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Abstract. In this paper we study complete G-invariant Riemannian metrics.
Let G be a Lie group and let M be a proper smooth G-manifold. Let «
be a smooth G-invariant Riemannian metric of M, and let K be any G-
compact subset of M. We show that M admits a complete smooth G-invariant
Riemannian metric § such that §|K = a|K. We also prove the existence of
complete real analytic G-invariant Riemannian metrics for proper real analytic
G-manifolds. Moreover, we show that for any given smooth (real analytic) G-
invariant Riemannian metric there exists a complete smooth (real analytic) G-
invariant Riemannian metric conformal to the original Riemannian metric. To
prove the real analytic results we need the assumption that G can be embeddded
as a closed subgroup of a Lie group which has only finitely many connected
components.
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1. Introduction

Let G be a Lie group acting properly and smoothly on a smooth manifold M.
According to a well-known result (Theorem 4.3.1 in [8]) of R.S. Palais, M has
a smooth G-invariant Riemannian metric. An alternative proof of this result is
given in [1], Theorem 5.5.2. Moreover, it can be assumed that the Riemannian
metric is complete, see Theorem 0.2 in [4].

In this paper we continue the study of G-invariant Riemannian metrics on
proper smooth and real analytic G-manifolds. By a result of K. Nomizu and H.
Ozeki ([7], Theorem 1), for any given Riemannian metric « of a smooth manifold
there exists a complete Riemannian metric conformal to a. We begin by proving
an equivariant version of this result (Theorem 3.1).

Let M be a connected smooth manifold with Riemannian metric a. Ac-
cording to a result of J.A. Morrow (Theorem in [6]), M has a complete Riemannian
metric which agrees with « on a given compact subset of M. In Section 4, we
prove an equivariant version of Morrow’s result (Theorem 4.1).
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In Section 5, we study real analytic GG-invariant Riemannian metrics. Con-
structing real analytic Riemannian metrics is more complicated than constructing
smooth Riemannian metrics, in particular, when we want the Riemannian metrics
to be invariant under a group action. Assume that the Lie group G can be embed-
ded as a closed subgroup of a Lie group which has only finitely many connected
components. It is known by Proposition 1.2 in [3], that under this assumption
every proper real analytic GG-manifold has a real analytic G-invariant Riemannian
metric. In this paper we prove a real analytic version of Theorem 3.1 by using
G -equivariant real analytic approximations.

In Section 6, we study G-invariant Riemannian metrics on a proper G-
manifold M, where G is a countable discrete group. If G acts freely on M, or if,
more generally, M has only one orbit type, then the orbit space M /G is a manifold
of the same dimension as M. Every Riemannian metric & on M/G induces a G-
invariant Riemannian metric 7*« on M. We show that 7"« is complete if and only
if o is complete. Finally, we prove yet another real analytic version of Theorem
3.1, in the case where M has only one orbit type.

2. Preliminaries

Let G be a Lie group and let M be a smooth, i.e., C>* (real analytic, i.e., C¥)
manifold. We assume all the manifolds to be finite dimensional and without
boundary and to have at most countably many connected components. Thus they
are paracompact. Let G act on M. If the action G x M — M is smooth (real
analytic), we say that M is a smooth (real analytic) G-manifold. If the action is
also proper, i.e., if the map G x M — M x M, (g,x) — (gz,x), is proper, we call
M a proper smooth (real analytic) G -manifold.

Let M/G denote the orbit space and let 7: M — M/G be the natural
projection. We call a subset K of M G -compact, if W(K ) is compact.

Let X be a topological space. By the support supp(f) of amap f: X — R
we mean the closure of the set {x € X | f(x) > 0}.

Let F' be a subset of M. If every point x € M has a neighbourhood U
such that G(U, F) = {g € G | gUNF # O} is relatively compact, we call F* small.

Definition 2.1. Let G be a Lie group and let M be a proper smooth G-
manifold. If F' is small and GF' = M, we say that F' is a fundamental set for G
in M. If, in addition, F' is closed in M, we say that it is a closed fundamental
set. We call a closed fundamental set F in M fat, if GF = M, where F denotes
the interior of F'.

By Lemma 3.6 in [2], every proper smooth G-manifold has a fat closed
fundamental set.
A euclidean space on which G acts linearly is called a linear G -space.

Lemma 2.2.  Let G be a Lie group and let M be a proper smooth G-manifold.

