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Abstract. The aim of this article is a Satake type theorem for super au-
tomorphic forms on a complex bounded symmetric super domain B of rank 1
with respect to a lattice Γ. ’Super’ means: additional odd (anticommuting) co-
ordinates on an ordinary complex bounded symmetric domain B (the so-called
body of B ) of rank 1. Satake’s theorem says that for large weight k all spaces

sMk(Γ) ∩ Ls
k (Γ\B) ,

s ∈ [1,∞] coincide, where sMk(Γ) denotes the space of super automorphic
forms for Γ with respect to the weight k , and Ls

k (Γ\B) denotes the space of
s-intergrable functions with respect to a certain measure on the quotient Γ\B
depending on k . So all these spaces are equal to the space

sSk(Γ) := sMk(Γ) ∩ L2
k (Γ\B) of super cusp forms for Γ to the weight k .

As it is already well known for automorphic forms on ordinary complex bounded
symmetric domains, we will give a proof of this theorem using an unbounded
realization H of B and Fourier decomposition at the cusps of the quotient Γ\B
mapped to ∞ via a partial Cayley transformation.
Mathematics Subject Index 2000: 11F55 (Primary), 32C11 (Secondary).
Key Words and Phrases: Automorphic and cusp forms, complex bounded sym-
metric domains, super symmetry, semisimple Lie groups, unbounded realization
of a complex bounded symmetric domain.

1. Introduction

Automorphic and cusp forms on an ordinary complex bounded symmetric domain
B are a classical field of research. Let us give a general definition:

Definition 1.1. [Automorphic and cusp forms in general] Suppose B ⊂ Cn is
a bounded symmetric domain and G a semisimple Lie group acting transitively
and holomorphically on B . Let j ∈ C∞(G × B, C) be a cocycle, this means j is
a smooth function on G×B , holomorphic in the second entry, such that

j(gh, z) = j(g, hz)j(h, z)

for all g, h ∈ G and z ∈ B . Let k ∈ Z and Γ @ G be a discrete subgroup.
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(i) A holomorphic function f ∈ O(B) on B is called an automorphic form of
weight k with respect to Γ if and only if f = f |γ for all γ ∈ Γ , where

f |g (z) := f (gz) j (g, z)k for all z ∈ B and g ∈ G , or equivalently the lift

f̃ ∈ C∞(G) is left-Γ-invariant, where f̃(g) := f |g (0) for all g ∈ G . The space of
automorphic forms of weight k with respect to Γ is denoted by Mk(Γ).

(ii) An automorphic form f ∈Mk(Γ) is called a cusp form of weight k with respect

to Γ if and only if f̃ ∈ L2 (Γ\G). The Hilbert space of cusp forms of weight k
with respect to Γ is denoted by Sk(Γ).

In the simplest case, where B ⊂ C is just the unit disc, G = SU(1, 1)
acting on B via Möbius transformations,

j(g, z) =
1

cz + d
, g =

(
a b
c d

)
∈ SU(1, 1) ,

and Γ @ G is a lattice, this means a discrete subgroup with finite covolume, one
needs a more restrictive definition for automorphic and cusp forms. It is well
known that after adding the cusps of Γ\B in ∂B , which are always finitely many,
the quotient Γ\B is compact. Having fixed a cusp z0 ∈ ∂B of Γ\B there exists
a Cayley transform R mapping biholomorphically the unit disc B onto the upper
half plane H ⊂ C and z0 to i∞ . Since Γ is a lattice there exists an element γ ∈ Γ
such that

RγR−1 =

(
1 λ0

0 1

)
,

λ0 \ {0} , acting on H as translation w 7→ w + λ0 . If a function f ∈ O(B) fulfills
f |γ = f then f |R−1 ∈ O(H) fulfills

f |R−1(w) = f |R−1|RγR−1 (w) = f |R−1 (w + λ0) ,

and so it has a Fourier decomposition

f |R−1(w) =
∑

m∈ 1
λ0

Z

cme2πimw . (1)

Definition 1.2. [Automorphic and cusp forms on the unit disc B ]

(i) A holomorphic function f ∈ O(B) is called an automorphic form of weight k
for Γ if and only if f |γ = f for all γ ∈ Γ and for each cusp z0 ∈ ∂B of Γ\B it
has a positive Fourier decomposition, this means precisely cm = 0 in (1) for all
m < 0, or equivalently f |R−1(w) is bounded for Im w  ∞ .

(ii) An automorphic form f ∈ Mk(Γ) is called a cusp form if and only if it has
a strictly positive Fourier decomposition for each cusp z0 ∈ ∂B of Γ\B , which
means cm = 0 in (1) for all m ≤ 0, or equivalently f |R−1(w) 0 for Im w  ∞ .

