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Abstract. In this paper we study complete G -invariant Riemannian metrics.
Let G be a Lie group and let M be a proper smooth G -manifold. Let α
be a smooth G -invariant Riemannian metric of M , and let K̃ be any G -
compact subset of M . We show that M admits a complete smooth G -invariant
Riemannian metric β such that β|K̃ = α|K̃ . We also prove the existence of
complete real analytic G -invariant Riemannian metrics for proper real analytic
G -manifolds. Moreover, we show that for any given smooth (real analytic) G -
invariant Riemannian metric there exists a complete smooth (real analytic) G -
invariant Riemannian metric conformal to the original Riemannian metric. To
prove the real analytic results we need the assumption that G can be embeddded
as a closed subgroup of a Lie group which has only finitely many connected
components.
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1. Introduction

Let G be a Lie group acting properly and smoothly on a smooth manifold M .
According to a well-known result (Theorem 4.3.1 in [8]) of R.S. Palais, M has
a smooth G-invariant Riemannian metric. An alternative proof of this result is
given in [1], Theorem 5.5.2. Moreover, it can be assumed that the Riemannian
metric is complete, see Theorem 0.2 in [4].

In this paper we continue the study of G-invariant Riemannian metrics on
proper smooth and real analytic G-manifolds. By a result of K. Nomizu and H.
Ozeki ([7], Theorem 1), for any given Riemannian metric α of a smooth manifold
there exists a complete Riemannian metric conformal to α . We begin by proving
an equivariant version of this result (Theorem 3.1).

Let M be a connected smooth manifold with Riemannian metric α . Ac-
cording to a result of J.A. Morrow (Theorem in [6]), M has a complete Riemannian
metric which agrees with α on a given compact subset of M . In Section 4, we
prove an equivariant version of Morrow’s result (Theorem 4.1).
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In Section 5, we study real analytic G-invariant Riemannian metrics. Con-
structing real analytic Riemannian metrics is more complicated than constructing
smooth Riemannian metrics, in particular, when we want the Riemannian metrics
to be invariant under a group action. Assume that the Lie group G can be embed-
ded as a closed subgroup of a Lie group which has only finitely many connected
components. It is known by Proposition 1.2 in [3], that under this assumption
every proper real analytic G-manifold has a real analytic G-invariant Riemannian
metric. In this paper we prove a real analytic version of Theorem 3.1 by using
G-equivariant real analytic approximations.

In Section 6, we study G-invariant Riemannian metrics on a proper G-
manifold M , where G is a countable discrete group. If G acts freely on M , or if,
more generally, M has only one orbit type, then the orbit space M/G is a manifold
of the same dimension as M . Every Riemannian metric α on M/G induces a G-
invariant Riemannian metric π∗α on M . We show that π∗α is complete if and only
if α is complete. Finally, we prove yet another real analytic version of Theorem
3.1, in the case where M has only one orbit type.

2. Preliminaries

Let G be a Lie group and let M be a smooth, i.e., C∞ (real analytic, i.e., Cω )
manifold. We assume all the manifolds to be finite dimensional and without
boundary and to have at most countably many connected components. Thus they
are paracompact. Let G act on M . If the action G × M → M is smooth (real
analytic), we say that M is a smooth (real analytic) G-manifold. If the action is
also proper, i.e., if the map G×M → M ×M , (g, x) 7→ (gx, x), is proper, we call
M a proper smooth (real analytic) G-manifold.

Let M/G denote the orbit space and let π : M → M/G be the natural
projection. We call a subset K̃ of M G-compact, if π(K̃) is compact.

Let X be a topological space. By the support supp(f) of a map f : X → R
we mean the closure of the set {x ∈ X | f(x) > 0} .

Let F be a subset of M . If every point x ∈ M has a neighbourhood U
such that G(U, F ) = {g ∈ G | gU ∩F 6= Ø} is relatively compact, we call F small.

Definition 2.1. Let G be a Lie group and let M be a proper smooth G-
manifold. If F is small and GF = M , we say that F is a fundamental set for G
in M . If, in addition, F is closed in M , we say that it is a closed fundamental
set. We call a closed fundamental set F in M fat, if GḞ = M , where Ḟ denotes
the interior of F .

By Lemma 3.6 in [2], every proper smooth G-manifold has a fat closed
fundamental set.

A euclidean space on which G acts linearly is called a linear G-space.

Lemma 2.2. Let G be a Lie group and let M be a proper smooth G-manifold.
Let f : M → V be a smooth map into a linear G-space V. Assume the support of
f is small. Then

Av(f) : M → V, x 7→
∫

G

gf(g−1x)dg,

where the integral is the left Haar integral over G, is a smooth G-equivariant map.
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Proof. Lemma 2.4 in [5].

