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Abstract. Braided-Lie bialgebras have been introduced by Majid, as the Lie
versions of Hopf algebras in braided categories. In this paper we extend previous
work of Majid and of ours to show that there is a braided-Lie bialgebra associated
to each inclusion of Kac–Moody bialgebras. Doing so, we obtain many new
examples of infinite-dimensional braided-Lie bialgebras. We analyze further the
case of untwisted affine Kac–Moody bialgebras associated to finite-dimensional
simple Lie algebras. The inclusion we study is that of the finite-type algebra
in the affine algebra. This braided-Lie bialgebra is isomorphic to the current
algebra over the simple Lie algebra, now equipped with a braided cobracket. We
give explicit expressions for this braided cobracket for the simple Lie algebra sl3 .
break Mathematics Subject Index 2000: 17B67, 17B62, 22E67.
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1. Introduction

Following Drinfel′d’s ICM address ([4]) some twenty years ago, there has been much
interest among mathematicians and physicists in the extension of the classical
theory of Lie algebras by considering not just a Lie bracket but in addition a
compatible Lie cobracket. Objects with these structures are called Lie bialgebras
and play the same role as Hopf algebras do with respect to algebras. Many people
have studied Lie bialgebra structures on the well-known classes of Lie algebras,
not least because in many cases these yield solutions to the classical Yang–Baxter
equation and hence have connections to integrable systems and knot theory.

Another direction in Hopf algebra theory has been emphasized by Majid,
namely the study of braided monoidal categories and in particular algebraic struc-
tures on objects in such categories. By “in” here we mean not just membership of
the category but also covariance of the algebraic structure in question with respect
to the braiding. Typically the braided monoidal category is a module category of
some sort and then we mean covariance with respect to the action. The books
[11] and [13] describe much of the theory of algebraic structures in braided cate-
gories developed up to the start of this millennium. More recent work has included
that of Andruskiewitsch and Schneider ([1]) and others on pointed Hopf algebras
and Nichols algebras, the latter being certain types of Hopf algebras in braided
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categories.

Majid ([12]) has also explained how the ideas of braided categories apply
in the Lie algebra case and has introduced the Lie analogue of Hopf algebras in
braided categories, which he called braided-Lie bialgebras. These objects are the
focus of our work here: we show how they arise very naturally and extend Majid’s
treatment to produce many new infinite-dimensional examples. We do this by
extending previous results of Sommerhäuser ([17]), Majid (op. cit.) and ourselves
([5]) to the case of Kac–Moody algebras, the class of Lie algebras associated to
generalized Cartan matrices discovered independently by Kac ([8]) and Moody
([14]) in the mid-1960s. These Lie algebras are typically infinite-dimensional but
retain many of the nice structural features of the finite-dimensional semisimple Lie
algebras.

The first aim of this work is to show that braided-Lie bialgebra structures
are naturally associated to inclusions of Kac–Moody algebras. The second is to
provide a more detailed analysis of this situation when the larger algebra is the
untwisted affine Kac–Moody algebra over a finite-type simple algebra, embedded
in degree 0. In this case, we show that the associated braided-Lie bialgebra is
isomorphic to the current algebra over the simple subalgebra, now equipped with
a braided cobracket.

Also of interest is Majid’s double-bosonisation construction ([12]), which
takes as input a quasitriangular Lie bialgebra g0 and a braided-Lie bialgebra b .
One then obtains a new quasitriangular Lie bialgebra g ∼= b >C· g0 ·B< b∗op .
(Strictly, this is only true if b is finite-dimensional: in general, one should take two
dually paired braided-Lie bialgebras.) Here >C· is a simultaneous semidirect Lie
algebra and coalgebra structure; similarly for ·B< on the other side. It is possible
to realize this as a quotient of the Drinfel′d double ([4]) of a single bosonisation
b >C· g0 , which is in fact a subalgebra of the double-bosonisation. Majid analyzed
of the situation when rank g0 = rank g− 1 for g of finite type. Sommerhäuser has
a similar construction ([17]) and considered Kac–Moody algebras but only with
g0 = h , the (generalized) Cartan subalgebra.

It is this construction that allows the inductive approach that was studied
in detail in [5] (and in [6] for quantized enveloping algebras). Our work in [5]
focused on finite-dimensional simple complex Lie algebras and showed that they
have double-bosonisation decompositions related to deleting nodes from Dynkin
diagrams. We also considered necessary conditions on b to obtain a simple Lie
algebra after double-bosonisation. In particular we obtained sufficiently many
conditions to see that there could not be a finite-dimensional simple Lie algebra of
type E9 , as an alternative method to the standard classification theorem. In the
course of the work in this paper, we have answered the natural follow-on question:
which double-bosonisation does give us the (infinite-dimensional) E9?

In [6], we considered the corresponding situation for quantized enveloping
algebras. By means of Lusztig’s root data approach (see for example [10]) we were
able to prove corresponding results about double-bosonisation decompositions for
all types, not just finite-type data. Here we use the method of proof developed
in [6] to extend our earlier work for finite-dimensional Lie algebras to the infinite-
dimensional cases, namely Kac–Moody algebras.

Our motivations here are two-fold. First is the extension of our previous
work, as described above, from the finite-dimensional Lie algebra situation to the
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infinite-dimensional Kac–Moody case. Next is the identification of more exam-
ples of non-trivial braided-Lie bialgebras and double-bosonisation. Previously-
known examples of braided-Lie bialgebras have been mostly finite-dimensional;
here we have shown that there is a large class of infinite-dimensional examples.
In particular, we have demonstrated a braided-Lie bialgebra structure on a well-
known infinite-dimensional Lie algebra, the current algebra k[u]⊗ g over a finite-
dimensional simple Lie algebra g . This braided coalgebra structure may be of
interest in mathematical physics, where current algebras appear in quantum field
theory. Another direction for future work would be to tackle the other types of
Kac–Moody algebra, in particular the twisted affine algebras.

