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Abstract. Let k be a local field, G the set of k -points of a connected
semisimple algebraic k -group G , and H the set of k -points of a connected
reductive algebraic k -subgroup H of G such that rankk(H) = rankk(G) − 1.
We consider discrete subgroups Γ of G acting properly discontinuously on G/H
and we examine their images under a Cartan projection µ : G → V + , where V +

is a closed convex cone in a real finite-dimensional vector space. We show that
if Γ is neither a torsion group nor a virtually cyclic group, then µ(Γ) is almost
entirely contained in one connected component of V + \CH , where CH denotes
the convex hull of µ(H) in V + . As an application, we describe all torsion-free
discrete subgroups of G × G acting properly discontinuously on G by left and
right translation when rankk(G) = 1.
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1. Introduction

Let k be a local field, G the set of k-points of a connected semisimple algebraic
k-group of rank one, and ∆G the diagonal of G × G . In this paper we describe
all torsion-free discrete subgroups of G × G acting properly discontinuously on
(G × G)/∆G (Theorem 1.3). To this end, we prove a general result on the
Cartan projection of discrete groups acting properly discontinuously on corank-
one reductive homogeneous spaces (Theorem 1.2). This result holds for algebraic
groups over any local field, but we first state it in the setting of real Lie groups
(Theorem 1.1).

1.1. The main result in the real case. Let G be a real connected semisim-
ple linear Lie group and H a closed connected reductive subgroup of G . It
is known that G contains an infinite discrete subgroup Γ acting properly dis-
continuously on G/H if and only if rankR(H) < rankR(G); this is the Calabi-
Markus phenomenon ([12], Cor. 4.4). In this paper we consider the case when
rankR(H) = rankR(G)− 1.
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Let us introduce some notation. Fix a Cartan subgroup A of G with Lie
algebra a . Denote by Φ = Φ(A,G) the system of restricted roots of A in G , by Φ+

a system of positive roots, by A+ = {a ∈ A, χ(a) ≥ 1 ∀χ ∈ Φ+} the corresponding
closed Weyl chamber, and set V + = logA+ ⊂ a . There is a maximal compact
subgroup K of G such that the Cartan decomposition G = KA+K holds: every
element g ∈ G may be written as g = k1ak2 for some k1, k2 ∈ K and a unique
a ∈ A+ ([9], Chap. 9, Th. 1.1). Setting µ(g) = log a defines a map µ : G → V + ,
which is continuous, proper, and surjective. It is called the Cartan projection
relative to the Cartan decomposition G = KA+K .

Since rankR(H) = rankR(G) − 1, the set µ(H) separates V + into finitely
many connected components, which are permuted by the opposition involution ι .
(Recall that for every a ∈ A+ we have ι(log a) = log a′ , where a′ is the unique
element of A+ conjugate to a−1 .)

In this setting our main result is the following.

Theorem 1.1. Let G be a real connected semisimple linear Lie group and H a
closed connected reductive subgroup of G such that rankR(H) = rankR(G) − 1.
For every discrete subgroup Γ of G acting properly discontinuously on G/H , there
exists a connected component C of V +\µ(H) such that µ(γ) ∈ C∪ι(C) for almost
all γ ∈ Γ. If Γ is not virtually cyclic, then ι(C) = C .

Recall that a group Γ is said to satisfy some property virtually if it contains
a subgroup of finite index satisfying this property. A property is said to be true for
almost all γ ∈ Γ if it is true for all γ ∈ Γ with at most finitely many exceptions.

By results of Chevalley ([7], Chap. 2, Th. 14 & 15), if G is a real connected
semisimple linear Lie group and H a closed connected reductive subgroup of G ,
then G (resp. H ) is the identity component (for the real topology) of the set
of R-points of a connected semisimple linear algebraic R-group G (resp. of a
connected reductive algebraic R-subgroup H of G). Theorem 1.1 is equivalent to
the analogous result where G (resp. H ) is replaced by G(R) (resp. by H(R)). We
prove this result not only for R-groups, but more generally for algebraic groups
over any local field k .

1.2. The main result in the general case. Let k be a local field, i.e., R , C , a
finite extension of Qp , or the field Fq((t)) of formal Laurent series over a finite field
Fq . Let G be the set of k-points of a connected semisimple algebraic k-group G
and H the set of k-points of a connected reductive algebraic k-subgroup H of G
such that rankk(H) = rankk(G) − 1. There is a Cartan projection µ of G to a
closed convex cone V + in some real finite-dimensional vector space (see Section 2).
The convex hull CH of µ(H) in V + separates V + into finitely many connected
components. The opposition involution µ(G) → µ(G), which maps µ(g) to µ(g−1)
for all g ∈ G , extends to an involution ι of V + preserving CH and permuting
the connected components of V + \ CH (see Section 3.1). Our main result in this
general setting is the following.

Theorem 1.2. Let k be a local field, G the set of k-points of a connected
semisimple algebraic k-group G, and H the set of k-points of a connected reduc-
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tive algebraic k-subgroup H of G such that rankk(H) = rankk(G)−1. For every
discrete subgroup Γ of G that acts properly discontinuously on G/H and that is
not a torsion group, there exists a connected component C of V + \ CH such that
µ(γ) ∈ C ∪ ι(C) for almost all γ ∈ Γ. If Γ is not virtually cyclic, then ι(C) = C .

When k has characteristic zero, Theorem 1.2 holds without assuming that
Γ is not a torsion group: indeed, in this case every discrete torsion subgroup of G
is finite (Lemma 3.1). This is not true when k = Fq((t)) for some finite field Fq :
in positive characteristic there are infinite discrete torsion subgroups of G that
do not satisfy the conclusions of Theorem 1.2. We will give an example of such a
group in Section 5.2.

1.3. An application to (G × G)/∆G . Our first application of Theorem 1.2,
which is actually the main motivation of this paper, concerns homogeneous spaces
of the form (G×G)/∆G , where G is the set of k-points of a connected semisimple
algebraic k-group G with rankk(G) = 1, and where ∆G is the diagonal of G×G .
In this situation, if µ is a Cartan projection of G , then µ×µ is a Cartan projection
of G×G ; we identify V + with R+ ×R+ and CH with the diagonal of R+ ×R+ .