Let f: M — V be a smooth map into a linear G-space V. Assume the support of
f is small. Then

AV(f): M =V, z /G 0f (g \0)dg,

where the integral is the left Haar integral over G, is a smooth G -equivariant map.
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Proof. Lemma 2.4 in [5]. ]

We denote by R* the set {z € R |z > 0}.

Lemma 2.3.  Let G be a Lie group and let M be a proper smooth G -manifold.
Let d: M — RJ: be a continuous G-invariant map. Then there is a smooth G -
invariant map f: M — Rt such that f(p) > ﬁ for all pe M.

Proof. Let f: M — R* be a smooth map such that f(p) > ﬁ forall pe M.
Let v: M — Rt U{0} be a smooth map whose support is small. We may assume
that the intersection of the set {z € M | y(x) > 0} with each orbit of M contains
an open subset of the orbit. By Lemma 2.2, the map

. Jo(g7 ) f(g7 p)dg
M — RT — 26
d P Jo(gtp)dg

is smooth and G-invariant. Clearly, f(p) > ﬁ, for all pe M. [

Recall that a metric space X is complete if every Cauchy sequence in X
converges. A metric d on a G-space X is called G-invariant if d(gz, gy) = d(z,y)
for all z,y € X and for all g € G. A G-invariant metric d on X induces a metric
d on X/G, where d(n(z),n(y)) = inf {d(z,gy) | g € G}.

Lemma 2.4.  Let G be a Lie group and let X be a Hausdorff space on which
G acts properly. Let d be a G-invariant metric on X and let d be the metric d
induces on X/G. Then d is complete if and only if d is complete.

Proof.  Assume first that d is a complete metric. We first assume that X has
only one orbit, X = Gy. Then X/G is a point. Let (g,y) be a Cauchy sequence in
X . Since G acts properly on X, y has a neighbourhood U such that the closure
of the set

GU|U)={geCG|gUNU # O}

is compact. For sufficiently small ¢ > 0, the ball B,(¢) with center y and radius
e isin U. Since (g,y) is a Cauchy sequence, there exists ny € N such that

A(Y, Gry 9nY) = d(Gnoy, gny) < €

for all n > ng. Thus g, 'g,y € U for all n > ny and, consequently, g,'g, € G(U |
U). Tt follows that (g, 'gn) has a subsequence converging to some g € G(U | U).
Thus (g, !gny) has a subsequence converging to gy and (g,y) has a subsequence
converging to gn,gy. Since (g,y) is a Cauchy sequence, it now follows that it
converges.

Assume then that X may have more than one orbit. Let (z,,) be a Cauchy
sequence in X. Then (m(z,)) is a Cauchy sequence in X/G. Thus (7(z,))
converges to some point w(y) € X/G, where y € X. Let (g,) be a sequence
converging to zero, &, > 0 for all n, with the property that d(w(mn),ﬂ(y)) < &p
for all n. Then, for every n, there exists y, € Gy such that d(z,,y,) < &,. It
is easy to see that (y,) is a Cauchy sequence. By the first part of the proof, (y,)
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converges to some hy, where h € G. Since d(z,, hy) < d(x,,y,) + d(y,, hy) for
all n, it follows that (z,) converges to hy. Thus d is complete.

Assume next that d is a complete metric. Let (7(z,)) be a Cauchy sequence
in X/G. Let (g,) be a decreasing sequence of positive numbers whose sum is
finite. For every ¢ € N, there exists n(q) such that d(n(z,,),7(z,)) < &, for all
m,p > n(q). We may assume that (n(q)) is increasing. We choose a sequence
(gq) of elements in G as follows: Let ¢g; = e. Inductively, we choose g, to be such
that d(ge—1Tn(g—1)s 9g%n(q)) < €q—1- Then (gqxn(y) is a Cauchy sequence. Since d
is complete, it follows that (gq2,()) converges. Since the orbit map 7: X — X/G
is continuous, it follows that (7(z,))) converges. Then (m(z,)) converges, since
it is a Cauchy sequence having a convergent subsequence. Thus d is complete. m

3. Constructing complete G-invariant Riemannian metrics

Recall that a Riemannian metric on a manifold M is called complete, if it induces
a complete metric on each connected component of M .