The structure of this paper is as follows. We begin by recalling in Section 2
the definitions of the structures we will need, namely those of a quasitriangular Lie
bialgebra and a braided-Lie bialgebra. We state the results of Majid ([12]) defin-
ing the double-bosonisation construction and its natural induced quasitriangular
structure, when the input is quasitriangular. We then recap the definition of Kac–
Moody algebras associated to generalized Cartan matrices. We will be interested
in the untwisted affine Kac–Moody algebras and in particular their realizations as
extensions of loop algebras over finite-dimensional simple Lie algebras.

In Section 3, we follow the pattern of [6] by demonstrating that N-gradings
of Lie bialgebras give rise to split projections. Hence, via a theorem of Majid
([12]) corresponding to a result of Radford ([15]) for Hopf algebras, one obtains
a braided-Lie bialgebra associated to the grading as the kernel of the (split)
projection. Furthermore, one may reconstruct the original Lie bialgebra as a
semidirect product Lie bialgebra of the kernel and image of the projection.

We then define a sub-root datum (Definition 3.4). This is a way of formally
encoding the idea of embedding Dynkin diagrams. There is a natural N-grading of
the negative Borel subalgebra of a Kac–Moody algebra associated to any choice of
sub-root datum. Hence by the general results we have a corresponding braided-Lie
bialgebra (Theorem 3.8). Finally, it is clear from the definitions of the Kac–Moody
algebras via a presentation and of this braided-Lie bialgebra that we can recon-
struct the whole Kac–Moody algebra by a double-bosonisation (Proposition 3.9).
Equivalently, one may view Proposition 3.9 as a generalisation of the usual trian-
gular decomposition theorem.

In Section 4 we focus on a particular case of the above results, namely the
relationship between a finite-dimensional simple Lie algebra and the corresponding
untwisted affine Kac–Moody algebra. It is straightforward to see that if C is a
root datum for an irreducible Cartan matrix of finite type then there is a natural
root datum C̃ for the corresponding generalized Cartan matrix of untwisted affine
type C̃ and these fit together to give a sub-root datum C ⊆ι C̃ in the obvious way.
In terms of the Dynkin diagrams, we are simply considering the finite-type sub-
diagram of the corresponding affine-type diagram, i.e. the deletion of the extending
node, usually labelled “0”. We call this sub-root datum the affinization sub-root
datum associated to C .

Hence by the general theory there is a N-grading of the Borel subalgebra
of L(C̃) and hence a braided-Lie bialgebra b = b(C̃, C, ι). By considering the loop

algebra realization of L(C̃) as L̂(C), we see that b is isomorphic as a Lie algebra
to a well-known Lie algebra, namely the current algebra over L(C), k[u]⊗ L(C).
However, we now see that the current algebra admits a non-trivial braided-Lie
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bialgebra structure. We conclude with an example and some explicit formulæ for
the braided and unbraided cobrackets associated to C = A2 (i.e. L(C) = sl3(k),

L(C̃) ∼= L̂(A2) = s̃l3(k)).

Acknowledgements. The work in this paper has been completed during
the author’s research fellowship at Keble College, Oxford. I would also like to
thank the Mathematical Institute at Oxford for its provision of facilities.

I am grateful to the referee for several helpful comments and corrections.

2. Preliminaries

Throughout we work over a field k = k̄ , algebraically closed and of characteristic
0. We will use the following convention for the natural numbers: N = {0, 1, 2, . . .} .
That is, for us N is a monoid.

We will assume the reader is familiar with the theory of finite-dimensional
semisimple Lie algebras and root systems, as can be found in [16], [7] or [2], for
example. We shall recap the corresponding aspects of the theory for Kac–Moody
algebras we need below. Note that we use the term unqualified term “Lie algebra”
inclusively, so that Kac–Moody algebras are considered to be examples of Lie
algebras.

We use τ to denote the tensor product flip map, e.g.

τ : V ⊗W → W ⊗ V, τ(v ⊗ w) = w ⊗ v for all v ∈ V, w ∈ W,

on any appropriate pair of vector spaces. The adjoint action of a Lie algebra g on
itself can be extended naturally to tensor products as follows. For x, y, z ∈ g ,

adx(y ⊗ z) = adx(y)⊗ z + y ⊗ adx(z).

We use the term ad-invariant in the obvious way. We adopt the Sweedler notation
for elements of tensor products, namely we use upper or lower parenthesized indices
to indicate the placement in the tensor product:

∑
a(1) ⊗ a(2) ⊗ a(3) ∈ g⊗ g⊗ g .

We will usually omit the summation sign.

The definition of a Lie bialgebra is originally due to Drinfel′d ([3], [4]).
The idea is the same as that for Hopf algebras, where we have two structures
dual to each other, compatible in a natural way. It is worth commenting that Lie
bialgebras form a richer class than Lie algebras: the choice of the cobracket, the
dual structure to the bracket, is not usually unique.

Definition 2.1. ([3]) A Lie bialgebra is (g, [ , ], δ) where

1. (g, [ , ]) is a Lie algebra,

2. (g, δ) is a Lie coalgebra, that is, δ : g → g⊗ g satisfies

δ + τ ◦ δ = 0 (anticocommutativity)
(δ ⊗ id) ◦ δ + cyclic = 0 (co-Jacobi identity)

(Here, “cyclic” refers to cyclical rotations of the three tensor product factors
in g⊗ g⊗ g .)
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3. we have a cohomological compatibility condition: δ is a 1-cocycle in
Z1

ad(g, g⊗ g). Explicitly,

δ([x, y ]) = adx(δy)− ady(δx).

