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Abstract. In this paper, we show the existence of a sequence of invariant
differential operators on a particular homogeneous model G/P of a Cartan
geometry. The first operator in this sequence is closely related to the Dirac
operator in k Clifford variables, D = (D1, . . . , Dk) , where Di =

∑
j ej · ∂ij :

C∞((Rn)k, S) → C∞((Rn)k, S) . We describe the structure of these sequences
in case the dimension n is odd. It follows from the construction that all
these operators are invariant with respect to the action of the group G .

These results are obtained by constructing homomorphisms of generalized
Verma modules, which are purely algebraic objects.
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1. Motivation

There are two basic generalizations of the space of holomorphic functions to higher
dimensions. One of them is the notion of holomorphic functions in several variables,
f : R2k ' Ck → C , ∂̄jf = 0 for j = 1, . . . , k . The second possible generalization
deals with s.c. monogenic functions, which are defined on Rn with values in the
Clifford algebra or the space of spinors and solve the Dirac equation

∑
j ej ·∂jf = 0.

They have similar nice properties as holomorphic functions and coincide with them
for n = 2 ([10]).

Recently, many variations and generalizations of the classical Dirac operator
appeared. While mathematical physicists study its spectra on different Rieman-
nian spin-manifolds and others construct its analogs in non-riemannian geometries
(see e.g. [18, 19]), we may define the Dirac operator in several Clifford variables
by D : C∞((Rn)k,S) → C∞((Rn)k,Ck ⊗ S), D = (D1, . . . , Dk) (after identi-
fying elements of the image with k spinor valued functions), Di =

∑
j ej · ∂ij

where S is the (usually complex) spinor space, xuv the standard coordinates on
(Rn)k, u = 1, . . . , k, v = 1, . . . , n , and · the Clifford multiplication Rn × S → S .

This is a common generalization of the space of holomorphic functions in
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several complex variables (n = 2, k arbitrary) and the classical Dirac operator
(k = 1).

Many problems can be studied using a resolution of D , i.e. a (locally)
exact complex of PDE’s starting with the operator D . In the case of holomorphic
functions in several complex variables, D being the Cauchy–Riemann operator
(n = 2, k arbitrary), this is just the Dolbeault sequence. For k = 2, n even,
the problem was studied in [12, 17]. However, for arbitrary n, k , the form of this
resolution is not known yet, except of some special cases (see [4, 7, 8, 22]).

In this paper, the problem is treated in the framework of parabolic geometry
and some particular results are obtained for n odd, k arbitrary. We construct
sequences of differential operators starting with the Dirac operator D that are
good candidates for being a resolution (the proof that they indeed form a resolution
is still in progress). Our sequences contain all operators that are invariant with
respect to the action of a quite large group and continue the Dirac operator.

Because the space of spinors arises naturally as a fundamental representa-
tion of the Lie group Spin(n), it is natural to consider the Dirac operator as acting
not only on C∞(Rn,S) but rather on more general sections of a spinor bundle over
a spin manifold M (see [9]). The simplest spin structure on the sphere Sn is
the bundle Spin(n + 1) → Spin(n + 1)/Spin(n) ' Sn and the associated spinor
bundle is Spin(n + 1) ×Spin(n) S . The usual Dirac operator acts between sections
of this bundle and is invariant with respect to the group Spin(n+ 1) (the sections
Γ(G×H V) can be naturally identified with invariant functions C∞(G,V)H and the
action of G is g · f(x) := f(g−1x)). However, Dirac operator has a larger group of
invariance. Whereas Spin(n+ 1) acts on the sphere by rotations, it is well known
that Dirac operator is invariant with respect to all Möbius transformations. This
is reflected by the fact that the bundle Spin(n + 1) → Spin(n + 1)/Spin(n) is a
reduction of a larger bundle Spin(n+1, 1)/P , where Spin(n+1, 1) acts on the null-
cone of a form g of signature (n+1, 1) that defines the group Spin(n+1, 1). The
projectivisation of this null-cone is homeomorphic to the sphere Sn and P is the
stabilizer of one line. It was shown in [11] that considering S1 as a representation
of P with highest weight
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the Dirac operator is a Spin(n+1, 1)-invariant differential operator D : Γ(Spin(n+
1, 1) ×P S1) → Γ(Spin(n + 1, 1) ×P S2). In this sense, the Dirac operator is
conformally invariant, as Spin(n+1, 1) (or, more exactly, its connected component)
is the double-cover of the group of all Möbious transformations.

The subalgebra P is a parabolic subalgebra of G = Spin(n + 1, 1), i.e. its
Lie algebra p contains a Borel algebra b of g , the Lie algebra of G . The bundle
G→ G/P together with the Maurer-Cartan form on T (G) is an example of a s.c.
parabolic geometry (see [5, 20]).
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In [11], an analogous construction is described for the group G = Spin(n+
k, k) and P being a parabolic subgroup fixing a maximal vector subspace of the
null cone of the metric of signature (n+k, k) defining Spin(n+k, k). The reductive
part of P is isomorphic to GL(k)× Spin(n). The Lie algebra p of P determines
a gradation of the Lie algebra g of G so that g = ⊕2

j=−2gj and p = g0 ⊕ g1 ⊕ g2 .
Again, choosing proper irreducible P -modules V1 resp. V2 with highest weights
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(and similar for n even), we showed in [11, 13] that there exists a G-invariant
differential operator D : Γ(G×P V1) → Γ(G×P V2) and, identifying local sections
in the neighborhood of eP with Vi -valued functions on the vector space g− =
⊕j<0gj in a natural way and restricting to functions that are constant in g−2 ⊂ g− ,
this operator coincides with the Dirac operator in k Clifford variables (identifying
g−1 ' (Rn)k as the adjoint representation of g0 ' gl(k)× so(n)).

The question is, whether we can find sequences of G-invariant differential
operators extending the operator D . In case of the Dirac operator in one variable
(k = 1), this is not possible. We showed in [12] that for k = 2, there exist two
further G-invariant differential operators so that they form a complex together
with the first one.

In general, for any semisimple Lie group G , a parabolic subgroup P and
some P -modules V1,V2 , the G-invariant differential operators between sections
of vector bundles D : Γ(G×P V1) → Γ(G×P V2) are in 1−1 correspondence with
the g-homomorphisms of generalized Verma modules Mp(V∗

2) →Mp(V∗
1) induced

by dual representations V∗
2 and V∗

1 (see [6]). Therefore, the generalized Verma
modules and their homomorphisms will be studied in the rest of this paper.