Theorem 1.3. Let k be a local field, G the set of k-points of a connected
semisimple algebraic k-group G with rankk(G) = 1, and ∆G the diagonal of G×G.
Let Γ be a discrete subgroup of G×G.

1. Assume that Γ is torsion-free. Then it acts properly discontinuously on
(G × G)/∆G if and only if, up to switching the factors of G × G, it is a
graph of the form

{(γ, ϕ(γ)), γ ∈ Γ0},

where Γ0 is a discrete subgroup of G and ϕ : Γ0 → G is a group homomor-
phism such that for all R > 0, almost all γ ∈ Γ0 satisfy µ(ϕ(γ)) < µ(γ)−R .

2. Assume that Γ is residually finite and is not a torsion group. Then it acts
properly discontinuously on (G×G)/∆G if and only if, up to switching the
factors of G×G, it has a finite-index subgroup Γ′ that is a graph as in 1.

Note that (g, h)∆G 7→ gh−1 defines a (G × G)-equivariant isomorphism
from (G × G)/∆G to G , where G × G acts on G by (g1, g2) · g = g1gg

−1
2 . Thus

Theorem 1.3 describes all torsion-free discrete subgroups of G×G acting properly
discontinuously on G by left and right translation.

Recall that a group is said to be residually finite if the intersection of its
normal finite-index subgroups is trivial. It is known that if Γ ⊂ G×G is finitely
generated, then it is residually finite ([1], Cor. 1); if moreover k has characteristic
zero, then Γ has a finite-index subgroup that is torsion-free by Selberg’s lemma
([21], Lem. 8).

In the case of G = PSL2(R), Theorem 1.3 has been proved for torsion-
free groups by Kulkarni and Raymond [15]. In [13], Kobayashi considered the
more general case when G is a real connected semisimple linear Lie group with
rankR(G) = 1: he showed that every torsion-free discrete subgroup of G×G acting
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properly discontinuously on (G×G)/∆G is a graph, and asked whether one of the
two projections of this graph is always discrete in G . Theorem 1.3 above answers
this question positively and generalizes Kobayashi’s result to all local fields. It
gives a complete description of all torsion-free discrete subgroups of G×G acting
properly discontinuously on (G×G)/∆G in terms of a Cartan projection of G .

Theorem 1.3 applies to three-dimensional compact anti-de Sitter manifolds,
i.e., to three-dimensional compact Lorentz manifolds with constant negative sec-
tional curvature. Indeed, such manifolds are modeled on

AdS3 =
{
(x1, x2, x3, x4) ∈ R4, x2

1 + x2
2 − x2

3 − x2
4 = 1

}
endowed with the Lorentz metric induced by x2

1+x
2
2−x2

3−x2
4 , which identifies with

(SL2(R) × SL2(R))/∆SL2(R) (see Section 5.3). Since three-dimensional compact
anti-de Sitter manifolds are complete [11], they are quotients of the universal
covering of AdS3 . By [15], up to a finite covering, they may in fact be written as

Γ\(PSL2(R)× PSL2(R))/∆PSL2(R),

where Γ is a torsion-free discrete subgroup of PSL2(R)×PSL2(R) acting properly
discontinuously on (PSL2(R) × PSL2(R))/∆PSL2(R) . We refer the reader to the
introduction of [20] for more details.

More generally, for any local field k and any quadratic form Q of Witt
index two on k4 , the quadric

S(Q) = {x ∈ k4, Q(x) = 1}

identifies with (SL2(k)×SL2(k))/∆SL2(k) (see Section 5.3). Theorem 1.3 therefore
applies to the discrete subgroups of SL2(k) × SL2(k) acting properly discontinu-
ously on S(Q).

Note that Theorem 1.3 cannot be generalized to groups G of higher rank.
Indeed, take for instance G = SO(2, 2n), and let Γ1 (resp. Γ2 ) be a torsion-
free discrete subgroup of SO(1, 2n) (resp. of U(1, n)), where SO(1, 2n) (resp.
U(1, n)) is seen as a subgroup of G . By [12], Prop. 4.9, Γ1 × Γ2 acts prop-
erly discontinuously on (G × G)/∆G . Other examples are obtained by replacing
the triple (SO(2, 2n), SO(1, 2n),U(1, n)) by (SO(4, 4n), SO(3, 4n), Sp(1, n)) or by
(U(2, 2n),U(1)× U(1, n), Sp(1, n)) (see [12]).

1.4. An application to SLn(k)/SLn−1(k). As another application of Theo-
rem 1.2, we give a simpler proof of the following result, due to Benoist [2].

Corollary 1.4. Let k be a local field of characteristic zero. If n ≥ 3 is
odd, then every discrete subgroup of SLn(k) acting properly discontinuously on
SLn(k)/SLn−1(k) is virtually abelian.

Theorem 1.2 actually implies a slightly stronger version of Corollary 1.4:
we may replace “virtually abelian” by “virtually cyclic”.

One consequence of Corollary 1.4 is that in characteristic zero if n ≥ 3
is odd, then the homogeneous space SLn(k)/SLn−1(k) has no compact quotient,
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i.e., there is no discrete subgroup Γ of SLn(k) acting properly discontinuously on
SLn(k)/SLn−1(k) with Γ\SLn(k)/SLn−1(k) compact (see [2]).

1.5. Organization of the paper. In Section 2 we recall basic facts about
Bruhat-Tits buildings, Cartan decompositions, and Cartan projections. Section 3
is devoted to the proof of Theorem 1.2 ; we also discuss the assumption that Γ is not
a torsion group. In Section 4 we show how Theorem 1.2 implies Corollary 1.4 in the
case of G = SLn(k) and H = SLn−1(k). In Section 5 we prove Theorem 1.3 ; we
also show that the hypothesis that Γ is not a torsion group is necessary in positive
characteristic, and we describe our application to three-dimensional quadrics.

Acknowledgements. I warmly thank Yves Benoist for his advice and encour-
agement.