Examining this definition, we see that if g is a finite-dimensional Lie bialgebra,
then (g∗, δ∗, [ , ]∗) is also a finite-dimensional Lie bialgebra. Here, δ∗ and [ , ]∗

are the bracket and cobracket, respectively, given by dualisation. Extending the
strict notion of dualisation in the finite-dimensional case, we have the notion of
dually paired Lie bialgebras. We say Lie bialgebras f , g are dually paired by a
map < , > : f⊗ g → k if

< [ a, b ], g> = <a⊗ b, δg> and <δa, g ⊗ h> = <a, [ g, h ]>

for a, b ∈ f , g, h ∈ g .

In many cases, the cobracket δ arises as the coboundary of an element
r ∈ g ⊗ g . (Explicitly, δx = adx(r) for all x ∈ g .) If δ further satisfies
(id ⊗ δ)r = [ r13, r12 ] , we say that (g, r) is a quasitriangular Lie bialgebra. Here,
we write r12 = r(1) ⊗ r(2) ⊗ 1, etc., with summation understood and the indices
showing the placement in the triple tensor product g⊗g⊗g . The bracket is taken

in the common factor, so [ r13, r12 ] = [ r(1), r′(1) ]⊗ r′(2)⊗ r(2) with r′ a second copy
of r .

To construct a quasitriangular Lie bialgebra, it is sufficient to find an
element r ∈ g ⊗ g satisfying the classical Yang–Baxter equation and with ad-
invariant symmetric part. Then we take the coboundary ∂r for δ . The classical
Yang–Baxter equation, in the Lie setting, is

J r, r K def
= [ r12, r13 ] + [ r12, r23 ] + [ r13, r23 ] = 0.

The bracket J , K is the Schouten bracket, the natural extension of the bracket to
these tensor spaces.

We now consider the braided version of Lie bialgebras, as defined by Majid
in [12]. Here we consider the module category gM of a quasitriangular Lie bialgebra
g and objects in this category possessing a g-covariant Lie algebra structure. We
associate to these objects a braiding map generalising the usual flip, τ . If b is a
g-covariant Lie algebra in the category gM , we define the infinitesimal braiding of
b to be the operator ψ : b⊗ b → b⊗ b , ψ(a⊗ b) = 2r+ . (a⊗ b− b⊗ a) where . is
the left action of g on b extended to the tensor products. In fact, ψ is a 2-cocycle
in Z2

ad(b, b⊗ b).

Definition 2.2. ([12]) A braided-Lie bialgebra (b, [ , ]b, δ) is an object in gM
satisfying the following conditions:

1. (b, [ , ]b) is a g-covariant Lie algebra in the category, i.e. [ , ]b : b⊗ b → b

is a g-module map.

2. (b, δ) is a g-covariant Lie coalgebra in the category, i.e. δ : b → b ⊗ b is a
g-module map.
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3. dδ = ψ , or explicitly,

δ([x, y]) = adx(δy)− ady(δx)− ψ(x⊗ y).

We may make a similar definition of dually paired braided-Lie bialgebras to that
above for unbraided Lie bialgebras. We can now state the theorem which provides
the double-bosonisation construction of Majid. Let g be a quasitriangular Lie
bialgebra.

Theorem 2.3. ([12, Theorem 3.10]) For dually paired braided-Lie bialgebras
b, c ∈ gM the vector space b⊕ g⊕ c has a unique Lie bialgebra structure
b >C· g ·B< cop , the double-bosonisation, such that g is a Lie sub-bialgebra, b, cop

are Lie subalgebras, and

[ ξ, x ] = ξ . x, [ ξ, ϕ ] = ξ . ϕ

[x, ϕ ] = x(1)<ϕ, x(2)>+ ϕ(1)<ϕ(2), x>+ 2r
(1)
+ <ϕ, r

(2)
+ . x>

δx = δx+ r(2) ⊗ r(1) . x− r(1) . x⊗ r(2)

δϕ = δϕ+ r(2) . ϕ⊗ r(1) − r(1) ⊗ r(2) . ϕ

for all x ∈ b, ξ ∈ g and ϕ ∈ c. Here δx = x(1) ⊗ x(2) .

We note that Sommerhäuser has a similar construction ([17]). Some different
terminology is used there, notably ‘Yetter–Drinfel′d Lie algebra’ for ‘braided-Lie
bialgebra’.

The double-bosonisation is always quasitriangular when we take b and
c = b∗ finite-dimensional, as we see from the following proposition.

Proposition 2.4. ([12, Proposition 3.11]) Let b ∈ gM be a finite-dimensional
braided-Lie bialgebra with dual b∗. Then the double-bosonisation b >C· g ·B< b∗op

is quasitriangular with

rnew = r +
∑

a

fa ⊗ ea

where {ea} is a basis of b and {fa} is a dual basis, and r is the quasitriangular
structure of g. If g is factorisable then so is the double-bosonisation.

We remark that for each finite-dimensional semisimple Lie algebra, there exists a
canonical quasitriangular structure, associated to the Drinfel′d–Sklyanin solution
of the Yang–Baxter equation.

Next, we recall the definition of Kac–Moody algebras associated to general-
ized Cartan matrices, as introduced independently by Kac ([8]) and Moody ([14])
in 1967. We mostly follow the presentation in [2], Chapters 14-19.