2. Basics on generalized Verma modules

2.1. Bruhat ordering.

Let as assume that p is a parabolic subalgebra of g , i.e. a subalgebra containing a
Borel subalgebra b . This induces a gradation ⊕k

j=−kgj of g so that p =
∑

j≥0 gj .
Let h be a fixed Cartan subalgebra of g and p , Φ+ a set of positive roots of g

(and also of p) and ∆ the set of simple roots, compatible with Φ+ . There is a
1− 1 correspondence between subsets Σ of ∆ and parabolic subalgebras pΣ ⊂ g ,
where pΣ contains the Cartan subalgebra, all positive root spaces and all those
negative root spaces g−β , such that β can be expressed as a sum of simple roots
from ∆− Σ. These roots form the set of simple roots of the algebra g0 from the
associated grading ⊕k

j=−kgj . In the Dynkin diagram, we draw the simple roots in
Σ as crossed (×).

For any pair (g, p) there exists a unique element E ∈ g called grading
element so that ad(E)(X) = jX for any X ∈ gj, j = −k, . . . , k .

For each β ∈ Φ+ , the root reflection sβ is a reflection in h∗ fixing the
hyperplane orhogonal to β in the Killing metric. In coordinates, sβ(γ) = γ −
γ(Hβ)β where Hβ is the β -coroot (see e.g. [15]). The choice of ∆ determines
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the length l(w) of any element w of the Weyl group W of g . It is the minimal
number k such that w = sαi1

. . . sαik
, αij ∈ ∆, sαi

being simple root reflections.
This defines the Bruhat ordering on W in the following way: w ≤ w′ if and only
if there exist w = w0 → w1 → w2 → . . .→ wl = w′ , where wi → wi+1 means that
wi+1 = sβi

wi for some βi ∈ Φ+ and the length l(wi+1) = l(wi) + 1.

2.2. Generalized Verma modules (GVM).

Let V be a (usually finite dimensional) irreducible p-module with highest
weight λ . The generalized Verma module (further GVM), introduced by Lepowsky
([16]) is defined by Mp(V) := U(g)⊗U(p) V , where U(g) is the universal enveloping
algebra of g , considered as a left U(g) and a right U(p)-module. Mp(V) is a
highest weight module with highest weight λ and highest weight vector 1 ⊗ vλ ,
where vλ is a highest weight vector in V . As a g− -module and g0 -module,
Mp(V) ' U(g−) ⊗ V . The GVM is uniquely determined by its highest weight λ ,
therefore we will sometimes denote the GVM with highest weight λ by Mp(λ+δ),
where δ = 1

2

∑
β∈Φ+ β . Assuming that V is finite dimensional, the set of GVM’s

is isomorphic to the set of p-dominant and p-integral weights (this means weights
λ such that λ(Hα) is non-negative and integral for each α ∈ ∆ − Σ). The set of
these weights will in the sequel be denoted by P++

p .

If p = b = h ⊕β∈Φ+ gβ is the Borel subalgebra of g , the GVM Mb(V)
is called true Verma module, or simply Verma module (in this case, V is a one-
dimensional representation of b and its weight can be any λ ∈ h∗). Each highest
weight module with highest weight λ is isomorphic to a quotient of the Verma
module Mb(λ+ δ).

2.3. Duality between GVM homomorphisms and invariant differential
operators. A G-invariant differential operator D : Γ(G ×P V) → Γ(G ×P W)
is completely determined by the values Ds(eP ) on sections (e ∈ G is the identity
element). If the operator is of order k , the value Ds(eP ) depends only on the
k -jet Jk

eP s of a section s in eP . So, the operator D is determined by a map
D̃ : Jk

eP (G×P V) → W that evaluates the image of a section s in eP , identifying the
fiber over eP with W in a natural way. More precisely, D(s)(eP ) = [e, D̃(jk

eP s))]P .
Because D is G-invariant, D̃ has to be P -equivariant, the action of P on the jets
being the action on representatives.

The P -module Jk
eP (G×P V) of k -jets of sections is naturally isomorphic to

the space of k -jets of P -invariant functions Jk
e (C∞(G,V)P ) (the action of P here

being (p · f)(x) = f(p−1x)). It can be shown that this is dual, as a P -module,
to Uk(g) ⊗U(p) V∗ (where Uk(g) is the k -th filtration of U(g)) and the duality is
given by

(Y1 . . . Yl ⊗U(p) A)(jk
e f) := A((LY1 . . . LYl

f)(e)) (1)

for l ≤ k , A ∈ V∗ , jk
e f the k -jet of f in e , Yj ∈ g and LYj

the derivation with
respect to the left invariant vector fields on G induced by Yj (see [6] for details).

Any P -homomorphism D̃ : Jk
e (C∞(G,V)P ) → W is determined by its dual

map D̃∗ : W∗ → Jk
e (C∞(G,V)P )∗ and we see from (1) that the right hand side

can be identified with a P -submodule of Mp(V∗). There is a bijective correspon-
dence between P -homomorphisms W∗ → Mp(V∗) and (g, P )-homomorphisms
Mp(W∗) →Mp(V∗) called Frobenius reciprocity. In our case, a P -homomorphism
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D̃∗ : W∗ → Mp(V∗) exists if and only if there exists a (g, P )-homomorphism
Mp(W∗) →Mp(V∗) of GVM’s.

It follows that there is a duality between invariant linear differential opera-
tors D : Γ(G×P V) → Γ(G×P W) of any finite order and (g, P )-homomorphisms
of GVM’s Mp(W∗) → Mp(V∗). If the inducing representations V and W are
both finite dimensional P -modules, then Mp(V) and Mp(W) are (g, P )-modules
and if P is connected, each g-homomorphism Mp(V) → Mp(W) is a (g, P )-
homomorphism as well.

Finally, note that if the Lie groups (G,P ) are real but the representation
spaces V,W are complex representations of P , then the real GVM Mp(V) is
(g-) isomorphic to the complex GVM induced by V , considered as a complex
representation of the complexified Lie algebra pC . Therefore, we may restrict to
GVM’s associated to complex Lie algebras (gC, pC).

2.4. Homomorphisms of GVM’s. The GVM’s are highest weight modules,
therefore they admit central characters. As each g-homomorphism of highest
weight modules must preserve the central character, it follows from Harris-Chandra
theorem (see, e.g. [15]) that a g-homomorphism Mp(µ) →Mp(λ) may exist only
if µ and λ are on the same orbit of the Weyl group W of the Lie algebra g . (Recall
that the highest weights of these modules are µ− δ and λ− δ .) For λ ∈ P++

p + δ ,
there exist only a finite number of weights µ ∈ P++

p + δ on the same orbit of the
Weyl grup.

