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Abstract. We explicitly classify all pairs (M,G), where M is a connected
complex manifold of dimension n ≥ 2 and G is a connected Lie group act-
ing properly and effectively on M by holomorphic transformations and having
dimension dG satisfying n2 + 2 ≤ dG < n2 + 2n . We also consider the case
dG = n2 + 1. In this case all actions split into three types according to the form
of the linear isotropy subgroup. We give a complete explicit description of all
pairs (M,G) for two of these types, as well as a large number of examples of
actions of the third type. These results complement a theorem due to W. Kaup
for the maximal group dimension n2 + 2n and generalize some of the author’s
earlier work on Kobayashi-hyperbolic manifolds with high-dimensional holomor-
phic automorphism group.
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1. Introduction

Let G be a topological group acting on a C∞ -smooth manifold M by diffeomor-
phisms. The action is called proper, if the map

Φ : G×M → M ×M, (g, p) 7→ (gp, p),

is proper, that is, for every compact subset C ⊂ M × M its inverse image
Φ−1(C) ⊂ G × M is compact as well. In this paper we only consider effective
actions. The properness of the action implies that: (i) G is locally compact, hence
by the results due to Bochner and Montgomery (see [28]) it carries the structure of
a Lie transformation group; (ii) G is isomorphic to a closed subgroup of the group
Diff(M) of all diffeomorphisms of M endowed with the compact-open topology
(see [2] for a brief survey on proper actions). Thus, one can assume that G is a Lie
group acting smoothly and properly on the manifold M and that it is realized as
a closed subgroup of Diff(M). Due to the results of [29], [33] (see also [1]) all such
groups can be characterized precisely as closed subgroups of the isometry groups
for all possible smooth Riemannian metrics on M .
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If G acts properly on M , then for every p ∈ M its isotropy subgroup Gp

is compact in G . Then by [3] the isotropy representation

αp : Gp → GL(R, Tp(M)), g 7→ dg(p)

is continuous and faithful, where Tp(M) denotes the tangent space to M at p and
dg(p) is the differential of g at p . In particular, the linear isotropy subgroup

LGp := αp(Gp)

is a compact subgroup of GL(R, Tp(M)) isomorphic to Gp . In some coordinates
in Tp(M) the group LGp becomes a subgroup of the orthogonal group Om(R),
where m := dim M . Hence dim Gp ≤ dim Om(R) = m(m − 1)/2. Furthermore,
for every p ∈ M its orbit Gp is a closed submanifold of M of dimension not
exceeding m . Thus, setting dG := dim G we see that dG ≤ m(m + 1)/2. It is a
classical result (see [7], [4], [6]) that if G acts properly on a smooth manifold M
of dimension m ≥ 2 and dG = m(m + 1)/2, then M is isometric (with respect to
some G-invariant metric) either to one of the standard complete simply-connected
spaces of constant sectional curvature Rm , Sm , Hm (where Hm is the hyperbolic
space), or to RPm .

Groups of lower dimensions were extensively studied in the 1950’s-70’s. It
was shown in [36] (see also [5], [39]) that a group G with m(m− 1)/2 + 1 < dG <
m(m + 1)/2 cannot act properly on a smooth manifold M of dimension m 6= 4.
The exceptional 4-dimensional case was considered in [18]; it turned out that a
group of dimension 9 cannot act properly on a 4-dimensional manifold, and that if a
4-dimensional manifold admits a proper action of an 8-dimensional group G , then
it has a G-invariant complex structure. There exists also an explicit classification
of pairs (M, G), where m ≥ 4, G is connected, and dG = m(m−1)/2+1 (see [39],
[24], [31], [18]). Further, in [22] a reasonably explicit classification of pairs (M, G),
where m ≥ 6, G is connected, and (m − 1)(m − 2)/2 + 2 ≤ dG ≤ m(m − 1)/2,
was given. We also mention a classification of G-homogeneous manifolds for
m = 4, dG = 6 (see [18]) and a classifications of G-homogeneous simply-connected
manifolds in the cases m = 3, dG = 3, 4 and m = 4, dG = 5 (see [4], [34]) obtained
by E. Cartan’s method of adapted frames. There are many other results, especially
for compact groups, but – to the best of our knowledge – no complete classifications
exist beyond dimension (m− 1)(m− 2)/2+2 (see [21], [40] and references therein
for further details).

We study proper group actions in the complex setting. From now on,
M will denote a complex manifold of complex dimension n and G will be a
subgroup of Aut(M), the group of all holomorphic automorphisms of M . If for
complex manifolds Mj and subgroups Gj ⊂ Aut(Mj), j = 1, 2, there exists a
biholomorphic map F : M1 → M2 such that F ◦G1 ◦ F−1 = G2 , we say that the
pairs (M1, G1) and (M2, G2) are equivalent. We will be classifying pairs (M, G)
up to this equivalence relation, but we will not be concerned with determining
G-invariant Riemannian metrics on M .

Proper actions by holomorphic transformations are found in abundance.
Due to a result by Kaup (see [19]), Lie groups acting properly and effectively on M
by holomorphic transformations are precisely those closed subgroups of Aut(M)
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that preserve continuous distances on M . In particular, if M is a Kobayashi-
hyperbolic manifold, then Aut(M) is a Lie group acting properly on M (see also
[20]).

In the complex setting, in some coordinates in Tp(M) the group LGp

becomes a subgroup of the unitary group Un . Hence dim Gp ≤ dim Un = n2 ,
and therefore dG ≤ n2 + 2n . We note that n2 + 2n < (m − 1)(m − 2)/2 + 2
for m = 2n and n ≥ 5. Thus, the group dimension range that arises in the
complex case, for n ≥ 5 lies strictly below the dimension range investigated in the
classical real case and therefore is not covered by the existing classification results.
Furthermore, overlaps with these results for n = 3, 4 and n = 2, dG = 6 occur
only in relatively easy situations and do not lead to any significant simplifications
in the complex case. The only interesting overlap with the real case occurs for
n = 2, dG = 5 (see [34]). Note that in the situations when overlaps do occur,
the existing classifications in the real case do not necessarily immediately lead
to classifications in the complex case, since the determination of all G-invariant
complex structures on the corresponding real manifolds may be a non-trivial task.

