Some basic results concerning *G*-invariant Riemannian metrics

Marja Kankaanrinta*

Communicated by A. Valette

Abstract. In this paper we study complete G-invariant Riemannian metrics. Let G be a Lie group and let M be a proper smooth G-manifold. Let α be a smooth G-invariant Riemannian metric of M, and let \tilde{K} be any G-compact subset of M. We show that M admits a complete smooth G-invariant Riemannian metric β such that $\beta|\tilde{K} = \alpha|\tilde{K}$. We also prove the existence of complete real analytic G-invariant Riemannian metrics for proper real analytic G-invariant Riemannian metric there exists a complete smooth (real analytic) G-invariant Riemannian metric there exists a complete smooth (real analytic) G-invariant Riemannian metric conformal to the original Riemannian metric. To prove the real analytic results we need the assumption that G can be embeddded as a closed subgroup of a Lie group which has only finitely many connected components.

Mathematics Subject Classification: 57S20. Key Words and Phrases: Lie groups, Riemannian metric, real analytic.

1. Introduction

Let G be a Lie group acting properly and smoothly on a smooth manifold M. According to a well-known result (Theorem 4.3.1 in [8]) of R.S. Palais, M has a smooth G-invariant Riemannian metric. An alternative proof of this result is given in [1], Theorem 5.5.2. Moreover, it can be assumed that the Riemannian metric is complete, see Theorem 0.2 in [4].

In this paper we continue the study of G-invariant Riemannian metrics on proper smooth and real analytic G-manifolds. By a result of K. Nomizu and H. Ozeki ([7], Theorem 1), for any given Riemannian metric α of a smooth manifold there exists a complete Riemannian metric conformal to α . We begin by proving an equivariant version of this result (Theorem 3.1).

Let M be a connected smooth manifold with Riemannian metric α . According to a result of J.A. Morrow (Theorem in [6]), M has a complete Riemannian metric which agrees with α on a given compact subset of M. In Section 4, we prove an equivariant version of Morrow's result (Theorem 4.1).

* The author was supported by the Max-Planck-Institut für Mathematik in Bonn.

ISSN 0949–5932 / \$2.50 © Heldermann Verlag

In Section 5, we study real analytic G-invariant Riemannian metrics. Constructing real analytic Riemannian metrics is more complicated than constructing smooth Riemannian metrics, in particular, when we want the Riemannian metrics to be invariant under a group action. Assume that the Lie group G can be embedded as a closed subgroup of a Lie group which has only finitely many connected components. It is known by Proposition 1.2 in [3], that under this assumption every proper real analytic G-manifold has a real analytic G-invariant Riemannian metric. In this paper we prove a real analytic version of Theorem 3.1 by using G-equivariant real analytic approximations.

In Section 6, we study G-invariant Riemannian metrics on a proper Gmanifold M, where G is a countable discrete group. If G acts freely on M, or if, more generally, M has only one orbit type, then the orbit space M/G is a manifold of the same dimension as M. Every Riemannian metric α on M/G induces a Ginvariant Riemannian metric $\pi^*\alpha$ on M. We show that $\pi^*\alpha$ is complete if and only if α is complete. Finally, we prove yet another real analytic version of Theorem 3.1, in the case where M has only one orbit type.

2. Preliminaries

Let G be a Lie group and let M be a smooth, i.e., C^{∞} (real analytic, i.e., C^{ω}) manifold. We assume all the manifolds to be finite dimensional and without boundary and to have at most countably many connected components. Thus they are paracompact. Let G act on M. If the action $G \times M \to M$ is smooth (real analytic), we say that M is a smooth (real analytic) G-manifold. If the action is also proper, i.e., if the map $G \times M \to M \times M$, $(g, x) \mapsto (gx, x)$, is proper, we call M a proper smooth (real analytic) G-manifold.

Let M/G denote the orbit space and let $\pi: M \to M/G$ be the natural projection. We call a subset \tilde{K} of M *G*-compact, if $\pi(\tilde{K})$ is compact.

Let X be a topological space. By the support $\operatorname{supp}(f)$ of a map $f: X \to \mathbb{R}$ we mean the closure of the set $\{x \in X \mid f(x) > 0\}$.