We denote by R+ the set {x ∈ R | x > 0} .

Lemma 2.3. Let G be a Lie group and let M be a proper smooth G-manifold.
Let d : M → R+ be a continuous G-invariant map. Then there is a smooth G-
invariant map f̃ : M → R+ such that f̃(p) > 1

d(p)
for all p ∈ M .

Proof. Let f̂ : M → R+ be a smooth map such that f̂(p) > 1
d(p)

for all p ∈ M .

Let γ : M → R+ ∪ {0} be a smooth map whose support is small. We may assume
that the intersection of the set {x ∈ M | γ(x) > 0} with each orbit of M contains
an open subset of the orbit. By Lemma 2.2, the map

f̃ : M → R+, p 7→
∫

G
γ(g−1p)f̂(g−1p)dg∫

G
γ(g−1p)dg

is smooth and G-invariant. Clearly, f̃(p) > 1
d(p)

, for all p ∈ M .

Recall that a metric space X is complete if every Cauchy sequence in X
converges. A metric d on a G-space X is called G-invariant if d(gx, gy) = d(x, y)
for all x, y ∈ X and for all g ∈ G . A G-invariant metric d on X induces a metric
d̃ on X/G , where d̃(π(x), π(y)) = inf {d(x, gy) | g ∈ G} .

Lemma 2.4. Let G be a Lie group and let X be a Hausdorff space on which
G acts properly. Let d be a G-invariant metric on X and let d̃ be the metric d
induces on X/G. Then d̃ is complete if and only if d is complete.

Proof. Assume first that d̃ is a complete metric. We first assume that X has
only one orbit, X = Gy . Then X/G is a point. Let (gny) be a Cauchy sequence in
X . Since G acts properly on X , y has a neighbourhood U such that the closure
of the set

G(U | U) = {g ∈ G | gU ∩ U 6= Ø}

is compact. For sufficiently small ε > 0, the ball By(ε) with center y and radius
ε is in U . Since (gny) is a Cauchy sequence, there exists n0 ∈ N such that

d(y, g−1
n0

gny) = d(gn0y, gny) < ε

for all n ≥ n0 . Thus g−1
n0

gny ∈ U for all n ≥ n0 and, consequently, g−1
n0

gn ∈ G(U |
U). It follows that (g−1

n0
gn) has a subsequence converging to some g ∈ G(U | U).

Thus (g−1
n0

gny) has a subsequence converging to gy and (gny) has a subsequence
converging to gn0gy . Since (gny) is a Cauchy sequence, it now follows that it
converges.

Assume then that X may have more than one orbit. Let (xn) be a Cauchy
sequence in X . Then (π(xn)) is a Cauchy sequence in X/G . Thus (π(xn))
converges to some point π(y) ∈ X/G , where y ∈ X . Let (εn) be a sequence
converging to zero, εn > 0 for all n , with the property that d̃(π(xn), π(y)) < εn

for all n . Then, for every n , there exists yn ∈ Gy such that d(xn, yn) < εn . It
is easy to see that (yn) is a Cauchy sequence. By the first part of the proof, (yn)
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converges to some hy , where h ∈ G . Since d(xn, hy) ≤ d(xn, yn) + d(yn, hy) for
all n , it follows that (xn) converges to hy . Thus d is complete.

Assume next that d is a complete metric. Let (π(xn)) be a Cauchy sequence
in X/G . Let (εq) be a decreasing sequence of positive numbers whose sum is
finite. For every q ∈ N , there exists n(q) such that d̃(π(xm), π(xp)) < εq for all
m, p ≥ n(q). We may assume that (n(q)) is increasing. We choose a sequence
(gq) of elements in G as follows: Let g1 = e . Inductively, we choose gq to be such
that d(gq−1xn(q−1), gqxn(q)) < εq−1 . Then (gqxn(q)) is a Cauchy sequence. Since d
is complete, it follows that (gqxn(q)) converges. Since the orbit map π : X → X/G
is continuous, it follows that (π(xn(q))) converges. Then (π(xn)) converges, since

it is a Cauchy sequence having a convergent subsequence. Thus d̃ is complete.

3. Constructing complete G-invariant Riemannian metrics

Recall that a Riemannian metric on a manifold M is called complete, if it induces
a complete metric on each connected component of M .

Let G be a Lie group and let M be a proper smooth G-manifold. Let TM
denote the tangent bundle of M , and let TM ⊕ TM denote the Whitney sum.
Then G acts by differentials on TM and TM ⊕ TM . Let

α : TM ⊕ TM → R

be a Riemannian metric of M . We call α G-invariant if αgx(gv, gw) = αx(v, w),
for all v, w ∈ TxM , for all x ∈ M and for all g ∈ G .

