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Abstract. We look at finitely generated Bohr groups G] , i. e., groups G
equipped with the topology inherited from their Bohr compactification bG .
Among other things, the following results are proved: every finitely generated
group without free nonabelian subgroups either contains nontrivial convergent
sequences in G] or is a finite extension of an abelian group; every group contain-
ing the free nonabelian group with two generators does not have the extension
property for finite dimensional representations, therefore, it does not belong to
the class D introduced by D. Poguntke in: Zwei Klassen lokalkompakter max-
imal fastperiodischer Gruppen, Monatsh. Math. 81 (1976), 15–40; if G is a
countable FC group, then the topology that the commutator subgroup [G, G]
inherits from G] is residually finite and metrizable.
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1. Introduction

We look at finitely generated Bohr groups G] . That is, groups G equipped with
the topology inherited from their Bohr compactification bG . This topology is
called Bohr topology and coincides with the weak or initial topology generated by
all finite dimensional unitary representations of G . It is a well known fact (due
to Glicksberg [13] and Leptin [23]) that, when G is abelian, then G] contains
no nontrivial Bohr convergent sequences. Improving this result considerably, van
Douwen proved [10] that, for every infinite subset A of an abelian group G there
is B ⊂ A with |B| = |A| such that B is an interpolation set for bG . This
means that every bounded function on B is the restriction to B of a continuous
function on bG (in other words, B is C∗ -embedded in bG). As a matter of
fact, these interpolation sets were called I0 -sets by Hartman and Ryll-Nardzewski
who were the first ones to investigate them. Subsequently I0 -sets have also been
called Hartman and Ryll-Nardzewski sets by some authors. It turns out that
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van Douwen and Glicksberg-Leptin results do not extend trivially to nonabelian
groups. Indeed, let us say that a sequence {xn}n<ω is nontrivial when it takes
infinitely many distinct values. The following alternative a la Rosenthal holds for
nonabelian groups [11]:

Remark 1.1. Let {xn}n<ω be a nontrivial sequence in a group G then either
{xn}n<ω has a Bohr Cauchy subsequence, or {xn}n<ω has an infinite interpolation
subset.

As consequence, we say that a group G is van Douwen (vD group, for short)
when every nontrivial sequence {xn}n<ω in G contains an infinite interpolation
subset. The main question we are concerned here is the identification of vD
groups. Van Douwen himself proved that abelian groups are vD and, from [25]
or [29] and using statement 1.1, it follows that every finite extension of an abelian
group is vD . Moreover, it is readily seen that a group G is vD if, and only if,
it contains no nontrivial convergent sequence in G] (that is, it contains no Bohr
convergent sequence). Hence, the question of identifying vD groups is equivalent
to characterize which groups contain nontrivial Bohr convergent sequences ( see
Question 971 in [12]). On the other hand, following the terminology in [3], it
is easily verified that the class vD is defined by a Markov property. Therefore,
according to a well known result of Adyan, there is no algorithm which decides (by
means of an effective process) whether or not any finitely presented group is vD see
[1, 2, 28]). In other words, even for finitely presented groups, one should not expect
to find a sequence {wn}n<ω of abstract group words that verifies the existence of
Bohr convergent sequences in every group which is not vD . Therefore, one must
find convergent sequences ad hoc for different classes of groups. Our main result
here is as follows: every finitely generated group containing no free nonabelian
subgroup is vD if, and only if, the group is a finite extension of an abelian group.
In a different direction Poguntke defined in [27] the class D of groups G such that
every finite dimensional representation defined on a subgroup H of G may be
extended to a finite dimensional representation (of different dimension in general)
defined on the whole group G . (this class D is also characterized by a Markov
property in the sense of [3]). Poguntke himself has shown that every solvable
locally compact group in D is Moore (irreducible unitary representations are finite
dimensional). Along this line, we prove that the free group of two generators is
not in D . This yields the following characterization of (finitely generated) groups
which are finite extensions of abelian groups: a finitely generated group G is a
finite extension of an abelian group if and only if it belongs to vD∩D . Finally, we
consider groups with finite conjugacy classes (FC groups). We show that, if G is a
countable FC group, then the topology that [G, G] inherits from G] is residually
finite and metrizable. Other properties of Bohr groups are also discussed.

