X] such that the G-varieties
Xf ×W and Xf × kdim(W ) are isomorphic.

Proof. (1) =⇒ (2): The G-variety Xf contains a point x whose G-orbit is
closed.

(2) =⇒ (3): Apply Theorem 1 of [9] for the affine G-variety Xf .

(3) =⇒ (4): Apply Lemma 2.1.

(4) =⇒ (1): The G-equivariant isomorphism Xf×W → Xf×kd restricts
for any x ∈ Xf to a Gx -equivariant isomorphism {x} ×W → {x} × kd . Now Gx

acts trivially on the latter, hence Gx acts trivially on W .

Remark 3.4. In general in an affine G-variety X there are more closed G′ -
orbits than G-orbits, where G′ is the commutator subgroup of G . When char(k) =
0 and G is connected reductive, by Theorem 1 in [14], G′x is closed in X if and
only if there is a relative invariant b on X such that b(x) 6= 0 and the G-orbit of
x is closed in the affine open set Xb . Therefore in this case (1), (2), (3), and (4)
in Proposition 3.3 are equivalent also to the following:
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(5) There is a point x ∈ X whose G′ -orbit is closed, and the stabilizer Gx

of x in G acts trivially on W .

The considerations above can be applied to generically free actions of lin-
early reductive groups on factorial affine varieties: (An affine variety X is called
factorial if k[X] is a unique factorization domain.)

Theorem 3.5. Suppose char(k) = 0, G is reductive, acting generically freely
on the factorial affine variety X . Then for any G-module W , there is a non-zero
relative invariant f on X such that the G-varieties Xf × W and Xf × kd are
isomorphic over Xf .

Proof. There is a non-empty affine open G-stable subset U in X such that
the generic G-orbit is closed in U (see Theorem 2.18 in [4]). Clearly, U is of the
form Xb for some non-zero relative invariant b (see Theorem 3.1 in [10]). Now
apply Proposition 3.1 for the affine G-variety U and W .
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