The case dG = n2 + 2n was considered by Kaup in [19]. In this situ-
ation (M, G) is equivalent to to one of the pairs (Bn, Aut(Bn)), (Cn, G(Cn)),
(CPn, G(CPn)). Here Bn := {z ∈ Cn : ||z|| < 1} , Aut(Bn) ' PSUn,1 :=
SUn,1/(center) is the group of all transformations

z 7→ Az + b

cz + d
,

where (
A b
c d

)
∈ SUn,1;

G (Cn) ' Un n Cn is the group of all holomorphic automorphisms of Cn of the
form

z 7→ Uz + a, (1.1)

where U ∈ Un , a ∈ Cn (we usually write G (C) instead of G (C1)); and G (CPn) '
PSUn+1 := SUn+1/(center) is the group of all holomorphic automorphisms of CPn

of the form
ζ 7→ Uζ, (1.2)

where ζ is a point in CPn written in homogeneous coordinates, and U ∈ SUn+1

(this group is a maximal compact subgroup of the complex Lie group Aut(CPn) '
PSLn+1(C) := SLn+1(C)/(center)). We remark that the groups Aut(Bn), G(Cn),
G(CPn) are the full groups of holomorphic isometries of the Bergman metric on
Bn , the flat metric on Cn , and the Fubini-Study metric on CPn , respectively,
and that the above result due to Kaup can be obtained directly from E. Cartan’s
classification of Hermitian symmetric spaces.

We are interested in characterizing pairs (M, G) for dG < n2 + 2n . In
[16], [11], [12], [13] we considered the special case where M is a Kobayashi-
hyperbolic manifold and G = Aut(M), and explicitly determined all manifolds
with n2 − 1 ≤ dAut(M) < n2 + 2n , n ≥ 2 (see [14] for a comprehensive exposition

of these results). The case dAut(M) = n2 − 2 represents the first obstruction
to the existence of an explicit classification for all n , namely, there is no good
description of hyperbolic manifolds with n = 2, dAut(M) = 2 (see [13], [14]). Our
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immediate goal is to generalize these results to arbitrary proper actions on not
necessarily Kobayashi-hyperbolic manifolds by classifying all pairs (M, G) with
n2 − 1 ≤ dG < n2 + 2n , n ≥ 2, where G is connected.

In this paper we assume that n2 + 1 ≤ dG < n2 + 2n (hence by [19] the
action of G on M is transitive). For n2 + 2 ≤ dG < n2 + 2n we completely
describe all pairs (M, G) in Theorem 2.1 in Section 2 This theorem follows almost
immediately from the general theory of Hermitian symmetric spaces (see [9]) and
the classification of isotropy irreducible homogeneous manifolds (see [25], [26], [27],
[38], [23], [37]). Note that one can also give an elementary (but longer) proof of
Theorem 2.1 that does not refer to this general theory and is based almost solely
on the analysis of the fundamental vector fields of the G-action (see [15]).

Further, we consider the case dG = n2 + 1. Firstly, we determine the con-
nected identity components of all possible linear isotropy subgroups in Proposition
3.1 – see Section 3 According to this description, every action with dG = n2 + 1
falls into one of three types. We deal with actions of types I and II in Section 4
Complete lists of the corresponding pairs (M, G) are obtained in Theorems 4.1
and 4.2, respectively. Actions of type III are the hardest to deal with. We give
a large number of examples of such actions in Section 5 It is our conjecture that
these examples in fact cover all possible actions of type III (see Conjecture 5.1).

For comparison, we note that the determination of homogeneous
Kobayashi-hyperbolic manifolds with n2 − 1 ≤ dAut(M) < n2 + 2n , n ≥ 2, in
[16], [11], [13], [14] was an easier task. Indeed, due to [30] every homogeneous
Kobayashi-hyperbolic manifold is holomorphically equivalent to a Siegel domain
of the second kind, and therefore such manifolds can be studied by using techniques
available for Siegel domains (see e.g. [35]). Clearly, this approach cannot be ap-
plied to general transitive proper actions, and one motivation for the present work
is to re-obtain the classification of homogeneous Kobayashi-hyperbolic manifolds
without using the non-trivial result of [30].

Acknowledgements. Part of this work was done while the author was visiting the
Ruhr-Universität Bochum in January-February 2007 and the Max-Plank Institut
für Mathematik in Bonn in April-May 2007. We would like to thank G. Fels for
making a large number of useful comments and interest in our work.

2. The case n2 + 2 ≤ dG < n2 + 2n

In this section we prove the following theorem.

Theorem 2.1. Let M be a connected complex manifold of dimension n ≥ 2
and G ⊂ Aut(M) a connected Lie group that acts properly on M and has
dimension dG satisfying n2+2 ≤ dG < n2+2n . Then the pair (M, G) is equivalent
to one of the following:

(i) (Cn, G1(Cn)) , where the group G1(Cn) consists of all maps of the form (1.1)
with U ∈ SUn (here dG = n2 + 2n− 1);1

(ii) (C4, G2(C4)) , where the group G2(C4) consists of all maps of the form (1.1)

1We usually write G1(C) instead of G1(C1).
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for n = 4 with U ∈ eiRSp2 (here dG = n2 + 3 = 19);2

(iii) (M ′ × M ′′, G′ × G′′) , where M ′ is one of Bn−1 , Cn−1 , CPn−1 , M ′′ is one
of B1 , C , CP1 , G′ is one of Aut(Bn−1) , G(Cn−1) , G(CPn−1) , and G′′ is one of
Aut(B1) , G(C) , G(CP1) , respectively (here dG = n2 + 2);

(iv) (C4, G3(C4)) , where the group G3(C4) consists of all maps of the form (1.1)
for n = 4 with U ∈ Sp2 (here dG = n2 + 2 = 18).

Proof: Fix p ∈ M . Since the action of G on M is transitive (see [19]), we have
n2 − 2n + 2 ≤ dim LGp < n2 . Choose coordinates in Tp(M) so that LGp ⊂ Un .
Then Lemma 2.1 in [16] (see also Lemma 1.4 in [14]) implies that the connected
identity component LG0

p of LGp either is SUn , or for n = 4 is conjugate in U4

to eiRSp2 , or is conjugate in Un to Un−1 × U1 , or for n = 4 is conjugate in U4 to
Sp2 .