Let G be a Lie group and let M be a proper smooth G-manifold. Let TM
denote the tangent bundle of M, and let TM & TM denote the Whitney sum.
Then G acts by differentials on TM and TM & TM. Let

a: TMaeTM — R

be a Riemannian metric of M. We call a G -invariant if ag,(gv, gw) = a, (v, w),
for all v,w € T, M, for all x € M and for all g € G.

K. Nomizu and H. Ozeki have shown (Theorem 1 in [7]) that for any given
Riemannian metric « on a smooth manifold there exists a complete Riemannian
metric conformal to «.. The ideas in their proof also work in the equivariant case.
We briefly explain an equivariant version of their result.

Let o be a smooth G-invariant Riemannian metric of a proper smooth
G-manifold M. Assume « is not complete. Without loss of generality we may
assume that « is not complete on any connected component of M. Let d, denote
the metric o induces on the connected components of M. Then d, is G-invariant.
Let M, denote the connected component containing p and let

Bp(r) ={g € My | da(p,q) <7}
denote the metric ball with p as a center and with radius . Moreover, let
d(p) = sup{r | B,(r) is relatively compact }.

Then d: M — R is a continuous G-invariant real-valued map, and d(p) > 0 for
all p € M. By Lemma 2.3, there exists a smooth G-invariant map f: M — R*,
such that f(p) > ﬁ for all p € M. Let f = (f)2. Then fo is a complete
smooth G-invariant Riemannian metric of M. The proof of the completeness can
be found in [7].

We obtain:

Theorem 3.1.  Let G be a Lie group and let M be a proper smooth G -manifold.
For any smooth G -invariant Riemannian metric o of M there exists a complete
smooth G -invariant Riemannian metric of M which is conformal to «.
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Notice that the existence of a complete smooth G-invariant Riemannian
metric of a proper smooth G-manifold is known, Theorem 0.2 in [4], where it was
obtained as a corollary of an embedding result. That result tells nothing about
conformality and the approach would not work in the real analytic case, which we
study in Section 5.

Let a be a G-invariant Riemannian metric of M. Let M;, 1 € I C N, be
the connected components of M and let d; be the metric « induces on M;. Then
d; induces a metric d; on w(M;) = m(GM;), where d;(7(z), 7(y)) = inf {d;(z, gy) |
g € G,gM; = M;} for all z,y € M,. Notice that if M; = gM,, for some g € G,
then CZj = CZZ .

Lemma 3.2.  Let G be a Lie group and let M be a proper smooth G -manifold.
Let K be a G-compact subset of M and let My be a connected component of M.
Let o be a smooth G-invariant Riemannian metric on M. Then « induces a
complete metric on K N M.

Proof.  Similar to the proof of Lemma 2.4. [ |

4. Extending (G-invariant Riemannian metrics

In this section we prove the following theorem:

Theorem 4.1.  Let G be a Lie group and let M be a proper smooth G -manifold.
Let a be a smooth G-invariant Riemannian metric of M. Then given a G-
compact subset K C M, there is a complete smooth G-invariant Riemannian
metric v on M such that v|K = o|K .

Theorem 4.1 is an equivariant version of a result by J.A. Morrow (Theorem
in [6]). The proof is based on Morrow’s proof. We begin by proving two lemmas.

Lemma 4.2.  Let G be a Lie group and let M be a proper smooth G-manifold.
Then M has an exhaustion by G-compact sets.

Proof. Let F' be a fat closed fundamental set of M. Then F' has an exhaustion
by compact sets K;, i.e., we can write ' = [ K, where K; C int (K;;,) for all
i. But then M = |JGK;, each set GK; is G-compact and GK; = GK; C
G(mt (Kz+1>> C int (GKz_;,_l) . |

Lemma 4.3.  Let G be a Lie group and let M be a proper smooth G -manifold.
Let My be a connected component of M. Let K and K be G -compact subsets of M
such that K C int (K) Fiz a G -invariant Riemannian metric on M and assume
(zn) is a Cauchy sequence in (M \ K) N M,y with the property that only finitely
many of the x, are in K. Then M \ K has a connected component containing
infinitely many of the x,, .
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Proof.  Let 36 be the distance of K N M, from (M \int K)N M. Then § > 0.
Let ng € N be such that =, € M \ K and d(xp, Tpyr) < 6 for all n > ny and all
k € NU{0}. Therefore, for given x,,x, ., where n > ng and k > 0, there is a
curve in My from z, to x,.r whose length is less than 2. This curve can not
touch f(, since T, Tpip € M\ K. Tt follows that x, and x,; are in the same
connected component of M \ K. [