In the case of true Verma modules, there is a classification of their homomor-
phisms, done by Verma and Bernstein-Gelfand-Gelfand ([1, 2, 23]), summarized in
the following statements:

Theorem 2.1. Let µ, λ ∈ h∗ . Each homomorphism Mb(µ) → Mb(λ) is injec-
tive and dim(Hom(Mb(µ),Mb(λ))) ≤ 1. Therefore, we can write Mb(µ) ⊂Mb(λ)
in such case.

A nonzero homomorphism of Verma modules Mb(µ) →Mb(λ) exists if and
only if there exist weights λ = λ0, λ1, . . . , λk = µ so that λi+1 = sβi

λi for some
positive roots βi and λi(Hβi

) ∈ N for all i (sβ ∈ W is the β -root reflection).
Equivalently, λi − λi−1 is a positive integral multiple of some positive root for all
i.

Let λ ∈ P++
g + δ (i.e. λ − δ is g-dominant and g-integral). Then there

exists a nonzero homomorphism Mb(w′λ) →Mb(wλ) if and only if w ≤ w′ in the
Bruhat ordering.

If λ is only g-dominant (λ(Hβ) > 0 for all β ∈ Φ+ ), then the existence of
a nonzero homomorphism Mb(w′λ) →Mb(wλ) still implies w ≤ w′ in the Bruhat
ordering (but not conversely).

Because Mp(λ) is a highest weight module, it is isomorphic to a quo-
tient of true Verma module Mb(λ)/M . It was proved by Lepowsky that M '∑

α∈∆−ΣMb(sαλ) (Σ ⊂ ∆ determines the parabolic subalgebra p and all the
modules Mb(sαλ) are considered as submodules of Mb(λ)). A homomorphism
Mp(µ) →Mp(λ) is called standard, if it is induced by a quotient of a true Verma
module homomorphism Mb(µ) →Mb(λ). Up to multiple, there exists at most one
standard homomorphism from Mp(µ) to Mp(λ). The following is known about
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standard homomorphisms of GVM’s ([16]):

Theorem 2.2. Let µ, λ ∈ P++
p + δ , i : Mb(µ) → Mb(λ) be a homomorphism

of Verma modules. Then the standard homomorphism Mp(µ) → Mp(λ) is zero
if and only if there exists α ∈ ∆ − Σ so that i(Mb(µ)) ⊂ Mb(sαλ) (identifying
Mb(sαλ) with a submodule of Mb(λ)).

Let us denote by Wp the subgroup of W generated by simple root reflections
{sα, α ∈ ∆ − Σ} and W p the subset of W consisting of those w ∈ W so
that wλ̃ is p-dominant for each g-dominant weight λ̃ . Any w ∈ W can be
uniquely decomposed w = wpw

p where wp ∈ Wp and wp ∈ W p and the length
l(w) = l(wp) + l(wp). We define the parabolic Hasse graph for (g, p) to be the set
W p of vertices with arrows w → w′ if and only if w → w′ in W .

The following two properties of the parabolic Hasse graph will be used later
(for the proof, see [3]):

Lemma 2.3. (1) If w′ = sγw , then either w ≤ w′ or w′ ≤ w in the Bruhat
ordering.

(2) Let w,w′ ∈ W p and w ≤ w′ in the Bruhat ordering. Then there exists
a path w → w1 → . . .→ wn → w′ so that all wi are in W p .

The following theorem can be used to prove the existence of a standard
GVM homomorphism:

Theorem 2.4. Let λ̃ be a strictly dominant weight (i.e. λ̃(Hβ) > 0 for β ∈
Φ+ ), w,w′ ∈ W p , w → w′ in the parabolic Hasse graph for (g, p) and assume that
wλ̃, w′λ̃ ∈ P++

p + δ . Further, suppose that there exists a nonzero homomorphism

of true Verma modules Mb(w′λ̃) → Mb(wλ̃). Then the standard homomorphism
Mp(w

′λ̃) →Mp(wλ̃) is nonzero.

Remark 2.5. In [16], the theorem is formulated only for λ̃ ∈ P++ + δ , but the
proof works for non-integral λ̃ as well. Note, that for non-integral (and neither g-,
nor p-dominant) λ̃− δ , the weights wλ̃− δ and w′λ̃− δ may still be p-dominant
and p-integral.

Proof. Assume that the standard homomorphism is zero. It follows from
lemma 2.2 that there exists α ∈ ∆ − Σ so that Mb(w′λ̃) ⊂ Mb(sαwλ̃). The
last statement of theorem 2.1 implies that w′ > sαw in the Bruhat ordering.
But, because wλ̃ ∈ P++

p + δ and α ∈ ∆ − Σ, we have (wλ̃)(Hα) ∈ N and it

follows from 2.1 that Mb(sαwλ̃) ⊂ Mb(wλ̃) and l(sαw) = l(w) + 1. So we have
l(w′) > l(sαw) > l(w) which contradicts l(w′) = l(w) + 1.

For any weight λ , there always exists a dominant weight λ̃ (i.e. λ̃(Hβ) ≥ 0
for β ∈ Φ+ ) on the same orbit of the Weyl group. If there exists some β
so that λ̃(Hβ) = 0, we say that the generalized Verma modules Mp(wλ̃) have

singular character and the weights wλ̃ are called singular. Theorem 2.4 cannot
be generalized to singular weights, because for singular λ̃ , the weight wλ̃ doesn’t
determine w uniquely. (However, there are indications that a similar theorem may
be true, if we admit non-standard GVM homomorphisms.)

The following lemma will be used for comparing lengths of two elements in
W p :
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Lemma 2.6. Let E be the grading element for the pair (g, p) and let w,w′ ∈
W p , w′ = sγw and l(w′) > l(w). Then wδ(E)− w′δ(E) ∈ N.

Proof. Because w ∈ W p and w′ = sγw ∈ W p , the uniqueness of the decom-
position W = WpW

p yields sγ /∈ Wp . From the definition, Wp = Wg0 , the Weyl
group of g0 , so the root γ cannot be expressed as sum of simple roots in ∆− Σ.
The definition of the grading ⊕jgj of g , associated to the pair (g, p) implies that
the γ -root space generator Xγ ∈ gi for some i > 0, so γ(E) = i ∈ N . We obtain
w′δ(E) = (sγwδ)(E) = (wδ − wδ(Hγ)γ)(E) = wδ(E) − iwδ(Hγ). Because δ is
dominant and l(w′) > l(w), we have wδ(Hγ) > 0. The weight δ is also integral,
because δ(Hα) = 1 for each α ∈ ∆. So the difference (wδ − w′δ)(E) = iwδ(Hγ)
is a product of two positive integers.

