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Abstract. Some simple Lie superalgebras, specific of characteristic 3, defined
by S. Bouarroudj and D. Leites, will be related to the simple alternative and
commutative superalgebras discovered by I. P. Shestakov.
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Throughout the paper, the ground field k will always be assumed to be of char-
acteristic 6= 2.

1. Tits construction

In 1966 [17], Tits gave a unified construction of the exceptional simple classical Lie
algebras by means of two ingredients: a unital composition algebra and a degree
three simple Jordan algebra. The approach used by Benkart and Zelmanov in [3]
will be followed here (see also [10]) to review this construction.

Let C be a unital composition algebra over the ground field k with norm n .
Thus, C is a finite dimensional unital k -algebra, with the nondegenerate quadratic
form n : C → k such that n(ab) = n(a)n(b) for any a, b ∈ C . Then, each element
satisfies the degree 2 equation

a2 − t(a)a + n(a)1 = 0, (1)

where t(a) = n(a, 1)
(
= n(a + 1)− n(a)− 1

)
is called the trace. The subspace of

trace zero elements will be denoted by C0 .

Moreover, for any a, b ∈ C , the linear map Da,b : C → C given by

Da,b(c) = [[a, b], c] + 3(a, c, b) (2)
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where [a, b] = ab−ba is the commutator, and (a, c, b) = (ac)b−a(cb) the associator,
is a derivation: the inner derivation determined by the elements a, b (see [14,
Chapter III, §8]). These derivations satisfy

Da,b = −Db,a, Dab,c + Dbc,a + Dca,b = 0, (3)

for any a, b, c ∈ C . The linear span of these derivations will be denoted by inder C .
It is an ideal of the whole Lie algebra of derivations der C and, if the characteristic
is 6= 3, it is the whole der C .

The dimension of C is restricted to 1, 2, 4 (quaternion algebras) and 8
(Cayley algebras). If the ground field k is algebraically closed, the only unital
composition algebra are, up to isomorphism, the ground field k , the cartesian
product of two copies of the ground field k×k , the algebra of two by two matrices
Mat2(k), and the split Cayley algebra C(k). (See, for instance, [19, Chapter 2].)

Now, let J be a unital Jordan algebra with a normalized trace tJ : J → k .
That is, tJ is a linear map such that tJ(1) = 1 and tJ

(
(xy)z

)
= tJ

(
x(yz)

)
for

any x, y, z ∈ J . Then J = k1 ⊕ J0 , where J0 = {x ∈ J : tJ(x) = 0} . For any
x, y ∈ J0 , the product xy splits as

xy = tJ(xy)1 + x ∗ y, (4)

with x ∗ y ∈ J0 . Then x ∗ y = xy − tJ(xy)1 gives a commutative multiplication
on J0 . The linear map dx,y : J → J defined by

dx,y(z) = x(yz)− y(xz), (5)

is the inner derivation of J determined by the elements x and y . Since d1,x = 0
for any x , it is enough to deal with the inner derivations dx,y , with x, y ∈ J0 . The
linear span of these derivations will be denoted by inder J , which is an ideal of the
whole Lie algebra of derivations der J .

Given C and J as before, consider the space

T (C, J) = inder C ⊕
(
C0 ⊗ J0

)
⊕ inder J (6)

(unadorned tensor products are always considered over k ), with the anticommu-
tative multiplication [., .] specified by:

• inder C and inder J are Lie subalgebras,

• [inder C, inder J ] = 0,

• [D, a⊗ x] = D(a)⊗ x, [d, a⊗ x] = a⊗ d(x),

• [a⊗ x, b⊗ y] = tJ(xy)Da,b +
(
[a, b]⊗ x ∗ y

)
+ 2t(ab)dx,y,

(7)

for all D ∈ inder C , d ∈ inder J , a, b ∈ C0 , and x, y ∈ J0 .

The conditions for T (C, J) to be a Lie algebra are the following:

(i)
∑

	

t
(
[a1, a2]a3

)
d(x1∗x2),x3 = 0,

(ii)
∑

	

tJ
(
(x1 ∗ x2)x3

)
D[a1,a2],a3 = 0,

(iii)
∑

	

(
Da1,a2(a3)⊗ tJ

(
x1x2

)
x3 + [[a1, a2], a3]⊗ (x1 ∗ x2) ∗ x3

+ 2t(a1a2)a3 ⊗ dx1,x2(x3)
)

= 0

(8)
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for any a1, a2, a3 ∈ C0 and any x1, x2, x3 ∈ J0 . The notation “
∑

	

” indicates

summation over the cyclic permutation of the variables.

These conditions appear in [2, Proposition 1.5], but there they are stated
in the more general setting of superalgebras, a setting we will deal with later on.
In particular, over fields of characteristic 6= 3, these conditions are fulfilled if J is
a separable Jordan algebra of degree three over k and tJ = 1

3
T , where T denotes

the generic trace of J (see for instance [12]).