2. Basic Definitions and Facts

The Bohr compactification and topology of abelian groups has been extensively
studied since the publication of a seminal paper due to van Douwen [10]. As a
consequence we now know of many of its properties and how they relate to other
areas, especially Harmonic Analysis (see [5, 12]). Nevertheless, there has been
no comparable accomplishments in the research of the Bohr compactification for
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nonabelian groups and the main obstruction here is the existence of several basic
questions that are still waiting for a solution (cf. [12]). Here, we look at the Bohr
compactification of discrete nonabelian groups and we focus on the question of
determining to what extent the results concerning the Bohr topology of abelian
groups can be extended to the noncommutative context. Previous contributions
to these program have been given by Chu [4], Heyer [19, 20], Landstad [22], Moran
[25], Moskowitz [26], and Poguntke [27]. Recent contributions to the subject can
be found in [6, 8, 11, 14, 15, 16, 17, 29, 31, 35].

In principle, all groups are assumed to be maximally almost periodic (MAP
groups, for short). That is, groups that can be injected into compact groups.
For any group G and x , y in G , recall that the commutator of x and y is
[x, y] = xyx−1y−1 . In general, if A and B are subsets of G , the symbol [A, B]
denotes the subgroup generated by the elements of the form [a, b] with a ∈ A and
b ∈ B . The symbol G′ means the commutator or derived subgroup of G ; that is
[G, G] = [G, G] . The group G is residually finite if for every non-identity element
g of G there exists a normal subgroup N of finite index in G such that g /∈ N .
Incidently, every finitely generated MAP group is residually finite (see [9, p. 169]).
A group G is called an FC -group if every conjugacy class of G is finite.

The Bohr compactification of an arbitrary topological group can be defined
as a pair (bG, bG) where bG is a compact Hausdorff group and bG is a continuous
homomorphism from G onto a dense subgroup of bG with the following universal
property: for every continuous homomorphism h from G into a compact group
K there is a continuous homomorphism hb from bG into K extending h in the
sense that h = hb ◦ bG , that is, making the following diagram commutative:

G
bG

//

h

  @
@@

@@
@@

@ bG
hb

}}||
||

||
||

K

The group bG is essentially unique but it can be realized in different ways. Perhaps
the most illuminating is the one which depends on finite dimensional unitary
representations. Next, we sketch the basic facts of this construction.

Let G be a topological group, denote by Gx
n the set of all continuous

n-dimensional unitary representations of G , i. e., the set of all continuous homo-
morphisms of G into the unitary group U(n). The discrete space Gx = tn<ωGx

n

will be called the Bohr dual of G (see [4] or [19] for details).

If we define U = tn<ωU(n) (topological sum), a Bohr-representation of
Gx is a mapping p : Gx −→ U conserving the main operations between unitary
representations: direct sums, tensor products, unitary equivalence and sending
the elements of Gx

n into U(n) for all n ∈ N . The set of all Bohr-representations
of G equipped with the point-open topology is a compact group with pointwise
multiplication as the composition law. This compact group is a realization of the
Bohr compactification bG introduced above. Thus, a neighbourhood base of the
identity in bG consists of sets of the form [Fn, V ] = {p ∈ bG : p(Fn) ⊂ V } , where
V is any neighbourhood of the identity in U(n) and Fn is any finite subset of Gx

n ,
n ∈ N . Heyer [19, V, §14] contains a careful examination of bG and its properties.
The group G inherits the topology induced by the above homomorphism b , the
so-called Bohr topology, which is Hausdorff precisely when G is maximally almost
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periodic (MAP group), equivalently, when b is one-to-one. Here, we will be
mainly concerned with this class of groups; that is to say, groups whose finite
dimensional representations separate points. The term Bohr group, denoted G] ,
stands for a group G equipped with the Bohr topology. It is readily seen that each
member of Gx defines a continuous mapping on G] that extends to bG . Thus,
the representation spaces Gx and (bG)x have exactly the same underlying set.