Suppose first that LG0
p = SUn . Since LG0

p acts R-irreducibly on Tp(M),
Theorem 13.1 of [38] gives that M equipped with a G-invariant Hermitian met-
ric is a Hermitian symmetric space. Clearly, either it is an irreducible Hermitian
symmetric space of compact or non-compact type, or it is holomorphically isomet-
ric to Cn equipped with the flat metric. The explicit classification of irreducible
Hermitian symmetric spaces (see [9]) rules out the first possibility, and therefore
M is holomorphically equivalent to Cn by means of a map that transforms G into
a codimension 1 subgroup of G(Cn). Clearly, this subgroup must coincide with
G1(Cn), and we have obtained (i) of the theorem.

Assume now that n = 4 and LG0
p is conjugate in U4 to eiRSp2 . Then

for every q ∈ M the subgroup LG0
q contains the element −id. Therefore, M

equipped with a G-invariant Hermitian metric is a Hermitian symmetric space.
Further, it follows, as above, that M is holomorphically equivalent to C4 by means
of a map F that transforms G into a subgroup of G(C4). Let p0 ∈ M be such
that F (p0) = 0. Then F transforms G0

p0
into a closed subgroup of U4 ⊂ G(C4)

isomorphic to eiRSp2 . This subgroup must be conjugate in U4 to the standard
embedding of eiRSp2 in U4 (see Lemma 2.1 in [16]), and hence there exists an
equivalence map F̂ between M and C4 that transforms G0

p0
into eiRSp2 .

Let g be the Lie algebra of fundamental vector fields of the action of the
group Ĝ := F̂ ◦G ◦ F̂−1 on C4 . Since Ĝ ⊂ G(C4), the algebra g is generated by
〈Z0〉 ⊕ sp2 and some affine holomorphic vector fields Vj , j = 1, . . . , 8, that do not
vanish at the origin, where

Z0 := i
4∑

k=1

zk ∂/∂zk,

and sp2 is realized as the algebra of fundamental vector fields of the standard
action of Sp2 on C4 . Considering [Z0, [Vj, Z0]] instead of Vj , we can assume that
Vj are constant vector fields for all j (cf. the proof of Satz 4.9 in [19]). It is then

clear that Ĝ = G2(C4), and we have obtained (ii) of the theorem.

Assume next that LG0
p is conjugate in Un to Un−1 × U1 . As in the

preceding case, for every q ∈ M the subgroup LG0
q contains the element −id,

and therefore M equipped with a G-invariant Hermitian metric is a Hermitian

2Here Sp2 denotes the standard compact real form of Sp4(C).
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symmetric space. The classification of Hermitian symmetric spaces now yields that
(M, G) is equivalent to one of the pairs listed in (iii) of the theorem.

Suppose finally that n = 4 and LG0
p is conjugate in U4 to Sp2 . Again, for

every q ∈ M the subgroup LG0
q contains the element −id. As in case (ii) above, we

obtain that there exists an equivalence map F̂ between M and C4 that transforms
G into a subgroup of G(C4) and G0

p0
into Sp2 , with F̂ (p0) = 0. Let g be the Lie

algebra of fundamental vector fields of the action of the group Ĝ := F̂ ◦ G ◦ F̂−1

on C4 . The algebra g is generated by by sp2 and some holomorphic vector fields

Xj =
4∑

k=1

fk
j ∂/∂zk,

Yj =
4∑

k=1

gk
j ∂/∂zk,

for j = 1, 2, 3, 4. Here fk
j , gk

j are affine functions such that

fk
j (0) = δk

j , gk
j (0) = iδk

j ,

where δk
j is the Kronecker symbol.

We consider the following vector fields from sp2 :

Z1 := iz2 ∂/∂z2 − iz4 ∂/∂z4,
Z2 := iz1 ∂/∂z1 − iz3 ∂/∂z3.

It is straightforward to see that [X1, Z1](0) = 0 and [Y1, Z1](0) = 0, and therefore
we have

[X1, Z1] = 0 (mod sp2),
[Y1, Z1] = 0 (mod sp2).

(2.1)

Next, we observe
[X1, Z2](0) = (i, 0, 0, 0),
[Y1, Z2](0) = (−1, 0, 0, 0).

It then follows that
X1 = −[Y1, Z2] (mod sp2),
Y1 = [X1, Z2] (mod sp2),

which yields
X1 = −[[X1, Z2], Z2] (mod sp2),
Y1 = −[[Y1, Z2], Z2] (mod sp2).

(2.2)

Formulas (2.1) and (2.2) imply that the linear parts of X1 and Y1 are elements of
sp2 .

Applying the above arguments to X3 , Y3 in place of X1 , Y1 we obtain that
the linear parts of X3 , Y3 are elements of sp2 as well. Furthermore, if in these
arguments we interchange Z1 , Z2 and use X2 in place of X1 , Y2 in place of Y1 ,
X4 in place of X3 , and Y4 in place of Y3 , we obtain that the linear parts of X2 ,
Y2 , X4 , Y4 also lie in sp2 . It then follows that Ĝ = G3(C4).

The proof is complete.

Remark 2.2. Some parts of Theorem 2.1 can also be derived from the results
of [10].
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3. Classification of Linear Isotropy Subgroups for dG = n2 + 1

In this section we prove the following proposition that extends Lemma 2.1 of [17].

Proposition 3.1. Let H be a connected closed subgroup of Un of dimension
(n− 1)2 , n ≥ 2 . Then H is conjugate in Un to one of the following subgroups:

I. eiRSO3(R) (here n = 3);

II. SUn−1 × U1 realized as the subgroup of all matrices(
A 0
0 eiθ

)
,

where A ∈ SUn−1 and θ ∈ R , for n ≥ 3 ;

III. the subgroup Hn
k1,k2

of all matrices(
A 0
0 a

)
, (3.1)

where k1, k2 are fixed integers such that (k1, k2) = 1 , k1 > 0 , and A ∈ Un−1 ,

a ∈ (det A)
k2
k1 := exp(k2/k1 Ln (det A)) .

Remark 3.2. The groups Hn
k1,k2

are pairwise not conjugate to each other for
n ≥ 3, whereas H2

k1,k2
and H2

k2,k1
are conjugate provided k2 > 0. Observe also

that the group Hn
k1,k2

is a k1 -sheeted cover of Un−1 for every k2 (note that for
k2 = 0 we have k1 = 1).