Over an algebraically closed field k of characteristic 6= 3, the degree 3
simple Jordan algebras are, up to isomorphism, the algebras of 3 × 3 hermitian
matrices over a unital composition algebra: H3(C

′) (see [12]). By varying C and
C ′ , T (C, H3(C

′)) is a classical simple Lie algebra, and Freudenthal’s Magic Square
(Table 1) is obtained.

H3(k) H3(k × k) H3(Mat2(k)) H3(C(k))

k A1 A2 C3 F4

k × k A2 A2 ⊕ A2 A5 E6

Mat2(k) C3 A5 D6 E7

C(k) F4 E6 E7 E8

Table 1: Freudenthal’s Magic Square

Let us have a look at the rows in the Tits construction of Freudenthal’s
Magic Square.

First row: Here C = k , so C0 = 0 and inder C = 0. Thus, T (C, J) is just
inder J . In particular, T (k, J) makes sense and is a Lie algebra for any Jordan
algebra J .

Second row: Here C = k× k , so C0 consists of the scalar multiples of (1,−1),
and thus T (C, J) can be identified with J0⊕ inder J . The elements in J0 multiply
as [x, y] = 4dx,y because t

(
(1,−1)2

)
= t

(
(1, 1)

)
= 2. Given any Jordan algebra J ,

its Lie multiplication algebra L(J) (see [14]) is the Lie subalgebra of the general
linear Lie algebra gl(J) generated by lJ = {lx : x ∈ J} , where lx : y 7→ xy denotes
the left multiplication by x . Then L(J) = lJ ⊕ inder J . The map

T (C, J) → L(J)

(1,−1)⊗ x + d 7→ 2lx + d,

is a monomorphism. Its image is L0(J) = lJ0 ⊕ inder J . Again this shows that
T (k × k, J) makes sense and is a Lie algebra for any Jordan algebra with a
normalized trace. Given any separable Jordan algebra of degree 3 over a field
k of characteristic 6= 3, L0(J) is precisely the derived algebra [L(J),L(J)]. This
latter Lie algebra makes sense for any Jordan algebra over any field. (Recall that
the characteristic is assumed to be 6= 2 throughout.)

Third row: Here C = Mat2(k) or, if the ground field is not assumed to be
algebraically closed, C is any quaternion algebra Q . Under these circumstances,
Q0 is a simple three-dimensional Lie algebra under the commutator ([a, b] =
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ab−ba), and any simple three-dimensional Lie algebra appears in this way. Besides,
for any a, b ∈ Q0 , the inner derivation Da,b is just ad[a,b] , since Q is associative.
Hence, inder Q can be identified with Q0 , and T (Q, J) with

Q0 ⊕
(
Q0 ⊗ J0

)
⊕ inder J '

(
Q0 ⊗ (k1⊕ J0)

)
⊕ inder J '

(
Q0 ⊗ J

)
⊕ inder J,

and the Lie bracket (7) in T (Q, J) becomes the bracket in
(
Q0 ⊗ J

)
⊕ inder J

given by

• inder J is a Lie subalgebra,

• [d, a⊗ x] = a⊗ d(x),

• [a⊗ x, b⊗ y] =
(
[a, b]⊗ xy

)
+ 2t(ab)dx,y,

for any a, b ∈ Q0 , x, y ∈ J , and d ∈ inder J , since tJ(xy)1 + x ∗ y = xy for
any x, y ∈ J . This bracket makes sense for any Jordan algebra (not necessarily
endowed with a normalized trace), it goes back to [16] and, in the split case
Q = Mat2(k), the resulting Lie algebra is the well-known Tits-Kantor-Koecher Lie
algebra of the Jordan algebra J .

Fourth row: In the last row, C is a Cayley algebra over k . If the characteristic of
the ground field k is 6= 3, the Lie algebra der C = inder C is a simple Lie algebra
of type G2 (dimension 14), and C0 is its unique seven dimensional irreducible
module. In particular, over any algebraically closed field of characteristic 6= 3, the
Lie algebra T

(
C(k), J

)
is a Lie algebra graded over the root system G2 . These

G2 -graded Lie algebras contain a simple subalgebra isomorphic to der C(k) such
that, as modules for this subalgebra, they are direct sums of copies of modules
of three types: adjoint, the irreducible seven dimensional module, and the trivial
one dimensional module. These Lie algebras have been determined in [3] and the
possible Jordan algebras involved are essentially the degree 3 Jordan algebras.

In characteristic 3, however, the situation is completely different. To begin
with, given a Cayley algebra C over a field k of characteristic 3, its Lie algebra
of derivations der C is no longer simple (see [1]) but contains a unique minimal
ideal, which is precisely inder C = adC0 (note that Da,b = ad[a,b] in characteristic
3 because of (2)), which is isomorphic to the Lie(!) algebra

(
C0, [., .]