Proof of Theorem 4.1. Let M = |J; GK;, where the sets K; are as in Lemma 4.2.
Then K C int(GK;), for some i. The pair {int(GK;4,), M \ GK;} is a covering
of M by open G-invariant sets. By Theorem 4.2.4. (4) in [9], there exist smooth
G-invariant maps 01, 02: M — R, with the following properties:

L. 01, 02 Z 07
2. 00+ 02=1,
3. supp(e1) C int(GKiy1), supp(ez) C M\ GK;.

Thus ¢1(z) =1 for all x € GK; and go(x) =1 for all x € M\ GK,4.

By the construction in Section 3, there exists a smooth G-invariant map
f: M\GK; — R* such that the G-invariant Riemannian metric v, = f(a|M \ GK;)
defines a complete metric d,, on each connected component of M \ GK;. Then
v = (01 + 02f)a is a smooth G-invariant Riemannian metric on M, and v|K =
alK .

It remains to show that the metric d, induced by ~ is complete. Let ()
be a d,-Cauchy sequence in a connected component M, of M. Assume first that
infinitely many z,, are in GK;4,. By Lemma 3.2, the restriction d.,|(GK;+1 N M)
is complete. Thus (z,) has a convergent subsequence. Since (x,) is a d,-Cauchy
sequence, it must converge.

Assume next that only finitely many x,, are in GK, ;. In this case we may
assume that z, € M\ GK;;; for all n. If infinitely many of the z,, are in GK; o,
then (z,) has a convergent subsequence, by Lemma 3.2, and we are done. Assume
then that only finitely many of the xz,, are in GK; 5. By passing to a subsequence,

if necessary, we may assume that all the z,, are in the same connected component
of M\ GK,41 (see Lemma 4.3). Let

U (GKiy1 N M) = {z € My | d\(x, GKi1 N M) <1}

By choosing r small enough, we may assume that U,(GK;.; N M) is G-compact.
If infinitely many z,, are in U,.(GK;41 N My), we are done by Lemma 3.2. Assume
d(xn, GK;11NMp) > r for all n. Let ¢ < r. Then any curve which begins at some
x, and whose ~y-length is less than e remains in My \ GK;11. On My \ GK;yq,
~v equals ~;. Consequently, the ~;-length of any curve of ~-length less than ¢
beginning at x, equals the vy-length. Thus (z,) is a d,,-Cauchy sequence in
Mo\ GK;y1 C My \ GK;. Since d,, is complete, the sequence (z,) converges. ®

5. The real analytic case

We call a Lie group G good, if it can be embedded as a closed subgroup of a
Lie group G, where G has only finitely many connected components. Thus, for
example, all the closed linear Lie groups are good.
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In this section we construct complete real analytic G-invariant Riemannian
metrics. We have to make the assumption that G is a good Lie group, since so
far the existence of any real analytic G-invariant Riemannian metric has been
proven only for proper real analytic G-manifolds, where G is a good Lie group
(Proposition 1.2 in [3]). Moreover, the approximation result to which we refer in
the proof of Lemma 5.1, has so far been proven only in the case where G is a good
Lie group.

Lemma 5.1.  Let G be a good Lie group and let M be a proper real analytic
G -manifold. Let d: M — R* be a continuous G -invariant map. Then there is a
real analytic G -invariant map f“: M — Rt such that f“(p) > ﬁ forallpe M.

Proof. Let GG act trivially on R and diagonally on M xR. Since M is a proper
real analytic G-manifold, also M x R is a proper real analytic G-manifold. Let
id denote the identity map of M and let f: M — R* be as in Lemma 2.3. Then

(id,f): M — M xR, xw— (z, f(x)),

is a smooth G-equivariant map.

By Theorem II in [3], real analytic G-equivariant maps are dense among
the smooth G-equivariant maps M — M X R in the strong-weak topology. Thus
there exists a real analytic G-equivariant map f*: M — M x R approximating
(id, f) as well as we like. Let pr: M x R — R denote the projection. Clearly,
we may assume that pro f*(z) > f(z) for all z € M. Thus we may choose

f* =pro f*. .

Theorem 5.2.  Let G be a good Lie group and let M be a proper real analytic
G -manifold. Then M admits a complete real analytic G -invariant Riemannian
metric. For any real analytic G -invariant Riemannian metric o of M there exists
a complete real analytic G -invariant Riemannian metric conformal to «.