Let F be a subset of M. If every point $x \in M$ has a neighbourhood U such that $G(U, F) = \{g \in G \mid gU \cap F \neq \emptyset\}$ is relatively compact, we call F small.

Definition 2.1. Let G be a Lie group and let M be a proper smooth Gmanifold. If F is small and GF = M, we say that F is a fundamental set for Gin M. If, in addition, F is closed in M, we say that it is a closed fundamental set. We call a closed fundamental set F in M fat, if $G\dot{F} = M$, where \dot{F} denotes the interior of F.

By Lemma 3.6 in [2], every proper smooth G-manifold has a fat closed fundamental set.

A euclidean space on which G acts linearly is called a *linear* G-space.

Lemma 2.2. Let G be a Lie group and let M be a proper smooth G-manifold. Let $f: M \to \mathbb{V}$ be a smooth map into a linear G-space \mathbb{V} . Assume the support of f is small. Then

$$\operatorname{Av}(f) \colon M \to \mathbb{V}, \ x \mapsto \int_G gf(g^{-1}x)dg,$$

where the integral is the left Haar integral over G, is a smooth G-equivariant map.

Proof. Lemma 2.4 in [5].

We denote by \mathbb{R}^+ the set $\{x \in \mathbb{R} \mid x > 0\}$.

Lemma 2.3. Let G be a Lie group and let M be a proper smooth G-manifold. Let $d: M \to \mathbb{R}^+$ be a continuous G-invariant map. Then there is a smooth G-invariant map $\tilde{f}: M \to \mathbb{R}^+$ such that $\tilde{f}(p) > \frac{1}{d(p)}$ for all $p \in M$.

Proof. Let $\hat{f}: M \to \mathbb{R}^+$ be a smooth map such that $\hat{f}(p) > \frac{1}{d(p)}$ for all $p \in M$. Let $\gamma: M \to \mathbb{R}^+ \cup \{0\}$ be a smooth map whose support is small. We may assume that the intersection of the set $\{x \in M \mid \gamma(x) > 0\}$ with each orbit of M contains an open subset of the orbit. By Lemma 2.2, the map

$$\tilde{f}: M \to \mathbb{R}^+, \ p \mapsto \frac{\int_G \gamma(g^{-1}p) \hat{f}(g^{-1}p) dg}{\int_G \gamma(g^{-1}p) dg}$$

is smooth and G-invariant. Clearly, $\tilde{f}(p) > \frac{1}{d(p)}$, for all $p \in M$.

Recall that a metric space X is complete if every Cauchy sequence in X converges. A metric d on a G-space X is called G-invariant if d(gx, gy) = d(x, y) for all $x, y \in X$ and for all $g \in G$. A G-invariant metric d on X induces a metric \tilde{d} on X/G, where $\tilde{d}(\pi(x), \pi(y)) = \inf \{d(x, gy) \mid g \in G\}$.

Lemma 2.4. Let G be a Lie group and let X be a Hausdorff space on which G acts properly. Let d be a G-invariant metric on X and let \tilde{d} be the metric d induces on X/G. Then \tilde{d} is complete if and only if d is complete.

Proof. Assume first that d is a complete metric. We first assume that X has only one orbit, X = Gy. Then X/G is a point. Let $(g_n y)$ be a Cauchy sequence in X. Since G acts properly on X, y has a neighbourhood U such that the closure of the set

$$G(U \mid U) = \{g \in G \mid gU \cap U \neq \emptyset\}$$

is compact. For sufficiently small $\varepsilon > 0$, the ball $B_y(\varepsilon)$ with center y and radius ε is in U. Since $(g_n y)$ is a Cauchy sequence, there exists $n_0 \in \mathbb{N}$ such that

$$d(y, g_{n_0}^{-1}g_n y) = d(g_{n_0}y, g_n y) < \varepsilon$$

for all $n \ge n_0$. Thus $g_{n_0}^{-1}g_n y \in U$ for all $n \ge n_0$ and, consequently, $g_{n_0}^{-1}g_n \in G(U \mid U)$. U). It follows that $(g_{n_0}^{-1}g_n)$ has a subsequence converging to some $g \in \overline{G(U \mid U)}$. Thus $(g_{n_0}^{-1}g_n y)$ has a subsequence converging to gy and $(g_n y)$ has a subsequence converging to $g_{n_0}gy$. Since $(g_n y)$ is a Cauchy sequence, it now follows that it converges.