Let G be a topological group, and let H be a subgroup of G . If D
and E are representations of G and H in the Hilbert spaces H(D) and H(E)
respectively. It is said that D extends E if H(E) is contained in H(D) and if
D(x)[ξ] = E(x)[ξ] for all x ∈ H and all ξ ∈ H(E). According to Poguntke [27],
a locally compact group G is in the class D when, for each closed subgroup H
of G , every continuous finite dimensional representation of H can be extended
to representation of G . More generally, let G be a topological group and let
H be a (topological) subgroup of it. We say that H is dually embedded in G
when every continuous finite dimensional representation of H can be extended to
a continuous finite dimensional representation of G . Thus, Poguntke’s class D
can also be defined as the class of locally compact groups such that every closed
subgroup is dually embedded. We have the following characterization of dually
embedded subgroups (see [24, 27]).

Theorem 2.1. Let G be a topological group, and let H be a closed subgroup of
G. The following conditions are equivalent.

(i) H is dually embedded in G.

(ii) Every almost periodic positive-definite continuous function on H has an
almost periodic positive-definite continuous extension to G.

(iii) Every finite-dimensional irreducible continuous representation of H extends
to a finite-dimensional irreducible continuous representation of G.

(iv) The map jb : bH −→ bG, where j is the natural injection of H into G, is
1-1, and hence an isomorphism of bH into bG.

3. Bohr groups

In this section we recall some basic properties and examples of Bohr groups G]

in order to show the differences between abelian and nonabelian groups. For the
proofs one may consult [5, 12] and the references therein.

Theorem 3.1. Let G and H be discrete groups. The following assertions are
satisfied:

1. G] has the countable chain condition

2. Every homomorphism φ : G −→ H is continuous as a map from G] into
H] .

3. If G is abelian, then every subgroup is closed in G] .
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4. If G =
∑∞

i=1 Fi , being every Fi a finite, simple, nonabelian group, then
bG =

∏∞
i=1 Fi .

5. If G is abelian, then for every subgroup H of G we have that H] is topo-
logically embedded in G] .

6. (G×H)] ∼= G] ×H] .

7. If G is abelian, the G] is neither compact or Baire.

8. Let {pi} be an infinite sequence of distinct prime numbers (pi > 2). If we
consider the discrete group G =

∏∞
i=1 Fi , being every Fi the projective special

linear group of dimension two over the Galois field GF (pi) of order pi , then
G] ∼= bG ∼=

∏∞
i=1 Fi , the latter group equipped with the product topology.

9. If G is abelian, then G] is 0-dimensional.

10. If G is a compact connected semi simple Lie group and Gd denotes the same
group equipped with the discrete topology, then (Gd)

] ∼= bGd
∼= G.

11. Every abelian group is vD .

12. If G is an LCA group, then every A ⊂ G that is compact in bG, it is
compact in G. As a consequence, when G is also discrete, we have that
every convergent sequence in G] is trivial.

13. Every LCA group satisfies Pontryagin-van Kampen duality.

We have seen that the commutativity of the groups involved has been
required in some of the assertions of Theorem 3.1. This constraint may not be
relaxed in general. Indeed, if we take the subgroup

∑∞
i=1 Fi in (8) above, then it

is dense in G] . This proves that assertion (3) in Theorem 3.1 does not extend to
noncommutative groups in general. On the other hand, (8) and (10) show that
assertions (7) and (9) do not hold for nonabelian groups. In order to see that (5),
(11), and (12) are not always satisfied by nonabelian groups, we need to work a
bit further (we show it below). That assertion (13) does not hold for nonabelian
groups is a well-known fact that concerns noncommutative duality that we will
not touch on here, see [17]. The following result is consequence of those in [7].

Proposition 3.2. Let G be an LCA group. Let Ĝ be the dual group of G
and let X be a subgroup of Ĝ. If we denote by Xd the group X equipped with
the discrete topology, then its dual group X̂ is compact. We have that X̂ is a
compactification of G if and only if X separates points of G.