)
. This latter

Lie algebra is a form of the projective special linear Lie algebra psl3(k) (and any
form of psl3(k) appears in this way [8, §4]). Moreover, in [1] it is shown that
the quotient der C/inder C = der C/ adC0 is isomorphic too, as a Lie algebra, to(
C0, [., .]

)
. Therefore, the algebra T (C, J) in (6) can be identified in this case with

C0 ⊕
(
C0 ⊗ J0

)
⊕ inder J '

(
C0 ⊗ (k1⊕ J)

)
⊕ inder J

' (C0 ⊗ J)⊕ inder J,

and hence, as a module for inder C ' C0 , it is a direct sum of copies of the adjoint
module and of the trivial module. The Lie algebras and superalgebras with these
properties will be determined in this paper.

2. A family of Lie algebras

Throughout this section, the ground field k will be always assumed to be of
characteristic 3. Let C be a Cayley algebra, that is, an eight dimensional unital
composition algebra over k , and let C0 denote its subspace of trace zero elements.
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For any a, b, c ∈ C , a simple computation using that the associator is skew
symmetric on its arguments since C is alternative gives:

[[a, b], c] + [[b, c], a] + [[c, a], b]

= (a, b, c)− (b, a, c) + (b, c, a)− (c, b, a) + (c, a, b)− (a, c, b)

= 6(a, b, c) = 0.

Hence C is a Lie algebra under the bracket [a, b] = ab− ba , and C0 is an ideal of
C . Besides, for any a, b ∈ C0 , since the subalgebra generated by any two elements
in C is associative (Artin’s Theorem, see [14]), one obtains

[[a, b], b] = ab2 + b2a− 2bab

= ab2 + b(ba + ab) (as 2 = −1)

= −n(b)a− n(a, b)b (as a2 = −n(a)1 for any a ∈ C0)

Thus, for any a, b ∈ C0 ,

[[a, b], b] = n(b, b)a− n(a, b)b. (9)

If C is split, then it contains a basis {e1, e2, u1, u2, u3, v1, v2, v3} with mul-
tiplication given by (see [14, 19]):

e2
i = ei, i = 1, 2, e1e2 = e2e1 = 0,

e1uj = uj = uje2, e2vj = vj = vje1, j = 1, 2, 3,

e2uj = uje1 = 0 = e1vj = vje2, j = 1, 2, 3,

uivj = −δije1, viuj = −δije2, i, j = 1, 2, 3 (δij is 1 for i = j, 0 otherwise)

uiuj = εijkvk, vivj = εijkuk, (εijk skew symmetric with ε123 = 1).

(10)

Moreover,

n(ei) = 0 = n(uj, uk) = n(vj, vk), i = 1, 2, j, k = 1, 2, 3,

n(e1, e2) = 1, n(uj, vk) = δjk, j, k = 1, 2, 3.
(11)

Then, with h = e1−e2 , C0 is the linear span of {h, u1, u2, u3, v1, v2, v3} , and these
elements multiply as:

[h, uj] = 2uj, [h, vj] = −2vj, j = 1, 2, 3,

[ui, uj] = 2εijkvk, [vi, vj] = 2εijkuk, i, j, k = 1, 2, 3,

[uj, vk] = −δjkh, j, k = 1, 2, 3.

(12)

Denote by s the Lie algebra
(
C0, [., .]

)
. It is easy to check that the s-module

s⊗ s is generated by u1 ⊗ v1 , which is an eigenvector for adh with eigenvalue 0.
From this fact, it follows at once that the dimension of the space of invariant
linear maps Homs(s ⊗ s, s) is 1, being this space generated by the Lie bracket.
Also, Homs(s⊗ s, k) is one dimensional, spanned by the bilinear map induced by
the norm n(., .). By extending scalars, this is shown to be valid for any Cayley
algebra, not necessarily split.

Thus, let C be any Cayley algebra over k and let s be the Lie algebra(
C0, [, ., ]

)
. Let g be a Lie algebra endowed with an action of s on g by derivations:



606 Elduque

ρ : s → der g , such that, as a module for s , g is a direct sum of copies of the adjoint
module and the one dimensional trivial module. Gathering together the copies of
the adjoint module and the copies of the trivial module, g can be identified with

g =
(
s⊗ A

)
⊕ d, (13)

where d is the sum of the trivial s-modules and A is a vector space. As d equals
{d ∈ g : ρ(s)(d) = 0 ∀s ∈ s} , it is a subalgebra of g . Now, the invariance of the
bracket in g under the action of s , together with the fact that Homs(s ⊗ s, s)
(respectively Homs(s ⊗ s, k)) is spanned by the Lie bracket (respectively, the
bilinear form induced by the norm) shows that there are bilinear maps

d× A → A, (d, a) 7→ d(a),

A× A → A, (a1, a2) 7→ a1a2,

A× A → d, (a1, a2) 7→ da1,a2 ,

(14)

such that the Lie bracket on g =
(
s⊗ A

)
⊕ d is given by:

• [d, s⊗ a] = s⊗ d(a) = −[s⊗ a, d],

• [s1 ⊗ a1, s2 ⊗ a2] = [s1, s2]⊗ a1a2 + n(s1, s2)da1,a2 ,

• [d1, d2] is the product in the subalgebra d,

(15)

for any d, d1, d2 ∈ d , s, s1, s2 ∈ s , and a, a1, a2 ∈ A . The skew symmetry of the
Lie bracket forces the product a1a2 on A to be commutative, and the bilinear map
da1,a2 to be skew symmetric.