Proof of Proposition 3.1: Since H is compact, it is completely reducible, i.e.
Cn splits into the sum of H -invariant pairwise orthogonal complex subspaces,
Cn = V1 ⊕ · · · ⊕ Vm , such that the restriction Hj of H to each Vj is irreducible.
Let nj := dimCVj (hence n1 + · · ·+ nm = n) and let Unj

be the group of unitary
transformations of Vj . Clearly, Hj ⊂ Unj

, and therefore dim H ≤ n2
1 + · · · + n2

m .
On the other hand dim H = (n− 1)2 , which shows that m ≤ 2.

Let m = 2. Then there exists a unitary change of coordinates in Cn

such all elements of H take the form (3.1), where A ∈ Un−1 and a ∈ U1 .
If dim H2 = 0, then H2 = {1} , and therefore H1 = Un−1 . In this case we
obtain the group Hn

1,0 . Suppose next that dim H2 = 1, i.e. H2 = U1 . Then
(n − 1)2 − 1 ≤ dim H1 ≤ (n − 1)2 . If dim H1 = (n − 1)2 − 1, then H1 = SUn−1 ,
and hence H is conjugate to SUn−1 × U1 for n ≥ 3 and to H2

1,0 for n = 2. Now
let dim H1 = (n − 1)2 , i.e. H1 = Un−1 . Consider the Lie algebra h of H . Up to
conjugation, it consists of matrices of the form(

A 0
0 l(A)

)
, (3.2)

where A ∈ un−1 and l(A) 6≡ 0 is a linear function of the matrix elements of A

ranging in iR . Clearly, l(A) must vanish on the derived algebra of un−1 , that is,
on sun−1 . Hence matrices (3.2) form a Lie algebra if and only if l(A) = c · trace A ,
where c ∈ R \ {0} . Such an algebra can be the Lie algebra of a closed subgroup of
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Un−1×U1 only if c ∈ Q\{0} . Hence H is conjugate to Hn
k1,k2

for some k1, k2 ∈ Z ,
where one can always assume that k1 > 0 and (k1, k2) = 1.

Now let m = 1. We shall proceed as in the proof of Lemma 2.1 in [16].
Let hC := h + ih ⊂ gln be the complexification of h , where gln := gln(C). The
algebra hC acts irreducibly on Cn and by a theorem of E. Cartan (see, e.g., [8]),
hC is either semisimple or the direct sum of the center c of gln and a semisimple
ideal t . Clearly, the action of the ideal t on Cn is irreducible.

Assume first that hC is semisimple, and let hC = h1 ⊕ · · · ⊕ hk be its
decomposition into the direct sum of simple ideals. Then the natural irreducible
n-dimensional representation of hC (given by the embedding of hC in gln ) is the
tensor product of some irreducible faithful representations of the hj (see, e.g., [8]).
Let nj be the dimension of the corresponding representation of hj , j = 1, . . . , k .
Then nj ≥ 2, dimC hj ≤ n2

j − 1, and n = n1 · ... · nk . The following observation is
simple.

Claim: If n = n1 · ... · nk , k ≥ 2 , nj ≥ 2 for j = 1, . . . , k , then∑k
j=1 n2

j ≤ n2 − 2n .

Since dimC hC = (n − 1)2 , it follows from the above claim that k = 1, i.e.
hC is simple. The minimal dimensions of irreducible faithful representations of
complex simple Lie algebras s are well-known (see, e.g., [32]). In the table below
V denotes representations of minimal dimension.

s dim V dim s

slk k ≥ 2 k k2 − 1
ok k ≥ 7 k k(k − 1)/2
sp2k k ≥ 2 2k 2k2 + k
e6 27 78
e7 56 133
e8 248 248
f4 26 52
g2 7 14

Since dimC hC = (n − 1)2 , it follows that none of the above possibilities
realize. Therefore, hC = c⊕ t , where dim t = n2 − 2n . Then, if n = 2, we obtain
that H coincides with the center of U2 which is impossible since its action on C2

is then not irreducible. Assuming that n ≥ 3 and repeating the above argument
for t in place of hC , we see that t can only be isomorphic to sln−1 . But sln−1 does
not have an irreducible n-dimensional representation unless n = 3.

Thus, n = 3 and hC ' C ⊕ sl2 ' C ⊕ so3 . Further, we observe that
every irreducible 3-dimensional representation of so3 is equivalent to its defining
representation. This implies that H is conjugate in GL3(C) to eiRSO3(R). Since
H ⊂ U3 it is straightforward to show that the conjugating element can be chosen
to belong to U3 .

The proof of the proposition is complete.

Let M be a connected complex manifold of dimension n ≥ 2, and suppose
that a connected Lie group G ⊂ Aut(M) with dG = n2 + 1 acts properly on M .
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Fix p ∈ M , consider the linear isotropy subgroup LGp , and choose coordinates in
Tp(M) so that LGp ⊂ Un . We say that the pair (M, G) (or the action of G on M )
is of type I, II or III, if the connected identity component LG0

p of the group LGp is
conjugate in Un to a subgroup listed in I, II or III of Proposition 3.1, respectively.
Since M is G-homogeneous, this definition is independent of the choice of p .

We will now separately consider actions of each type.

4. Actions of Types I and II

Actions of type I are described in the following theorem.

Theorem 4.1. Let M be a connected complex manifold of dimension 3 and
G ⊂ Aut(M) a connected Lie group with dG = 10 that acts properly on M . If
the pair (M, G) is of type I, then it is equivalent to one of the following:

(i) (S , Aut(S )) , where S is the Siegel space

S :=
{
(z1, z2, z3) ∈ C3 : ZZ � id

}
,

with

Z :=

(
z1 z2

z2 z3

)
(here Aut(S ) is isomorphic to Sp4(R)/Z2 );

(ii) (Q3, SO5(R)) , where Q3 is the complex quadric in CP4 , and SO5(R) is realized
as a maximal compact subgroup of Aut(Q3)

0 ' PSO5(C) ;

(iii) (C3, G2(C3)) , where G2(C3) is the group that consists of all maps of the form
(1.1) with U ∈ eiRSO3(R) .

Theorem 4.1 follows from the theory of Hermitian symmetric spaces in the
same way as Parts (ii), (iii) and (iv) of Theorem 2.1 do, and we omit details.

We now turn to actions of type II and classify them in the following theorem.