2.5. Order of the differential operator dual to a GVM homomorphism.
The following theorem is an important tool for determining the order of an opera-
tor, dual to a homomorphism of generalized Verma modules, if the highest weights
of the inducing representations are known.

Theorem 2.7. Let µ, λ be the highest weights of some irreducible finite-dimen-
sional P -modules Vµ, Vλ and φ : Mp(Vµ) →Mp(Vλ) be a nonzero homomorphism
of generalized Verma modules. Let E be the grading element for (g, p) and let
o := (λ − µ)(E). Then o is an integer larger or equal to the order of the dual
differential operator Γ(G×P V∗

λ) → Γ(G×P V∗
µ). Further, if o ∈ {1, 2}, then o is

the order of the operator.

Proof. Let vµ be the highest weight vector of Vµ and φ(1⊗ vµ) =
∑

j yj ⊗ vj ,
yj ∈ U(g−), vj ∈ Vλ (Mp(λ) ' U(g−)⊗Vλ as vector space). Let k be the maximal
integer so that yi ∈ Uk(g−)−Uk−1(g−) for some yi and let 0 6= g0 ∈ U(g0). Simple
commutation relations show that φ maps 1 ⊗ g0 · vµ into Uk(g−) ⊗ Vλ but not
to Uk−1(g−) ⊗ Vλ . Vµ is an irreducible p-module and g0 is the reductive part
of p , so U(g0)vµ = Vµ and φ maps 1 ⊗ Vµ into Uk(g−) ⊗ Vλ . Let v ∈ Vµ ,
φ(1 ⊗ v) =

∑
j ỹj ⊗ ṽj , ṽj ∈ Vλ , ỹj ∈ Uk(g−) and ỹi /∈ Uk−1(g−) for some i . Let

ỹj = y
(j)
1 . . . y

(j)
l(j) for some y(j)

u ∈ g− , l(j) ≤ k and l(i) = k .

Applying the duality (1), the differential operator D satisfies

v((Df)(0)) =
∑
j

ṽj(Ly
(j)
1
. . . L

y
(j)

l(j)

(f)(0)),

where L
y
(j)
u

are the left invariant vector fields generated by y(j)
u ∈ g− . So, the

operator D dual to the homomorphism is of order k .

Let us suppose that the operator has order k , i.e. φ maps 1 ⊗ vµ into
Uk(g−) ⊗ Vλ but not into Uk−1(g−) ⊗ Vλ . Let {y1, . . . yn} be an ordered basis of
g− that consists of generators of negative root spaces in g− .

Let φ(1⊗ vµ) =
∑

j ỹj ⊗ vj and assume that all the vj ’s are weight vectors
in Vλ and ỹj is a product of the yj ’s (it follows from the PBW theorem that such
expression is always possible). Then all ỹj ⊗ vj are weight vectors and, because
their sum is a weight vector of weight µ , each ỹj ⊗ vj is a weight vector of weight
µ as well.
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Because φ(1⊗ vµ) /∈ Uk−1(g−)⊗Vλ , there exists i such that ỹi = yi1 . . . yik

is a product of k elements. Let uj ∈ N be defined by yij ∈ g−uj
. The action of

the grading element on yi1 . . . yik ⊗ vi is

E · (yi1 . . . yik ⊗ vi) = Eyi1 . . . yik ⊗U(p) vi =

= (yi1E + [E, yi1 ])yi2 . . . yik ⊗U(p) vi = . . . =

= yi1 . . . yik(λ(E)− u1 − . . .− uk)⊗ vi

But yi1 . . . yik ⊗ vi is a weight vector of weight µ , so the left hand side equals
µ(E)(yi1 . . . yik ⊗ vi). It follows

(λ− µ)(E) =
∑
j

uj ≥ k (2)

because uj ≥ 1 for all j . So, we see that (λ − µ)(E) is always an integer larger
or equal to the order of the operator.

It follows immediately that (λ− µ)(E) = 1 implies that the operator is of
first order. To finish the proof, it remains to show that for a first order operator,
(λ− µ)(E) is 1.

Assume that D is an operator of first order. This means that φ(1⊗ vµ) =∑
j yj ⊗ vj for yj ∈ U1(g−) and again, assume that yj are either constants or

generators of negative root spaces and vi are weight vectors. All the terms yj ⊗ vj

are of weight µ , and therefore,

µ(E)(yj ⊗ vj) = E(yj ⊗ vj) = (λ(E) + [E, yj])(yj ⊗ vj)

so [E, yj] = (µ− λ)(E) for all j and it follows that all the yj ’s are from the same
graded components of g . If yj ∈ g−1 , so (λ−µ)(E) = 1 and we are done. Assume,
for contradiction, that yj ∈ g−k for k > 1.

Because
∑

j yj ⊗ vj ∈ g−k ⊗ Vλ , choosing a basis {ṽ1, . . . , ṽm} of Vλ ,∑
j yj⊗vj can be uniquely expressed as

∑m
j=1 ỹj⊗ṽj for some ỹj ∈ g−k . Because it is

a homomorphic image of a highest weight vector in Mp(µ), it must be annihilated
by all positive root spaces in g , in particular, by any generator x of a root space
in g1 :

x · (
∑
j

ỹj ⊗ ṽj) =
∑
j

xỹj ⊗U(p) ṽj =
∑
j

(ỹjx+ [x, ỹj])⊗U(p) ṽj =

=
∑
j

(ỹj ⊗U(p) x · ṽj + [x, ỹj]⊗U(p) ṽj) =
∑
j

[x, ỹj]⊗ ṽj = 0

because [x, ỹj] ∈ g−k+1 ⊂ g− and x · ṽλ = 0. Because ṽj forms a basis of Vµ , it
follows that for each j , [x, ỹj] = 0 for all x ∈ g1 . The grading fulfills that g−1

generates g− and g1 generates p+ =
∑

i≥1 gi . The Jacobi identity implies that if ỹj

commutes with g1 , it commutes with all the p+ as well. Let ỹj =
∑

i aiy−φi
where

y−φi
is a generator of the −φi -root space. Define x :=

∑
i aixφi

, where xφi
is a

generator of the φ-root space. We see that x ∈ gk and [x, ỹj] =
∑

i a
2
i [xφ, y−φ] 6= 0

and we have a contradiction.