Now, let us consider the Jacobi identity J(z1, z2, z3) = 0 on g , where

J(z1, z2, z3) =
∑

	

[[z1, z2]z3] :

• With z1 = d1 , z2 = d2 in d and z3 = s ⊗ a , s ∈ s , a ∈ A , this gives
[d1, d2](a) = d1(d2(a)) − d2(d1(a)). That is, the linear map Φ : d → gl(A),
Φ(d) : a 7→ d(a), is a representation of the Lie algebra d .

• With z1 = d , z2 = s1⊗a1 and z3 = s2⊗a2 , d ∈ d , s1, s2 ∈ s and a1, a2 ∈ A ,
the Jacobi identity gives:

d(a1a2) = d(a1)a2 + a1d(a2),

[d, da1,a2 ] = dd(a1),a2 + da1,d(a2),

for any a1, a2 ∈ A . That is, Φ(d) ⊆ der A holds and d : A × A → d is a
d-invariant bilinear map.

• With zi = si ⊗ ai , i = 1, 2, 3, si ∈ s , ai ∈ A , the Jacobi identity gives:∑
	

n
(
[s1, s2], s3

)
da1a2,a3 = 0 (16a)∑

	

((
[[s1, s2], s3]⊗ (a1a2)a3

)
+

(
n(s1, s2)s3 ⊗ da1,a2(a3)

))
= 0 (16b)
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Extending scalars, it can be assumed that C is split, so that a basis of C0 as
in (12) is available. With si = ui , i = 1, 2, 3, n([u1, u2], u3) = 2n(v3, u3) = 2
and cyclically. (Note that, because of the invariance under derivations of
the norm, n([s1, s2], s3) = n(s1, [s2, s3]) = n([s2, s3], s1).) Hence (16a) is
equivalent to

da1a2,a3 + da2a3,a1 + da3a1,a2 = 0 (17)

for any a1, a2, a3 ∈ A .

Also, [[u1, u2], u3] = 2[v3, u3] = 2h and cyclically, and n(uj, uk) = 0 for any
j, k . Thus (16b) gives

(a1a2)a3 + (a2a3)a1 + (a3a1)a2 = 0 (18)

for any a1, a2, a3 ∈ A .

With s1 = u1 , s2 = v1 and s3 = h , [[s1, s2], s3] = 0, [[s2, s3], s1] = 2h , and
[[s3, s1], s2] = −2h , while n(s1, s2) = 1, and n(s2, s3) = 0 = n(s3, s1), so
(16b) gives (note that 2 = −1 in k ):

(a3a1)a2 − (a2a3)a1 + da1,a2(a3) = 0,

which, by the commutativity of the product on A , is equivalent to:

da1,a2(a) = a1(a2a)− a2(a1a), (19)

for any a1, a2, a ∈ A .

Lemma 2.1. Let k be a field of characteristic 3. The commutative alge-
bras over k satisfying (18) are precisely the commutative alternative algebras.
Moreover, given any such algebra A, for any a1, a2 consider the linear map
da1,a2 = [la1 , la2 ], where la denotes the multiplication by a. Then da1,a2 is a deriva-
tion of A and equation (17) is satisfied.

Proof. By commutativity, (18) is equivalent to 2(a1a2)a2 + a1a
2
2 = 0, or

(2 = −1) to a1a
2
2 = (a1a2)a2 for any a1, a2 , which is the right alternative law.

Because of the commutativity, this is equivalent to the left alternative law, and
hence the algebra is alternative. Now, any commutative alternative algebra is a
Jordan algebra, since the Jordan identity is (x2, y, x) = 0 for any x, y , which is
satisfied because any two elements in an alternative algebra generate an associative
subalgebra (Artin’s Theorem, see [14]). Hence da1,a2 = [la1 , la2 ] is a derivation of
A . Finally, equation (17) becomes the linearization of [lx2 , lx] = 0.

Conversely, let C be a Cayley algebra over k and let s be the Lie algebra(
C0, [., .]

)
. Let A be a commutative alternative algebra, and let d be a Lie algebra

endowed with a Lie algebra homomorphism Φ : d → der A (thus, in particular, A
is a module for d), and a d-invariant bilinear map d : A×A → d , (a1, a2) 7→ da1,a2 ,

such that Φ(da1,a2) = [la1 , la2 ] and
∑

	

da1a2,a3 = 0 for any a1, a2, a3 ∈ A . Then
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equation (16a) holds trivially by the invariance of the norm in C , and equation
(16b) holds too, as it is equivalent to

0 =
∑

	

(
[[s1, s2, ], s3]⊗ (a1a2)a3 + n(s1, s2)s3 ⊗

(
a1(a2a3)− a2(a1a3)

))
=

∑
	

((
[[s1, s2], s3]− n(s2, s3)s1 + n(s3, s1)s2

)
⊗ (a1a2)a3

)
.