Proof. Define σ : G −→ X̂d by 〈σ(g), χ〉 = χ(g) = 〈χ, g〉 , χ ∈ X . Clearly σ
is 1-to-1 if and only if X separates points.

Let A be a normal abelian subgroup of a group G . Given any g ∈ G , we
denote by θg : A −→ A the automorphism θg(a) = gag−1 . If χ is character on A
and g ∈ G , we define the character χg on A by χg(a) = χ(g−1ag) for all a ∈ A .

Thus, the group G acts on Â , the dual group of A , as θg(χ) = χg for all g ∈ G
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and χ ∈ Â . We denote by θG(χ) (resp. Iso(χ)) the orbit (resp. isotropy or
stabilizer group) of χ under this action. Next follows a lemma that is consequence
of [19, 8.2.1] or [27].

Lemma 3.3. Let A be a normal abelian subgroup of an arbitrary group G. If
χ is a character on A that can be extended to a finite dimensional representation
defined on G, then the orbit θG(χ) is finite.

Proposition 3.4. Let G = A o B be a semi-direct product of groups A and
B . Assume G is MAP and discrete and let b : G −→ bG be the injection of G
into its Bohr compactification. We have:

1. bG ∼= A
bG o bB

2. If A is abelian, a character χ ∈ Â extends to a finite dimensional represen-
tation on G if and only if θB(χ) = θG(χ) is finite.

Proof. (1) If we identify A and B to subgroups of G , we can assume WLOG

that G = A ·B . Thus, we have bG = A ·BbG
= A

bG ·BbG
. Consider the diagram

B
j // G

π //

bG

��

B

bB

��
bG

πb
// bB

Clearly the map πb is onto and ker πb ⊇ A
bG

. This means that πb

|BbG is

onto, A
bG∩B

bG
= {e} and B

bG ∼= bB . Otherwise, bB would be a proper quotient

of B
bG

, which is impossible. Therefore, we have bG ∼= A
bG o bB .

(2) By Lemma 3.3, we know that, if χ extends to finite dimensional repre-
sentation D ∈ Gx

n , then θG(χ) is finite.

Conversely, let us suppose that χ ∈ Â and θB(χ) is finite. Then F = Iso(χ)
is a cofinite subgroup of B . Moreover, since F is the isotropy group of χ , it is easily

verified that we can extend it to a character χ ∈ Â o F by setting χ(ab) := χ(a)
for all a ∈ A and b ∈ F . Now, A o F is a cofinite subgroup of G and, as a
consequence, χ can be extended to finite dimensional representation D ∈ Gx

n .
This completes the proof.

Incidently, from the result above it is easy to find a counter example to the
assertion (5), (11), and (12) in Theorem 3.1 for nonabelian groups.

Example 3.5. Let G be the wreath product Z2 oZ , that is to say, G = AoB ,
where A =

∑
n∈Z Fn , B = Z , Fn is the cyclic finite group Z2 for all n ∈ Z and

the action is the shift automorphism. Then G provides a counter example to (5),
(11) and (12) in Theorem 3.1.
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Proof. The topology that A inherits from G] stems from the characters on A
that can be extended to G and, according to Proposition 3.2, a character χ ∈ Â
can be extended to G when θB(χ) is finite. Now, by the duality theory of abelian

groups we have that χ = (xn)n∈Z ∈
∏

n∈Z F̂n
∼=

∏
n∈Z Fn . Thus, identifying the

coordinates xn to elements of Z2 and taking into account that the action of Z in∑
n∈Z Fn is the shift automorphism, it follows that θB(χ) is finite if, and only if,

there is a positive p ∈ Z such that xn+pj = xn for all 0 ≤ n ≤ p − 1 and j ∈ Z .
As a consequence, the topology that A inherits from G] is defined by a subgroup
of Â consisting of countably many characters. Therefore, the subgroup A inherits
a metrizable topology from G] . Thus, we are done with the proof. Indeed, no
infinite abelian Bohr group can be metrizable, which means that (5) is not true
for the subgroup A of G . Moreover, being A metrizable with respect to the Bohr
topology of G , it follows that there must be nontrivial convergent sequences, what
contradicts (11) and (12) respectively.