Theorem 4.2. Let M be a connected complex manifold of dimension n ≥ 3
and G ⊂ Aut(M) a connected Lie group with dG = n2+1 that acts properly on M .
If the pair (M, G) is of type II, then it is equivalent to
(Cn−1 × M ′, G1(Cn−1) × G′) , where M ′ is one of B1 , C , CP1 , and G′ is one
of the groups Aut(B1) , G(C) , G(CP1) , respectively.

We start with the following lemma that clarifies the structure of full linear
isotropy subgroups for actions of type II.

Lemma 4.3. Let H ⊂ Un , with n ≥ 3 , be a closed subgroup, and let H0 =
SUn−1 × U1 . Then for some m ∈ N the group H consists of all matrices of the
form (

αA 0
0 a

)
,

where A ∈ SUn−1 , a ∈ U1 , αm = 1 .
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Proof: The proof is similar to that of Lemma 4.4 in [17]. Let C1, . . . , CK be the
connected components of H with C1 = H0 = SUn−1 × U1 . Clearly, there exist
g1 = id, g2, . . . , gK in Un such that Cj = gjH

0 , j = 1, . . . , K . Moreover, for each
pair of indices i, j there exists an index l such that giH

0 · gjH
0 = glH

0 , and
therefore

g−1
l giH

0gj = H0. (4.1)

Applying each side of (4.1) to the vector v := (0, . . . , 0, 1), which is an eigenvector
of every element of H0 , we obtain that for every h ∈ H0 there exists β(h) ∈ C
such that

g−1
l gihgjv = β(h)v,

or, equivalently,
hgjv = β(h)g−1

i glv,

which implies that gjv = (0, . . . , 0, aj), where |aj| = 1, j = 1, . . . , K . Hence gj

has the form

gj =

(
Aj 0
0 aj

)
,

where Aj ∈ Un−1 . Multiplying gj by an appropriate element of H0 , we can assume
that aj = 1 and Aj = αj · id, with |αj| = 1, j = 1, . . . , K .

Clearly, all elements in H of the form(
t · id 0

0 1

)
, (4.2)

where |t| = 1 form a finite subgroup and therefore the corresponding numbers t
form a group of roots of unity of some order m .

The proof of the lemma is complete.

Proof of Theorem 4.2: Fix p ∈ M , set H := Gp , and identify M as a smooth
manifold with G/H (in particular, we identify Tp(M) with TH(G/H)). By means
of this identification we introduce a G-invariant complex structure on G/H . Let
ΠG,H : G → G/H be the factorization map. For every element g ∈ G we denote
by Lg the action of g on G/H . Let g be the Lie algebra of G . Since the subgroup
Ad(H) ⊂ GL(R, g) is compact, there exists an Ad(H)-invariant scalar product
on g . Let h ⊂ g be the Lie algebra of H and h⊥ the orthogonal complement to
h in g . Since h is Ad(H)-invariant, so is h⊥ . The map Φ := dΠG,H(id)|h⊥ is a
linear isomorphism between h⊥ and TH(G/H), and for every h ∈ H transforms
the operator Ad(h) on h⊥ into the operator dLh(H) on TH(G/H). Analogously,
for c ∈ h , the map ad(c) on h⊥ is transformed into L (c) on TH(G/H), where
L is the differential of the map h 7→ dLh(H) at id ∈ H .

By Lemma 4.3, at every q ∈ M there are exactly two non-trivial proper
LGq -invariant complex subspaces L1(q) and L2(q) in Tq(M). Here L1(q) denotes
the invariant subspace of dimension n− 1, and L2(q) the invariant complex line.
Choosing such subspaces at every point q ∈ M we obtain two real-analytic G-
invariant distributions L1 and L2 of (n−1)- and 1-dimensional complex subspaces
on M , respectively. Lifting L1 and L2 to G by means of ΠG,H , we obtain
distributions S1 and S2 of real (n2− 1)- and (n2− 2n+3)-dimensional subspaces
on G , respectively. Since these distributions are invariant under left translations
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on G , we will think of them as linear subspaces of g . We have g = S1 + S2 and
S1∩S2 = h . Let h⊥j := h⊥∩Sj , j = 1, 2. Clearly, h⊥ = h⊥1 +h⊥2 , dim h⊥1 = 2(n−1),
dim h⊥2 = 2, and h⊥j is Ad(H)-invariant for each j .

Fix complex coordinates (ξ1, . . . , ξn) in TH(G/H) in which LH0 is given
by SUn−1 × U1 . Accordingly, we have h = h1 ⊕ h2 , where h1 := sun−1 , h2 := u1 .
Clearly, Φ maps h⊥1 and h⊥2 onto {ξn = 0} and {ξ1 = · · · = ξn−1 = 0} ,
respectively, and the following holds

[h⊥j , hj] ⊂ h⊥j , j = 1, 2,
[h⊥j , hk] = 0, j 6= k.

(4.3)

Set S ′j := h⊥j + hj for j = 1, 2. We will now show that S ′j is an ideal in g

for each j . For any two elements v1, v2 ∈ g we write

[v1, v2] = u1 + u2 + w1 + w2, (4.4)

where uk ∈ h⊥k and wk ∈ hk , k = 1, 2. Suppose first that v1 ∈ h⊥1 , v2 ∈ h⊥2 .
Applying to (4.4) the element ϕ0 of Ad(H0) that acts trivially on h⊥1 and coincides
with −id on h⊥2 , we obtain that u1 = 0, w1 = 0, w2 = 0. Next, applying to (4.4)
an element of Ad(H0) that acts trivially on h⊥2 and transforms v1 into −v1 we
obtain that u2 = 0. Thus

[h⊥1 , h⊥2 ] = 0. (4.5)

Let v1, v2 ∈ h⊥1 . In this case the application of the transformation ϕ0 to (4.4) yields
u2 = 0. We now apply the Jacobi identity to v1, v2, v , where v is an arbitrary
element of h⊥2 . Then (4.3), (4.5) imply that [w2, v] = 0, and hence w2 = 0. Thus

[h⊥1 , h⊥1 ] ⊂ S ′1. (4.6)

Let finally v1, v2 ∈ h⊥2 . Applying to (4.4) elements of Ad(H0) that act trivially on
h⊥2 we see that u1 and w1 are invariant under all such transformations. Therefore
u1 = 0, w1 = 0, and we have obtained

[h⊥2 , h⊥2 ] ⊂ S ′2. (4.7)

Identities (4.3), (4.5), (4.6), (4.7) yield that S ′j is an ideal in g for each j .
Thus, for each j the distribution Lj is integrable, and its integral manifolds form
a foliation Fj of M by connected complex submanifolds of dimension n − 1 for
j = 1 and by connected complex curves for j = 2. For q ∈ M we denote by Fj(q)
the leaf of the j th foliation passing through q .