A generalized Cartan matrix is an n×n integer matrix C such that Cii = 2
for all i , Cij ≤ 0 for i 6= j and Cij = 0 implies Cji = 0. Let I = {1, . . . , n} . A
triple (H,Π,Π∨) is a minimal realization of C over k if H is a (2n − rankC)-
dimensional k -vector space, Π = {α1, . . . , αn} ⊂ H∗ and Π∨ = {h1, . . . , hn} ⊂ H
are linearly independent subsets in H∗ and H respectively and αj(hi) = Cij for
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all i . A minimal realization allows us to define a Lie algebra L̃(C), by generators
{e1, . . . , en, f1, . . . , fn, h̃ | h ∈ H} and relations

x̃ = λỹ + µz̃ whenever x = λy + µz holds in H,λ, µ ∈ k,
[ x̃, ỹ ] = 0 for all x, y ∈ H,

[ ei, fj ] = δijh̃i for all i, j ∈ I,
[ x̃, ei ] = αi(x)ei for all x ∈ H, i ∈ I,
[ x̃, fi ] = −αi(x)fi for all x ∈ H, i ∈ I.

In fact, any two minimal realizations are isomorphic and hence L̃(C) is indepen-

dent of the choice of minimal realization. Let H̃ denote the Abelian Lie subalgebra
of L̃(C) generated by {h̃ | h ∈ H} , so H̃ ∼= H as k -vector spaces. Then we de-
fine the Kac–Moody algebra L(C) over k associated to the generalized Cartan

matrix C to be the quotient of L̃(C) by the unique maximal ideal J such that

J ∩ H̃ = (0).

A generalized Cartan matrix C is called symmetrizable if there exists a non-
singular diagonal matrix D such that CD is symmetric. If C is symmetrizable,
then L(C) has a presentation by the same generators as L̃(C) and relations as for

L̃(C) together with the relations

(ad ei)
1−Cijej = 0

(ad fi)
1−Cijfj = 0

where ad denotes the left adjoint action of L(C) on itself via [ , ] . We note that
if C is in fact a Cartan matrix then L(C) is the finite-dimensional semisimple
Lie algebra with Cartan matrix C ; the above presentation is the well-known Serre
presentation ([16]).

From now on, we will assume our generalized Cartan matrices are sym-
metrizable, unless otherwise stated.

We now recall the loop algebra construction and also the isomorphism of the
output of this construction with the form given above by generators and relations.
This follows the exposition of Carter ([2, Chapter 18]).

Let C be an irreducible Cartan matrix of finite type, of rank l , so that L(C)
is the associated finite-dimensional simple Lie algebra. Then there exists a root
θ =

∑l
i=1 aiαi (ai ≥ 0) such that for any other root ϕ =

∑
biαi we have bi ≤ ai ;

we call θ the highest root of L(C). Then there is a coroot hθ corresponding to θ
and this may be written as hθ =

∑l
i=1 cihi .

Let C̃ be the (l + 1) × (l + 1) matrix with rows and columns indexed by
I = {0, 1, . . . , l} such that

C̃ij = Cij for i, j ∈ {1, . . . , l},

C̃i0 = −
l∑

j=1

ajCij for i ∈ {1, . . . , l},

C̃0j = −
l∑

i=1

ciCij for i ∈ {1, . . . , l},

C̃00 = 2.
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Then C̃ is an affine Cartan matrix and if Xl is the Dynkin type of L(C), the type

of L(C̃) is X̃l . The latter are the generalized Cartan matrices of untwisted affine
type.

The loop algebra construction is as follows. First, we take the tensor
product of L(C) with the k -vector space of Laurent polynomials in a variable

t : L(C)
def
= k[t, t−1]⊗L(C). There is a unique Lie algebra structure on L(C) given

by [ p⊗ g, q ⊗ h ] = pq ⊗ [ g, h ] . Next we make a 1-dimensional central extension,

setting L̃(C)
def
= L(C)⊕ kc . The Lie algebra structure on L̃(C) is

[ (p⊗ g) + λc, (q ⊗ h) + µc ] = pq ⊗ [ g, h ] + Res

((
dp

dt

)
q

)
<g, h>c.

Here, Res is the residue function Res : k[t, t−1] → k , Res (
∑
ζit

i) = ζ−1 , and
< , > denotes the unique invariant bilinear form on L(C) with <hθ, hθ > = 2.
(We note that λ and µ on the left in the above definition d o not enter into the
expression on the right, since c is central in L̃(C).)

Having made the central extension, we must also extend our algebra by
a derivation. This is done as follows. Firstly, we see that ∆ : L̃(C) → L̃(C),
∆(p⊗ g + λc) = tdp

dt
⊗ g is a derivation, in the usual sense for linear maps. Then

we use ∆ to define a Lie algebra structure on the vector space L̂(C) = L̃(C)⊕ kd
by

[ a+ λd, b+ µd ] = [ a, b ] + λ∆(b)− µ∆(a)

for a, b ∈ L̃(C), λ, µ ∈ k . Putting everything together, this defines the following
Lie bracket on L̂(C):

[ (p⊗ g) + λc+ µd, (q ⊗ h) + σc+ τd ] = pq ⊗ [ g, h ] + Res

((
dp

dt

)
q

)
<g, h>c

+µt
dq

dt
⊗ h− τt

dp

dt
⊗ g.

This gives us a Lie algebra L̂(C), which we call the untwisted affine Kac–Moody
algebra associated to the Cartan matrix C of finite type.