However, in contrast to the one dimensional case, for higher dimension
n ≥ 2, when B ⊂ Cn is the unit ball, G = SU(n, 1) acting on B via Möbius
transformations,

j(g, z) =
1

cz + d
, g =

(
A b
c d

)
}n
← n + 1

∈ SU(n, 1) ,
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and Γ @ G is a lattice, the situation is different: Then again one has partial
Cayley transforms R mapping B onto an unbounded realization H of B , which
traditionally is a generalization of the right half plane instead of the upper half
plane, but a holomorphic function f ∈ O(B) fulfilling f |γ = f for all γ ∈ Γ
automatically has a ’positive’ Fourier decomposition at each cusp, and therefore
the general definition 1.1 is considered to be the right one. This is known as
Köcher’s principle, see for example in section 11.5 of [1]. Futhermore Satake’s
theorem says that in this case for weight k ≥ 2n all spaces

Mk(Γ) ∩ Ls
k (Γ\G) ,

s ∈ [ 1,∞ ] , coincide, and therefore are equal to Sk(Γ) = Mk(Γ) ∩ L2
k (Γ\G) ,

where
Ls

k (Γ\G) :=
{

f ∈ CB
∣∣∣ f̃ ∈ Ls (Γ\G)

}
.

The crucial argument is that for any function f ∈ Mk(Γ), k ≥ 2n and
s ∈ [ 1,∞ ] the following are equivalent:

(i) f ∈ Ls
k (Γ\G)

(ii) f has a ’strictly positive’ Fourier decomposition at each cusp.

In [1] one can find this theory in more generality.

Since in recent time super symmetry has become an important field of
research for mathematics and physics, one is also interested in super automorphic
resp. super cusp forms on complex bounded symmetric super domains with even
(commuting) and odd (anticommuting) coordinates, and this article generalizes
Köcher’s principle and Satake’s theorem for super automorphic forms on the
complex super unit ball B with the usual unit ball B ∈ Cn , n ≥ 2, as body,
see theorems 3.4 (ii) and 3.1. Acknowledgement: The present paper is part of my

PhD thesis. So I would like to thank my doctoral advisor Professor H. Upmeier for
many helpful comments and mentoring and all the other persons who accompanied
me during the time I spent in Marburg.

2. The general setting

Let n ∈ IN, n ≥ 2, r ∈ IN and B := Bn|r be the unique complex (n, r)-dimensional
super domain with the unit ball

B := Bn := {z ∈ Cn | z∗z < 1} ⊂ Cn

as body, holomorphic even (commuting) coordinate functions z1, . . . , zn and holo-
morphic odd (anticommuting) coordinate functions ζ1, . . . , ζr . Let us denote the
space of (smooth) super functions (with values in C ) on B by D(B) and the space
of super holomorphic functions on B by O(B) @ D(B). Let
℘(r) := ℘ ({1, . . . , r}). Then one can decompose every f ∈ D(B) uniquely as

f =
∑

I,J∈℘(r)

fIJζIζ
J
,
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all fIJ ∈ C∞(B, C), I, J ∈ ℘(r), where ζI := ζi1 · · · ζiρ ,
I = {i1, . . . , iρ} ∈ ℘(r), i1 < · · · < iρ , and every f ∈ O(B) uniquely as

f =
∑

I∈℘(r)

fIζ
I ,

where all fI ∈ O(B). So

D(B) ' C∞(B, C)⊗
∧

(Cr)�
∧

(Cr) = C∞(B, C)⊗
∧(

C2r
)

and
O(B) ' O(B)⊗

∧
(Cr) .

Define

G := sS (U(n, 1)× U(r))

:=

{(
g′ 0
0 E

)
∈ U(n, 1)× U(r)

∣∣∣∣ det g′ = det E

}
,

which is a real ((n + 1)2 + r2 − 1) -dimensional Lie group. Then we have a holo-
morphic action of G on B given by super fractional linear (Möbius) transforma-
tions

g

(
z
ζ

)
:=

(
(Az + b) (cz + d)−1

Eζ (cz + d)−1

)
,

where we split

g :=

 A b
c d

0

0 E

 }n
← n + 1
}r

.

The stabilizer subgroup of 0 in G is

K := sS ((U(n)× U(1))× U(r))

=


 A 0

0 d
0

0 E

 ∈ U(n)× U(1)× U(r)

∣∣∣∣∣∣ det A d = det E

 ,

which is a maximal compact subgroup of G . On G × B we define the cocycle
j ∈ C∞(G × B, C) as j(g, z) := (cz + d)−1 for all g ∈ G and z ∈ B . It is
holomorphic in the second entry. Let k ∈ Z be fixed. Then we have a right-
representation of G on D(B) given by

|g : D(B)→ D(B) , f |g
(

z
ζ

)
:= f

(
g

(
z
ζ

))
j(g, z)k

for all g ∈ G , which is holomorphic, more precisely if f ∈ O(B) and g ∈ G then
f |g ∈ O(B). Finally let Γ be a discrete subgroup of G .