2. Cartan projections

Throughout this article, we denote by k a local field, i.e., R , C , a finite extension
of Qp , or the field Fq((t)) of formal Laurent series over a finite field Fq . If k = R
or C , we denote by | · | the usual absolute value on k ; we set k+ = [1,+∞[ . If k
is nonarchimedean, we denote by O the ring of integers of k , by q the cardinal of
the residue field of k , by ω the (additive) valuation on k sending any uniformizer
to 1, and by | · | = q−ω(·) the corresponding (multiplicative) absolute value; we set
k+ = {x ∈ k, |x| ≥ 1} . If G is an algebraic group, we denote by G the set of its
k-points and by g the Lie algebra of G .

In this section, we recall a few well-known facts on connected semisimple
algebraic k-groups and their Cartan projections.

2.1. Weyl chambers. Fix a connected semisimple algebraic k-group G . Recall
that the k-split k-tori of G are all conjugate over k ([4], Th. 4.21). Fix such a
torus A and let N (resp. Z) denote its normalizer (resp. centralizer) in G . The
group X(A) of k-characters of A and the group Y (A) of k-cocharacters are both
free Z-modules of rank r = rankk(G), and there is a perfect pairing

〈· , ·〉 : X(A)× Y (A) −→ Z.

If k is nonarchimedean, we set A◦ = A ; if k = R or C , we set

A◦ =
{
a ∈ A , χ(a) ∈ ]0,+∞[ ∀χ ∈ X(A)

}
.

The set Φ = Φ(A,G) of restricted roots of A in G , i.e., the set of nontrivial
weights of A in the adjoint representation of G , is a root system of the real vector
space V = Y (A)⊗Z R ([4], Cor. 5.8). The group W = N/Z is finite and identifies
with the Weyl group of Φ ([4], §5.1 & Th. 5.3). Choose a basis ∆ = {α1, . . . , αr}
of Φ and let

A+ =
{
a ∈ A◦, αi(a) ∈ k+ ∀ 1 ≤ i ≤ r

}(
resp. V + =

{
x ∈ V, 〈αi, x〉 ≥ 0 ∀ 1 ≤ i ≤ r

})
denote the closed positive Weyl chamber in A◦ (resp. in V ) corresponding to ∆;
the set V + is a closed convex cone in V . If k = R or C , then V identifies with a
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and V + with logA+ ⊂ a ; we endow V with the Euclidean norm ‖ · ‖ induced by
the Killing form of g . If k is nonarchimedean, we endow V with any W -invariant
Euclidean norm ‖ · ‖ .

2.2. The Bruhat-Tits building. In this subsection we assume k to be nonar-
chimedean. We briefly recall the construction of the Bruhat-Tits building of G ,
which is a metric space on which G acts properly discontinuously by isometries
with a compact fundamental domain. We refer to the original articles [5] and [6],
but the reader may also find [19] useful.

Let Res denote the restriction homomorphism from X(Z) to X(A), where
X(Z) denotes the group of k-characters of Z . There is a unique group homomor-
phism ν : Z → V such that

〈Res(χ), ν(z)〉 = −ω(χ(z))

for all χ ∈ X(Z) and z ∈ Z . The set ν(Z) is a lattice in V , and ν(A) is a
sublattice of ν(Z) of finite index. The action of Z on V by translation along ν(Z)
extends to an action of N on V by affine isometries; such an extension is unique
up to translation.

For every α ∈ Φ, let Uα denote the connected unipotent k-subgroup of G
corresponding to the root α , as defined in [6]; the Lie algebra of Uα is gα ⊕ g2α ,
where giα is the subspace of elements X ∈ g such that Ad(a)(X) = α(a)iX for
all a ∈ A . For every u ∈ Uα , u 6= 1, the set N ∩U−α uU−α has a unique element,
which acts on V by the orthogonal reflection in some affine hyperplane Hu , defined
by an equation of the form 〈α, x〉+ψα(u) = 0, where ψα(u) ∈ R . For every x ∈ V ,
set

Uα,x =
{
u ∈ Uα, u = 1 or 〈α, x〉+ ψα(u) ≥ 0

}
;

by [6] it is a subgroup of Uα . Set Nx = {n ∈ N, n · x = x} and let Kx denote
the subgroup of G generated by Nx and the subgroups Uα,x , where α ∈ Φ. The
group Kx is a maximal compact open subgroup of G .

With this notation, the Bruhat-Tits building X of G is the set of equiva-
lence classes of G× V for the relation

(g, x) ∼ (g′, x′) ⇐⇒ ∃n ∈ N such that x′ = n · x et g−1g′n ∈ Kx.

We endow X with the quotient topology induced by the discrete topology of G and
the Euclidean structure of V . By construction, V embeds into X ; we identify it
with its image in X . The group G acts on X by

g′ · (g, x) = (g′g , x),

where (g, x) denotes the image of (g, x) ∈ G×V in X . This action is properly dis-
continuous, with a compact fundamental domain. By construction, the stabilizer
of any point x ∈ V is Kx . The apartments of X are the sets g · V , where g ∈ G ;
the walls of X are the sets g · Hu , where g ∈ G and u ∈ Uα for some α ∈ Φ. A
chamber of X (or alcove) is a connected component of X deprived of its walls.
The space X has the following property: for any pair (x, x′) of points in X , there
is an apartment containing both x and x′ . We can therefore endow X with a
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distance d defined as follows: d(x, x′) is the Euclidean distance between x and x′

in any apartment containing x and x′ (it does not depend on the apartment). The
group G acts on X by isometries for this distance.

2.3. Cartan decompositions and Cartan projections. If k = R or C , then
there is a maximal compact subgroup K of G such that the Cartan decomposition
G = KA+K holds: for every g ∈ G , there are elements k1, k2 ∈ K and a unique
a ∈ A+ such that g = k1ak2 ([9], Chap. 9, Th. 1.1). Setting µ(g) = log a defines
a map µ : G → V + ' logA+ , which is continuous, proper, and surjective. It is
called the Cartan projection relative to the Cartan decomposition G = KA+K .