But (a1a2)a3 = −(a2a3)a1 − (a3a1)a2 , so (16) holds if

[[s1, s2], s3]− n(s2, s3)s1 + n(s3, s1)s2 = [[s2, s3], s1]− n(s3, s1)s2 + n(s1, s2)s3

for any s1, s2, s3 ∈ s , or

[[s1, s2], s3] + [[s2, s3], s1] = 2n(s1, s3)s2 − n(s2, s3)s1 − n(s2, s1)s3,

which is equivalent to (9).

Therefore:

Theorem 2.2. Let C be a Cayley algebra over a field k of characteristic 3,
let s be the Lie algebra

(
C0, [., .]

)
. Let g be a Lie algebra with an action of s by

derivations such that, as a module for s, g is a direct sum of irreducible modules
of two types: the adjoint and the trivial one-dimensional modules. Then there is
a commutative alternative algebra A over k and a Lie algebra d over k , endowed
with a Lie algebra homomorphism Φ : d → der A and a d-invariant skewsymmetric
bilinear map d : A × A → d, (a1, a2) 7→ da1,a2 with Φ(da1,a2) = [la1 , la2 ] for any
a1, a2 ∈ A, such that g is isomorphic to the Lie algebra(

s⊗ A)⊕ d

with Lie bracket given by

• d is a Lie subalgebra,

• [d, s⊗ a] = s⊗ d(a), for s ∈ s, a ∈ A, d ∈ d,

• [s1 ⊗ a1, s2 ⊗ a2] = [s1, s2]⊗ a1a2 + n(s1, s2)da1,a2 ,

for s1, s2 ∈ s, and a1, a2 ∈ A,.

(20)

Conversely, the formulas in (20) define a Lie algebra on the vector space(
s ⊗ A

)
⊕ d, which is endowed with an action of s by derivations: ρ : s →

der
(
(s⊗A)⊕d

)
, such that ρ(s)(s′⊗a) = [s, s′]⊗a, ρ(s)(d) = 0, for any s, s′ ∈ S ,

a ∈ A and d ∈ d.

Remark 2.3. Over fields of characteristic 6= 2, 3, any commutative alternative
algebra is associative, because for any x, y, z ,

3(x, y, z) = (x, y, z) + (y, z, x) + (z, x, y)

= (xy)z − x(yz) + (yz)x− y(zx) + (zx)y − z(xy)

= [xy, z] + [yz, x] + [zx, y] = 0.
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Remark 2.4. Let A be a unital commutative alternative algebra over a field k
of characteristic 3 such that 1 6∈ (A, A,A) (this is trivially the case for the unital
commutative associative algebras). Then A is a Jordan algebra with a normalized
trace, because if A0 is any codimension 1 subspace of A containing (A, A,A) but
not containing 1, then A = k1 ⊕ A0 , and the linear form t : A → k , such that
t(1) = 1 and t(A0) = 0 is a normalized trace. Let C be a Cayley algebra over k
and define T (C, A) as in (6):

T (C, A) = inder C ⊕
(
C0 ⊗ A0

)
⊕ inder A.

Then T (C, A) is a Lie algebra (bracket as in (7)), isomorphic to
(
s⊗A

)
⊕d , with

d = inder A = [lA, lA] , s = C0 , and bracket as in Theorem 2.2 (with Φ the natural
inclusion).

This gives the natural extension of the fourth row in Tits construction to
characteristic 3. The Jordan algebras that appear have nothing to do with the
separable degree 3 Jordan algebras.

It must be remarked that the simple commutative alternative algebras are
just the fields (see [19, p. 143]), but there are prime commutative alternative and
not associative algebras in characteristic 3 (see [13]2). Recall that an algebra is
simple if its multiplication is not trivial and it contains no proper ideal, while it is
prime if the product of any two nonzero ideals is again nonzero.

3. Superalgebras

All the arguments used in the proofs of Lemma 2.1 and Theorem 2.2 are valid in
the setting of superalgebras, if parity signs are added suitably. The super version
of Theorem 2.2 is:

Theorem 3.1. Let C be a Cayley algebra over a field k of characteristic 3,
let s be the Lie algebra

(
C0, [., .]