Definition 2.1. [Super automorphic forms] Let f ∈ O(B). Then f is called a
super automorphic form for Γ of weight k if and only if f |γ = f for all γ ∈ Γ.
We denote the space of super automorphic forms for Γ of weight k by sMk(Γ).
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Let C0|r be the purely odd complex super domain with one point {0} as
body and odd coordinate functions η1, . . . , ηr . Then
D
(
C0|r) ' ∧ (Cr)�

∧
(Cr) '

∧
(C2r). Let us define a lift:

˜ : D(B) → C∞(G, C)⊗D
(
C0|r) ' C∞(G, C)⊗

∧
(Cr)�

∧
(Cr) ,

f 7→ f̃ ,

where

f̃(g) := f |g
(

0
η

)
= f

(
g

(
0
η

))
j (g,0)k

for all f ∈ D(B) and g ∈ G . Let f ∈ O(B). Then clearly

f̃ ∈ C∞(G, C) ⊗ O
(
C0|r) and f ∈ sMk(Γ) ⇔ f̃ ∈ C∞ (Γ\G, C) ⊗ O

(
C0|r) since

for all g ∈ G

C∞(G)⊗D
(
C0|r) lg−→ C∞(G)⊗D

(
C0|r)

↑e % ↑e
D(B) −→

|g
D(B)

,

where lg : C∞(G) ⊗ D
(
C0|r) → C∞(G) ⊗ D

(
C0|r) , lg(f)(h) := f(gh) simply

denotes the left translation with the element g ∈ G .

Let 〈 , 〉 be the canonical scalar product on D
(
C0|r) ' ∧ (C2r) (semi-

linear in the second entry). Then for all a ∈ D
(
C0|r) we write |a| :=

√
〈a, a〉 , and

〈 , 〉 induces a ’scalar product’

(f, h)Γ :=

∫
Γ\G

〈
h̃, f̃

〉
for all f, g ∈ D(B) such that 〈h̃, f̃〉 ∈ L1(Γ\G) and for all s ∈ ] 0,∞ ] a ’norm’

||f ||s,Γ :=

∣∣∣∣∣∣∣∣ ∣∣∣f̃ ∣∣∣ ∣∣∣∣∣∣∣∣
s,Γ\G

for all f ∈ D(B) such that
∣∣∣f̃ ∣∣∣ ∈ Ls (Γ\G). Recall that the scalar product ( , )Γ

and the norm || ||s,Γ actually depend on the weight k . Let us define

Ls
k(Γ\B) :=

{
f ∈ D(B)

∣∣∣∣ f̃ ∈ C∞(Γ\G, C)⊗D
(
C0|r) , ||f ||s,Γ <∞

}
for all s ∈ ] 0,∞ ] .

Definition 2.2. [Super cusp forms] Let f ∈ sMk(Γ). f is called a super cusp
form for Γ of weight k if and only if f ∈ L2

k(Γ\B). The C- vector space of all
super cusp forms for Γ of weight k is denoted by sSk(Γ). It is a Hilbert space.

Observe that |g respects the splitting

O(B) =
r⊕

ρ=0

O(ρ)(B)
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for all g ∈ G , where O(ρ)(B) is the space of all f =
∑

I∈℘(r) , |I|=ρ fIζ
I , all

fI ∈ O(B), I ∈ ℘(r), |I| = ρ , ρ = 0, . . . , r , and ˜ maps the space O(ρ)(B) into

C∞(G, C)⊗O(ρ)
(
C0|r) ' C∞(G, C)

∧(ρ) (Cr). Therefore we have splittings

sMk(Γ) =
r⊕

ρ=0

sM
(ρ)
k (Γ) and sSk(Γ) =

r⊕
ρ=0

sS
(ρ)
k (Γ) ,

where sM
(ρ)
k (Γ) := sMk(Γ)∩O(ρ)(B), sS

(ρ)
k (Γ) := sSk(Γ)∩O(ρ)(B), ρ = 0, . . . , r ,

and the last sum is orthogonal.

In the following we will use the Jordan triple determinant ∆ : Cn×Cn → C
given by

∆ (z,w) := 1−w∗z

for all z,w ∈ Cn . Let us recall the basic properties:

(i) |j (g,0)| = ∆ (g0, g0)
1
2 for all g ∈ G ,

(ii) ∆ (gz, gw) = ∆ (z,w) j (g, z) j (g,w) for all g ∈ G and z,w ∈ B , and

(iii)
∫

B
∆ (z, z)λ dVLeb <∞ if and only if λ > −1.

Since
∣∣det (z 7→ gz)′

∣∣ = |j(g, z)|n+1 and because of (i) we have the G-

invariant volume element ∆(z, z)−(n+1)dVLeb on B .

For all I ∈ ℘(r), h ∈ O(B), z ∈ B and g =

(
g′ 0
0 E

)
∈ G we have

(
hζI
)∣∣

g
(z) = h (g′z) (Eη)I j (g, z)k+|I| ,

where E ∈ U(r). So for all s ∈ ] 0,∞ ] , f =
∑

I∈℘(r) fIζ
I and

h =
∑

I∈℘(r) hIζ
I ∈ O(B) we obtain

||f ||s,Γ ≡

∣∣∣∣∣∣
∣∣∣∣∣∣
√ ∑

I∈℘(r)

|fI |2 ∆ (z, z)k+|I|

∣∣∣∣∣∣
∣∣∣∣∣∣
s, Γ\B, ∆(z,z)−(n+1)dVLeb

,

and

(f, h)Γ ≡
∑

I∈℘(r)

∫
Γ\B

fIhI∆ (z, z)k+|I|−(n+1) dVLeb

if 〈h̃, f̃〉 ∈ L1(Γ\G), where ’≡ ’ means equality up to a constant 6= 0 depending
on Γ, k and s .