Now assume k to be nonarchimedean. Consider the extremal point x0 of
the closed cone V + , defined by 〈αi, x0〉 = 0 for all 1 ≤ i ≤ r , and set K = Kx0 .
Let Z+ ⊂ Z denote the inverse image of V + under ν . By [5] the group G acts
transitively on the set of couples (A, C), where A is an apartment of X and C is
a chamber of X contained in A . This can be translated into algebraic terms by
the existence of a Cartan decomposition G = KZ+K : for every g ∈ G there are
elements k1 , k2 ∈ K and z ∈ Z+ such that g = k1zk2 , and ν(z) is uniquely
defined. Setting µ(g) = ν(z) defines a map µ : G→ V + , which is continuous and
proper; its image µ(G) is the intersection of V + with a lattice of V . The map µ
is called the Cartan projection relative to the Cartan decomposition G = KZ+K .

2.4. A geometric interpretation. Let X be either the Riemannian symmetric
space G/K if k = R or C , or the Bruhat-Tits building of G if k is nonar-
chimedean. We now recall a geometric interpretation of the Cartan projection µ
in terms of a distance on X .

Assume that k = R or C , and let g = k + p be the Cartan decomposition
of g corresponding to the Cartan decomposition G = KA+K . The Killing form κ
of g is definite positive on p , hence induces a Euclidean norm ‖ · ‖ on p . Let π
denote the natural projection of G onto X = G/K , and set x0 = π(1) ∈ X . The
map dπ1 realizes an isomorphism between p and the tangent space of X at x0 ;
thus κ|p×p induces a G-invariant Riemannian metric on X . Let d denote the
corresponding distance on X . The following result is probably well known; we
prove it for the reader’s convenience.

Lemma 2.1 (k = R or C). Let ρ : X → V + denote the map sending
x = g · x0 ∈ X to µ(g). For all x, x′ ∈ X ,

‖ρ(x)− ρ(x′)‖ ≤ d(x, x′).

Moreover, the restriction of ρ to A+ · x0 is an isometry.

Proof. We identify V + with logA+ ⊂ a . Let Exp : p → X denote the
exponential diffeomorphism mapping Y ∈ p to γY (1), where γY is the unique
geodesic in X such that γY (0) = x0 and γ′Y (0) = dπ1(Y ). For every x ∈ X , there
exists k ∈ K such that x = k exp(ρ(x)) · x0 ; by [9], Chap. 4, Th. 3.3,

x = Exp
(
(Ad k)(ρ(x))

)
. (2.1)

Fix x, x′ ∈ X and let γ = (yt)t∈[0,1] be the geodesic segment from y0 = x to
y1 = x′ . By [9], p. 295, and (2.1), the map t 7→ ρ(yt) is smooth and there exists
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a smooth map t 7→ kt from [0, 1] to K such that yt = Exp((Ad kt)(ρ(yt))) for
all t ∈ [0, 1]. Since X has nonpositive sectional curvature ([9], Chap. 5, Th. 3.1),
the length of γ in X is not less than the length of Exp−1(γ) in p ([9], Chap. 1,
Th. 13.1), namely,

d(x, x′) ≥
∫ 1

0

∥∥∥∥d
(
(Ad kt)(ρ(yt))

)
dt

(t′)

∥∥∥∥ dt′. (2.2)

Now for all t′ ∈ [0, 1],

d
(
(Ad kt)(ρ(yt))

)
dt

(t′) = (Ad kt′)
(d(ρ(yt))

dt
(t′)

)
+

(d(Ad kt)

dt
(t′)

)(
ρ(yt′)

)
,

where

(Ad kt′)
(d(ρ(yt))

dt
(t′)

)
∈ (Ad kt′)(a)

and (d(Ad kt)

dt
(t′)

)(
ρ(yt′)

)
= (Ad kt′)

(
ad

(d(k−1
t′ kt′+t)

dt
(0)

)(
ρ(yt′)

))
∈ (Ad kt′)

(
[k, a]

)
.

The subspaces a and [k, a] are orthogonal with respect to κ . Indeed, the decom-
position of g into eigenspaces under the adjoint action of a is orthogonal with
respect to κ ([9], Chap. 3, Th. 4.2); in particular, a is orthogonal to the sum [g, a]
of the root spaces of g . Since κ is invariant under AdG ([9], p. 131), the subspaces
(Ad kt′)(a) and (Ad kt′)([k, a]) are orthogonal with respect to κ and∥∥∥∥d

(
(Ad kt)(ρ(yt))

)
dt

(t′)

∥∥∥∥ ≥
∥∥∥(Ad kt′)

(d(ρ(yt))

dt
(t′)

)∥∥∥ (2.3)

=
∥∥∥d(ρ(yt))

dt
(t′)

∥∥∥.
Thus

d(x, x′) ≥
∫ 1

0

∥∥∥d(ρ(yt))

dt
(t′)

∥∥∥ dt′ = ‖ρ(x)− ρ(x′)‖.

If x, x′ ∈ A+ · x0 , then kt = 1 for all t ∈ [0, 1]; hence (2.3) is an equality.
Moreover, in this case (2.2) is also an equality since the geodesic submanifold
A · x0 = Exp(a) has zero sectional curvature ([9], Chap. 5, §3, Rem. 2). This
implies d(x, x′) = ‖ρ(x)− ρ(x′)‖ .

Since K fixes x0 and since G acts on X by isometries, Lemma 2.1 implies
that for every a ∈ A+ and every g ∈ KaK ,

d(g · x0, x0) = d(a · x0, x0) = ‖ρ(a · x0)− ρ(x0)‖ = ‖µ(g)‖. (2.4)

Now assume k to be nonarchimedean and let X denote the Bruhat-Tits
building of G , endowed with the distance d defined in Section 2.2. Recall that
K = Kx0 is the stabilizer of the point x0 ∈ V defined by 〈αi, x0〉 = 0 for all
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1 ≤ i ≤ r . Since G acts on X by isometries and since V is isometrically embedded
as an apartment in X , for every z ∈ Z+ and every g ∈ KzK ,

d(g · x0, x0) = d(z · x0, x0) = d(µ(g), x0) = ‖µ(g)‖, (2.5)

where ‖ · ‖ is the Euclidean norm on V . Lemma 2.1 also holds in this setting.