Assume then that X may have more than one orbit. Let (x_n) be a Cauchy sequence in X. Then $(\pi(x_n))$ is a Cauchy sequence in X/G. Thus $(\pi(x_n))$ converges to some point $\pi(y) \in X/G$, where $y \in X$. Let (ε_n) be a sequence converging to zero, $\varepsilon_n > 0$ for all n, with the property that $\tilde{d}(\pi(x_n), \pi(y)) < \varepsilon_n$ for all n. Then, for every n, there exists $y_n \in Gy$ such that $d(x_n, y_n) < \varepsilon_n$. It is easy to see that (y_n) is a Cauchy sequence. By the first part of the proof, (y_n)

converges to some hy, where $h \in G$. Since $d(x_n, hy) \leq d(x_n, y_n) + d(y_n, hy)$ for all n, it follows that (x_n) converges to hy. Thus d is complete.

Assume next that d is a complete metric. Let $(\pi(x_n))$ be a Cauchy sequence in X/G. Let (ε_q) be a decreasing sequence of positive numbers whose sum is finite. For every $q \in \mathbb{N}$, there exists n(q) such that $\tilde{d}(\pi(x_m), \pi(x_p)) < \varepsilon_q$ for all $m, p \geq n(q)$. We may assume that (n(q)) is increasing. We choose a sequence (g_q) of elements in G as follows: Let $g_1 = e$. Inductively, we choose g_q to be such that $d(g_{q-1}x_{n(q-1)}, g_qx_{n(q)}) < \varepsilon_{q-1}$. Then $(g_qx_{n(q)})$ is a Cauchy sequence. Since dis complete, it follows that $(g_qx_{n(q)})$ converges. Since the orbit map $\pi: X \to X/G$ is continuous, it follows that $(\pi(x_{n(q)}))$ converges. Then $(\pi(x_n))$ converges, since it is a Cauchy sequence having a convergent subsequence. Thus \tilde{d} is complete.

3. Constructing complete G-invariant Riemannian metrics

Recall that a Riemannian metric on a manifold M is called complete, if it induces a complete metric on each connected component of M.

Let G be a Lie group and let M be a proper smooth G-manifold. Let TM denote the tangent bundle of M, and let $TM \oplus TM$ denote the Whitney sum. Then G acts by differentials on TM and $TM \oplus TM$. Let

$$\alpha\colon \mathrm{T}M\oplus\mathrm{T}M\to\mathbb{R}$$

be a Riemannian metric of M. We call α *G*-invariant if $\alpha_{gx}(gv, gw) = \alpha_x(v, w)$, for all $v, w \in T_x M$, for all $x \in M$ and for all $g \in G$.

K. Nomizu and H. Ozeki have shown (Theorem 1 in [7]) that for any given Riemannian metric α on a smooth manifold there exists a complete Riemannian metric conformal to α . The ideas in their proof also work in the equivariant case. We briefly explain an equivariant version of their result.

Let α be a smooth *G*-invariant Riemannian metric of a proper smooth *G*-manifold *M*. Assume α is not complete. Without loss of generality we may assume that α is not complete on any connected component of *M*. Let d_{α} denote the metric α induces on the connected components of *M*. Then d_{α} is *G*-invariant. Let M_p denote the connected component containing *p* and let

$$\mathbf{B}_p(r) = \{ q \in M_p \mid d_\alpha(p,q) < r \}$$

denote the metric ball with p as a center and with radius r. Moreover, let

$$d(p) = \sup\{r \mid B_p(r) \text{ is relatively compact }\}.$$

Then $d: M \to \mathbb{R}$ is a continuous *G*-invariant real-valued map, and d(p) > 0 for all $p \in M$. By Lemma 2.3, there exists a smooth *G*-invariant map $\tilde{f}: M \to \mathbb{R}^+$, such that $\tilde{f}(p) > \frac{1}{d(p)}$ for all $p \in M$. Let $f = (\tilde{f})^2$. Then $f\alpha$ is a complete smooth *G*-invariant Riemannian metric of *M*. The proof of the completeness can be found in [7].