4. Finitely generated groups without free nonabelian subgroups

The main result of this section follows next. We prove that, if G is a finitely
generated vD group with no free nonabelian subgroups then G is a finite extension
of an abelian group.

Theorem 4.1. Let G be a finitely generated discrete group without free non-
abelian subgroups. Then G is a vD group if and only if G is a finite extension of
an abelian group.

The proof of this result depends on several previous facts that we recall
here for the reader’s sake.

Theorem 4.2. (Tit’s alternative, [33]) Let G be a subgroup of GL(n, K), for
some integer n ≥ 1 and some field K of characteristic zero. Then either G has a
non-abelian free subgroup or G possesses a soluble normal group of finite index.

Theorem 4.3. (Lie, Kolchin, Mal’cev, [32, p. 451]) Let V be a vector space
of dimension n over an algebraically closed field F . Suppose that G is a solvable
subgroup of GL(V ). If G is irreducible, there is a normal diagonalizable subgroup
D with finite index not exceeding f(n) for some function f .

Now we present several auxiliary lemmas.

Lemma 4.4. Let G be a group without free nonabelian subgroups. If D is an
arbitrary representation in Gx

n , with n ∈ N, then there exists an abelian normal
subgroup A with finite index in D(G).

Proof. We have that D(G) is a subgroup of U(n) without free non abelian
subgroups. By Theorem 4.2, there exists a normal solvable subgroup L with finite
index in D(G); that is to say D(G) = F ·L , being F a (finite) transversal subset
for L in D(G). Moreover, we assume WLOG that L is closed in D(G) and 1 ∈ F .
Let K be the closure of D(G) in U(n). Then K is a compact Lie group such
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that K = F · clU(n)L . Because L is solvable, it follows that clU(n)L is also solvable
an normal in K . Observe that, for any 1 6= t ∈ F , we have t /∈ clU(n)L since
t ∈ F ⊂ D(G) and L is closed in D(G). Hence K0 , the connected component
of K , must coincide with clU(n)L0 , which is the connected component of clU(n)L .
This implies that K0 is a compact connected solvable group and, by [18, 29.44], it
follows that K0 is an abelian normal subgroup with finite index in K . It suffices
now to take A = K0 ∩D(G) and the proof is done.

From here on, we denote by Gn the subgroup of G generated by the
elements of the form gn , with g ∈ G . We recall that Gn is a normal subgroup of
G .

Lemma 4.5. Let G be a group without free non-abelian subgroups. If Gn is
nonabelian for all n ∈ N then G] contains nontrivial convergent sequences.

Proof. Consider two sequences {xn} and {yn} in G such that [xn!
n , yn!

n ] 6= 1
for all n ∈ N . By Lemma 4.4, for each D ∈ Gx

m , m ∈ N , there is a normal
abelian subgroup A with finite index in D(G). Hence, there is n0 ∈ N such that
D(gn0) ∈ A for all g ∈ G . This means that D([xn!

n , yn!
n ]) = Im for all n ≥ n0 ,

which implies that the nontrivial sequence {[xn!
n , yn!

n ]} must converge to the neutral
element in G] . This completes the proof.

Lemma 4.6. If G is an infinite finitely generated torsion group then G] is
nondiscrete and metrizable. Therefore, it contains nontrivial Bohr convergent
sequences.

Proof. For all D ∈ Gx
m we have that D(G) is soluble by finite and, since G is

a finitely generated torsion group, this means that D(G) is finite. Now, the group
G is finitely generated and, therefore, it contains finitely many co-finite normal
subgroups of index less or equal than n for every n ∈ N (cf. [30, Prop. 2.5.1(a)]).
Let Ln be the family of all subgroups H of G satisfying that [G : H] ≤ n . Since
G is MAP and D(G) is finite for all D ∈ Gx , it follows that L = ∪n<ωLn is a
countable basis for the neighborhood base of the neutral element in G] . It follows
that G] is metrizable. Moreover, the group G] is always precompact and, being
infinite, may not be discrete. This completes the proof.