Lemma 2.2 (k nonarchimedean). Let ρ : X → V + denote the map sending
x = g · x0 ∈ X to µ(g). For all x, x′ ∈ X ,

‖ρ(x)− ρ(x′)‖ ≤ d(x, x′).

Proof. Let C denote the unique chamber in V + containing x0 . We first
recall the construction of a retraction ρV,C : X → V , as defined in [5], §2.3.
For every x ∈ X , there is an apartment A containing both x and C ([5],
Prop. 2.3.1), and there is an element k ∈ K fixing C pointwise and mapping A
to V ([5], Prop. 2.3.2). The point k · x ∈ V does not depend on the choice
of A and k . Setting ρV,C(x) = k · x defines a map ρV,C : X → V such that for
all x, x′ ∈ X ,

‖ρV,C(x)− ρV,C(x
′)‖ ≤ d(x, x′)

([5], Prop. 2.5.3). We claim that for all x, x′ ∈ X ,

‖ρ(x)− ρ(x′)‖ ≤ ‖ρV,C(x)− ρV,C(x
′)‖. (2.6)

Indeed, it follows from the definitions of ρ and ρV,C that ρV,C(x) ∈ W · ρ(x) for all
x ∈ X . Since the norm ‖ · ‖ is W -invariant, it is enough to show that

‖ρ(x)− ρ(x′)‖ ≤ ‖ρ(x)− w · ρ(x′)‖ (2.7)

for all x, x′ ∈ X and all w ∈ W . Recall that W is generated by the set S of
orthogonal reflections in the hyperplanes {x ∈ V, 〈αi, x〉 = 0

}
, where 1 ≤ i ≤ r .

Write w = sm . . . s1 , where sj ∈ S for all j . We argue by induction on m .
If (sm . . . s1) · ρ(x′) ∈ V + , then sm . . . s1 = 1 and (2.7) is obvious. Otherwise,
the points ρ(x) and (sm . . . s1) · ρ(x′) lie in two distinct connected components
of V \ H , where H denotes the hyperplane of fixed points of sm . Let y be the
intersection point of H with the line segment [ρ(x), (sm . . . s1) · ρ(x′)]. Since sm

is an orthogonal reflection,

‖ρ(x)− (sm . . . s1) · ρ(x′)‖ = ‖ρ(x)− y‖+ ‖y − (sm . . . s1) · ρ(x′)‖
= ‖ρ(x)− y‖+ ‖y − (sm−1 . . . s1) · ρ(x′)‖
≥ ‖ρ(x)− (sm−1 . . . s1) · ρ(x′)‖.

By the induction assumption, ‖ρ(x) − (sm . . . s1) · ρ(x′)‖ ≥ ‖ρ(x) − ρ(x′)‖ . This
proves (2.6) and completes the proof of Lemma 2.2.

The following result will be needed in the proof of Theorem 1.2.
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Lemma 2.3. Let k be a local field, G the set of k-points of a connected
semisimple algebraic k-group, and µ : G → V + a Cartan projection. For all
g, g′ ∈ G, the following two inequalities hold:

‖µ(gg′)− µ(g)‖ ≤ ‖µ(g′)‖, (2.8)

‖µ(gg′)− µ(g′)‖ ≤ ‖µ(g)‖. (2.9)

Proof. Since G acts on X by isometries, (2.8) follows immediately from
Lemmas 2.1 and 2.2, together with Formulas (2.4) and (2.5). We claim that (2.8)
implies (2.9). Indeed, if w ∈ W denotes the “longest” element of W , such that
w · z−1 ∈ Z+ for all z ∈ Z+ , then µ(g−1) = w · (−µ(g)) for all g ∈ G . Since
the norm ‖ · ‖ on V is W -invariant, the opposition involution ι : µ(G) → µ(G),
which maps µ(g) to µ(g−1) for all g ∈ G , is an isometry. Together with (2.8),
this implies

‖µ(gg′)− µ(g′)‖ = ‖µ(g′
−1
g−1)− µ(g′

−1
)‖ ≤ ‖µ(g−1)‖ = ‖µ(g)‖.

3. Proper actions on G/H in the corank-one case

In this section we give a proof of Theorem 1.2 and we discuss the assumption that
Γ is not a torsion group.

3.1. Proof of Theorem 1.2. With the notation of Section 2, let H be a
connected reductive algebraic k-subgroup of G with rankk(H) = rankk(G) − 1.
Fix a maximal k-split k-torus AH of H . After conjugating H by an element of G ,
we may assume that AH ⊂ A ([4], Th. 4.21). Recall that H is the almost product
of a central torus and of its derived group, which is semisimple ([4], Prop. 2.2).
Therefore H admits a Cartan decomposition H = KHZ

+
HKH , where ZH is the

centralizer of AH in H and KH is some maximal compact subgroup of H . We
now use a result proved by Mostow [17] and Karpelevich [10] in the real case,
and by Landvogt [16] in the nonarchimedean case: after conjugating H by an
element of G , we may assume that KH ⊂ K . Thus µ(H) = µ(ZH) and the
convex hull CH of µ(H) in V + is the intersection of V + with a finite union of
hyperplanes of V parametrized by the Weyl group W . The opposition involution
ι : µ(G) → µ(G), which maps µ(g) to µ(g−1) for all g ∈ G , extends to an
isometry of V + , still denoted by ι . It preserves µ(H), hence CH , and permutes
the connected components of V + \ CH .

Our proof of Theorem 1.2 is based on the properness criterion of Benoist
([2], Cor. 5.2) and Kobayashi ([14], Th. 1.1), which states that a subgroup Γ of G
acts properly discontinuously on G/H if and only if the set µ(Γ) ∩ (µ(H) + C ′)
is bounded for every compact subset C ′ of V . This condition is equivalent to the
boundedness of µ(Γ) ∩ (CH + C ′) for every compact subset C ′ of V .

Our proof is also based on the following observation (∗): if (xn)n∈N is a
sequence of points of V + whose distance to CH is larger than a given R > 0,
and if ‖xn+1 − xn‖ ≤ R for all n ∈ N , then all elements xn belong to the same
connected component of V + \ CH .

We now give a proof of Theorem 1.2. Let C1, . . . , Cs be the connected
components of V + \ CH and let Γ be a discrete subgroup of G acting properly
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discontinuously on G/H . The set µ(Γ) is invariant under the opposition involu-
tion ι .