Let Gj be the (possibly non-closed) normal connected subgroup of G with
Lie algebra S ′j for j = 1, 2. For every q ∈ M the leaf Fj(q) coincides with the
orbit Gjq . Since the tangent space to Gjq at q′ ∈ Gjq is spanned by the values of
the holomorphic fundamental vector fields of the Gj -action at q′ , it follows that
Fj is a holomorphic foliation. Clearly, every two orbits of Gj are holomorphically
equivalent. The ineffectivity kernel Kj of the action of Gj on Gjp is discrete for
each j . Since G1/K1 acts properly on G1p , Theorem 2.1 gives that the orbit G1p
is holomorphically equivalent to Cn−1 by means of a map that transforms G1/K1

into the group G1(Cn−1). Furthermore, G2p is holomorphically equivalent to one
of B1 , C , CP1 by means of a map that transforms G2/K2 into one of Aut(B1),
G(C), G(CP1), respectively.
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We will now show that each Gj is closed in G . We assume that j = 1; for
j = 2 the proof is similar. Let U be a connected neighborhood of 0 in g where
the exponential map into G is a diffeomorphism, and let V := exp(U). To prove
that G1 is closed in G it is sufficient to show that for some neighborhood W of
e ∈ G , W ⊂ V , we have G1 ∩W = exp(S ′1 ∩ U) ∩W . Assuming the opposite we
obtain a sequence {gj} of elements of G1 converging to e in G such that for every
j we have gj = exp(aj) with aj ∈ U \ S ′1 . Let pj := gjp . For a neighborhood V of
p we denote by Np and Npj

the connected components of G1p ∩ V containing p
and pj , respectively. We will now show that there exists a neighborhood V of p
such that Npj

6= Np for large j .

Let U′′ ⊂ U′ ⊂ U be connected neighborhoods of 0 in g such that: (a)
exp(U′′) · exp(U′′) ⊂ exp(U′); (b) exp(U′′) · exp(U′) ⊂ exp(U); (c) U′ = −U′ ; (d)
H ∩ exp(U′) ⊂ exp(S ′1 ∩ U′). We now choose V so that Np ⊂ exp(S ′1 ∩ U′′)p .
Suppose that pj ∈ Np . Then we have pj = sp for some s ∈ exp(S ′1 ∩ U′′) and
hence t := g−1

j s is an element of H . For large j we have g−1
j ∈ exp(U′′). Condition

(a) now implies that t ∈ exp(U′) and hence by (c), (d) we have t−1 ∈ exp(S ′1∩U′).
Therefore, by (b) we obtain gj ∈ exp(S ′1 ∩ U) which contradicts our choice of gj .
Thus, for large j we have Npj

6= Np , and thus the orbit G1p accumulates to itself.
Below we will show that this is in fact impossible thus obtaining a contradiction.

Consider the set S := G1p ∩ G2p . The set S contains a non-constant
sequence converging to p . Clearly, H0 preserves S . Since the H0 -orbit of a point
in S cannot have positive dimension, the subgroup H0 fixes every point in S . At
the same time, any compact subgroup of dimension n2 − 2n in G1(Cn−1) fixes
exactly one point in Cn−1 . This contradiction shows that Gj is closed in G for
each j . Therefore, the action of Gj on M is proper and hence every leaf of Fj is
closed in M , for j = 1, 2.

We will now show that the subgroup Kj is in fact trivial for each j = 1, 2.
Let first j = 1. Since G1/K1 is isomorphic to the simply-connected group
G1(Cn−1) ' SUn−1 n Cn−1 and since G1 covers G1/K1 with fiber K1 , it follows
that K1 is trivial. Let j = 2. If G2/K2 is isomorphic to G(C), the triviality of
K2 follows as above. Further, the action of G0

2 p on G2p is effective, and thus we
have K2 \{e} ⊂ G2 p \G0

2 p . Suppose that G2/K2 is isomorphic to Aut(B1). Every
maximal compact subgroup of Aut(B1) is 1-dimensional, hence so is every maximal
compact subgroup of G2 . Since G0

2 p is 1-dimensional, it is maximal compact in G2 .
Therefore G2 p is connected, which implies that K2 is trivial. Suppose next that
G2/K2 is isomorphic to G(CP1) ' PSU2 . If K2 is non-trivial, then G2 ' SU2

and K2 ' Z2 . Then G0
2 p is conjugate in G2 (upon the identification of G2 with

SU2 ) to the subgroup of matrices of the form(
1/b 0
0 b

)
,

where |b| = 1 (see e.g. Lemma 2.1 of [17]). Since this subgroup contains the center
of SU2 , the subgroup G0

2 p contains the center of G2 . In particular, K2 ⊂ G0
2 p

which contradicts the non-triviality of K2 . Thus, G1 is isomorphic to G1(Cn−1)
and G2 is isomorphic to one of Aut(B1), G(C), G(CP1).

Next, since g = S ′1 ⊕ S ′2 and G1 , G2 are closed, the group G is a locally
direct product of G1 and G2 . We claim that T := G1 ∩G2 is trivial. Indeed, T
is a discrete normal subgroup of each of G1 , G2 . However, every discrete normal
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subgroup of each of G1(Cn−1), Aut(B1), G(C), G(CP1) is trivial, since the center
of each of these groups is trivial. Hence G = G1 ×G2 .

We will now observe that for every q1, q2 ∈ M the orbits G1q1 and G2q2

intersect at exactly one point. Let g ∈ G be an element such that gq2 = q1 . It
can be uniquely represented in the form g = g1g2 with gj ∈ Gj for j = 1, 2, and
therefore we have g2q2 = g−1

1 q1 . Hence the intersection G1q1 ∩G2q2 is non-empty.
Next, the fact that for every q ∈ M the intersection G1q∩G2q consists of q alone
follows by the argument used at the end of the proof of the closedness of G1 , G2 .