We obtain:

Theorem 3.1. Let G be a Lie group and let M be a proper smooth G-manifold. For any smooth G-invariant Riemannian metric α of M there exists a complete smooth G-invariant Riemannian metric of M which is conformal to α . Notice that the existence of a complete smooth G-invariant Riemannian metric of a proper smooth G-manifold is known, Theorem 0.2 in [4], where it was obtained as a corollary of an embedding result. That result tells nothing about conformality and the approach would not work in the real analytic case, which we study in Section 5.

Let α be a *G*-invariant Riemannian metric of *M*. Let M_i , $i \in I \subset \mathbb{N}$, be the connected components of *M* and let d_i be the metric α induces on M_i . Then d_i induces a metric \tilde{d}_i on $\pi(M_i) = \pi(GM_i)$, where $\tilde{d}_i(\pi(x), \pi(y)) = \inf \{d_i(x, gy) \mid g \in G, gM_i = M_i\}$ for all $x, y \in M_i$. Notice that if $M_j = gM_i$, for some $g \in G$, then $\tilde{d}_j = \tilde{d}_i$.

Lemma 3.2. Let G be a Lie group and let M be a proper smooth G-manifold. Let \tilde{K} be a G-compact subset of M and let M_0 be a connected component of M. Let α be a smooth G-invariant Riemannian metric on M. Then α induces a complete metric on $\tilde{K} \cap M_0$.

Proof. Similar to the proof of Lemma 2.4.

4. Extending *G*-invariant Riemannian metrics

In this section we prove the following theorem:

Theorem 4.1. Let G be a Lie group and let M be a proper smooth G-manifold. Let α be a smooth G-invariant Riemannian metric of M. Then given a Gcompact subset $\tilde{K} \subset M$, there is a complete smooth G-invariant Riemannian metric γ on M such that $\gamma | \tilde{K} = \alpha | \tilde{K}$.

Theorem 4.1 is an equivariant version of a result by J.A. Morrow (Theorem in [6]). The proof is based on Morrow's proof. We begin by proving two lemmas.

Lemma 4.2. Let G be a Lie group and let M be a proper smooth G-manifold. Then M has an exhaustion by G-compact sets.

Proof. Let F be a fat closed fundamental set of M. Then F has an exhaustion by compact sets K_i , i.e., we can write $F = \bigcup K_i$, where $K_i \subset \operatorname{int}(K_{i+1})$ for all i. But then $M = \bigcup GK_i$, each set GK_i is G-compact and $\overline{GK_i} = GK_i \subset G(\operatorname{int}(K_{i+1})) \subset \operatorname{int}(GK_{i+1})$.

Lemma 4.3. Let G be a Lie group and let M be a proper smooth G-manifold. Let M_0 be a connected component of M. Let \tilde{K} and \hat{K} be G-compact subsets of M such that $\tilde{K} \subset int(\hat{K})$. Fix a G-invariant Riemannian metric on M and assume (x_n) is a Cauchy sequence in $(M \setminus \tilde{K}) \cap M_0$ with the property that only finitely many of the x_n are in \hat{K} . Then $M \setminus \tilde{K}$ has a connected component containing infinitely many of the x_n . **Proof.** Let 3δ be the distance of $\hat{K} \cap M_0$ from $(M \setminus \operatorname{int} \hat{K}) \cap M_0$. Then $\delta > 0$. Let $n_0 \in \mathbb{N}$ be such that $x_n \in M \setminus \hat{K}$ and $d(x_n, x_{n+k}) \leq \delta$ for all $n \geq n_0$ and all $k \in \mathbb{N} \cup \{0\}$. Therefore, for given x_n, x_{n+k} , where $n \geq n_0$ and $k \geq 0$, there is a curve in M_0 from x_n to x_{n+k} whose length is less than 2δ . This curve can not touch \tilde{K} , since $x_n, x_{n+k} \in M \setminus \hat{K}$. It follows that x_n and x_{n+k} are in the same connected component of $M \setminus \tilde{K}$.