So, if o = (λ−µ)(E) = 2, we know that the order of the differential operator
is at most two, but it cannot be one because in that case (λ− µ)(E) = 1. So, the
operator must be of second order.
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3. The orbits associated with the Dirac operator

3.1. Existence of the homomorphisms.

Let as suppose that n is odd, g = Bk+(n−1)/2 = so(n + 2k,C), p its parabolic
subalgebra corresponding to

◦ . . . ◦ × ◦ . . . ◦>◦

where the k -th node is crossed (Σ = {αk}). Let as represent the elements of g

as matrices antisymmetric with respect to the anti-diagonal, choose the Cartan
algebra h to be the algebra of diagonal matrices in g and a natural basis {εi} of
h∗ defined by

εi(diag(a1, . . . , ak+(n−1)/2, 0,−ak+(n−1)/2, . . . ,−a1)) := ai

(see e.g. [14] for details).

The subalgebra p induces the 2-gradation g =

 g0 g1 g2

g−1 g0 g1

g−2 g−1 g0

 , where

g0 consists of blocks of dimension k × k , n × n and k × k . The corresponding
grading element is E = diag(1, . . . , 1, 0, . . . , 0,−1 . . . ,−1) and the action of a
weight [a1, . . . , ak|b1, . . . , b(n−1)/2] on E is

∑
i ai .

In this section, we will try to describe the structure of GVM homomor-
phisms on the Weyl orbit of the weight

λ =
0
◦ . . .

0
◦
−n

2×
0
◦ . . .

0
◦>

1
◦ + δ.

It was shown in [11, 12] that there exists a GVM homomorphism Mp(µ) →Mp(λ)
so that the dual differential operator is closely related to the Dirac operator in
various Clifford variables, as noticed in the introduction (choosing the real Lie
groups G = Spin(n+ k, k) and P the parabolic subgroup so that its complexified
Lie algebra is p).

In the εi -basis, δ = [. . . , 5/2, 3/2, 1/2], g-dominant weights are those
[a1, . . . , ak+(n−1)/2] such that a1 ≥ a2 ≥ . . . ≥ ak+(n−1)/2 ≥ 0 and p-dominant
weights must fulfill a1 ≥ a2 ≥ . . . ≥ ak and ak+1 ≥ . . . ≥ ak+(n−1)/2 ≥ 0.
A weight is p-dominant and p-integral, if, moreover, ai − aj ∈ Z for i, j ≤
k and al ∈ Z/2 for l > k . Positive roots are all [0, . . . , 0, 1, 0, . . . ,−1, . . .] ,
[. . . , 1, . . . , 1, . . .] and [. . . , 0, 1, 0, . . .] . The corresponding root reflections map the
weight [. . . , ai, . . . , aj, . . .] to [. . . , aj, . . . , ai, . . .] (transpositions), or to [. . . ,−aj,
. . . , ai, . . .] (sign-transpositions) or to [. . . ,−ai, . . . , aj, . . .] (sign-change).

The weight λ we consider can be writen in the εi -basis as

λ = [(2k − 1)/2, . . . , 3/2, 1/2| . . . , 3, 2, 1].

Lemma 3.1. Let k = 2. Then there exist three nonzero weights µ, ν, ξ ∈ P++
p

on the orbit of λ and nonzero standard homomorphisms

Mp(ξ) →Mp(ν) →Mp(µ) →Mp(λ),

where the weights are described by the following diagram:
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Proof. The existence of true Verma module homomorphisms Mb(ξ) → . . . →
Mb(λ) follows easily from Theorem 2.1. All the weights are from P++

p + δ and

they are on the orbit of the g-dominant weight λ̃ = [. . . , 4, 3, 2, 3/2, 1, 1/2]. This
weight is nonsingular, because its coefficients are strictly decreasing and the last
one is strictly positive.

Let w resp. w′, w′′, w′′′ be the elements of W that takes λ̃ to λ resp.
µ, ν, ξ . Easy calculation shows that w can be characterized by wδ = [5/2, 1/2| . . . ,
9/2, 7/2, 3/2] and w′δ = [5/2,−1/2| . . . , 9/2, 7/2, 3/2]. Because w′ and w are
connected by a root reflection, lemma 2.3 states that either w ≤ w′ ot w′ ≤ w in
the Bruhat ordering and there exists a sequence w = w0 → w1 → . . . → wn−1 →
wn = w′ , wi ∈ W p . Lemma 2.6 states (wiδ−wi+1δ)(E) ∈ N for all i , where E is
the grading element. But we compute (wδ−w′δ)(E) = (5/2+1/2)−(5/2−1/2) =
1, so the only possibility is n = 1 and w → w′ . Applying 2.4, we see that the
standard map Mp(µ) →Mp(λ) is nonzero.

The element w′′ takes δ to [1/2,−5/2| . . . , 9/2, 7/2, 3/2] and

(w′′δ − w′δ)(E) = (5/2− 1/2)− (1/2− 5/2) = 4.

The lenth difference l(w′′) − l(w′) must be odd, because w′′ = sγw
′ for γ =

[1, 1|0, . . . , 0], and a root reflection has negative determinant. So either w′ → w′′ ,
or w′ → w1 → w2 → w′′ . In the first case, we apply theorem 2.4 as before.
Suppose w′ → w1 → w2 → w′′ and suppose, for contradiction, that the standard
homomorpism Mp(ν) → Mp(µ) is zero. Theorem 2.2 says that the true Verma
modules

Mb(ν) ⊂Mb(sαµ) (3)

for some simple root α 6= α2 . We know that for such α , sα ∈ Wp and, because µ
is p-dominant, Mb(sαµ) ( Mb(µ). The weight sαµ is one of the following types:

1. [−1/2, 3/2| . . . , 3, 2, 1] if α = α1

2. [3/2,−1/2|(n− 1)/2, . . . , l − 1, l, . . . , 2, 1] if α = αi , 2 < i < k + (n− 1)/2

3. [3/2,−1/2| . . . , 3, 2,−1] if α = αk+(n−1)/2

First we show that α 6= α1 . If α = α1 , (3) implies that sα1µ− ν = [−1, 3|0, . . . , 0]
is a sum of positive roots, but this is not possible, as no positive root is of the form
[−1, something].