Let F1 be a biholomorphic map from G1p onto Cn−1 that transforms G1

into G1(Cn−1), and F2 a biholomorphic map from G2p onto M ′ , where M ′ is
one of B1 , C , CP1 , that transforms G2 into G′ , where G′ is one of Aut(B1),
G(C), G(CP1), respectively. We will now construct a biholomorphic map F from
M onto Cn−1 × M ′ . For q ∈ M consider G2q and let r be the unique point of
intersection of G1p and G2q . Let g ∈ G1 be an element such that r = gp . Then
we set F(q) := (F1(r), F2(g

−1q)). Clearly, F is a well-defined diffeomorphism from
M onto Cn−1 ×M ′ . Since the foliation Fj is holomorphic for each j , the map F
is in fact holomorphic. By construction, F transforms G into G1(Cn−1)×G′ .

The proof is complete.

5. Examples of Actions of Type III

In this section we give a large number of examples of actions of type III. Some of
the examples can be naturally combined into classes and some of the actions form
parametric families. In what follows n ≥ 2.

(i). Here both the manifolds and the groups are represented as direct products.

(ia). M = M ′ × C , where M ′ is one of Bn−1 , Cn−1 , CPn−1 , and G =
G′ × G1(C), where G′ is one of the groups Aut(Bn−1), G(Cn−1), G(CPn−1),
respectively.

(ib). M = M ′ × C∗ , where M ′ is as in (ia), and G = G′ × C∗ , where G′

is as in (ia).

(ic). M = M ′ × T , where M ′ is as in (ia) and T is an elliptic curve;
G = G′ × Aut(T)0 , where G′ is as in (ia).

(id). M = M ′×P> , where M ′ is as in (ia) and P> := {ξ ∈ C : Re ξ > 0} ;
G = G′×G(P>), where G′ as in (ia) and G(P>) ' RoR is the group of all maps
of the form

ξ 7→ λξ + ia,

with a ∈ R , λ > 0.

(ii). Parts (iib) and (iic) of this example are obtained by passing to quotients in
Part (iia).
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(iia). M = Bn−1 × C , and G consists of all maps of the form

z′ 7→ Az′ + b

cz′ + d
,

zn 7→ zn + ln(cz′ + d) + a,

where (
A b
c d

)
∈ SUn−1,1,

z′ := (z1, . . . , zn−1) and a ∈ C . This group is isomorphic to the universal cover of
SUn,1 . In fact, for T ∈ C one can consider the following family of groups acting
on Bn−1 × C

z′ 7→ Az′ + b

cz′ + d
,

zn 7→ zn + T ln(cz′ + d) + a,

(5.1)

where A, a, b, c, d are as above. Example (ia) for M ′ = Bn−1 is included in this
family for T = 0. If T 6= 0, then conjugating group (5.1) in Aut(Bn−1 × C) by
the automorphism

z′ 7→ z′

zn 7→ zn/T,
(5.2)

we can assume that T = 1.

(iib). M = Bn−1 ×C∗ , and for a fixed T ∈ C∗ the group G consists of all
maps of the form

z′ 7→ Az′ + b

cz′ + d
,

zn 7→ χ(cz′ + d)T zn,

(5.3)

where A, b, c, d are as in (iia) and χ ∈ C∗ . Example (ib) for M ′ = Bn−1 can be
included in this family for T = 0. This family is obtained from (5.1) by passing
to a quotient in the last variable.

(iic). M = Bn−1 × T , where T is an elliptic curve, and for a fixed T ∈ C∗

the group G consists of all maps of the form

z′ 7→ Az′ + b

cz′ + d
,

[zn] 7→
[
χ(cz′ + d)T zn

]
,

(5.4)

where A, b, c, d, χ are as in (iib), T is obtained from C∗ by taking the quotient
with respect to the equivalence relation zn ∼ dzn , for some d ∈ C∗ , |d| 6= 1, and
[zn] ∈ T is the equivalence class of a point zn ∈ C∗ . Example (ic) for M ′ = Bn−1

can be included in this family for T = 0. Clearly, after passing to the quotient,
(5.3) turns into (5.4).

(iii). Part (iiib) of this example is obtained by passing to a quotient in
Part (iiia).
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(iiia). M = Cn , and G consists of all maps of the form

z′ 7→ eRe bUz′ + a,
zn 7→ zn + b,

where U ∈ Un−1 , a ∈ Cn−1 , b ∈ C . This group is isomorphic to G(Cn−1)oG1(C).
In fact, for T ∈ C one can consider the following family of groups acting on Cn

z′ 7→ eRe (Tb)Uz′ + a,
zn 7→ zn + b,

(5.5)

where U , a , b are as above. Example (ia) for M ′ = Cn−1 is included in this
family for T = 0. If T 6= 0, then conjugating group (5.5) in Aut(Cn) by the
automorphism

z′ 7→ z′

zn 7→ Tzn,

we can assume that T = 1.

(iiib). M = Cn−1×C∗ , and for a fixed T ∈ R∗ the group G consists of all
maps of the form

z′ 7→ eT Re bUz′ + a,
zn 7→ ebzn,

where U, a, b are as in (iiia). This group is isomorphic to G(Cn−1) o C∗ . Example
(ib) for M ′ = Cn−1 can be included in this family for T = 0. This family is
obtained from (5.5) for T ∈ R∗ by passing to a quotient in the last variable.

(iv). Parts (ivb) and (ivc) of this example are obtained by passing to quotients
in Part (iva).

(iva). M = Cn , and G consists of all maps of the form

z′ 7→ Uz′ + a,
zn 7→ zn + 〈Uz′, a〉+ b,

where U ∈ Un−1 , a ∈ Cn−1 , b ∈ C , and 〈· , ·〉 is the inner product in Cn−1 . This
group is isomorphic to (Un−1 nH)×R , where H is the following Heisenberg group

z′ 7→ z′ + a,
zn 7→ zn + 〈z′, a〉+ ||a||2/2 + ic,

with a ∈ Cn−1 , c ∈ R . In fact, for T ∈ C one can consider the following family of
groups acting on Cn

z′ 7→ Uz′ + a,
zn 7→ zn + T 〈Uz′, a〉+ b,

(5.6)

where U , a , b are as above. Example (ia) for M ′ = Cn−1 is included in this family
for T = 0. If T 6= 0, then conjugating group (5.6) in Aut(Cn) by automorphism
(5.2), we can assume that T = 1.