Proof. [Proof of Theorem 4.1] Sufficiency: It is known (see [25, 29]) that if G
is a finite extension of an abelian group then G] contains no nontrivial convergent
sequence. Applying 1.1 (see [11]), we deduce that G is vD .

Necessity: Reasoning by contradiction, suppose that G is not a finite exten-
sion of an abelian group and let us verify that G] contains nontrivial convergent
sequences. Indeed, by Lemma 4.5, we may assume WLOG that there is m0 ∈ N
such that Gm0 is abelian. Therefore Gm! ⊆ Gm0 is also abelian for all m ≥ m0 .
As a consequence, for every m ≥ m0 , the subset {xm!

1 xm!
2 ... xm!

p : xj ∈ G, p ∈ N}
coincides with Gm! and, furthermore, it is a normal abelian subgroup of G . As-
sume that m ≥ m0 from here on and let Gm = clbGGm!∩G , which is also abelian.
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Since we are supposing that G is not a finite extension of an abelian group, it
follows that G/Gm is infinite. Let Lm

n be the family of all subgroups H of G
satisfying that Gm ⊂ H and [G : H] ≤ n . Since G/Gm has bounded exponent
and is finitely generated, it follows that Lm

n is finite and, as a consequence, we have
{1} 6= Lm

n = ∩Lm
n . Observing that Lm

n ⊂ Ll
n if m ≥ l and Lm

n′ ⊂ Ll
n if n′ ≥ n , we

deduce that the subgroups Lm
m (m ∈ N) are eventually contained in each subgroup

Ll
n previously fixed. Now, no subgroup Lm

n may be abelian because all of them
are cofinite in G . Accordingly, every subgroup Lm

m contains two elements xm and
ym with [xm, ym] 6= {1} for all m ≥ m0 . In order to finish the proof, it will
suffice to show that the sequence {[xi, yi]}i≥m0 converges to the neutral element
in G] . Indeed, let D be an arbitrary finite dimensional unitary representation of
G , say D ∈ Gx

m . By Lemma 4.4, the group D(G) must contain a normal abelian
subgroup A with finite index in D(G). If L denotes the closure of A in D(G),
we obtain that L is abelian, has finite index in D(G) and D−1(L) ∈ Lm

n for some
n ∈ N . Hence, for some n0 ∈ N we have {xi, yi} ⊂ Li

i ⊂ D−1(L) for all i ≥ n0 .
This yields D([xi, yi]) = Im for all i ≥ n0 , which completes the proof.

We finish this section with the following basic open question (see Question
971 in [12]).

Problem 4.7. Is every vD group a finite extension of an abelian group?

5. Dually embedded subgroups

As stated in the introduction, a locally compact group G is in the class D when
every subgroup H of G is dually embedded. Poguntke himself has proved in
[27] that every solvable locally compact group in D is a Moore group (i.e., every
irreducible representation is finite dimensional). In this section we prove that
every group containing free nonabelian subgroups is not in D . Firstly, we are
concerned with the existence of subgroups which are not dually embedded for the
free nonabelian groups of two generators.

Theorem 5.1. The free group with two generators F (a, b) does not belong to
the class D .