Now assume that sαµ is of type (2). Because

Mb(w′′λ̃) = Mb(ν) ( Mb(sαµ) ( Mb(µ) = Mb(w′λ̃),

l(w′)− l(w) = 3 and ν is not connected with sαµ by any root reflection, it follows
from Theorem 2.1 that there must be β1, β2 so that

Mb(ν) ( Mb(sβ1ν) = Mb(sβ2sαµ) ( Mb(sαµ). (4)

Note, that the weights are sαµ = [3/2,−1/2| . . . , l − 1, l, . . . , 2, 1] and
ν = sβ1sβ2sαµ = [1/2,−3/2| . . . , 2, 1]. In coordinates, sβj

cannot be a (sign)-
transposition interchanging an integer and a half-integer, because of the condi-
tions sαµ(Hβ2) ∈ N and sβ2sαµ(Hβ1) ∈ N . So, exactly one of these reflec-
tions interchanges (3/2,−1/2) to (1/2,−3/2) and the other one interchanges
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(l − 1, l) to (l, l − 1). So either sβ2sαµ = [1/2,−3/2| . . . , l − 1, l . . .] or sβ2sαµ =
[3/2,−1/2| . . . , l, l − 1, . . .] . In the first case, Mb(sβ2sαµ) = Mb(sαν) ( Mb(ν) (ν
is p-dominant) which contradicts (4). In the second case, Mb(sβ2sαµ) = Mb(µ) (
Mb(sαµ) by (4), which contradicts the fact that Mb(sαµ) ( Mb(µ). So sαµ can-
not be of type (2).

Similarly, we can show that sα(µ) cannot be of type (3). But this means
that (3) does not hold and the standard map Mp(ν) →Mp(µ) is nonzero.

Finally, note that w′′′δ = [−1/2,−5/2| . . .] , so (w′′δ − w′′δ)(E) = (1/2 −
5/2) − (−1/2 − 5/2) = 1, therefore w′′ → w′′′ and the standard homomorphism
Mp(ξ) →Mp(ν) is nonzero.

If n 6= 5, there are no other weights from P++
p +δ on the orbit of λ̃ . In case

n = 5, there are other weights [2, 1|3/2, 1/2], [2,−1|3/2, 1/2], [1,−2|3/2, 1/2] and
[−1,−2|3/2, 1/2] on this orbit, but there is no nonzero homomorphism from the
GVM’s in the last theorem to any of these and vice versa.

Theorem 3.2. The sequence of homomorphisms Mp(ξ) →Mp(ν) →Mp(µ) →
Mp(λ) is a complex.

Proof. We want to show that the standard homomorphism Mp(ν) → Mp(λ)
is zero. This can be using theorem 2.2 and the facts that

Mb([
1

2
,−3

2
| . . . , 2, 1]) ⊂Mb([

1

2
,
3

2
| . . . , 2, 1]) = Mb(sα1 [

3

2
,
1

2
| . . . , 2, 1]).

Similarly, one shows that Mp(ξ) →Mp(µ) is zero.

Definition 3.3. Let as define an oriented graph Sk in the following way: S1

has 2 vertices connected by an arrow (• → •), S2 contains 4 vertices connected
linearly by arrows (• → • → • → •). For k ≥ 3, Sk contains 2 disjoint subsets S1

and S2 of vertices so that the subgraphs S1and S2 are both isomorphic to Sk−1 ,
where S1 contains the “first” vertex and S2 the “last” one. Similarly, S1 contains
2 copies of Sk−2 , denote them by S1,1 and S1,2 and S2 contains 2 copies of Sk−2 ,
denote them by S2,1 and S2,2 . Let φ resp. ψ be the isomorphism Sk−2 → S1,2

resp. Sk−2 → S2,1 . Then for each vertex x ∈ Sk−2 there is an arrow φ(x) → ψ(x)
in Sk . For completeness, define S0 to be a one-point graph.

Graphically, Sk has the following structure:

We draw the graphs Sk for k = 3, 4:

Theorem 3.4. Let (g, p) and λ be like at the beginning of this section and
let k 6= (n − 1)/2. There are 2k weights from (P++

p + δ) ∩ Wλ and they can
be assigned to the vertices of the graph Sk so that for each arrow µ → ν in
this graph there exists a nonzero standard homomorphism Mp(ν) → Mp(µ) and
each nonzero standard homomorphism between GVM’s with highest weights from
((P++

p + δ) ∩Wλ) − δ is a composition of these. The weight λ itself is assigned
to the minimal vertex in Sk .
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Proof. The condition on a weight ν = [a1, . . . , ak|b1, . . . , b(n−1)/2] to be from
P++

p + δ is a1 > . . . > ak , b1 > . . . > b(n−1)/2 > 0, ai − aj ∈ Z , bi − bj ∈ Z
and the bi ’s are all integers or all half-integers. Simple combinatorics implies that,
if ν ∈ P++

p + δ is on the orbit of λ and k 6= (n − 1)/2, the only possibility is
ν = [a1, . . . , ak|(n − 1)/2, . . . , 2, 1], where (a1, . . . , ak) is some strictly decreasing
sign-permutation of ((2k − 1)/2, . . . , 3/2, 1/2).

These conditions imply that there is either (2k− 1)/2 on the first position,
or −(2k − 1)/2 on the k -th position and the remaining of the first k positions
contains a decreasing sign-permutation of ((2k − 3)/2, . . . , 1/2). This proves that
there are 2k such weights. Define Rk to be the set of these weights, R1

k to be the
set of weights with (2k−1)/2 on the first position and R2

k to be the set of weights
with −(2k − 1)/2 on the k -th position.

We will prove that the map i : Rk−1 → R1
k given by ([a1, . . . , ak−1| . . .]) 7→

([(2k − 1)/2, a1, . . . , ak−1| . . .]) preserves the existence of nonzero standard GVM
homomorphisms (i.e. there exists a nonzero standard Mpk−1,n

(ν) → Mpk−1,n
(µ)

if and only if there exists a nonzero standard Mpk,n
(i(ν)) → Mpk,n

(i(µ)), the
subscripts k, n means that the rank of the Lie algebra is k + (n− 1)/2).

We start with the Borel case p = b . Let Mbk−1,n
(ν) →Mbk−1,n

(µ) be a true

Verma module homomorphism. Let as denote by ĩ the map h∗k−1,n → h∗k,n defined
by [a1, . . . , ak−1|b1, . . . , b(n−1)/2] 7→ [0, a1, . . . , ak−1|b1, . . . , b(n−1)/2] . According to
2.1, there exists a nonzero homomorphism Mbk−1,n

(ν) → Mbk−1,n
(µ) if and only

if there exists a sequence µ = µ0, µ1, . . . , µl = ν of weights connected by root
reflections so that µj − µj−1 is a positive integral multiple of a positive root from
Φ+

k−1,n (this is the set of positive roots of g = so(2(k−1)+n)) for all j . In this case,
the sequence i(µ) = i(µ0), i(µ1), . . . , i(µl) = i(ν) has similar properties, because
µj = sγµj−1 implies i(µj) = sĩ(γ)i(µj−1) and for each γ ∈ Φ+

k−1,n , ĩ(γ) ∈ Φ+
k,n .