Proof of Theorem 4.1. Let $M = \bigcup_i GK_i$, where the sets K_i are as in Lemma 4.2. Then $\tilde{K} \subset \operatorname{int}(GK_i)$, for some *i*. The pair { $\operatorname{int}(GK_{i+1}), M \setminus GK_i$ } is a covering of *M* by open *G*-invariant sets. By Theorem 4.2.4. (4) in [9], there exist smooth *G*-invariant maps $\varrho_1, \varrho_2 \colon M \to \mathbb{R}$, with the following properties:

- 1. $\varrho_1, \varrho_2 \ge 0$,
- 2. $\varrho_1 + \varrho_2 = 1$,
- 3. $\operatorname{supp}(\varrho_1) \subset \operatorname{int}(GK_{i+1}), \operatorname{supp}(\varrho_2) \subset M \setminus GK_i.$

Thus $\rho_1(x) = 1$ for all $x \in GK_i$ and $\rho_2(x) = 1$ for all $x \in M \setminus GK_{i+1}$.

By the construction in Section 3, there exists a smooth G-invariant map $f: M \setminus GK_i \to \mathbb{R}^+$ such that the G-invariant Riemannian metric $\gamma_1 = f(\alpha | M \setminus GK_i)$ defines a complete metric d_{γ_1} on each connected component of $M \setminus GK_i$. Then $\gamma = (\varrho_1 + \varrho_2 f)\alpha$ is a smooth G-invariant Riemannian metric on M, and $\gamma | \tilde{K} = \alpha | \tilde{K}$.

It remains to show that the metric d_{γ} induced by γ is complete. Let (x_n) be a d_{γ} -Cauchy sequence in a connected component M_0 of M. Assume first that infinitely many x_n are in GK_{i+1} . By Lemma 3.2, the restriction $d_{\gamma}|(GK_{i+1} \cap M_0)$ is complete. Thus (x_n) has a convergent subsequence. Since (x_n) is a d_{γ} -Cauchy sequence, it must converge.

Assume next that only finitely many x_n are in GK_{i+1} . In this case we may assume that $x_n \in M \setminus GK_{i+1}$ for all n. If infinitely many of the x_n are in GK_{i+2} , then (x_n) has a convergent subsequence, by Lemma 3.2, and we are done. Assume then that only finitely many of the x_n are in GK_{i+2} . By passing to a subsequence, if necessary, we may assume that all the x_n are in the same connected component of $M \setminus GK_{i+1}$ (see Lemma 4.3). Let

$$U_r(GK_{i+1} \cap M_0) = \{ x \in M_0 \mid d_{\gamma}(x, GK_{i+1} \cap M_0) \le r \}.$$

By choosing r small enough, we may assume that $U_r(GK_{i+1} \cap M_0)$ is G-compact. If infinitely many x_n are in $U_r(GK_{i+1} \cap M_0)$, we are done by Lemma 3.2. Assume $d_{\gamma}(x_n, GK_{i+1} \cap M_0) > r$ for all n. Let $\varepsilon < r$. Then any curve which begins at some x_n and whose γ -length is less than ε remains in $M_0 \setminus GK_{i+1}$. On $M_0 \setminus GK_{i+1}$, γ equals γ_1 . Consequently, the γ_1 -length of any curve of γ -length less than ε beginning at x_n equals the γ -length. Thus (x_n) is a d_{γ_1} -Cauchy sequence in $M_0 \setminus GK_{i+1} \subset M_0 \setminus GK_i$. Since d_{γ_1} is complete, the sequence (x_n) converges.

5. The real analytic case

We call a Lie group G good, if it can be embedded as a closed subgroup of a Lie group \hat{G} , where \hat{G} has only finitely many connected components. Thus, for example, all the closed linear Lie groups are good.

In this section we construct complete real analytic G-invariant Riemannian metrics. We have to make the assumption that G is a good Lie group, since so far the existence of *any* real analytic G-invariant Riemannian metric has been proven only for proper real analytic G-manifolds, where G is a good Lie group (Proposition 1.2 in [3]). Moreover, the approximation result to which we refer in the proof of Lemma 5.1, has so far been proven only in the case where G is a good Lie group.