Proof. Let G = F (a, b) and let [G, G] be the commutator subgroup of G . The
group [G, G] is free on {ambnab−na−(m+1) : m, n ∈ Z, n 6= 0} . Let ρ : [G, G] −→ T
be a representation that maps the generators of [G, G] to rationally independent
elements of T . Reasoning by contradiction, let us suppose there is a finite
dimensional irreducible representation D : G −→ U(n) that extends ρ . Then there
is a 1-dimensional subspace V of Cn such that D([G, G])|V = ρ([G, G]). Moreover,
since D(G) is irreducible, it follows that the subspace generated by D(G)[V ] is
Cn . Therefore, if we take 0 6= v ∈ V , then the subset {D(g)[v] : g ∈ G} generates
Cn . On the other hand, since [G, G] is a normal subgroup of G , for every h ∈
[G, G] we have D(h)[D(g)[v]] = D(hg)[v] = D(gg−1hg)[v] = D(g)[D(g−1hg)[v]] =
D(g)[λv] = λD(g)[v] . Thus, D([G, G]) yields a 1-dimensional representation on
the subspace generated by D(g)[v] for all g ∈ G . Hence, we can put Cn as the
direct sum of n 1-dimensional subspaces on which D([G, G]) acts as a character
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conjugate to the action of ρ([G, G]) on V . Therefore, the group D([G, G]) is
abelian. Since G/[G, G] also is an abelian group, it follows that D(G) is an
irreducible solvable subgroup of U(n). So we have that D(G), its closure in
U(n), is a solvable compact Lie group, which implies that its connected component
D(G)0 is abelian and compact, therefore, of finite index in D(G). Hence, there

is some p ∈ N such that {D(ap), D(bp)} ⊂ D(G)0 . As a consequence, we have
D(apmbpnab−pna−(pm+1)) = D(bpnab−pna−1) for all m,n ∈ Z, n 6= 0. This is a
contradiction, since D extends ρ and the latter sends the generators of [G, G]
into rationally independent elements of T . This completes the proof.

Corollary 5.2. No group containing a free nonabelian group belongs to the class
D .

As a consequence, we deduce the following topological characterization of
(finitely generated) groups which are finite extensions of abelian groups.

Theorem 5.3. A finitely generated discrete group G is in the class vD∩D if,
and only if, the group G is a finite extension of an abelian group.

Proof. The proof follows directly from Theorem 4.1 and Theorem 5.1.

6. Other classes of Bohr groups

This section is dedicated to present some results for FC -groups, which has been
obtained in collaboration with Professor Ta-Sun Wu. Recall that G is said to be
an FC group when it has finite conjugacy classes; that is, the orbit θG(x) is finite
for all x ∈ G . Equivalently Fx , the isotropy group of x , is co-finite in G . Let us
say that a topology is residually finite when there is a neighbourhood base of the
identity consisiting of cofinite normal subgroups (cf. [30, p. 79]).

Lemma 6.1. Let G be an FC group. Given an arbitrary element D of Gx
n ,

n ∈ N, there is a co-finite subgroup F of G such that D(F ′) = {In}.

Proof. Since G is an FC group, we have that L = Z(D(G)) is co-finite in D(G)
(see [35]). Thus, D(G)/L = {D(x1)L, ..., D(xm)L} . For each xi , 1 ≤ i ≤ m , let Fi

be the isotropy group of xi . The subgroup F = ∩m
i=1Fi is co-finite and axia

−1 = xi

for a ∈ F , 1 ≤ i ≤ m . Hence D(F ) ⊂ Z(D(G)). This yields D(F ′) = {In} .

Theorem 6.2. Let G be a countable FC group. Then, the topology that [G, G]
inherits from G] is residually finite and metrizable.

Proof. Let G = {xn}∞n=1 and let Fxi
be the isotropy group of xi , i ∈ N . For

any n ∈ N , set Fn = ∩n
i=1Fxi

, which is a co-finite subgroup of G . Let m and D be
arbitrary elements of N and Gx

m , respectively. By Lemma 6.1, there is n ∈ N such
that L = D(Fn) ⊂ Z(D(G)), D(G)/L = 〈D(x1)L, ...D(xl)L〉 and F ′

n ⊂ ker D .
Let us verify now that [G, G]/ ker D is a finite group.
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Indeed, since Fn is co-finite in G , we have G
Fn