So, there exists a nonzero homomorphism Mbk,n
(i(ν)) → Mbk,n

(i(µ)). On the
other hand, if there exists a nonzero homomorphism Mbk,n

(i(ν)) → Mbk,n
(i(µ)),

it follows that there is a sequence i(µ) = [(2k − 1)/2, something] = i(µ0), i(µ1),
. . . , i(µl) = [(2k − 1)/2, something], i(µj) = sγj

i(µj−1), so that i(µj) − i(µj−1)
is a positive multiple of a positive root. Therefore, the coefficient on the first
position is not increasing in this sequence: so, it is constant (2k − 1)/2. This
means that the root reflections γj don’t interchange the first coordinate with some
other and the roots γj have zeros on first positions. So, there exist γ̃j ∈ Φ+

k−1,n

so that ĩγ̃j = γj and we obtain that there exists a nonzero homomorphism
Mbk−1,n

(ν) →Mbk−1,n
(µ).

It follows from Theorem 2.2 that the standard homomorphism Mpk−1,n
(ν) →

Mpk−1,n
(µ) is zero if and only if Mbk−1,n

(ν) ⊂ Mbk−1,n
(sαj

µ) for some simple
root αj 6= αk−1 . Then Mbk,n

(i(ν)) ⊂ Mbk,n
(sĩ(αj)

i(µ)) follows from the previous

paragraph, ĩ(αj) 6= αk and the standard homomorphism Mp(i(ν)) → Mp(i(µ))
is zero as well. On the other hand, if Mp(i(ν)) → Mp(i(µ)) is zero, then
Mbk,n

(i(ν)) ⊂ Mbk,n
(sαi

i(µ)) for some simple root αi 6= αk . If i = 1, then
Mbk,n

(i(ν)) ⊂ Mbk,n
(sα1i(µ)) implies sα1(i(µ)) − i(ν) is a sum of positive roots.

But i(ν) contains (2k−1)/2 on the first position and sα1(i(µ)) contains a number
strictly smaller then (2k − 1)/2 on the first position, which is a contradiction.
Therefore, i > 1 and there is a α ∈ ∆k−1,n , α 6= αk−1 so that ĩ(α) = αi . Then
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Mbk−1,n
(ν) ⊂Mbk−1,n

(sαµ), and the map Mp(ν) →Mp(µ) is zero as well.

We see that for any µ, ν ∈ Rk−1 , there exists a nonzero standard GVM
homomorphism Mpk−1,n

(ν) → Mpk−1,n
(µ) if and only if there exists a nonzero

standard homomorphism Mpk,n
(i(ν)) → Mpk,n

(i(µ)). Similarly, we can define the
map j : Rk−1 → R2

k by [a1, . . . , ak−1| . . .] 7→ [a1, . . . , ak−1,−(2k − 1)/2| . . .] and
prove that there exists a nonzero standard GVM homomorphism Mpk−1,n

(ν) →
Mpk−1,n

(µ) if and only if there exists a nonzero standard homomorphism

Mpk,n
(j(ν)) →Mpk,n

(j(µ)).

Let as now denote the maps i and j described before by ik and jk , specify-
ing the dimension of the (resulting) weights. It remains to prove that for each x ∈
Rk−2 there exists a nonzero standard GVM homomorphism Mpk,n

(jkik−1(x)) →
Mpk,n

(ikjk−1(x)). In other words, we want to show that for any decreasing sign-
permutation (a2, . . . , ak−1) of ((2k−5)/2, . . . , 1/2), there exists a nonzero standard
homomorphism Mp(ν) →Mp(µ), where

ν = [
2k − 3

2
, a2, . . . , ak−1,−

2k − 1

2
| . . . , 2, 1],

µ = [
2k − 1

2
, a2, . . . , ak−1,−

2k − 3

2
| . . . , 2, 1].

It follows from 2.1 that there is a homomorphism of the corresponding true
Verma modules (the weights are connected by the root reflection with respect
to [1, 0, . . . , 0, 1|0, . . . , 0].)

There is a unique g-dominant weight λ̃ on the orbit of λ : λ̃ = [(n −
1)/2, (n−1)/2−1, . . . , k, k−1/2, k−1, k−3/2, . . . , 3/2, 1, 1/2] in case (n−1)/2 ≥ k
and λ̃ = [k−1/2, k−3/2, . . . , n/2, n/2−1/2, n/2−1, . . . , 1, 1/2] in case (n−1)/2 <
k .

Let w resp. w′ be the Weyl group element taking λ̃ to µ resp. ν .
Simple computations show that, if (n − 1)/2 ≥ k − 1, then w takes δ =
1
2
[. . . , 5, 3, 1] to 1

2
[4k − 3, b2, . . . , bk−1,−(4k − 7)| . . .] where (b2, . . . , bk−1) is some

decreasing sign-permutation of ((4k−11)/2, . . . , 5/2, 1/2) and w′ takes δ to 1
2
[4k−

7, b2, . . . , bk−1,−(4k − 3)| . . .] . The difference of the grading element evaluation is
then (wδ−w′δ)(E) = 1

2
((4k−3)−(4k−7)+

∑
j bj)− 1

2
((4k−7)−(4k−3)+

∑
j bj) = 4.

If (n− 1)/2 < k− 1, then w takes δ(E) to [k+ n/2− 1, . . . ,−(k+ n/2− 2)| . . .] ,
w′ takes δ to [k+n/2− 2, . . . ,−(k+n/2− 1)| . . .] and (wδ−w′δ)(E) = 2 in this
case.

So, in either case, (wδ−w′δ)(E) ≤ 4 and, similarly as in the proof of lemma
3.1, either w → w′ or w → w1 → w2 → w′ . If w → w′ , we apply Theorem 2.4
and see that there is a nonzero standard homomorphism Mp(ν) →Mp(µ).

Let w → w1 → w2 → w′ and assume, for the sake of contradiction, that
the standard map Mp(w

′λ̃) →Mp(wλ̃) is zero. Therefore,

Mb(ν) = Mb(w′λ̃) ⊂Mb(sαwλ̃) = Mb(sαµ) (5)

for some simple root α 6= αk .