(ivb). M = Cn−1 × C∗ , and for a fixed 0 ≤ τ < 2π the group G consists
of all maps of the form

z′ 7→ Uz′ + a,

zn 7→ χ exp
(
eiτ 〈Uz′, a〉

)
zn,

(5.7)



156 Isaev

where U, a are as in (iva) and χ ∈ C∗ . In fact, for T ∈ C one can consider the
following family of groups acting on Cn−1 × C∗

z′ 7→ Uz′ + a,

zn 7→ χ exp
(
T 〈Uz′, a〉

)
zn,

(5.8)

where U, a, χ are as above. Example (ib) for M ′ = Cn−1 is included in this
family for T = 0. For T 6= 0 this family is obtained from (5.6) by passing to a
quotient in the last variable. Furthermore, conjugating group (5.8) for T 6= 0 in
Aut(Cn−1 × C∗) by the automorphism

z′ 7→
√
|T |z′

zn 7→ zn,

we obtain the group defined in (5.7) for τ = arg T .

(ivc). M = Cn−1 × T , where T is an elliptic curve, and for a fixed
0 ≤ τ < 2π the group G consists of all maps of the form

z′ 7→ Uz′ + a,

[zn] 7→
[
χ exp

(
eiτ 〈Uz′, a〉

)
zn

]
,

(5.9)

where U, a, χ are as in (ivb), T is obtained from C∗ by taking the quotient with
respect to the equivalence relation zn ∼ dzn , for some d ∈ C∗ , |d| 6= 1, and
[zn] ∈ T is the equivalence class of a point zn ∈ C∗ . In fact, for T ∈ C one can
consider the following family of groups acting on Cn−1 × T

z′ 7→ Uz′ + a,

[zn] 7→
[
χ exp

(
T 〈Uz′, a〉

)
zn

]
,

(5.10)

where U, a, χ are as above. Example (ic) for M ′ = Cn−1 is included in this family
for T = 0. For T 6= 0 this family is obtained from (5.8) by passing to the
quotient described above. Furthermore, conjugating group (5.10) for T 6= 0 in
Aut(Cn−1 × T) by the automorphism

z′ 7→
√
|T |z′

ξ 7→ ξ,

where ξ ∈ T , we obtain the group defined in (5.9) for τ = arg T .

(v). M = Cn−1 × P> , and for a fixed T ∈ R∗ the group G consists of all maps
of the form

z′ 7→ λT Uz′ + a,
zn 7→ λzn + ib,

where U ∈ Un−1 , a ∈ Cn−1 , b ∈ R , λ > 0. This group is isomorphic to
G(Cn−1) o (R o R). Example (id) for M ′ = Cn−1 can be included in this family
for T = 0.

(vi). M = Cn , and for fixed k1, k2 ∈ Z , (k1, k2) = 1, k1 > 0, k2 6= 0, the group
G ' Hn

k1,k2
n Cn consists of all maps of the form (1.1) with U ∈ Hn

k1,k2
(see (3.1)).

Example (ia) for M ′ = Cn−1 can be included in this family for k2 = 0.



Isaev 157

(vii). Part (viib) of this example is obtained by passing to a quotient in
Part (viia).

(viia). M = Cn∗/Zl , where Cn∗ := Cn \ {0} , l ∈ N , and the group G
consists of all maps of the form

{z} 7→ {λUz},

where U ∈ Un , λ > 0, and {z} ∈ Cn∗/Zl is the equivalence class of a point
z ∈ Cn∗ . This group is isomorphic to R× Un/Zl .

(viib). M = Md/Zl , where Md is the Hopf manifold Cn∗/{z ∼ dz} , for
d ∈ C∗ , |d| 6= 1, and l ∈ N ; the group G consists of all maps of the form

{[z]} 7→ {[λUz]},

where U, λ are as in (viia), [z] ∈ Md denotes the equivalence class of a point
z ∈ Cn∗ , and {[z]} ∈ Md/Zl denotes the equivalence class of [z] ∈ Md .

(viii). In this example the manifolds are the open orbits of the action of a group
of affine transformations on Cn . Let GP be the group of all maps of the form

z′ 7→ λUz′ + a,
zn 7→ λ2zn + 2λ〈Uz′, a〉+ |a|2 + ib,

where U ∈ Un−1 , a ∈ Cn−1 , b ∈ R , λ > 0. This group is isomorphic to CUn−1nH ,
where CUn−1 is the conformal unitary group and H is the Heisenberg group (see
(iva)).

(viiia). M = Pn
> , G = GP , where

Pn
> :=

{
(z′, zn) ∈ Cn−1 × C : Re zn > |z′|2

}
.

Observe that Pn
> is holomorphically equivalent to Bn .

(viiib). M = Pn
< , G = GP , where

Pn
< :=

{
(z′, zn) ∈ Cn−1 × C : Re zn < |z′|2

}
.

Observe that Pn
< is holomorphically equivalent to CPn \ (Bn ∪ L), where L is a

complex hyperplane tangent to ∂Bn at some point.

(ix). Here n = 2, M = B1 × C , and G consists of all maps of the form

z1 7→ az1 + b

bz1 + a
,

z2 7→ z2 + cz1 + c

bz1 + a
,

where a, b ∈ C , |a|2 − |b|2 = 1, c ∈ C . This group is isomorphic to SU1,1 × C .
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(x). Here n = 3, M = CP3 , and G consists of all maps of the form (1.2) for
n = 3 with U ∈ Sp2 . This group is isomorphic to Sp2/Z2 .

(xi). Let n = 3 and (z : w) be homogeneous coordinates in CP3 , where
z = (z1 : z2), w = (w1 : w2). Set M = CP3 \ {w = 0} and let G be the
group of all maps of the form

z 7→ Uz + Aw,
w 7→ V w,

where U, V ∈ SU2 , and

A =

(
a ib
b −ia

)
,

for some a, b ∈ C .

(xii). Here n = 3, M = C3 , and G consists of all maps of the form

z′ 7→ Uz′ + a,

z3 7→ det U z3 +

[(
0 1
−1 0

)
Uz′

]
· a + b,

where z′ := (z1, z2), U ∈ U2 , a ∈ C2 , b ∈ C , and · is the dot product in C2 .

We conclude the paper with the following conjecture.

Conjecture 5.1. Let M be a connected complex manifold of dimension
n ≥ 2 and G ⊂ Aut(M) a connected Lie group with dG = n2 + 1 that acts
properly on M . If the pair (M, G) is of type III, then it is equivalent to one of
the pairs listed in (i)–(xii) above.
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