3. Satake’s theorem in the super case

We keep the notation of section 1, in particular n ∈ IN, n ≥ 2. Here now the
main theorem of the article, which is the analog to Satake’s theorem for super
automorphic forms:
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Theorem 3.1. Let ρ ∈ {0, . . . , r}. Assume Γ @ G is a lattice (discrete such
that vol (Γ\G) <∞, Γ\G not necessarily compact). Then

sS
(ρ)
k (Γ) = sM

(ρ)
k (Γ) ∩ Ls

k (Γ\B)

for all s ∈ [ 1,∞ ] and k ≥ 2n− ρ.

If Γ\G is compact then the assertion is trivial. For the non-compact case we
will give a proof in the end of this section using the so-called unbounded realization
H of B , which we will develop in the following.

By the way, as for ordinary automorphic forms, theorem 3.1 implies that
sSk(Γ) is finite dimensional for n ≥ 2, Γ @ G being a lattice and k ≥ 2n via
lemma 12 of [1] section 10. 2, which says the following:

Let (X, µ) be a locally compact measure space, where µ is a positive
measure such that µ(X) <∞ . Let F be a closed subspace of L2(X, µ)
which is contained in L∞(X,µ). Then

dimF <∞ .

From now on let Γ\G be not compact.

Let g′ = su(n, 1) be the Lie algebra of G′ := SU(n, 1),

G′ ↪→ G , g′ 7→
(

g′ 0
0 1

)
,

and let a @ g′ be the standard Cartan sub Lie algebra of g′ . Then A := expG a

is the common standard maximal split Abelian subgroup of G′ and G , it is the
image of the Lie group embedding

IR ↪→ G′ , t 7→ at :=

 cosh t 0 sinh t
0 1 0

sinh t 0 cosh t

 ← 1
}n− 1
← n + 1

.

Let n @ g′ be the standard maximal nilpotent sub Lie algebra, which is at
the same time the direct sum of all root spaces of g′ of positive roots with respect
to a . Let N := exp n . Then we have an Iwasawa decomposition

G = NAK ,

N is 2-step nilpotent, and so N ′ := [N, N ] is at the same time the center of N .

Now we transform the whole problem to the unbounded realization via the
standard partial Cayley transformation

R :=

 1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2

 ← 1
}n− 1
← n + 1

∈ G′C = SL(n + 1, C)

mapping B via Möbius transformation biholomorphically onto the unbounded
domain

H :=

{
w =

(
w1

w2

)
← 1
}n− 1

∈ Cn

∣∣∣∣ Re w1 >
1

2
w∗

2w2

}
,
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which is a generalized right half plane, and e1 to ∞ . We see that

RG′R−1 @ G′C = SL(n + 1, C) ↪→ GL(n + 1, C)×GL(r, C)

acts holomorphically and transitively on H via fractional linear transformations,
and explicit calculations show that

a′t := RatR
−1 =

 et 0 0
0 1 0
0 0 e−t

 ← 1
}n− 1
← n + 1

for all t ∈ IR, and RNR−1 is the image of

IR× Cn−1 → RG′R−1 , (λ,u) 7→ n′λ,u :=

 1 u∗ iλ + 1
2
u∗u

0 1 u
0 0 1

 ,

which is a smooth diffeomorphism onto its image, with the multiplication rule

n′λ,un′µ,v = n′λ+µ+Im (u∗v),u+v

for all λ, µ ∈ IR and u,v ∈ Cn−1 and acting on H as pseudo translations

w 7→
(

w1 + u∗w2 + iλ + 1
2
u∗u

w2 + u

)
.

Define j (R, z) =
√

2
1−z1
∈ O(B),

j (R−1,w) := j (R,R−1w)
−1

=
√

2
1+w1

∈ O(H), and for all

g =

 A b
c d

0

0 E

 ∈ RGR−1

define

j (g,w) = j
(
R,R−1gw

)
j
(
R−1gR, R−1w

)
j
(
R−1,w

)
=

1

cw + d
.

Let H be the unique (n, r)-dimensional complex super domain with body
H , holomorphic even coordinate functions w1, . . . , wn and holomorphic odd co-
ordinate functions ϑ1, . . . , ϑr . R commutes with all g ∈ Z (G′), where

Z (G′) =

{(
ε 1 0
0 E

)
}n + 1
}r

∣∣∣∣ ε ∈ U(1), E ∈ U(r), εn+1 = det E

}
@ K

denotes the centralizer of G′ in G , and we have a right-representation of the group
RGR−1 on D(H) given by

|g : D(H)→ D(H) , f |g
(

w
ϑ

)
:= f

(
g

(
w
ϑ

))
j (g,w)k

for all g ∈ RGR−1 , which is again holomorphic. If we define

|R : D(H)→ D(B) , f |R
(

z
ζ

)
:= f

(
R

(
z
ζ

))
j (R, z)k
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and

|R−1 : D(B)→ D(H) , f |R−1

(
w
ϑ

)
:= f

(
R−1

(
w
ϑ

))
j
(
R−1,w

)k
,

then we see that again if f ∈ O(H) then f |R ∈ O(B), and if f ∈ O(B) then
f |R−1 ∈ O(H), and

D(H)
|RgR−1

−→ D(H)
|R ↓ % ↓ |R
D(B) −→

|g
D(B)

.