)
. Let g be a Lie superalgebra with an action

of s by (even) derivations such that, as a module for s, g is a direct sum of
irreducible modules of two types: adjoint and trivial. Then there is a commutative
alternative superalgebra A over k and a Lie superalgebra d over k , endowed with
a homomorphism of Lie superalgebras Φ : d → der A and an even d-invariant
(relative to Φ) super skewsymmetric bilinear map d : A×A → d, (a1, a2) 7→ da1,a2

with Φ(da1,a2) = [la1 , la2 ] for any a1, a2 ∈ A, such that g is isomorphic to the Lie
superalgebra (

s⊗ A)⊕ d

with Lie bracket given by

• d is a Lie subalgebra,

• [d, s⊗ a] = s⊗ d(a), for s ∈ s, a ∈ A, d ∈ d,

• [s1 ⊗ a1, s2 ⊗ a2] = [s1, s2]⊗ a1a2 + n(s1, s2)da1,a2 ,

for s1, s2 ∈ s, and a1, a2 ∈ A.

(21)

Conversely, the formulas in (21) define a Lie superalgebra on the vector
superspace

(
s ⊗ A

)
⊕ d (the even part is

(
s ⊗ A0̄

)
⊕ d0̄ and the odd part is

2The author is indebted to the referee for pointing out this reference.
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(
s ⊗ A1̄

)
⊕ d1̄ ), which is endowed with an action of s by (even) derivations:

ρ : s → der
(
(s ⊗ A) ⊕ d

)
, such that ρ(s)(s′ ⊗ a) = [s, s′] ⊗ a, ρ(s)(d) = 0,

for any s, s′ ∈ s, a ∈ A and d ∈ d.

Recall that given a superalgebra A , its Lie superalgebra of derivations is
the Lie superalgebra der A = (der A)0̄⊕(der A)1̄ (a subalgebra of the general linear
Lie superalgebra gl(A)), where for any homogeneous d ∈ der A and homogeneous
a1, a2 ∈ A :

d(a1a2) = d(a1)a2 + (−1)da1a1d(a2),

where, as usual, (−1)da1 is −1 if both d and a1 are odd, and (−1)da1 is 1
otherwise. The Lie bracket of homogeneous elements in gl(A) is given by [f, g] =
fg − (−1)fggf . The fact that d in the Theorem above is even means that dAi,Aj

is contained in di+j for any i, j ∈ {0̄, 1̄} ; and the invariance of d relative to Φ
means that

[f, da1,a2 ] = dΦ(f)(a1),a2 + (−1)fa1da1,Φ(f)(a2)

for any homogeneous elements f ∈ d and a1, a2 ∈ A .

The importance of Theorem 3.1 lies in the fact that there do exist interesting
examples of commutative alternative simple superalgebras in characteristic 3.
Besides:

Proposition 3.2. Let A be a nonzero commutative alternative superalgebra
over a field k of characteristic 3, and let d be a Lie superalgebra endowed with a
homomorphism of Lie superalgebras Φ : d → der A and an invariant (relative to
Φ) super skewsymmetric bilinear map d : A×A → d with Φ(da1,a2) = [la1 , la2 ] for
any a1, a2 ∈ A. Let g =

(
s⊗A

)
⊕ d be the Lie superalgebra constructed by means

of (21). Then g is simple if and only if the following conditions are fulfilled:

(i) Φ is one-to-one,

(ii) d = dA,A (= span {da1,a2 : a1, a2 ∈ A}),

(iii) A is simple.

Proof. Assume first that g is simple. Since ker Φ is an ideal, not only of d ,
but of the whole g , it follows that Φ is one-to-one. Also,

(
s⊗A

)
⊕dA,A is an ideal

of g , so dA,A = d . Finally, if I is a nonzero ideal of A , then I is invariant under
dA,A because Φ(dA,A) = [lA, lA] is contained in the Lie multiplication algebra of
A . Hence

(
s⊗ I

)
⊕ dI,A is an ideal of g , and it follows that I = A . Hence A has

no proper ideals, so it is either simple or dim A = 1 and A2 = 0. In the latter
case Φ(d) = Φ(dA,A) = [lA, lA] would be 0, and g = s ⊗ A would be a trivial Lie
superalgebra ([g, g] = 0), a contradiction to the simplicity of g .

Conversely, if condtions (i)–(iii) are satisfied, A is unital [15], and hence
s (' s ⊗ 1) is a subalgebra of g . If a is an ideal of g , the invariance of a under
the adjoint action of s shows that a =

(
s⊗ I

)
⊕ e for an ideal I of A and an ideal

e of d . Now, the simplicity of A forces that either I = 0, but then e ⊆ ker Φ = 0
and a = 0, or I = A and then s⊗ A is contained in a , so dA,A = d is contained
in a too and a = g . Hence g is simple.
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Shestakov’s classification [15] of the simple alternative superalgebras over
k (characteristic 3) shows that any central simple commutative alternative super-
algebra is, up to isomorphism, either:

(i) the ground field k ,

(ii) the three dimensional composition superalgebra B(1, 2), with even part
B(1, 2)0̄ = k1, and odd part B(1, 2)1̄ = ku + kv , with 1 the unity element
and u2 = 0 = v2 , uv = −vu = 1. This is the Jordan superalgebra of a
superform on a vector odd space of dimension 2,

(iii) an algebra B = B(Γ, D, 0), where Γ is a commutative associative algebra,
D ∈ der Γ is a derivation such that Γ has no proper ideal invariant under
D , B0̄ = Γ, B1̄ = Γu (a copy of Γ) and the multiplication is given by:

• the multiplication in Γ,

• a(bu) = (ab)u = (au)b for any a, b ∈ Γ,

• (au)(bu) = aD(b)−D(a)b , for any a, b ∈ Γ.

