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Abstract. Let N = Z ⊕ V be the Lie algebra corresponding to a group of
Heisenberg type N. Assume that V is an irreducible Clifford module. In this
article we determine the generalized Gelfand pairs (K, N), where K is the group
of automorphisms of N that preserve V .
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1. Introduction

Let N be a real two-step nilpotent Lie algebra, endowed with an inner product
〈 , 〉 . Let Z denote the centre of N and let V be its orthogonal complement.

For z ∈ Z , define the linear map Jz : V → V by

〈Jzv, w〉 = 〈z, [v, w]〉

for all v, w ∈ V, where [ , ] denotes the bracket in N . We say that N is a Lie
algebra of Heisenberg type (or of type H) if, for all z ∈ Z with |z| = 1, Jz is an
orthogonal transformation on V (cf. [6]).

A connected and simply connected Lie group N is of Heisenberg type if
its Lie algebra is of type H . Since for |z| = 1, Jz is both orthogonal and skew-
symmetric,

J2
z = −Id .

So by linearity and polarization we have for z, w ∈ Z

JzJw + JwJz = −2〈z, w〉Id . (1)

Let m := dim Z and let C(m) be the Clifford algebra C(Z,−| |2). Then
by (1) the action J of Z on V extends to a representation of C(m). The
notions irreducible and isotypic, when attributed to V, refer to its Clifford module
structure.
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Let us denote by Aut(N) the automorphisms group of N . The subgroup
AutV (N) of automorphims that preserve V is essentially the semidirect product
of two subgroups U and Clif(m), which we describe as follows:

U = {g ∈ AutV (N) : g|Z = Id} .

Warning: U ∩O(N) corresponds to the subgroup denoted by U in [8] and [11].

For a unit vector z ∈ Z, let ρz : Z → Z denote the reflection through the
hyperplane orthogonal to z and let Pin(m) be the subgroup of AutV (N) generated
by {(−ρz, Jz) : z ∈ Z, |z| = 1} . We also denote by Spin(m) the subgroup generated
by the even products (ρzρw, JzJw), with |z| = |w| = 1, and finally by Clif(m) the
subgroup generated by {(−|z|2ρz, Jz), z 6= 0} . It can be proved that U is a
classical group that commutes with Spin(m). Moreover U ∩ Clif(m) has at most
four elements and AutV (N) = UClif(m) or [AutV (N) : UClif(m)] = 2, depending
on the congruence of m ≡ (8). A precise result is given in [12]. Given a compact
subgroup K of a Lie group G, we recall that the pair (G,K) is called a Gelfand
pair if for each irreducible, unitary representation π of G, the space of K -fixed
vectors is at most one dimensional.

For a compact subgroup K ⊆ Aut(N) we consider the semidirect product
G = KN. One says that (K,N) is a Gelfand pair if (KN, K) is a Gelfand pair.
Equivalently if the convolution algebra L1

K(N) of K -invariant integrable functions
on N is commutative.

Let A(N) be the group of orthogonal automorphisms of N. In [11], there
is a classification of the groups N for which (A(N),N) is a Gelfand pair. Also in
[8] it was raised the question of when (K,N) is a Gelfand pair, for some specific
subgroups K of A(N).

The notion of Gelfand pair was extended to non compact, unimodular
subgroups K of a unimodular Lie group: the pair (K,N) is a generalized Gelfand
pair if for each irreducible, unitary representation π of KN, the space of K -fixed
distribution vectors is at most one dimensional. For surveys, see [14] and [16]. In
[9] the authors considered the cases (K,Hn) where Hn is the Heisenberg group
2n+ 1 dimensional and K is a subgroup of U(p, q) ⊂ Aut(Hn), p+ q = n .

Our aim here is to determine the generalized Gelfand pairs (K,N) where
N is an irreducible group of Heisenberg type and K = Spin(m)× U . For a list of
such groups U see the beginning of section 3.