Now define the Jordan triple determinant ∆′ on H × H , which is again
holomorphic in the first and antiholomorphic in the second variable, as

∆′ (z,w) := ∆
(
R−1z, R−1w

)
j
(
R−1, z

)−1
j (R−1,w)

−1
= z1 + w1 −w∗

2 z2

for all z,w ∈ H . Clearly again
∣∣det (w 7→ gw)′

∣∣ = |j (g,w)|n+1 and

|j (g, e1)| = ∆′ (ge1, ge1)
1
2 for all g ∈ RGR−1 , and so ∆′ (w,w)−(n+1) dVLeb is

the RGR−1 -invariant volume element on H . If f =
∑

I∈℘(r) fIζ
I ∈ O(B) , all

fI ∈ O(B), I ∈ ℘(r), then

f |R−1

(
w
ϑ

)
=
∑

I∈℘(r)

fI

(
R−1w

)
j
(
R−1,w

)k+|I|
ϑI ∈ O(H),

and if f =
∑

I∈℘(r) fIϑ
I ∈ O(H), all fI ∈ O(H), I ∈ ℘(r), and

g =

(
∗ 0
0 E

)
∈ RGR−1 , E ∈ U(r), then

f |g
(

w
ϑ

)
=
∑

I∈℘(r)

fI (gw) j (g,w)k+|I| (Eϑ)I ∈ O(H) .

Let ∂H =
{
w ∈ Cn

∣∣Re w1 = 1
2
w∗

2w
}

be the boundary of H in Cn . Then
∆′ and ∂H are RNR−1 -invariant, and RNR−1 acts transitively on ∂H and on
each {

w ∈ H
∣∣∆′ (w,w) = e2t

}
= RNat0 ,

t ∈ IR.
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Figure 1: the geometry of H .

For all t ∈ IR define the rays A<t := {aτ | τ < t} ⊂ A and
A>t := {aτ | τ > t} ⊂ A .

Theorem 3.2. [a ’fundamental domain’ for Γ\G ] There exist η ⊂ N open and
relatively compact, t0 ∈ IR and Ξ ⊂ G′ finite such that if we define

Ω :=
⋃
g∈Ξ

gηA>t0K

then

(i) g−1Γg∩NZ (G′) @ NZ (G′) and g−1Γg∩N ′Z (G′) @ N ′Z (G′) are lattices, and

NZ (G′) =
(
g−1Γg ∩NZ (G′)

)
ηZ (G′)

for all g ∈ Ξ,

(ii) G = ΓΩ,

(iii) the set {γ ∈ Γ | γΩ ∩ Ω 6= Ø} is finite.

Proof. We use theorem 0.6 (i) - (iii) of [4], which says the following:

Let Γ′ ⊂ G′ be an admissible discrete subgroup of G′ . Then there
exists t′0 > 0, an open, relatively compact subset η0 ⊂ N+ , a finite
set Ξ ⊂ G′ , and an open, relatively compact subset Ω′ of G′ ( Ξ
being empty if G′/Γ′ is compact, and Ω′ being empty if G′/Γ′ is non-
compact) such that

(i) For all b ∈ Ξ, Γ ∩ b−1N+b is a lattice in b−1N+b .
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(ii) For all t > t′0 and for all open, relatively compact subsets η of
N+ such that η ⊃ η0 , if

Ω′
t,η = Ω′ ∪

(⋃
b∈Ξ

σt,ηb

)
,

then Ω′
t,ηΓ

′ = G′ , and

(iii) the set
{
γ′ ∈ Γ′, Ω′

t,ηγ
′ ∩ Ω′

t,η 6= Ø
}

is finite.

Hereby G′ is a connected semisimple Lie group of real rank 1, N+ = N
is the standard nilpotent sub Lie group of G′ and σt,η := K ′A<tη for all t > 0
and η ⊂ N+ open and relatively compact, where A denotes the standard maximal
non-compact abelian and K ′ the standard maximal compact sub Lie group of G′ .
Admissibility is a geometric property of the quotient Γ′\G′/K ′ , roughly speaking
Γ′ is called admissible if and only if Γ′\G′/K ′ has only finitely many cusps.

Let us apply theorem 0.6 (i) - (iii) of [4] with G′ = SU(n, 1) ↪→ G ,
K ′ := K ∩G′ = S (U(n)× U(1)) and

Γ′ := {γ′ ∈ G′ | there exists w ∈ Z (G′) such that γ′w ∈ Γ} @ G′ ,

which is of course again a lattice such that Γ′\G′ is not compact and so it
is admissible in the sense of [4] by theorem 0.7 of [4]. By lemma 3.18 of [4]
g−1Γ′g∩N ′ @ N ′ is a lattice, and lemma 3.16 of [4] applied with any ρ ∈ Γ′∩N ′\{1}
tells us that (g−1Γ′g ∩N)\N is compact. So we see that there exist t0 ∈ IR,
η ⊂ N open and relatively compact and Ξ ⊂ G′ finite such that for all g ∈ Ξ

Γ′ ∩ gNg−1 @ gNg−1

is a lattice, Γ′Ω′ = G′ if we define Ω′ =
⋃

b∈Ξ bηA<t0K
′ and

∆ := {γ′ ∈ Γ′ | γ′Ω′ ∩ Ω′ 6= Ø}

is finite.