Proof. Let f“ be as in Lemma 5.1. Then (f“)?« is a complete real analytic
G-invariant Riemannian metric conformal to «. The first claim follows from the
second claim and from Proposition 1.2 in [3] according to which M has a real
analytic G-invariant Riemannian metric. |

Theorem 5.2 is known in the case where G is compact, see Theorem 1.4.5
n [10]. Clearly, no result like Theorem 4.1 can be true in the real analytic case.

6. Discrete G - the case of one orbit type

We begin by recalling a standard way to induce Riemannian metrics from one
manifold to another one: Let M and N be smooth (real analytic) manifolds and
let f: M — N be a smooth (real analytic) immersion. Assume [ is a smooth
(real analytic) Riemannian metric on N. Then [ induces a smooth (real analytic)
Riemannian metric f*8 on M, where (f*8),(v,w) = By@)(dfz(v),dfz(w)), for
every x € M and for every v,w € T, M.

Let G be a countable discrete group and let M be a proper smooth (real
analytic) G-manifold. Assume M has only one orbit type. Let H be a finite
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subgroup of G corresponding to that orbit type, and let N(H) denote the nor-
malizer of H in G. Let 'y = N(H)/H. We denote the fixed point set of H in
M by M*. Then T'y acts properly and freely on M#. It also acts on G/H by
nH - gH — gn='H. Tt is well-known that there exists a G-equivariant smooth
(real analytic) diffeomorphism

G/Hrp, x M" — M, [¢H, x|+ g,

see e.g. Theorem 4.3.10 in [9]. This induces a diffeomorphism between the orbit
spaces M /Ty and M/G.

Let «|: M — M* /Ty denote the restriction of the orbit map m: M —
M/G. Then 7| is a local diffeomorphism and T(M*# /Ty) ~ TM#” /Ty. Let o be
a G-invariant Riemannian metric on M and let a| denote its restriction to M*.
Then « is T'g-invariant. Thus «| induces a Riemannian metric on M /T'y. Tt
follows that every smooth (real analytic) G-invariant Riemannian metric o on M
induces a smooth (real analytic) Riemannian metric & on M/G. We obtain:

Proposition 6.1.  Let G be a countable discrete group and let M be a proper
smooth (real analytic) G-manifold having only one orbit type. Then the map

Riemg(M) — Riem(M/G), a— a,

1$ a bijection. The inverse is given by (B +— 7*[3.

Moreover we have:

Lemma 6.2.  Let G and M be as in Proposition 6.1. Let 3 be a smooth (real
analytic) Riemannian metric on M /G . Then the metric dg equals the metric dy-g
that dr+p induces on M/G.

Proof.  The proof follows straightforwardly from the definition of distance on a
Riemannian manifold and from the fact that the orbit map m: M — M/G satisfies
the path lifting property. [ |

Lemmas 2.4 and 6.2 imply:

Corollary 6.3. Let G, M and 3 be as in Lemma 6.2. Then (3 is complete if
and only if 70 is complete.

If G is a discrete group, we can prove the following:

Theorem 6.4. Let G be a countable discrete group and let M be a proper
real analytic G-manifold. Assume M has only one orbit type. Then M has a
real analytic G -invariant Riemannian metric. Moreover, for any real analytic
G -invariant Riemannian metric o of M there exists a complete real analytic G -
mwvariant Riemannian metric conformal to «.
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Proof.  The orbit space M/G can be embedded as a closed real analytic sub-
manifold of a euclidean space, by Grauert’s theorem. Any such embedding f
induces a complete real analytic Riemannian metric ay on M/G. But then, 7 in-
duces a real analytic G-invariant Riemannian metric 7*(as) on M. By Corollary
6.3, 7 (ay) is complete.

Let then o be any real analytic G-invariant Riemannian metric on M.
Then « induces a real analytic Riemannian metric & on M/G. By the result of
Nomizu and Ozeki, M/G has a complete real analytic Riemannian metric of form
h2a, i.e., conformal to &, where h is a real analytic map M/G — RT. But now
7*(h*&) = (hom)?« is a complete real analytic G-invariant Riemannian metric of
M conformal to «. u

Notice that Theorem 6.4 is not a special case of Theorem 5.2 since there
are countable discrete groups which are not good.
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