Assume that Γ is not a torsion group and fix an element γ ∈ Γ of infinite
order. Since Γ is discrete and since µ is a proper map, the sequence (‖µ(γn)‖)n∈Z
tends to infinity as n tends to ±∞ . Let F be the set of elements γ′ ∈ Γ such
that the distance of µ(γ′) to CH is ≤ ‖µ(γ)‖ . ¿From the discreteness of Γ,
the properness of µ , and the properness criterion, we deduce that F is finite.
Moreover, by Lemma 2.3, ∥∥µ(γn+1)− µ(γn)

∥∥ ≤ ‖µ(γ)‖

for all n ∈ Z . By the observation (∗) above, there are integers 1 ≤ i, j ≤ s
such that µ(γn) ∈ Ci (resp. µ(γ−n) ∈ Cj ) for almost all n ∈ N . The opposition
involution ι interchanges Ci and Cj .

Note that for every γ′ ∈ Γ, Lemma 2.3 implies∥∥µ(γ′γn)− µ(γn)
∥∥ ≤ ‖µ(γ′)‖

for all n ∈ Z . By the properness criterion, µ(γ′γn) ∈ Ci and µ(γ′γ−n) ∈ Cj for
almost all n ∈ N .

First consider the case i = j . Let F ′ be the set of elements γ′ ∈ Γ such
that µ(γ′) /∈ Ci . We claim that F ′ is finite. Indeed, let γ′ ∈ F ′ . By Lemma 2.3,∥∥µ(γ′γn+1)− µ(γ′γn)

∥∥ ≤ ‖µ(γ)‖

for all n ∈ Z . Moreover, µ(γ′) /∈ Ci , and we have just seen that µ(γ′γn) ∈ Ci for
almost all n ∈ Z . By the observation (∗) above, there is an integer n ∈ Z such
that γ′γn ∈ F . Therefore, F ′ ⊂ FγZ . Since F is finite and since for every f ∈ F
the element fγn belongs to Ci for almost all n ∈ Z , the set F ′ is finite. This
proves the claim.

Now consider the case i 6= j . We claim that the subgroup γZ has finite
index in Γ. Indeed, let γ′ ∈ Γ. By Lemma 2.3,∥∥µ(γ′γn+1)− µ(γ′γn)

∥∥ ≤ ‖µ(γ)‖

for all n ∈ Z . Moreover, we have seen that µ(γ′γn) ∈ Ci and µ(γ′γ−n) ∈ Cj for
almost all n ∈ N . By the observation (∗) above, there is an integer n ∈ Z such
that γ′γn ∈ F . Therefore, Γ = FγZ . Since F is finite, γZ has finite index in Γ.
This proves the claim and completes the proof of Theorem 1.2.

3.2. Discrete torsion groups in characteristic zero. In this subsection
we show that when k has characteristic zero, the assumption that Γ is not a
torsion group may be removed from Theorem 1.2. When Γ is known to be finitely
generated, this follows from Selberg’s lemma ([21], Lem. 8). In general it is also
true, based on the following lemma, which is probably well known.

Lemma 3.1. Let k be a local field of characteristic zero and G a linear alge-
braic k-group. If k is a p-adic field, then every torsion subgroup of G is finite.
If k = R or C, then every discrete torsion subgroup of G is finite.
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Proof. Embed G in GLn for some n ≥ 1. Let Γ be a torsion subgroup of G .
By a result of Schur ([8], Th. 36.14), Γ contains a finite-index abelian subgroup Γ′

whose elements are all semisimple. To show that Γ is finite, it is enough to prove
the finiteness of Γ′ .

Assume that k is a p-adic field. The elements of Γ′ are diagonalizable in a
common basis over an algebraic closure of k . For every γ ∈ Γ′ the eigenvalues of γ
are roots of unity; they generate a cyclotomic extension kγ of k , and [kγ : k] ≤ n
since the characteristic polynomial of γ has degree n . Now there are only finitely
many cyclotomic extensions of k of degree ≤ n ([18], Chap. 2, Th. 7.12 &
Prop. 7.13). Therefore the field generated by all extensions kγ , γ ∈ Γ′ , has finite
degree over k , hence contains only finitely many roots of unity ([18], Chap. 2,
Prop. 5.7). This implies the finiteness of Γ′ .

Assume that k = R or C and that in addition Γ is discrete in G . The
elements of Γ′ are diagonalizable in a common basis over C , and their eigenvalues
are roots of unity. Since the group U of complex numbers of modulus one is
compact, every discrete subgroup of Un is finite. This implies the finiteness
of Γ′ .

When k has positive characteristic, there exist infinite discrete torsion
subgroups in G . They all have a unipotent subgroup of finite index (this follows
from [22], Prop. 2.8, for instance). Some of them do not satisfy the conclusions of
Theorem 1.2 : we will give an example of such a group in Section 5.2.

4. An application to SLn(k)/SLn−1(k)

In this section we discuss the case of G = SLn(k) and H = SLn−1(k). We show
how Theorem 1.2 implies Corollary 1.4.

Let G = SLn for some integer n ≥ 2. The group A of diagonal matrices of
determinant one is a maximal k-split k-torus of G , which is its own centralizer,
i.e., Z = A . The corresponding roots are the linear forms εi − εj , 1 ≤ i 6= j ≤ n ,
where

εi

(
diag(a1, . . . , an)

)
= ai.

A basis of the root system of A in G is given by the roots εi − εi+1 , where
1 ≤ i ≤ n− 1. If k = R or C (resp. if k is nonarchimedean), the corresponding
positive Weyl chamber is

A+ =
{
diag(a1, . . . , an) ∈ A, ai ∈ ]0,+∞[ ∀i and a1 ≥ . . . ≥ an

}(
resp. A+ =

{
diag(a1, . . . , an) ∈ A, |a1| ≥ . . . ≥ |an|

})
.