Now we have two Lie algebras L(C̃) and L̂(C) that we have claimed are
the untwisted affine Kac–Moody algebras. These algebras are in fact isomorphic
and we now describe this isomorphism. The method we sketch is not completely
explicit: we use a result that says that if we can identify a generating set in a
Kac–Moody algebra A that satisfies the relations defining L(C) along with a
realization of C , then in fact A ∼= L(C). The full details may be found in [2,
Theorem 18.5], from whence the following is taken.

To start, we consider the finite-dimensional simple Lie algebra L(C) associ-
ated to an irreducible Cartan matrix C of finite type and rank l . Then L(C) has
a Serre presentation and in particular is generated by elements Ei , Fi and Hi for
1 ≤ i ≤ l . We let h(C) denote the Cartan subalgebra of L(C) with basis {Hi} .
Therefore, in the derivation- and centrally-extended loop algebra L̂(C) we set

ei = 1⊗ Ei

fi = 1⊗ Fi

hi = 1⊗Hi
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for i ∈ {1, . . . l} . It is clear that these satisfy the required relations in L(C̃) among

themselves, since the submatrix of C̃ given by deleting the first row and column
is exactly C .

Next we need to define generators e0 , f0 , h0 . Consider the root spaces
L(C)θ , L(C)−θ , θ the highest root. We choose F0 ∈ L(C)θ , E0 ∈ L(C)−θ such
that <F0, E0> = 1 and ω(F0) = −E0 (where ω is the L(C)-automorphism such
that ω(Ei) = −Fi , ω(Fi) = −Ei ).

We set e0 = t⊗E0 , f0 = t−1⊗F0 . We need h0 ∈ H = (1⊗h(C))⊕kc⊕kd
such that [ e0, f0 ] = h0 : we set h0 = (1 ⊗ (−Hθ)) + c . Now we can also
identify an element α0 ∈ H∗ such that (H,Π,Π∨) with Π = {h0, h1, . . . , hl} ,
Π∨ = {α0, α1, . . . , αl} is a minimal realization of C̃ . Putting all this together, we

have that L̂(C) is isomorphic to L(C̃) as a Lie algebra. The isomorphism as Lie

bialgebras is given by the same map: we simply push the cobracket on L(C̃) over
to L̂(C).

A Kac–Moody algebra L(C) associated to a symmetrizable generalized
Cartan matrix C can be given the structure of a Lie bialgebra as follows. We
define δ : L(C) → L(C)⊗L(C) by δei = di

2
ei ∧ h̃i for all i , δx̃ = 0 for all x ∈ H ,

δfi = di

2
fi ∧ h̃i for all i , extended to the whole of L(C) by the cocycle condition

on δ . Here, the scalars di are the non-zero entries of the diagonal matrix D such
that CD is symmetric and a∧b = a⊗b−b⊗a as usual. We will only consider this
Lie bialgebra structure on L(C) and refer to L(C) as a Kac–Moody bialgebra.

3. Braided-Lie bialgebras associated to Kac–Moody bialgebras and
double-bosonisation

We will follow the pattern of our paper [6], first observing that braided-Lie bi-
algebras naturally arise whenever there is a N-grading of a Lie bialgebra. We then
introduce a datum which encodes embeddings of Lie bialgebras induced by inclu-
sions of their Dynkin diagrams, see that there is an associated grading and hence a
braided-Lie bialgebra. We then see that we may reconstruct the full Lie bialgebra
from the the subalgebra and the braided-Lie bialgebra by double-bosonisation. We
remark that by this method we reproduce earlier results of Majid ([12, Proposition
4.5]) and ourselves ([5, Proposition 3.3]) as special cases.

An N-graded Lie bialgebra g =
⊕

n∈N gn is an N-graded Lie algebra in the
usual sense whose Lie cobracket δ : g → g ⊗ g satisfies δ(gn) ⊆

⊕
n=i+j gi ⊗ gj .

Now any N-grading of a Lie bialgebra gives rise to a split Lie bialgebra projection,
as described in the following lemma, which is easy to see.

Lemma 3.1. Let g =
⊕

n∈N gn be an N-graded Lie bialgebra. Then g0 is a Lie
sub-bialgebra of g. Let π : g � g0 be defined by

π(gi) =

{
id|g0 if i = 0

0 otherwise.

Then π is a projection of N-graded Lie bialgebras, split by the inclusion ι : g0 ↪→ g.
By this, we mean that π , ι are graded Lie bialgebra maps, such that π is surjective,
ι is injective and π◦ι = idg0 (the splitting condition). g0 is N-graded in the obvious
way: (g0)0 = g0 , (g0)i = 0 (i > 0).
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Majid has given a version of Radford’s theorem ([15]), which associates to
a split projection of Hopf algebras a braided Hopf algebra. (These are also called
Hopf algebras in braided categories and are the Hopf algebra version of a braided-
Lie bialgebra, the former in fact being historically earlier.) Majid’s version for Lie
bialgebras is as follows.

Theorem 3.2. ([12, Theorem 3.7]) Given any split projection of Lie bialgebras

g
π
�
←↩
ι

f, b
def
= Ker π is a braided-Lie bialgebra in the category of left f-modules with

Lie algebra structure that of Ker π as a Lie subalgebra of g, f acting by the left
adjoint action and δ = (id− ι ◦ π)⊗2 ◦ δg . Furthermore, b admits a left f-coaction
via β : b → f⊗b, β = (π⊗ id)◦δg , and the action and coaction of f are compatible
so that b is a Lie crossed module. Finally, g ∼= b >C· f, a simultaneous semidirect
Lie algebra sum and coalgebra structure, called a (single) bosonisation.