Given a form s of psl3(k) and the commutative alternative superalgebra
A = B(1, 2), its Lie superalgebra of derivations is naturally isomorphic to sl(A1̄) '
sl2(k), and the simple Lie superalgebra g =

(
s ⊗ A

)
⊕ dA,A in Theorem 3.1 has

even and odd parts given by:

g0̄ =
(
s⊗ A0̄

)
⊕ (dA,A)0̄ ' s⊕ sl2(k),

g1̄ =
(
s⊗ A1̄

)
⊕ (dA,A)1̄ = s⊗ A1̄.

For an algebraically closed field k , this coincides with the Lie superalgebra that
appears in [9, Theorem 4.22(i)], and also with the derived subalgebra of the Lie
superalgebra g(S2, S1,2) in [6, 7].

Also, assuming that k is algebraically closed, according to [4] or [18] any
finite dimensional commutative associative algebra Γ over k endowed with a
derivation D satisfying that Γ is D -simple (that is, there is no proper ideal
invariant under D) is isomorphic to a truncated polynomial algebra k[t1, . . . , tn :
t3i = 0, i = 1, . . . , n] which, in turn, is isomorphic to the divided power algebra
O(1; n), which is the k -algebra spanned by the symbols t(r) , 0 ≤ r < 3n − 1,
with t(0) = 1 and multiplication given by t(r)t(s) =

(
r+s
r

)
t(r+s) . The isomorphism

takes ti to t(3
i−1) , i = 1, . . . , n . The simplest D ∈ derO(1; n) for which O(1; n)

is D -simple is the derivation given by D : t(r) 7→ t(r−1) for any r .

4. Bouarroudj-Leites superalgebras

Recently, S. Bouarroudj and D. Leites [5] have constructed an interesting family of
finite dimensional simple Lie superalgebras in characteristic 3 by means of the so
called Cartan-Tanaka-Shchepochkina prolongs. These superalgebras are denoted
by bj, of dimension 24, and Bj(1; N |7) (N an arbitrary natural number), of di-

mension 24×3N . All these algebras are consistently Z-graded: g = ⊕2·3N−1
i=−2 gi and

g0̄ (respectively g1̄ ) is the sum of the even (resp. odd) homogeneous components.
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Besides, g0 is the direct sum of a one dimensional center and an ideal isomorphic
to psl3(k), dim g−2 = 1, g−1 is an adjoint module for the ideal isomorphic to
psl3(k) in g0 . The positive homogeneous components are all either a trivial one
dimensional module or an adjoint module for psl3(k), or a direct sum of both.
Therefore, these Lie superalgebras fit in the setting of the previous section.

The Lie superalgebra bj satisfies that its even part is isomorphic to sl2(k)⊕
psl3(k), while its odd part is, as a module for the even part, the tensor product of
the natural two dimensional module for sl2(k) and the adjoint module for psl3(k).
Therefore, it coincides with the Lie superalgebra obtained in the previous section
for A = B(1, 2), which appeared first in [9].

Over an algebraically closed field k of characteristic 3, by dimension count,
the Lie superalgebra Bj(1; N |7) must be necessarily isomorphic to a Lie superal-
gebra as in Theorem 3.1 for Γ = O(1; N) and a suitable derivation D .

Let Γ = O(1; N) and let D be the derivation D : t(r) 7→ t(r−1) for any
r . Then the commutative alternative superalgebra B = B(Γ, D, 0) = Γ ⊕ Γu
is consistently Z-graded with deg t(r) = 2r , deg u = −1. In this way, B =

⊕2(3N−1)
i=−1 Bi , and dim Bi = 1 for any i = −1, . . . , 2(3N − 1). Then d = dB,B

becomes a Z-graded Lie superalgebra too with deg D = −2. For any a, b ∈ Γ,
da,b = [la, lb] = 0, so d0̄ = [lB1̄

, lB1̄
] .

But for any a, b, c ∈ Γ:

[lau, lbu](c) = (au)(bcu) + (bu)(acu)

= D(a)bc− aD(b)c− abD(c) + D(b)ac− bD(a)c− baD(c)

= −2abD(c) = abD(c),

[lau, lbu](cu) = (au)
(
D(b)c− bD(c)

)
+ (bu)

(
D(a)c− aD(c)

)
=

(
aD(b)c− abD(c) + D(a)bc− abD(c)

)
u

= D(abc)u.

Thus d0̄ = span {dx : x ∈ Γ} , with dx|Γ = xD , dx(yu) = D(xy)u for any x, y ∈ Γ.
The degree of dx is deg x− 2.