Set K = SO(n) (resp. K = SU(n), resp. K = SLn(O)) if k = R (resp. if k = C ,
resp. if k is nonarchimedean). The Cartan decomposition G = KA+K holds. If
k = R (resp. if k = C), it follows from the polar decomposition in GLn(R) (resp.
in GLn(C)) and from the reduction of symmetric (resp. Hermitian) matrices; if k
is nonarchimedean, it follows from the structure theorem for finitely generated
modules over a principal ideal domain. The real vector space

V =
{
(x1, . . . , xn) ∈ Rn, x1 + . . .+ xn = 0

}
' Rn−1
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and its closed convex cone

V + =
{
(x1, . . . , xn) ∈ V, x1 ≥ . . . ≥ xn

}
do not depend on k . Let µ : G → V + denote the Cartan projection relative to
the Cartan decomposition G = KA+K . If k = R or C , then µ(g) = (x1, . . . , xn),
where e2xi is the i-th eigenvalue of tgg .

Let H = SLn−1 , which we consider as a subgroup of G by embedding
(n− 1)× (n− 1) matrices in the upper left corner of n× n matrices. Then

CH =
⋃

1≤i≤n

{
(x1, . . . , xn) ∈ V +, xi = 0

}
and the connected components of V + \ CH are the sets

Ci =
{
(x1, . . . , xn) ∈ V +, xi > 0 > xi+1

}
,

where 1 ≤ i ≤ n− 1. The opposition involution ι : V + → V + is given by

ι(x1, . . . , xn) = (−xn, . . . ,−x1) ;

it maps Ci to Cn−i for all 1 ≤ i ≤ n− 1. Here is a reformulation of Theorem 1.2
in the present situation.

Proposition 4.1. Let Γ be a discrete subgroup of SLn(k) that acts properly
discontinuously on SLn(k)/SLn−1(k) and that is not a torsion group. There exists
an integer 1 ≤ i ≤ n− 1 such that µ(γ) ∈ Ci ∪Cn−i for almost all γ ∈ Γ. If Γ is
not virtually cyclic, then Ci = Cn−i .

Note that if n is odd, then Ci 6= Cn−i for all 1 ≤ i ≤ n− 1, which implies
Corollary 1.4. Another consequence of Proposition 4.1 is the following.

Corollary 4.2. Assume that n ≥ 4 is even. Let Γ be a discrete subgroup
of SLn(k) that acts properly discontinuously on SLn(k)/SLn−1(k) and that is not
virtually cyclic. Every element γ ∈ Γ of infinite order has n/2 eigenvalues t with
|t| > 1 and n/2 eigenvalues t with |t| < 1, counting multiplicities.

The eigenvalues of an element g ∈ SLn(k) belong to some finite extension kg

of k ; in Corollary 4.2 we denote by | · | the unique absolute value on kg extending
the absolute value | · | on k . As above, replacing k by kg , we obtain a Cartan
decomposition SLn(kg) = KgA

+
g Kg with K = Kg∩SLn(k) and A+ = A+

g ∩SLn(k).
The corresponding Cartan projection µg : SLn(kg) → V + extends µ .

Proof of Corollary 4.2. We may assume that Γ is not a torsion group. Since
the only connected component of V +\CH that is invariant under ι is Cn/2 , Propo-
sition 4.1 implies that µ(γ) ∈ Cn/2 for almost all γ ∈ Γ. Fix an element γ ∈ Γ of
infinite order. Since Γ is discrete and since µ is a proper map, ‖µ(γm)‖ → +∞
as m→ +∞ . Therefore

1

m
µ(γm) ∈ Cn/2
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for almost all m ≥ 1. Let λ : SLn(k) → V + be the Lyapunov projection of SLn(k),
mapping g ∈ SLn(k) to µg(ag), where ag ∈ SLn(kg) is any diagonal matrix whose
entries are the eigenvalues of g counted with multiplicities. By [3], Cor. 2.5,

λ(γ) = lim
m→+∞

1

m
µ(γm).

Thus λ(γ) belongs to the closure of Cn/2 in V + . We claim that λ(γ) /∈ CH .
Indeed, by [3], Lem. 4.6, there is a constant Cγ > 0 such that for all m ≥ 1,

‖λ(γm)− µ(γm)‖ ≤ Cγ. (4.1)

If λ(γ) ∈ CH , then λ(γm) = mλ(γ) ∈ CH for all m ≥ 1, so that (4.1) would con-
tradict the properness criterion (see Section 3.1). This proves the claim. Therefore,
λ(γ) ∈ Cn/2 , which means that γ has n/2 eigenvalues t with |t| > 1 and n/2
eigenvalues t with |t| < 1, counting multiplicities.

5. An application to (G × G)/∆G in the rank-one case

In this section we prove Theorem 1.3, we show that the hypothesis that Γ is not
a torsion group is necessary in the case of a local field of positive characteristic,
and we describe an application to three-dimensional quadrics over a local field.

5.1. Proof of Theorem 1.3. Assume that rankk(G) = 1 and let ∆G denote
the diagonal of G ×G . Fix a Cartan projection µ of G and let µ• = µ × µ be
the corresponding Cartan projection of G × G . We identify the cone V + with
R+ × R+ , and C∆G

with the diagonal of R+ × R+ . There are two connected
components in V + \ C∆G

; let C+ (resp. C− ) denote the one above (resp. below)
the diagonal. The opposition involution ι is the identity.

We now give a proof of Theorem 1.3. Let Γ be a discrete subgroup of G×G
that acts properly discontinuously on (G×G)/∆G and that is not a torsion group.
Since ι is the identity, Theorem 1.2 implies that either µ•(γ) ∈ C+ for almost all
γ ∈ Γ, or µ•(γ) ∈ C− for almost all γ ∈ Γ. Up to switching the factors of G×G ,
we may assume that µ•(γ) ∈ C− for almost all γ ∈ Γ.

Let pr1 (resp. pr2 ) denote the projection of Γ on the first (resp. second)
factor of G × G . The kernel F of pr1 is finite. If Γ is residually finite, then Γ
contains a normal finite-index subgroup Γ′ such that Γ′ ∩ F is trivial. If Γ is
torsion-free, then F is already trivial and we set Γ′ = Γ. In both cases, if we set
Γ0 = pr1(Γ), then ϕ = pr2 ◦ pr−1

1 : Γ0 → G is a group homomorphism and

Γ′ = {(g, ϕ(g)), g ∈ Γ0}.