We deduce that associated to any N-graded Lie bialgebra g , we have a
graded braided-Lie bialgebra structure on b = Ker π =

⊕
n>0 gn . The Lie algebra

structure is just that of g ; the novel feature is the braided cobracket. We see
from the expression for δ in the previous theorem that to calculate δ on any given
element, we calculate δ and discard any terms where at least one tensor factor
lies in degree 0, i.e. we keep only terms where both factors have degree at least
one. We remark that the Lie setting is considerably simpler to work in than that
for Hopf algebras, since in the latter the resulting braided Hopf algebra is not
the kernel of π but is the space of coinvariants. Here we obtain a grading on b

immediately, whereas this feature is harder to establish in the Hopf case. The
expression for the braided coproduct is also much harder to work with.

Next we define a sub-root datum, a formalisation of the idea of embedding
Dynkin diagrams, adapting our definitions for the Hopf case.

Definition 3.3. Let C be a generalized Cartan matrix with columns indexed
by a set I . Let (H,Π,Π∨) be a minimal realization of C , with Π = {hi | i ∈ I} ,
Π∨ = {αi | i ∈ I} . Then we say that C = (C, I,H,Π,Π∨) is a root datum
associated to C .

Definition 3.4. Let C = (C, I,H,Π,Π∨), C ′ = (C ′, J,H ′,Π′, (Π′)∨) be two
root data. We say that C ′ is a sub-root datum of C via ι and write C ′ ⊆ι C if

1. ι : J ↪→ I is injective,

2. C ′ij = Cι(i)ι(j) and

3. there exists an injective linear map s : H ′ ↪→ H such that s(h′i) = hι(i) and
s∗(α′i) = αι(i) , for all h′i ∈ Π′ , α′i ∈ (Π′)∨ . Here s∗ : (H ′)∗ ↪→ H∗ is induced
by s .

So, we have C ′ as a submatrix of C (in a general sense), H ′ identified with
a subspace of H and Π′ , (Π′)∨ identified with subsets of Π, Π∨ respectively.
It is clear that a sub-root datum induces an embedding of the Dynkin diagram
associated to C ′ in that associated to C .

In particular, a sub-root datum induces an inclusion of Kac–Moody bialgebras:



Grabowski 135

Lemma 3.5. Let C ′ ⊆ι C be a sub-root datum. Then there is an injective Lie
bialgebra homomorphism also denoted ι from L(C ′) to L(C).

Proof. This follows from the presentations for L(C ′) and L(C), by defining ι
on generators by ι(ei) = eι(i) , etc., and extending. The form of the Lie cobracket
makes it clear that this is a Lie bialgebra homomorphism.

Now we can identify the N-graded Lie algebra which will yield the braided-
Lie bialgebra we are seeking. However, we cannot give L(C) a suitable N-grading.
Instead, we want the analogue of the negative Borel subalgebra, defined as follows.

Definition 3.6. Let L(C) be the Kac–Moody algebra associated to a (not
necessarily symmetrizable) generalized Cartan matrix C . Define B−(C) to be the
Lie subalgebra of L(C) generated by the set {fi, h̃ | i ∈ I, h ∈ H} . We will call
B−(C) the negative Borel subalgebra of L(C).

Let C ′ = (C ′, J,H ′,Π′, (Π′)∨) ⊆ι C be a sub-root datum of C via ι and
let D = I \ ι(J). Denote by χD : I → {0, 1} the indicator function for D , i.e.
χD(i) = 1 if i ∈ D , χD(i) = 0 otherwise.

Lemma 3.7. Associated to a sub-root datum C ′ ⊆ι C , there is a N-grading of
B−(C) defined by deg fi = χD(i) for all i ∈ I and deg h̃ = 0.

Proof. This follows by observing that the defining relations for L(C) and hence
B−(C) are homogeneous (cf. [9, Section 1.5]).

Consequently, putting together Lemma 3.1 and Theorem 3.2 we obtain the follow-
ing:

Theorem 3.8. Let C ′ ⊆ι C be a sub-root datum and let B−(C) ⊂ L(C) be
the negative Borel subalgebra, N-graded by the grading coming from the sub-root
datum. Then there exists a braided-Lie bialgebra b = b(C, C ′, ι) in the category of
left B−(C)0 -modules and left B−(C)0 -comodules (in fact, Lie crossed modules).
We have B−(C) ∼= b >C· B−(C)0 .

It is easy to identify the structure of B−(C)0 : it is generated by the set
{fj, h̃ | j ∈ J, h ∈ H} and is therefore, as a Lie algebra, a central extension
of B−(C ′). The Lie coalgebra structure is also clear. Now although we have
identified b as a module for a central extension of B−(C ′), by the adjoint action,
it is easy to verify that the B−(C ′) action extends to the adjoint action of L(C ′).
Furthermore this is compatible with the central extension, so that b is in fact a
module for L](C ′) = <ej, fj, h̃ | j ∈ J, h ∈ H> .

Also, we see that the N-grading on B−(C) induced by a sub-root datum
may be modified to give a Z-grading of the whole algebra L(C) by defining
deg ei = χD(i), deg fi = −χD(i), deg x̃ = 0. Then b may be identified as⊕

n<0 L(C)n (simply changing the sign of index for the grading) and the (graded)
dual of b can similarly be identified as

⊕
n>0 L(C)n . The degree 0 part is exactly

L](C ′). Hence the following proposition is clear:
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Proposition 3.9. Let C ′ ⊆ι C be a sub-root datum and L(C), L(C ′) the
associated Kac–Moody bialgebras. Then we have the decomposition

L(C) ∼= b >C· L](C ′) ·B< b∗op.