The weight sα(µ) is one of the following types:
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1. [a2, (2k − 1)/2, . . . , ak−1,−(2k − 3)/2| . . . , 3, 2, 1] if α = α1

2. [(2k − 1)/2, . . . , al, al−1, . . . ,−(2k − 3)/2| . . .] if α = αj , 1 < j < k − 1

3. [(2k − 1)/2, . . . ,−(2k − 3)/2, ak−1| . . .] if α = αk−1

4. [(2k − 1)/2, . . . ,−(2k − 3)/2|(n − 1)/2, . . . , l − 1, l, . . . , 2, 1] if α = αj , k <
j < k + (n− 1)/2

5. [(2k − 1)/2, . . . ,−(2k − 3)/2| . . . , 3, 2,−1] if α = αk+(n−1)/2

First we show that it is not of type 1. If α = α1 , (5) implies sα1(µ)− ν is
a sum of positive roots, i.e.

[a2, (2k− 1)/2, . . . ,−(2k− 3)/2| . . .]− [(2k− 3)/2, a2, . . . ,−(2k− 1)/2| . . .] ∈ NΦ+,

where a2 ≤ (2k−5)/2. But the difference cannot be obtained as a sum of positive
roots, because it contains a negative number a2− (2k− 3)/2 on the first position.

Now assume that sα(µ) is of type 2− 5. Because

Mb(w′λ̃) = Mb(ν) ( Mb(sαµ) ( Mb(µ) = Mb(wλ̃),

l(w′)− l(w) = 3 and ν is not connected to sα(µ) by any root reflection, it follows
from Theorem 2.1 that there must be β1, β2 so that

Mb(ν) ( Mb(sβ1ν) = Mb(sβ2sαµ) ( Mb(sαµ) (6)

Similarly as in the proof of lemma 3.1, we will show that α cannot be of type
2− 5. Let α be of type 2, i.e.

sα(µ) = [(2k − 1)/2, . . . , al, al−1, . . . ,−(2k − 3)/2| . . .],
ν = [(2k − 3)/2, . . . , al−1, al, . . . ,−(2k − 1)/2)| . . .].

The root reflections sβ1 and sβ2 cannot interchange an integer with a half-integer,
because of the integrality conditions sα(µ)(Hβ2) ∈ N and sβ2sα(µ)(Hβ1) ∈ N .
There are two possibilities: either sβ2 interchanges al with al−1 and sβ1 sign-
interchanges ((2k − 1)/2,−(2k − 3)/2) with ((2k − 3)/2,−(2k − 1)/2) on the
particular positions, or sβ2 sign-interchanges ((2k−1)/2,−(2k−3)/2) with ((2k−
3)/2,−(2k−1)/2) and sβ1 interchanges al with al−1 . In the first case, β2 = α and
(6) implies Mb(µ) ( Mb(sαµ), which contradicts the fact that M(sαµ) ( M(µ)
for a simple root α 6= αk and µ ∈ P++

p + δ . In the second case, β1 = α and (6)
implies Mb(ν) ( Mb(sαν), which also contradicts Mb(sαν) ( Mb(ν).

Let α be of type 3, i.e.

sα(µ) = [(2k − 1)/2, . . . ,−(2k − 3)/2, ak−1| . . .],
ν = [(2k − 3)/2, . . . , ak−1,−(2k − 1)/2)| . . .]

If either β1 = α or β2 = α , we get contradiction similarly as in case (2). But
there is no other possibility, because the ak−1 on the k -th position has to move
somehow to the (k − 1)-th position: if β2 would fix it, then β1 = α , if β2 would
take it to the (k − 1)-th position, then β2 = α and if β2 would take it (possibly
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with a minus sign) to the l -th position for l 6= k, k − 1, 1, then β1 has to (sign-)
interchange the l -th and (k − 1)-th position, so sβ1sβ2 would fix the (2k − 1)/2
on the first position, which is impossible. The last possibility is l = 1: this would
mean that β2 takes ak−1 to the first position (possibly with a minus sign), but
|ak−1| < (2k−3)/2 implies that sβ2sα(µ) has a smaller number on the first position
as ν and sβ2sα(µ)−ν is not expressible as a sum of positive roots. This contradicts
Mb(ν) ( Mb(sβ2sαµ).

In case 4, we have

sα(µ) = [(2k − 1)/2, . . . ,−(2k − 3)/2|(n− 1)/2, . . . , l − 1, l, . . . , 2, 1]

ν = [(2k − 3)/2, . . . ,−(2k − 1)/2)|(n− 1)/2, . . . , l, l − 1, . . . , 2, 1]

Because the reflections with respect to β1, β2 cannot interchange an integer and a
half-integer, it follows that one of them interchanges l with l−1, so either β1 = α
or β2 = α and we get a contradiction as in case 2. The same happens in case 5.

In either case, we get a contradiction, so the standard map Mp(ν) →Mp(µ)
is nonzero.

So, we can assign weights from Rk to the vertices of the graph Sk so that
we assign the weights from R1 to S1 , the weights from R2 to S2 and the proof
follows by induction.

Finally, it is easy to check that any possible nonzero standard GVM homo-
morphisms on the orbit is a composition of the homomorphisms described above
by reducing this problem to true Verma module homomorphisms and considering
theorem 2.1.

In case k = (n − 1)/2, all the GVM homomorphisms described in the
last theorem exist as well, but the whole orbit contains also weights of type
[. . . , 2, 1|(2k − 1)/2, . . . , 3/2, 1/2]. There is no nonzero GVM homomorphism
Mp(ν) →Mp(µ) where µ is of such type and ν of the type [. . . , 3/2, 1/2| . . . , 2, 1]
(or opposite).

3.2. Orders of the operators.

Theorem 3.5. All the operators dual to the homomorphisms described in theo-
rem 3.4 have order 1 or 2. For any k , the connecting operators φ(x) → ψ(x) (de-
scribed in definition 3.3) have order 2 and the graph homomorphisms Sk−1 → S1

k

and Sk−1 → S2
k respect orders. This determines, by induction, all the order of all

the operators.

If we draw a line for first order operators and a double-line for second order
operators in the diagrams, we obtain the following pictures:

Proof. Recall that the action of a weight on the grading element is

[a1, . . . , ak|b1, . . . , b(n−1)/2](E) =
∑
j

aj.
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Applying theorem 2.7 and the knowledge of the highest weights of the particular
representations, we see that

[(
2k − 1

2
, a2, . . . , ak−1,−

2k − 3

2
| . . .](E)− [

2k − 3

2
, a2, . . . ,−

2k − 1

2
| . . .](E) =

= (
2k − 1

2
− 2k − 3

2
)− (

2k − 3

2
− 2k − 1

2
) = 2,

so the “connecting” operators are of second order. The other operators are of first
order, because

[a1, . . . , aj−1,
1

2
, aj+1, . . . | . . .](E)− [a1, . . . , aj−1,−

1

2
, aj+1 . . . | . . .](E) =

1

2
− (−1

2
) = 1.
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