The results obtained here jointly with those in [11] and in [3] allow us to
state the following:

Theorem Let N be an irreducible group of Heisenberg type. Then (K,N) is a
generalized Gelfand pair if and only if 1 ≤ m ≤ 9.

Acknowledgement: We are indebted to D. Barbasch, R. Howe, J. Vargas and
J. Wolf for many useful conversations. We also want to thank the referee for his
careful reading of the manuscript and his precise observations.

2. Preliminary results

We recall some definitions and results which will be used in the following. The
irreducible, unitary, representations of a group of Heisenberg type N are described
in [8]. They are:



Levstein and Saal 505

* Infinite -dimensional representations, parametrized by the non zero ele-
ments of the centre Z : for 0 6= a ∈ Z, |a| = 1, the corresponding representation
πa is realized on the Fock space Fa of entire functions on (V, Ja).

* Unitary characters, χv(z, w) = ei〈w,v〉 , defined for each v ∈ V .

For K ⊂ Aut(N) we now recall the construction of unitary, irreducible

representations of KN, according to Mackey’s theory [10]. For each π ∈ N̂ and
k ∈ K, let πk be the representation

πk(n) = π(kn)

and let Kπ be the stabilizer of π , that is, Kπ = {k ∈ K : πk ' π} . For k ∈ Kπ,
we can choose an intertwining operator ωπ(k) of π, in such a way that the map
k → ωπ(k) is a projective representation of Kπ , that is,

ωπ(k1k2) = σ(k1, k2)ωπ(k1)ωπ(k2) .

ωπ is called the intertwining representation of π and σ the multiplier for the
projective representation ωπ .

Denote by K̂σ
π the set of (equivalence classes) irreducible, unitary projective

representations of Kπ with multiplier σ .

If ρ ∈ K̂σ
π then

Θ(k, n) = ρ(k)⊗ ωπ(k)π(n)

is an irreducible representation of KπN. Moreover the induced representation
IndKN

KπN(Θ) is an irreducible representation for KN and, by considering all π ∈ N̂

and ρ ∈ K̂σ
π , one obtains all equivalence classes of irreducible representations of

KN.

¿From now on we will consider the cases K = Spin(m)U . As it is stated
in Prop 3.1 in [9], the representations of KN coming from characters of N give
rise to irreducible unitary representations of KV . Since V is an abelian group,
(K,V ) is a generalized Gelfand pair and so the space of distribution vectors fixed
by K is at most one dimensional. Then, in order to determine when (K,N) is
a generalized Gelfand pair, it is enough to consider only those representations of
KN associated to πa , for a ∈ Z .

For a ∈ Z, let ωa be the intertwining representation of Fa, also called
metaplectic representation. Let Spina(m) denote the group generated by the
operators in the set {JbJc : b ⊥ a ⊥ c, |b| = |c| = 1} .

We observe that

Ka := Kπa = Spina(m)U .

Since the elements of Spina(m) are orthogonal transformations which commute
with Ja, Ka ⊂ Sp(V, Ja) = {g ∈ GL(V ) : gtJag = Ja} . Let Na be the Heisenberg
group with Lie algebra Za = Ra⊕V . Then Sp(V, Ja) is the group of automorphims
of Na , which fix a .

Given a representation (ρ, Vρ) of a subgroup H of K, let C(K;Vρ) denote
the space of continuous functions f : K → Vρ such that f(kh) = ρ(h−1)f(k) for
all k ∈ K,h ∈ H, and

∫
K/H

|f(x)|2 dx < ∞ . Then IndK
H(Vρ) is the completion
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of C(K;Vρ). Moreover, a C∞ -vector of IndK
H(Vρ) is an infinitely differentiable

function f ∈ C(K;Vρ) (see[17], page 373). We denote by V ∞
ρ (resp V −∞

ρ )
the space of C∞ -vectors (resp. distribution vectors) and recall that V −∞

ρ is the
antidual space of V ∞

ρ .