Proof. This follows from our discussions above and from examining the pre-
sentation for L(C). An alternative more formal argument follows the line taken
in [6], by constructing L(C) in two ways as quotients of the Drinfel′d doubles of
B−(C) and b >C· B−(C)0 . (It is a general feature that double-bosonisation has a
realization as a quotient of the double of a (single) bosonisation.)

Remark 3.10. Recalling the definition of double-bosonisation, we see that
we ought to have L](C ′) quasitriangular but this will not be true if this alge-
bra is infinite-dimensional. However, this is a technicality: L](C ′) is pseudo-
quasitriangular—the problem is one of taking infinite sums—so that the necessary
axioms hold in a formal sense and in fact properties such as the local finiteness
of the adjoint action mean that only “finitely much” of the sum is needed at any
one time. Indeed, the fact that we already know that L(C) admits a genuine Lie
bialgebra structure tells us that the double-bosonisation is sufficiently well-defined
and that is why we have described this as a “decomposition”.

For a better resolution to this issue, one should use an appropriate version of
Majid’s weakening of the axioms of a quasitriangular structure for Hopf algebras,
where the element R is replaced by certain maps. In [6], we reformulated of
Majid’s definition to that of a so-called weak quasitriangular system and the key
point is that double-bosonisation is still well-defined with respect to such a system
for the middle algebra. The corresponding Lie version would then give the right
formalism to state the above proposition more precisely.

Remark 3.11. This proposition extends the previous results of Sommerhäuser
([17]) (for C ′ = C ), Majid ([12]) (the case of C an l× l irreducible Cartan matrix
of finite type, C ′ (l− 1)× (l− 1) and irreducible) and our own earlier result ([5])
(not assuming C ′ irreducible), although not quite achieving the generality of the
quantum case ([6]).

4. Braided-Lie bialgebras associated to affinization

In this section, we focus on untwisted affine Kac–Moody bialgebras. We have seen
that these Kac–Moody bialgebras have realizations as extensions of loop algebras
of finite-dimensional simple Lie (bi-)algebras. We want to show that if C is an

irreducible Cartan matrix of finite type and C̃ is the affine generalized Cartan
matrix associated to C then there is a sub-root datum C ⊆ι C̃ and hence an
associated braided-Lie bialgebra. Our goal is to analyse this braided-Lie bialgebra
structure.

We first fix C = (C, I,H,Π,Π∨) a root datum for C with I = {1, . . . , l} ,
Π = {hi | i ∈ I} , Π∨ = {αi | i ∈ I} . Then we have C̃ = (C̃, Ĩ, H̃, Π̃, Π̃∨) with

Ĩ = {0, 1, . . . , l} , Π̃ = {h0} ∪ Π, Π̃∨ = {α0} ∪ Π∨ . The sub-root datum C ⊆ι C̃
is entirely natural: we simply take ι to be the map ι : {1, . . . , l} → {0, 1, . . . , l} ,
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ι(i) = i and then the maps s and s∗ in the definition of a sub-root datum are

hi 7→ hi and αi 7→ αi , for 1 ≤ i ≤ l . We will call C ⊆ι C̃ the affinization sub-root
datum associated to C .

Theorem 3.8 tells us that we have a braided-Lie bialgebra b = b(C̃, C, ι) in
the category of left B−(C)-modules. However we want to know the structure of b

more explicitly as the kernel of a Lie bialgebra projection associated to a grading
on the loop realization of L(C̃).

We note that there is a natural Z-grading on the loop algebra L(C): the
obvious one, namely deg(ti ⊗ g) = i for g ∈ L(C). By setting deg c = deg d = 0
and examining the definition of the bracket on L̂(C), we see that this extends

to a Z-grading on the whole of L̂(C). Now recall the isomorphism of L(C̃)
with L̂(C) and observe that the generators ei , hi and fi for 1 ≤ i ≤ l are
mapped to elements in L̂(C) of degree 0, as is h0 . Furthermore, e0 and f0

are mapped to elements of degree 1 and −1, respectively. The projection π
that gives us the braided-Lie bialgebra b we seek is the bialgebra projection
π :

⊕
n≤0 L̂(C)n � L̂(C)0 = B−(C)⊕kc⊕kd which is the identity on homogeneous

elements of degree 0 and is zero on homogeneous elements of non-zero degree. This
allows us to identify b explicitly.

Corollary 4.1. Let b = b(C̃, C, ι) be the braided-Lie bialgebra associated to the

affinization sub-root datum C ⊆ι C̃ . Then

b =
⊕
n<0

L̂(C) ∼= t−1k[t−1]⊗ L(C) ∼= k[u]⊗ L(C)

as a Lie algebra.

We remark that the Lie algebra k[u] ⊗ L(C) is well-known as the current
algebra associated to L(C). The novel aspect here is the braided cobracket on the
current algebra, making it a braided-Lie bialgebra.

To end, we give an example and some explicit formulæ for the braided
cobrackets arising in this way.

Example . We take C = A2 so L(C) = sl3(k) and C̃ = Ã2 . We have used

the isomorphism of the two forms L(Ã2) and L̂(A2) to calculate the cobracket on
elements of a basis for L̂(A2). The basis we use is {E1, E2, E12, H1, H2, F1, F2, F21}
where E1 , E2 , H1 , H2 , F1 and F2 are generators and E12 = [E1, E2 ] and

F21 = [F2, F1 ] . Since C̃ is symmetric, we have di = 1 for all i . Then one
extends the definition of δ on generators to the whole of L̂(A2) via the cocycle
condition (Definition 2.1 iii)). We use this information to calculate the braided

cobracket on b∗ = (b(Ã2,A2, ι))
∗ , where A2 is the root datum corresponding to

the usual root system for sl3(k) and Ã2 similarly for s̃l3 . We work with the dual
of b simply for notational convenience, because b itself consists of negative degree
elements whereas b∗ lives in positive degrees. It is of course trivial to convert from
b∗ back to b .