Also, d1̄ = [lB0̄
, lB1̄

] , and for any a, b, c ∈ Γ:

[la, lbu](c) = a((bc)u)− (bu)(ac) = 0

[la, lbu](cu) = a
(
D(b)c− bD(c)

)
− (bu)(acu)

= aD(b)c− abD(c)−D(b)ac + bD(ac)

= (D(a)b)c.

Thus d1̄ = span {δx : x ∈ Γ} , with δx|Γ = 0, δx(yu) = xy for any x, y ∈ Γ. The
degree of δx is deg x + 1.

Hence d has dimension 2 × 3N , and then the simple Lie superalgebra(
psl3(k)⊗B

)
⊕d , with B = B(Γ, D, 0) has dimension 7×2×3N +2×3N = 24×3N .

Moreover, d is consistently Z-graded:

d = d−2 ⊕ d0 ⊕ d1 ⊕ d2 ⊕ · · · ⊕ d2·3N−4 ⊕ d2·3N−3 ⊕ d2·3N−1.

Observe that d−1 = 0 = d2·3N−2 , while di has dimension 1 for any other i with
−2 ≤ i ≤ 2 · 3N − 1.
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Now, with deg g = 0 for any g ∈ psl3(k), the simple Lie superalgebra
g =

(
psl3(k)⊗B

)
⊕ d is consistently Z-graded too:

g = ⊕2·3N−1
i=−2 gi,

with g−2 = d−2 = kD , g−1 = psl3(k)⊗ B−1 = psl3(k)⊗ u , g0 =
(
psl3(k)⊗ B0

)
⊕

d0 =
(
psl3(k)⊗ 1

)
⊕ k(t(1)D), and each gi , 0 < i < 2 · 3N − 2 is the direct sum of

psl3(k)⊗Bi and di , that is, as a a module for psl3(k), it is the direct sum of a copy
of the adjoint module and a copy of the one dimensional trivial module. Finally,
g2·3N−2 is just psl3(k) ⊗ B2·3N−2 = psl3(k) ⊗ t(3

N−1) (just a copy of the adjoint
module), and g2·3N−1 is just d2·3N−1 = kδ

t(3
N−1) (a copy of the trivial module).

This is exactly the way Bj(1; N |7) is graded, and this is no coincidence:

Theorem 4.1. Let k be an algebraically closed field of characteristic 3, let
N be a natural number, and let Γ be the algebra of divided powers O(1; N).
Consider the derivation D of Γ given by D(t(r)) = t(r−1) for any r and the
simple commutative alternative superalgebra B = B(Γ, D, 0). Then the simple Lie
superalgebra g =

(
psl3(k) ⊗ B

)
⊕ dB,B in Theorem 3.1 is isomorphic to the Lie

superalgebra of Bouarroudj and Leites Bj(1; N |7).

Proof. Both g and Bj(1; N |7) share the same negative part g− = g−2 ⊕ g−1 ,
and hence both of them embed in the universal graded Lie algebra U(g−) (see
[11]), which is contained in the Lie algebra of special derivations of the tensor
product of the divided power algebra O(1) and the Grassmann superalgebra Λ(7)
on a vector space of dimension 7 (O(1) is the span of t(r) for any r ≥ 0,
with t(r)t(s) =

(
r+s
r

)
t(r+s) ). Consider both g and Bj(1; N |7) as subalgebras of

U = U(g−). Actually, Bouarroudj and Leites consider an infinite dimensional
Lie superalgebra Bj(1|7) which is contained in U = U(g−). The superalgebra
Bj(1; N |7) is just the intersection of Bj(1|7) with the Lie superalgebra of special
derivations of O(1; N)⊗ Λ(7).

Since g−2 = [g−1, g−1] , the action of g0 on g−2 is determined by its action
on g−1 . By transitivity, U0 embeds in End(g−1) ' End(psl3(k)), and both g0

and Bj(1; N |7)0 act on psl3(k) in the same way (the adjoint action of psl3(k) and
the one dimensional center acting as a nonzero scalar). Hence, as homogeneous
subalgebras of U , g0 = Bj(1; N |7)0 = Bj(1|7)0 . Write Bj = Bj(1|7). For any i > 0
Bji is defined recursively as

{x ∈ Ui : [x, g−2] ⊆ Bji−2, [x, g−1] ⊆ Bji−1},

so it follows that gi ⊆ Bji . But by dimension count, it follows that gi =
Bj(1; N |7)i = Bj(1|7)i for any 0 < i < 2 · 3N − 2, while both g2·3N−2 and
Bj(1; N |7)2·3N−2 are the unique copy of the adjoint module for psl3(k) ⊆ U0

in Bj(1|7)2·3N−2 , and both g2·3N−1 and Bj(1; N |7)2·3N−1 are the unique copy of
the one-dimensional trivial module for psl3(K) in Bj(1|7)2·3N−1 . Therefore, g =
Bj(1; N |7) (as homogeneous subalgebras of U ).
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