(i) and (ii) : now trivial by definition of Γ′ @ G′ .

(iii) : Let γ = γ′w ∈ Γ, γ′ ∈ Γ′ , w ∈ Z (G′), such that γΩ ∩ Ω 6= Ø. Then

γ′Ω′Z (G′) ∩ Ω′Z (G′) 6= Ø .

Since Z (G′)∩G′ @ K ′ and Ω′ is right-K ′ -invariant we have γ′Ω′ ∩Ω′ 6= Ø
as well and therefore γ′ ∈ ∆. Conversely γ′Z (G′) is compact and therefore
Γ ∩ γ′Z (G′) is finite for all γ′ ∈ Γ′ .

From the fundamental domain Ω :=
⋃

g∈Ξ gηA>t0K one can really deduce
the position of the cusps of Γ\B in ∂B : they are up to the action of Γ on ∂B
the limit points

lim
t→+∞

gat0 = ge1 ,

g ∈ Ξ, where the limits are taken with respect to the Euclidian metric on Cn .
Their number is bounded above by |Ξ| and is therefore finite, as expected.
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Corollary 3.3. Let t0 ∈ IR, η ⊂ N and Ξ ⊂ G be given by theorem 3.2. Let
h ∈ C (Γ\G, C) and s ∈ ] 0,∞ ] . Then h ∈ Ls (Γ\G) if and only if
h (gw) ∈ Ls (ηA>t0K) for all g ∈ Ξ.

Proof. If s = ∞ then it is evident since G = ΓΩ by theorem 3.2 (ii). Now
assume s ∈ ] 0,∞ [ and h ∈ Ls (Γ\G).

S := |{γ ∈ Γ | γΩ ∩ Ω 6= Ø}| <∞

by theorem 3.2 (iii). So for all g ∈ Ξ we have∫
ηA>t0K

|h (gw)|s =

∫
gηA>t0K

|h|s ≤
∫

Ω

|h|s ≤ S

∫
Γ\G
|h|s <∞ .

Conversely assume h (gw) ∈ Ls (ηA>t0K) for all g ∈ Ξ. Then since
G = ΓΩ by theorem 3.2 (ii) we obtain∫

Γ\G
|h|s ≤

∫
Ω

|h|s ≤
∑
g∈Ξ

∫
ηA>t0K

|h (gw)|s <∞ .

Let f ∈ sMk(Γ) and g ∈ Ξ. Then we may decompose

f |g|R−1 =
∑

I∈℘(r)

qIϑ
I ∈ O(H) ,

all qI ∈ O(H), I ∈ ℘(r) , and by theorem 3.2 (i) we know that
g−1Γg ∩N ′Z (G′) 6@ Z (G′). So let n ∈ g−1Γg ∩N ′Z (G′) \ Z (G′),

RnR−1 = n′λ0,0

(
ε1 0
0 E

)
,

λ0 ∈ IR \ {0} , ε ∈ U(1), E ∈ U(r), εn+1 = det E .
j (RnR−1) := j (RnR−1,w) = ε−1 ∈ U(1) is independent of w ∈ H . So there
exists χ ∈ IR such that j (RnR−1) = e2πiχ . Without loss of generality we can
assume that E is diagonal, otherwise conjugate n with an appropriate element
of Z (G′). So there exists D ∈ IRr×r diagonal such that E = exp (2πiD). If

D =

 d1 0
. . .

0 dr

 and I ∈ ℘(r) then we define trI D :=
∑

j∈I dj .

Theorem 3.4. Fourier expansion of f |g|R−1

(i) There exist unique cI,m ∈ O (Cn−1), I ∈ ℘(r),
m ∈ 1

λ0
(Z− trID − (k + |I|) χ), such that

qI (w) =
∑

m∈ 1
λ0

(Z−trID−(k+|I|)χ)

cI,m (w2) e2πmw1

for all w ∈ H and I ∈ ℘(r), and so

f |g|R−1 (w) =
∑

I∈℘(r)

∑
m∈ 1

λ0
(Z−trID−(k+|I|)χ)

cI,m (w2) e2πmw1ϑI

for all w =

(
w1

w2

)
← 1
}n− 1

∈ H , where the convergence is absolute and compact.
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(ii) cI,m = 0 for all I ∈ ℘(r) and m > 0 , and if
trID + (k + |I|) χ ≡ 0 mod Z in the group (IR, +) then cI,0 is a constant.

This is the super analog for Köcher’s principle. (See section 11.5 of
[1].) The condition m > 0 instead of m < 0 in definition 1.2 comes
from the fact that H is a generalized right half plane instead of the
upper half plane.

(iii) Let I ∈ ℘(r) and s ∈ [ 1,∞ ] . If trID + (k + |I|) χ 6≡ 0 mod Z then

qI∆
′ (w,w)

k+|I|
2 ∈ Ls (RηA>t00)

with respect to the RGR−1 -invariant measure ∆′ (w,w)−(n+1) dVLeb on H . If
trID + (k + |I|) χ ≡ 0 mod Z and k ≥ 2n− |I| then

qI∆
′ (w,w)

k+|I|
2 ∈ Ls (RηA>t00)

with respect to the RGR−1 -invariant measure on H if and only if cI,0 = 0.