We now give the cobracket on basis elements of L̂(A2) of degree at least 1
(i.e. i > 0).

δ(ti ⊗ E1) =
1

2
(ti ⊗ E1) ∧ (ic+ 1⊗H1) +

i−1∑
j=0

(tj ⊗ E1) ∧ (ti−j ⊗H1)
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−
i−1∑
j=0

(tj ⊗ E12) ∧ (ti−j ⊗ F2)

δ(ti ⊗ E2) =
1

2
(ti ⊗ E2) ∧ (ic+ 1⊗H2) +

i−1∑
j=0

(tj ⊗ E2) ∧ (ti−j ⊗H2)

+
i−1∑
j=0

(tj ⊗ E12) ∧ (ti−j ⊗ F1)

δ(ti ⊗ E12) =
1

2
(ti ⊗ E12) ∧ (ic+ 1⊗ (H1 +H2))

+
i−1∑
j=0

(tj ⊗ E12) ∧ (ti−j ⊗ (H1 +H2)) +
i∑

j=0

(tj ⊗ E2) ∧ (ti−j ⊗ E1)

δ(ti ⊗H1) =
1

2
(ti ⊗H1) ∧ (ic)− 2

i−1∑
j=0

(tj ⊗ E1) ∧ (ti−j ⊗ F1)

+
i−1∑
j=0

(tj ⊗ E2) ∧ (ti−j ⊗ F2)−
i−1∑
j=0

(tj ⊗ E12) ∧ (ti−j ⊗ F21)

δ(ti ⊗H2) =
1

2
(ti ⊗H2) ∧ (ic)− 2

i−1∑
j=0

(tj ⊗ E2) ∧ (ti−j ⊗ F2)

+
i−1∑
j=0

(tj ⊗ E1) ∧ (ti−j ⊗ F1)−
i−1∑
j=0

(tj ⊗ E12) ∧ (ti−j ⊗ F21)

δ(ti ⊗ F1) =
1

2
(ti ⊗ F1) ∧ (ic+ 1⊗H1)−

i∑
j=1

(tj ⊗ F1) ∧ (ti−j ⊗H1)

+
i∑

j=1

(tj ⊗ F21) ∧ (ti−j ⊗ E2)

δ(ti ⊗ F2) =
1

2
(ti ⊗ F2) ∧ (ic+ 1⊗H2)−

i∑
j=1

(tj ⊗ F2) ∧ (ti−j ⊗H2)

−
i∑

j=1

(tj ⊗ F21) ∧ (ti−j ⊗ E1)

δ(ti ⊗ F21) =
1

2
(ti ⊗ F21) ∧ (ic+ 1⊗ (H1 +H2))

−
i∑

j=1

(tj ⊗ F21) ∧ (ti−j ⊗ (H1 +H2)) +
i−1∑
j=1

(tj ⊗ F1) ∧ (ti−j ⊗ F2)

Via the theorems of Section 3, we obtain the braided cobracket δ from
δ = (id − π)⊗2 ◦ δ , where π is the projection that kills all basis elements of non-
zero degree. Hence id − π kills basis elements of degree 0 and (id − π)⊗2 keeps
only those terms in δ with both tensor factors having non-zero degree. This gives
us the braided cobracket below, on b∗ =

⊕
n>0 L̂(A2)n

∼= k[u]⊗ sl3(k).
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For i > 0,

δ(ti ⊗ E1) =
i−1∑
j=1

(tj ⊗ E1) ∧ (ti−j ⊗H1)−
i−1∑
j=1

(tj ⊗ E12) ∧ (ti−j ⊗ F2)

δ(ti ⊗ E2) =
i−1∑
j=1

(tj ⊗ E2) ∧ (ti−j ⊗H2) +
i−1∑
j=1

(tj ⊗ E12) ∧ (ti−j ⊗ F1)

δ(ti ⊗ E12) =
i−1∑
j=1

(tj ⊗ E12) ∧ (ti−j ⊗ (H1 +H2)) +
i−1∑
j=1

(tj ⊗ E2) ∧ (ti−j ⊗ E1)

δ(ti ⊗H1) =
i−1∑
j=1

(tj ⊗ E2) ∧ (ti−j ⊗ F2)− 2
i−1∑
j=1

(tj ⊗ E1) ∧ (ti−j ⊗ F1)

−
i−1∑
j=1

(tj ⊗ E12) ∧ (ti−j ⊗ F21)

δ(ti ⊗H2) =
i−1∑
j=1

(tj ⊗ E1) ∧ (ti−j ⊗ F1)− 2
i−1∑
j=1

(tj ⊗ E2) ∧ (ti−j ⊗ F2)

−
i−1∑
j=1

(tj ⊗ E12) ∧ (ti−j ⊗ F21)

δ(ti ⊗ F1) = −
i−1∑
j=1

(tj ⊗ F1) ∧ (ti−j ⊗H1) +
i−1∑
j=1

(tj ⊗ F21) ∧ (ti−j ⊗ E2)

δ(ti ⊗ F2) = −
i−1∑
j=1

(tj ⊗ F2) ∧ (ti−j ⊗H2)−
i−1∑
j=1

(tj ⊗ F21) ∧ (ti−j ⊗ E1)

δ(ti ⊗ F21) = −
i−1∑
j=1

(tj ⊗ F21) ∧ (ti−j ⊗ (H1 +H2)) +
i−1∑
j=1

(tj ⊗ F1) ∧ (ti−j ⊗ F2)
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