Lemma 5.1. Let G be a good Lie group and let M be a proper real analytic G-manifold. Let $d: M \to \mathbb{R}^+$ be a continuous G-invariant map. Then there is a real analytic G-invariant map $f^{\omega}: M \to \mathbb{R}^+$ such that $f^{\omega}(p) > \frac{1}{d(p)}$ for all $p \in M$.

Proof. Let G act trivially on \mathbb{R} and diagonally on $M \times \mathbb{R}$. Since M is a proper real analytic G-manifold, also $M \times \mathbb{R}$ is a proper real analytic G-manifold. Let id denote the identity map of M and let $\tilde{f}: M \to \mathbb{R}^+$ be as in Lemma 2.3. Then

$$(\mathrm{id}, \tilde{f}) \colon M \to M \times \mathbb{R}, \ x \mapsto (x, \tilde{f}(x)),$$

is a smooth G-equivariant map.

By Theorem II in [3], real analytic *G*-equivariant maps are dense among the smooth *G*-equivariant maps $M \to M \times \mathbb{R}$ in the strong-weak topology. Thus there exists a real analytic *G*-equivariant map $f^* \colon M \to M \times \mathbb{R}$ approximating (id, \tilde{f}) as well as we like. Let pr: $M \times \mathbb{R} \to \mathbb{R}$ denote the projection. Clearly, we may assume that pr $\circ f^*(x) > \tilde{f}(x)$ for all $x \in M$. Thus we may choose $f^{\omega} = \operatorname{pr} \circ f^*$.

Theorem 5.2. Let G be a good Lie group and let M be a proper real analytic G-manifold. Then M admits a complete real analytic G-invariant Riemannian metric. For any real analytic G-invariant Riemannian metric α of M there exists a complete real analytic G-invariant Riemannian metric conformal to α .

Proof. Let f^{ω} be as in Lemma 5.1. Then $(f^{\omega})^2 \alpha$ is a complete real analytic *G*-invariant Riemannian metric conformal to α . The first claim follows from the second claim and from Proposition 1.2 in [3] according to which *M* has a real analytic *G*-invariant Riemannian metric.

Theorem 5.2 is known in the case where G is compact, see Theorem 1.4.5 in [10]. Clearly, no result like Theorem 4.1 can be true in the real analytic case.

6. Discrete G - the case of one orbit type

We begin by recalling a standard way to induce Riemannian metrics from one manifold to another one: Let M and N be smooth (real analytic) manifolds and let $f: M \to N$ be a smooth (real analytic) immersion. Assume β is a smooth (real analytic) Riemannian metric on N. Then β induces a smooth (real analytic) Riemannian metric $f^*\beta$ on M, where $(f^*\beta)_x(v,w) = \beta_{f(x)}(df_x(v), df_x(w))$, for every $x \in M$ and for every $v, w \in T_x M$.

Let G be a countable discrete group and let M be a proper smooth (real analytic) G-manifold. Assume M has only one orbit type. Let H be a finite

subgroup of G corresponding to that orbit type, and let N(H) denote the normalizer of H in G. Let $\Gamma_H = N(H)/H$. We denote the fixed point set of H in M by M^H . Then Γ_H acts properly and freely on M^H . It also acts on G/H by $nH \cdot gH \mapsto gn^{-1}H$. It is well-known that there exists a G-equivariant smooth (real analytic) diffeomorphism

$$G/H_{\Gamma_H} \times M^H \to M, \ [gH, x] \mapsto gx,$$

see e.g. Theorem 4.3.10 in [9]. This induces a diffeomorphism between the orbit spaces M^H/Γ_H and M/G.

Let $\pi |: M^H \to M^H / \Gamma_H$ denote the restriction of the orbit map $\pi : M \to M/G$. Then $\pi |$ is a local diffeomorphism and $T(M^H / \Gamma_H) \approx TM^H / \Gamma_H$. Let α be a *G*-invariant Riemannian metric on *M* and let $\alpha |$ denote its restriction to M^H . Then $\alpha |$ is Γ_H -invariant. Thus $\alpha |$ induces a Riemannian metric on M^H / Γ_H . It follows that every smooth (real analytic) *G*-invariant Riemannian metric α on *M* induces a smooth (real analytic) Riemannian metric $\tilde{\alpha}$ on M/G. We obtain:

Proposition 6.1. Let G be a countable discrete group and let M be a proper smooth (real analytic) G-manifold having only one orbit type. Then the map

$$\operatorname{Riem}_G(M) \to \operatorname{Riem}(M/G), \ \alpha \mapsto \tilde{\alpha},$$

is a bijection. The inverse is given by $\beta \mapsto \pi^*\beta$.