Since µ(ϕ(g)) < µ(g) for almost all g ∈ Γ0 , the group Γ0 is discrete in G . Indeed,
if it were not, then there would be a sequence (gn)n∈N of pairwise distinct points
of Γ0 converging to 1. Since Γ is discrete in G×G and since µ is a proper map, the
sequence (µ(ϕ(gn)))n∈N would tend to infinity. Therefore there would be infinitely
many elements (g, ϕ(g)) ∈ Γ with µ(ϕ(g)) ≥ µ(g), contradicting the assumption
that µ•(γ) ∈ C− for almost all γ ∈ Γ. This proves that Γ0 is discrete in G . Since
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µ(ϕ(g)) < µ(g) for almost all g ∈ Γ0 , the properness criterion (see Section 3.1)
ensures that for all R > 0, almost all g ∈ Γ0 satisfy µ(ϕ(g)) < µ(g)−R .

Conversely, if there exist a discrete subgroup Γ0 of G and a group homo-
morphism ϕ : Γ0 → G satisfying the conditions of Theorem 1.3, then Γ acts
properly discontinuously on (G×G)/∆G by the properness criterion.

5.2. Infinite torsion groups in positive characteristic. Take G = SL2 over
k = Fq((t)), where Fq is a finite field of characteristic p . We now give an example
of an infinite discrete torsion subgroup of G×G that acts properly discontinuously
on (G×G)/∆G and nevertheless does not satisfy the conclusions of Theorems 1.2
and 1.3. The Cartan decomposition G = KA+K holds, where K = SL2(O) =
SL2(Fq[[t]]) and where A+ is the set of diagonal matrices diag(a1, a2) of G with
|a1| ≥ |a2| (see Section 4). Let µ be the corresponding Cartan projection. For
every n ∈ N , set

gn =

(
1 t−n

0 1

)
.

Note that for 1 ≤ r ≤ p− 1,
µ(gr

n) = 2n.

This can be seen by expanding gr
n as follows:

gr
n =

(
1 rt−n

0 1

)
=

(
r 0
tn r−1

) (
t−n 0
0 tn

) (
r−1tn 1
−1 0

)
.

Let Γ be the subgroup of G × G generated by the elements (gn, g2n) and the
elements (g2n, gn), where n ∈ N . It is an infinite residually finite discrete subgroup
of G and each of its nontrivial elements has order p . The group Γ acts properly
discontinuously on (G × G)/∆G by the properness criterion (see Section 3.1). It
is not virtually cyclic. However, the two connected components of V + \C∆G

both
contain infinitely many points of the form µ(γ), γ ∈ Γ.

5.3. An application to three-dimensional quadrics over a local field. As
was pointed out in the introduction, one of the motivations for our investigation of
(G×G)/∆G in the rank-one case is its application to three-dimensional quadrics
over a local field k . We now discuss this point in more detail.

Let k be a local field and Q be a quadratic form on k4 . Consider the unit
sphere

S(Q) = {x ∈ k4, Q(x) = 1}.

By Witt’s theorem, it identifies with the homogeneous space SO(Q)/H , where
SO(Q) is the special orthogonal group of Q and H is an algebraic k-subgroup
of SO(Q) defined as the stabilizer of some point x ∈ S(Q).

If Q is k-anisotropic, then SO(Q) is compact ([4], §4.24); thus every
discrete subgroup of SO(Q) is finite and acts properly discontinuously on S(Q).

Assume that Q has Witt index one, i.e., that rankk(SO(Q)) = 1. If
H is k-anisotropic, then H is compact, and every discrete subgroup of SO(Q)
acts properly discontinuously on S(Q). On the other hand, if rankk(H) = 1,
then every discrete subgroup of SO(Q) acting properly discontinuously on S(Q)
is finite: this is the Calabi-Markus phenomenon ([12], Cor. 4.4). For instance,
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if k = R , then every quadratic form Q on k4 of Witt index one is equivalent to
x2

1 − x2
2 − x2

3 − x2
4 or to x2

1 + x2
2 + x2

3 − x2
4 . In the first case, SO(Q) (resp. H )

is isomorphic to SO(1, 3) (resp. to SO(3)) and every discrete subgroup of SO(Q)
acts properly discontinuously on S(Q). In the second case, SO(Q) (resp. H ) is
isomorphic to SO(3, 1) (resp. to SO(2, 1)) and every discrete subgroup of SO(Q)
acting properly discontinuously on S(Q) is finite.

Now assume that Q has Witt index two, i.e., that rankk(SO(Q)) = 2.
For instance, if k = R , then SO(Q) (resp. H ) is isomorphic to SO(2, 2) (resp.
to SO(1, 2)). We may assume that Q is given by

Q(x1, x2, x3, x4) = x1x4 − x2x3

and that H is the stabilizer of x = (1, 0, 0, 1) ∈ S(Q). Note that there is
a natural transitive action of the group SL2(k) × SL2(k) on S(Q). Indeed,
SL2(k) × SL2(k) acts on M2(k) by the formula (g1, g2) · u = g1u g

−1
2 for all

(g1, g2) ∈ SL2(k) × SL2(k) and all u ∈ M2(k); identifying M2(k) with k4 gives
a linear action of SL2(k) × SL2(k) on k4 that preserves Q and is transitive
on S(Q). Since the stabilizer of x = (1, 0, 0, 1) in SL2(k)× SL2(k) is ∆SL2(k) , the
quadric S(Q) identifies with the homogeneous space (SL2(k) × SL2(k))/∆SL2(k) .
By Theorem 1.3, up to switching the factors of SL2(k)× SL2(k), the torsion-free
discrete subgroups Γ of SL2(k)×SL2(k) acting properly discontinuously on S(Q)
are exactly the graphs of the form

Γ = {(γ, ϕ(γ)), γ ∈ Γ0},

where Γ0 is a discrete subgroup of SL2(k) and ϕ : Γ0 → SL2(k) is a group homo-
morphism such that for all R > 0, almost all γ ∈ Γ0 satisfy µ(ϕ(γ)) < µ(γ)−R .
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