K. Nomizu and H. Ozeki have shown (Theorem 1 in [7]) that for any given
Riemannian metric α on a smooth manifold there exists a complete Riemannian
metric conformal to α . The ideas in their proof also work in the equivariant case.
We briefly explain an equivariant version of their result.

Let α be a smooth G-invariant Riemannian metric of a proper smooth
G-manifold M . Assume α is not complete. Without loss of generality we may
assume that α is not complete on any connected component of M . Let dα denote
the metric α induces on the connected components of M . Then dα is G-invariant.
Let Mp denote the connected component containing p and let

Bp(r) = {q ∈ Mp | dα(p, q) < r}

denote the metric ball with p as a center and with radius r . Moreover, let

d(p) = sup{r | Bp(r) is relatively compact }.

Then d : M → R is a continuous G-invariant real-valued map, and d(p) > 0 for
all p ∈ M . By Lemma 2.3, there exists a smooth G-invariant map f̃ : M → R+ ,
such that f̃(p) > 1

d(p)
for all p ∈ M . Let f = (f̃)2 . Then fα is a complete

smooth G-invariant Riemannian metric of M . The proof of the completeness can
be found in [7].

We obtain:

Theorem 3.1. Let G be a Lie group and let M be a proper smooth G-manifold.
For any smooth G-invariant Riemannian metric α of M there exists a complete
smooth G-invariant Riemannian metric of M which is conformal to α.
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Notice that the existence of a complete smooth G-invariant Riemannian
metric of a proper smooth G-manifold is known, Theorem 0.2 in [4], where it was
obtained as a corollary of an embedding result. That result tells nothing about
conformality and the approach would not work in the real analytic case, which we
study in Section 5.

Let α be a G-invariant Riemannian metric of M . Let Mi , i ∈ I ⊂ N , be
the connected components of M and let di be the metric α induces on Mi . Then
di induces a metric d̃i on π(Mi) = π(GMi), where d̃i(π(x), π(y)) = inf {di(x, gy) |
g ∈ G, gMi = Mi} for all x, y ∈ Mi . Notice that if Mj = gMi , for some g ∈ G ,
then d̃j = d̃i .

Lemma 3.2. Let G be a Lie group and let M be a proper smooth G-manifold.
Let K̃ be a G-compact subset of M and let M0 be a connected component of M .
Let α be a smooth G-invariant Riemannian metric on M . Then α induces a
complete metric on K̃ ∩M0 .

Proof. Similar to the proof of Lemma 2.4.

4. Extending G-invariant Riemannian metrics

In this section we prove the following theorem:

Theorem 4.1. Let G be a Lie group and let M be a proper smooth G-manifold.
Let α be a smooth G-invariant Riemannian metric of M . Then given a G-
compact subset K̃ ⊂ M , there is a complete smooth G-invariant Riemannian
metric γ on M such that γ|K̃ = α|K̃ .

Theorem 4.1 is an equivariant version of a result by J.A. Morrow (Theorem
in [6]). The proof is based on Morrow’s proof. We begin by proving two lemmas.

Lemma 4.2. Let G be a Lie group and let M be a proper smooth G-manifold.
Then M has an exhaustion by G-compact sets.

Proof. Let F be a fat closed fundamental set of M . Then F has an exhaustion
by compact sets Ki , i.e., we can write F =

⋃
Ki , where Ki ⊂ int (Ki+1) for all

i . But then M =
⋃

GKi , each set GKi is G-compact and GKi = GKi ⊂
G(int (Ki+1)) ⊂ int (GKi+1).

Lemma 4.3. Let G be a Lie group and let M be a proper smooth G-manifold.
Let M0 be a connected component of M . Let K̃ and K̂ be G-compact subsets of M
such that K̃ ⊂ int (K̂). Fix a G-invariant Riemannian metric on M and assume
(xn) is a Cauchy sequence in (M \ K̃) ∩ M0 with the property that only finitely
many of the xn are in K̂ . Then M \ K̃ has a connected component containing
infinitely many of the xn .
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Proof. Let 3δ be the distance of K̃ ∩M0 from (M \ int K̂)∩M0 . Then δ > 0.
Let n0 ∈ N be such that xn ∈ M \ K̂ and d(xn, xn+k) ≤ δ for all n ≥ n0 and all
k ∈ N ∪ {0} . Therefore, for given xn, xn+k , where n ≥ n0 and k ≥ 0, there is a
curve in M0 from xn to xn+k whose length is less than 2δ . This curve can not
touch K̃ , since xn, xn+k ∈ M \ K̂ . It follows that xn and xn+k are in the same
connected component of M \ K̃ .