Proof. (i) f |g is g−1Γg invariant, so we see that for all w ∈ H

∑
I∈℘(r)

qI (w) ϑI = f |g|R−1 (w)

= f |g|n
∣∣
R−1 (w)

=
∑

I∈℘(r)

qI (w + iλ0e1)
(
Eϑj

(
RnR−1

))I
j
(
RnR−1

)k
=

∑
I∈℘(r)

qI (w + iλ0e1) e2πi(trID+(k+|I|)χ)ϑI .

Therefore for all w ∈ H and I ∈ ℘(r)

qI (w) = qI (w + iλ0e1) e2πi(trID+(k+|I|)χ) .

Let I ∈ ℘(r). Then h ∈ O(H) given by

h (w) := qI (w) e
−2πi 1

λ0
(trID+(k+|I|)χ)w1

for all w ∈ H is iλ0e1 periodic, and therefore there exists ĥ holomorphic on

Ĥ :=

{
z =

(
z1

z2

)
← 1
}n− 1

∣∣∣∣ |z1| > e
π

λ0
z∗2z2

}
such that for all w ∈ H

h (w) = ĥ

(
e

2π
λ w1

w2

)
.

Laurent expansion now tells us that there exist am′,l ∈ C , m′ ∈ Z , l ∈
INn−1 , such that

ĥ (z) =
∑
m′∈Z

∑
l∈INn−1

am′,lz
m′

1 zl
2
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for all z =

(
z1

z2

)
← 1
}n− 1

∈ Ĥ , where the convergence is absolute and compact.

Now let us define dm′ ∈ O (Cn−1) as

dm′ (z) :=
∑

l∈INn−1

am′,lz
l
2 ,

m′ ∈ Z . Then for all w ∈ H

qI (w) e
− 2πi

λ0
(trID+(k+|I|)χ)w1 = h (w) =

∑
m′∈Z

dm′ (w2) e
2π
λ0

m′w1 .

So taking cm := dλ0m+trID+(k+|I|)χ , m ∈ 1
λ0

(Z− trID − (k + |I|) χ), gives
the desired result. Uniqueness follows from standard Fourier theory.

(ii) Step I Show that all qI , I ∈ ℘(r) , are bounded on
RN0 = {w ∈ H | ∆′ (w,w) = 2} .

Obviously all qI , I ∈ ℘(r), are bounded on Rη0 since Rη0 lies relatively
compact in H . Let C ≥ 0 such that |qI | ≤ C on Rη0 for all I ∈ ℘(r). By
theorem 3.2

RN0 = R
(
g−1Γg ∩NZ (G′)

)
η0 .

So let Rn′R−1 = n′λ′,u

(
ε′1 0
0 E ′

)
∈ g−1Γg∩NZ (G′), λ′ ∈ IR, u ∈ Cn−1 ,

ε′ ∈ U(1) and E ′ ∈ (r). Then again

j
(
Rn′R−1

)
:= j

(
Rn′R−1,w

)
= ε′−1 ∈ U(1)

is independent of w ∈ H . Now if we use that f ∈ sMk(Γ) we get∑
I∈℘

qIϑ
I = f |g|R−1 = f |g|n′

∣∣
R−1 =

∑
I∈℘(r)

qI

(
Rn′R−1w

)
(E ′ϑ)

I
ε′k+|I| .

∧
(Cr)→

∧
(Cr) , ϑI 7→ (E ′ϑ)I ε′k+|I| is unitary, therefore

|qI | ≤ 2r
∣∣qI

(
Rn′R−1w

)∣∣ .

We see that |qI | ≤ 2rC on the whole RN0 .

Step II Show that∣∣cI,m (w2) e2πmw1
∣∣ ≤ ||qI ||∞,RN0

on RN0 for all I ∈ ℘(r) and m ∈ 1
λ0

(Z− trID − (k + |I|) χ) .

Let I ∈ ℘(r) and m ∈ 1
λ0

(Z− trID − (k + |I|) χ). By classical Fourier
analysis

cI,m (w2) e2πmw1 =
1

λ0

∫ λ0

0

qI (w + iλe1) e−2πimλdλ

for all w ∈ H , and since w + iλe1 = n′λ,0w ∈ RNR−1w the claim follows.
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Step III Conclusion.

Let I ∈ ℘(r) and m ∈ 1
λ0

(Z− trID − (k + |I|) χ). Let u ∈ Cn−1 be
arbitrary. Then (

1 + 1
2
u∗u

u

)
∈ RN0 ,

and so

|cI,m (u)| ≤ ||qI ||∞,RN0 e−πmu∗u .

Now the assertion follows by Liouville’s theorem, where n ≥ 2 is of course
essential.