Moreover we have:

Lemma 6.2. Let G and M be as in Proposition 6.1. Let β be a smooth (real analytic) Riemannian metric on M/G. Then the metric d_{β} equals the metric $\tilde{d}_{\pi^*\beta}$ that $d_{\pi^*\beta}$ induces on M/G.

Proof. The proof follows straightforwardly from the definition of distance on a Riemannian manifold and from the fact that the orbit map $\pi: M \to M/G$ satisfies the path lifting property.

Lemmas 2.4 and 6.2 imply:

Corollary 6.3. Let G, M and β be as in Lemma 6.2. Then β is complete if and only if $\pi^*\beta$ is complete.

If G is a discrete group, we can prove the following:

Theorem 6.4. Let G be a countable discrete group and let M be a proper real analytic G-manifold. Assume M has only one orbit type. Then M has a real analytic G-invariant Riemannian metric. Moreover, for any real analytic G-invariant Riemannian metric α of M there exists a complete real analytic Ginvariant Riemannian metric conformal to α . **Proof.** The orbit space M/G can be embedded as a closed real analytic submanifold of a euclidean space, by Grauert's theorem. Any such embedding finduces a complete real analytic Riemannian metric α_f on M/G. But then, π induces a real analytic G-invariant Riemannian metric $\pi^*(\alpha_f)$ on M. By Corollary 6.3, $\pi^*(\alpha_f)$ is complete.

Let then α be any real analytic *G*-invariant Riemannian metric on *M*. Then α induces a real analytic Riemannian metric $\tilde{\alpha}$ on M/G. By the result of Nomizu and Ozeki, M/G has a complete real analytic Riemannian metric of form $h^2\tilde{\alpha}$, i.e., conformal to $\tilde{\alpha}$, where *h* is a real analytic map $M/G \to \mathbb{R}^+$. But now $\pi^*(h^2\tilde{\alpha}) = (h \circ \pi)^2 \alpha$ is a complete real analytic *G*-invariant Riemannian metric of *M* conformal to α .

Notice that Theorem 6.4 is not a special case of Theorem 5.2 since there are countable discrete groups which are not good.

References

- [1] Abels, H., and P. Strantzalos, *Proper transformation groups*, manuscript.
- [2] Illman, S., and M. Kankaanrinta, A new topology for the set $C^{\infty,G}(M, N)$ of *G*-equivariant smooth maps, Math. Ann. **316** (2000), 139–168.
- [3] —, Three basic results for real analytic proper G-manifolds, Math. Ann. **316** (2000), 169–183.
- [4] Kankaanrinta, M., Proper smooth G-manifolds have complete G-invariant Riemannian metrics, Topology Appl. **153** (2005), 610–619.
- [5] —, Equivariant collaring, tubular neighbourhood and gluing theorems for proper Lie group actions, Alg. and Geom. Topology 7 (2007), 1–27.
- [6] Morrow, J. A., *The denseness of complete Riemannian metrics*, J. Diff. Geom. 4 (1970), 225–226.
- [7] Nomizu, K., and H. Ozeki, *The existence of complete Riemannian metrics*, Proc. Am. Math. Soc. **12** (1961), 889–891.
- [8] Palais, R. S., On the existence of slices for actions of noncompact Lie groups, Ann. of Math. (2) **73** (1961), 295–323.
- [9] Pflaum, M. J., "Analytic and geometric study of stratified spaces," Lecture Notes in Mathematics 1768, Springer-Verlag, Berlin–Heidelberg, 2001.
- [10] Ravaioli, E., Approximation of G-equivariant maps in the very-strong-weak topology, Ann. Acad. Sci. Fenn., Ser A I Math. Dissertationes 147 (2005), 1–64.

Marja Kankaanrinta Department of Mathematics PO Box 400137 University of Virginia Charlottesville, VA 22904-4137 USA mk5aq@virginia.edu

Received September 23, 2007 and in final form January 31, 2008