= {x1Fn, ..., xlFn} , with
xi ∈ G , 1 ≤ i ≤ l . On the other hand, [G, G] is generated by elements of the form
[xia, xjb] , with a, b ∈ Fn . Thus, because F ′

n ⊂ ker D , we have

[xia, xjb] ker D =
(xiaxjba

−1x−1
1 b−1x−1

j ) ker D =
(xi(axja

−1)[a, b](bx−1
i b−1)x−1

j ) ker D =
(xi(axja

−1)(bx−1
i b−1)x−1

j ) ker D

Since G is an FC group, we obtain that there are only finitely many elements
of the form [xia, xjb] ker D , with a, b ∈ Fn and xi, xj ∈ {x1, ..., xl} , which proves

that [G,G]
ker D

is finitely generated. Now, by [32, 14.5.9], [G, G] is torsion and, as

a consequence, [G,G]
ker D

is torsion too. Hence, the quotient group [G,G]
ker D

is finitely

generated, torsion and FC. Applying [32, 14.5.7], we obtain that [G,G]
ker D

is finite.

Now, we can define a representation D , which makes the following diagram
commutative.

[G, G]
πm //

D

$$H
HH

HH
HH

HH
[G, G]/ ker D

D

xxppppppppppp

U(m)

Thus, the set Hom(G|[G,G], U(m)) can be injected into ∪∞n=1Hom( [G,G]
ker D

, U(m)).
Since, the latter set is the union of countably many finite sets, it follows that the
topology that [G, G] inherits from G] is metrizable residually finite.

Next result is a direct consequence of Theorem 6.2.

Corollary 6.3. (Wu and Riggins) Let G be an FC group. If G is not Abelian
by finite then G contains some infinite sequence that converges in the Bohr topol-
ogy.

Finally, we explore the relationship between the Bohr and the profinite
completion for some groups. It is well known that any residually finite group G
has a largest profinite group completion, which is called the profinite completion
of G and is denoted by G (see [21, 30, 34]). From [21, Ch. 10] we know that
for any group G we have bG ∼= (bG)0 × bG

(bG)0
, where (bG)0 denotes the connected

component of bG . As a consequence, we derive a simple characterization of the
profinite completion of G .

Lemma 6.4. For any residually finite group G, the profinite completion G is
canonically isomorphic to bG

(bG)0
.

Proof. Since G is dense in bG
(bG)0

, which is a residually finite group, it will suffice
to prove that every homomorphism D , of G into a finite group, factors through

bG
(bG)0

. Now, let D : G −→ F be a homomorphism of G into the finite group F .
We set

G
b //

D

��

bG

Db

xxqqqqqqqqqqqqqq

π
��

F
bG

(bG)0D̃

oo
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This diagram commutes, since (bG)0 is contained in ker Db . This completes the
proof.

The following lemma is well known (see [21]).

Lemma 6.5. Any subgroup of bounded exponent of the unitary group U(n) is
finite.

Theorem 6.6. Let G be a discrete group without free non-abelian subgroups. If
[G, G] is of bounded exponent then this subgroup inherits a residually finite topology
from bG. As a consequence, if G is further assumed to be finitely generated then
the topology that [G, G] inherits from bG and Ḡ coincide.

Proof. Let D be an arbitrary, unitary, finite dimensional representation of G .
Clearly, the group D([G, G]) satisfies the hypothesis of Lemma 6.5, which implies
that D([G, G]) is finite. This means that the topology that [G, G] inherits from
bG is residually finite. Suppose now that G is finitely generated. If D is a finite
dimensional unitary representation of G , we have that D(G) is a finitely generated
MAP linear group. This implies, according to [9, p. 169], that D(G) is residually
finite. Hence, since D([G, G]) is finite, there is a cofinite normal subgroup L of
D(G) such that D([G, G]) ∩ L = {1} . Let E be the finite dimensional unitary
representation that makes the following diagram commutative:

D([G, G]) id //

πL

%%LLLLLLLLLL
U(n)

D([G,G])
L

E

;;vvvvvvvvv

Now, let E : D(G)
L

−→ U(m) an extension of E and define D = E ◦ πL . We have

that D an extension of D and D(G) is finite. Thus D factors through bG
(bG)0

,

which implies that the topology that [G, G] inherits from bG coincides with the
residually finite topology inherited from bG

(bG)0
. This completes the proof.
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