Proof of Theorem 4.1. Let M =
⋃

i GKi , where the sets Ki are as in Lemma 4.2.
Then K̃ ⊂ int(GKi), for some i . The pair {int(GKi+1), M \ GKi} is a covering
of M by open G-invariant sets. By Theorem 4.2.4. (4) in [9], there exist smooth
G-invariant maps %1, %2 : M → R , with the following properties:

1. %1, %2 ≥ 0,

2. %1 + %2 = 1,

3. supp(%1) ⊂ int(GKi+1), supp(%2) ⊂ M \GKi .

Thus %1(x) = 1 for all x ∈ GKi and %2(x) = 1 for all x ∈ M \GKi+1 .

By the construction in Section 3, there exists a smooth G-invariant map
f : M\GKi → R+ such that the G-invariant Riemannian metric γ1 = f(α|M \GKi)
defines a complete metric dγ1 on each connected component of M \ GKi . Then
γ = (%1 + %2f)α is a smooth G-invariant Riemannian metric on M , and γ|K̃ =
α|K̃ .

It remains to show that the metric dγ induced by γ is complete. Let (xn)
be a dγ -Cauchy sequence in a connected component M0 of M . Assume first that
infinitely many xn are in GKi+1 . By Lemma 3.2, the restriction dγ|(GKi+1 ∩M0)
is complete. Thus (xn) has a convergent subsequence. Since (xn) is a dγ -Cauchy
sequence, it must converge.

Assume next that only finitely many xn are in GKi+1 . In this case we may
assume that xn ∈ M \GKi+1 for all n . If infinitely many of the xn are in GKi+2 ,
then (xn) has a convergent subsequence, by Lemma 3.2, and we are done. Assume
then that only finitely many of the xn are in GKi+2 . By passing to a subsequence,
if necessary, we may assume that all the xn are in the same connected component
of M \GKi+1 (see Lemma 4.3). Let

Ur(GKi+1 ∩M0) = {x ∈ M0 | dγ(x, GKi+1 ∩M0) ≤ r}.

By choosing r small enough, we may assume that Ur(GKi+1∩M0) is G-compact.
If infinitely many xn are in Ur(GKi+1∩M0), we are done by Lemma 3.2. Assume
dγ(xn, GKi+1∩M0) > r for all n . Let ε < r . Then any curve which begins at some
xn and whose γ -length is less than ε remains in M0 \ GKi+1 . On M0 \ GKi+1 ,
γ equals γ1 . Consequently, the γ1 -length of any curve of γ -length less than ε
beginning at xn equals the γ -length. Thus (xn) is a dγ1 -Cauchy sequence in
M0 \GKi+1 ⊂ M0 \GKi . Since dγ1 is complete, the sequence (xn) converges.

5. The real analytic case

We call a Lie group G good, if it can be embedded as a closed subgroup of a
Lie group Ĝ , where Ĝ has only finitely many connected components. Thus, for
example, all the closed linear Lie groups are good.
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In this section we construct complete real analytic G-invariant Riemannian
metrics. We have to make the assumption that G is a good Lie group, since so
far the existence of any real analytic G-invariant Riemannian metric has been
proven only for proper real analytic G-manifolds, where G is a good Lie group
(Proposition 1.2 in [3]). Moreover, the approximation result to which we refer in
the proof of Lemma 5.1, has so far been proven only in the case where G is a good
Lie group.

Lemma 5.1. Let G be a good Lie group and let M be a proper real analytic
G-manifold. Let d : M → R+ be a continuous G-invariant map. Then there is a
real analytic G-invariant map fω : M → R+ such that fω(p) > 1

d(p)
for all p ∈ M .

Proof. Let G act trivially on R and diagonally on M×R . Since M is a proper
real analytic G-manifold, also M × R is a proper real analytic G-manifold. Let
id denote the identity map of M and let f̃ : M → R+ be as in Lemma 2.3. Then

(id, f̃) : M → M × R, x 7→ (x, f̃(x)),

is a smooth G-equivariant map.

By Theorem II in [3], real analytic G-equivariant maps are dense among
the smooth G-equivariant maps M → M ×R in the strong-weak topology. Thus
there exists a real analytic G-equivariant map f ∗ : M → M × R approximating
(id, f̃) as well as we like. Let pr : M × R → R denote the projection. Clearly,
we may assume that pr ◦ f ∗(x) > f̃(x) for all x ∈ M . Thus we may choose
fω = pr ◦ f ∗ .