(iii) Let

η′ :=

{
(iy,u) ∈ iIR⊕ Cn−1

∣∣∣∣ ( 1 + 1
2
u∗u + iy
u

)
∈ Rη0

}
be the projection of Rη0 onto iIR⊕ Cn−1 in direction of Re w1 ∈ IR. Then

Ψ : IR>e2t0 × η′ → RηA>t00 , (x, iy,u) 7→
(

x + 1
2
u∗u + iy
u

)
is a C∞ -diffeomorphism with determinant 1, and

∆′ (Ψ (x, iy,u) , Ψ (x, iy,u)) = 2x

for all (x, iy,u) ∈ IR>e2t0 × η′ . So

qI∆
′ (w,w)

k+|I|
2 ∈ Ls (RηA>t00)

with respect to the measure ∆′ (w,w)−(n+1) dVLeb if and only if

(qI ◦Ψ) x
k+|I|

2 ∈ Ls (IR>e2t0 × η′)

with respect to the measure x−(n+1)dVLeb .

Now assume either trID + (k + |I|) χ 6≡ 0 mod Z or
trID + (k + |I|) χ ≡ 0 mod Z and cI,0 = 0. Then in both cases by (ii) we can
write

qI (w) =
∑

m∈ 1
λ0

(Z−trID−(k+|I|)χ)∩IR<0

cI,m (w2) e2πmw1

for all w ∈ H , where the sum converges absolutely and uniformly on compact
subsets of H . Let us define

M0 := max
1

λ0

(Z− trID − (k + |I|) χ) ∩ IR<0 < 0 .

Then since Rηat00 ⊂ H is relatively compact and the Fourier expansion in
(i) has compact convergence we can define
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C ′′ := e−2πM0e2t0
∑

m∈ 1
λ0

(Z−trID−(k+|I|)χ)∩IR<0

∣∣∣∣cI,m (w2) e2πmw1
∣∣∣∣
∞,Rηat00

<∞ .

So we see that

|qI (w)| ≤ C ′′eπM0∆′(w,w)

for all w ∈ RηA>t00 ,

|qI ◦Ψ| ≤ C ′′e2πM0x ,

and so x
k+|I|

2 (qI ◦Ψ) ∈ Ls (IR>e2t0 × η′) with respect to the measure x−(n+1)dVLeb .

Conversely assume trID+(k + |I|) χ ≡ 0 mod Z , k ≥ 2n−|I| and cI,0 6= 0.
Then as before we have the estimate∣∣∣∣∣∣∣

∑
m∈ 1

λ0
Z<0

cI,m (w2) e2πmw1

∣∣∣∣∣∣∣ ≤ C ′′e−π∆′(w,w)

for all w ∈ RηA>t00 if we define

C ′′ := e2πe2t0
∑

m∈ 1
λ0

Z<0

∣∣∣∣cI,m (w2) e2πmw1
∣∣∣∣
∞,Rηat00

<∞ .

Therefore there exists S ≥ 0 such that∣∣∣∣∣∣∣
∑

m∈ 1
λ0

Z<0

cI,m (w2) e2πmw1

∣∣∣∣∣∣∣ ≤
1

2
|cI,0| ,

and so |qI (w)| ≥ 1
2
|cI,0| for all w ∈ RηA>t00 having ∆′ (w,w) ≥ S . So

|(qI ◦ Φ) (x, iy,u)| ≥ 1
2
|cI0| for all (x, iy,u) ∈ IR≥S × η′ , and so definitely

x
k+|I|

2 (qI ◦ Φ) /∈ Ls (IR>e2t0 × η′) with respect to the measure x−(n+1)dVLeb .

Now we prove theorem 3.1:

Proof. Let ρ ∈ {0, . . . , r} and k ≥ 2n − ρ . Since vol Γ\G < ∞ it suffices to

show that f ∈ sM
(ρ)
k (Γ) and f̃ ∈ L1 (Γ\G)⊗O

(
C0|r) imply

f̃ ∈ L∞ (Γ\G)⊗O
(
C0|r) . So let f ∈ sM

(ρ)
k (Γ) such that

f̃ ∈ L1 (Γ\G) ⊗ O
(
C0|r) . Let g ∈ Ξ. By corollary 3.3 it is even enough to

show that lg

(
f̃
)
∈ L∞ (ηA>t0K)⊗O

(
C0|r) , where lg

(
f̃
)

again denotes the left

translation of f̃ by the group element g ∈ G . Let

f |g|R−1 =
∑

I∈℘(r) , |I|=ρ

qIϑ
I ,
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all qI ∈ O(H), I ∈ ℘(r), |I| = ρ . Then

f |g =
∑

I∈℘(r) , |I|=ρ

qI (Rw) ζIj (R,w)k+ρ .

Since by corollary 3.3 f̃ ∈ L1 (ηA>t0K)⊗O
(
C0|r) we conclude that

qI (Rz) j (R, z)k+ρ ∆ (z, z)
k+ρ
2 ∈ L1 (ηA>t00)

with respect to the G-invariant measure on B or equivalently

qI∆
′ (w,w)

k+ρ
2 ∈ L1 (RηA>t00) for all I ∈ ℘(r), |I| = ρ , with respect to

the RGR−1 -invariant measure on H . So by theorem 3.4 (iii) we see that

qI∆
′ (w,w)

k+ρ
2 ∈ L∞ (RηA>t00) as well, or equivalently

qI (Rz) j (R, z)k+ρ ∆ (z, z)
k+ρ
2 ∈ L∞ (ηA>t00) for all I ∈ ℘(r), |I| = ρ . Therefore

lg

(
f̃
)
∈ L∞ (ηA>t0K)⊗O

(
C0|r) .
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