Theorem 5.2. Let G be a good Lie group and let M be a proper real analytic
G-manifold. Then M admits a complete real analytic G-invariant Riemannian
metric. For any real analytic G-invariant Riemannian metric α of M there exists
a complete real analytic G-invariant Riemannian metric conformal to α.

Proof. Let fω be as in Lemma 5.1. Then (fω)2α is a complete real analytic
G-invariant Riemannian metric conformal to α . The first claim follows from the
second claim and from Proposition 1.2 in [3] according to which M has a real
analytic G-invariant Riemannian metric.

Theorem 5.2 is known in the case where G is compact, see Theorem 1.4.5
in [10]. Clearly, no result like Theorem 4.1 can be true in the real analytic case.

6. Discrete G - the case of one orbit type

We begin by recalling a standard way to induce Riemannian metrics from one
manifold to another one: Let M and N be smooth (real analytic) manifolds and
let f : M → N be a smooth (real analytic) immersion. Assume β is a smooth
(real analytic) Riemannian metric on N . Then β induces a smooth (real analytic)
Riemannian metric f ∗β on M , where (f ∗β)x(v, w) = βf(x)(dfx(v), dfx(w)), for
every x ∈ M and for every v, w ∈ TxM .

Let G be a countable discrete group and let M be a proper smooth (real
analytic) G-manifold. Assume M has only one orbit type. Let H be a finite
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subgroup of G corresponding to that orbit type, and let N(H) denote the nor-
malizer of H in G . Let ΓH = N(H)/H . We denote the fixed point set of H in
M by MH . Then ΓH acts properly and freely on MH . It also acts on G/H by
nH · gH 7→ gn−1H . It is well-known that there exists a G-equivariant smooth
(real analytic) diffeomorphism

G/HΓH
×MH → M, [gH, x] 7→ gx,

see e.g. Theorem 4.3.10 in [9]. This induces a diffeomorphism between the orbit
spaces MH/ΓH and M/G .

Let π| : MH → MH/ΓH denote the restriction of the orbit map π : M →
M/G . Then π| is a local diffeomorphism and T(MH/ΓH) ≈ TMH/ΓH . Let α be
a G-invariant Riemannian metric on M and let α| denote its restriction to MH .
Then α| is ΓH -invariant. Thus α| induces a Riemannian metric on MH/ΓH . It
follows that every smooth (real analytic) G-invariant Riemannian metric α on M
induces a smooth (real analytic) Riemannian metric α̃ on M/G . We obtain:

Proposition 6.1. Let G be a countable discrete group and let M be a proper
smooth (real analytic) G-manifold having only one orbit type. Then the map

RiemG(M) → Riem(M/G), α 7→ α̃,

is a bijection. The inverse is given by β 7→ π∗β .

Moreover we have:

Lemma 6.2. Let G and M be as in Proposition 6.1. Let β be a smooth (real
analytic) Riemannian metric on M/G. Then the metric dβ equals the metric d̃π∗β

that dπ∗β induces on M/G.

Proof. The proof follows straightforwardly from the definition of distance on a
Riemannian manifold and from the fact that the orbit map π : M → M/G satisfies
the path lifting property.

Lemmas 2.4 and 6.2 imply:

Corollary 6.3. Let G, M and β be as in Lemma 6.2. Then β is complete if
and only if π∗β is complete.

If G is a discrete group, we can prove the following:

Theorem 6.4. Let G be a countable discrete group and let M be a proper
real analytic G-manifold. Assume M has only one orbit type. Then M has a
real analytic G-invariant Riemannian metric. Moreover, for any real analytic
G-invariant Riemannian metric α of M there exists a complete real analytic G-
invariant Riemannian metric conformal to α.
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Proof. The orbit space M/G can be embedded as a closed real analytic sub-
manifold of a euclidean space, by Grauert’s theorem. Any such embedding f
induces a complete real analytic Riemannian metric αf on M/G . But then, π in-
duces a real analytic G-invariant Riemannian metric π∗(αf ) on M . By Corollary
6.3, π∗(αf ) is complete.

Let then α be any real analytic G-invariant Riemannian metric on M .
Then α induces a real analytic Riemannian metric α̃ on M/G . By the result of
Nomizu and Ozeki, M/G has a complete real analytic Riemannian metric of form
h2α̃ , i.e., conformal to α̃ , where h is a real analytic map M/G → R+ . But now
π∗(h2α̃) = (h ◦ π)2α is a complete real analytic G-invariant Riemannian metric of
M conformal to α .

Notice that Theorem 6.4 is not a special case of Theorem 5.2 since there
are countable discrete groups which are not good.
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