Lemma 2.1. Let f be a C∞ -vector of IndK
Ka

(Vρ) such that∫
Spin(m)

f(k) dk = 0 .

Let µ be a Spin(m)−invariant distribution vector of IndK
Ka

(Vρ). Then 〈µ, f〉 = 0.

Proof. Indeed,

〈µ, f〉 =

∫
Spin(m)

〈µ, f〉 dk since dk on Spin(m) is normalized.

=

∫
Spin(m)

〈µ, Lkf〉 dk by left invariance of µ.

= 〈µ,
∫

Spin(m)

Lkf dk〉.

But for x = hu ∈ Spin(m)U we have that∫
Spin(m)

Lkf(x)dk =

∫
Spin(m)

f(kx) dk = ρ(u−1)

∫
Spin(m)

f(kh) dk = 0

since dk is right invariant.

Theorem 2.2. (K,N) is a generalized Gelfand pair if and only if (Ka, Na) is
a generalized Gelfand pair for each a ∈ Z (cf. Lemma 2 and Lemma 3 stated in
[11]).

Proof. ⇒) For λ 6= 0, let us denote by (Fλ, πλ) the Fock representation of
Na determined by πλ(exp ta) = eiλt , and by ωλ the metaplectic representation
of Sp(V, Ja). Let (ρ, Vρ) be an irreducible representation of KaNa and assume,
by contradiction, that T1, T2 are distribution vectors of Vρ, fixed by Ka and
linearly independent. Then there exists some λ 6= 0 such that ρ = γ ⊗ πλωλ ,

γ ∈ K̂σλ
a . It is immediate that ρ is irreducible as KaN-module. We know

that (π,Hπ) := IndKN
KaN(Vρ) is an irreducible representation of KN and that as

K−module, Hπ is the representation induced by the Ka -module γ ⊗ ωλ .

We define µ1, µ2 : H∞
π → C by

〈µj, f〉 := 〈Tj,

∫
Spin(m)

f〉 .

There exists a surjective morphism C∞
c (K,Vρ) → C∞(K;Vρ) defined by

f → fρ(h) =

∫
Ka

ρ(ξ)f(hξ) dξ .



Levstein and Saal 507

Let T be a non zero distribution vector fixed by Ka and v ∈ Vρ such that
〈T, v〉 6= 0. We choose ϕ ∈ C∞(Sm−1) and ψ ∈ C∞

c (U) with
∫

Sm−1 ϕ 6= 0 6=
∫

U
ψ

and set f(ku) = ϕ(kSpina)ψ(u)v, for k ∈ Spin(m), u ∈ U . Then, since Spin(m)
commutes with U ,

fρ(ku) =

∫
Ka

ρ(hu′)f(kuhu′) dhdu′

=

∫
Ka

ϕ(khSpina)ψ(uu′)ρ(hu′)v dhdu′

= ϕ(kSpina)

∫
Spina×U

ψ(uu′)ρ(hu′)v dhdu′ .

Hence
fρ(ku) = ϕ(kSpina)χ(u)

where χ(u) =
∫

Spina×U
ψ(uu′)ρ(hu′)v dhdu′ .

We observe that since T is a distribution vector fixed by ρ(Ka)

〈T, χ(u)〉 = 〈T, χ(e)〉 for u ∈ U .

Indeed

〈T,
∫

Spina×U

ψ(uu′)ρ(hu′)v dhdu′〉 =

∫
Spina×U

ψ(uu′)〈T, ρ(hu′)v〉 dhdu′

= 〈T, v〉(
∫

U

ψ(uu′) du′)

= 〈T, χ(e)〉 .

Since v was chosen so that 〈T, v〉 6= 0, we obtain that 〈T, χ(e)〉 6= 0 and so
fρ(e) 6= 0. Thus fρ 6= 0.

Moreover, since∫
Spin(m)

fρ(g) dg =

∫
Spin(m)

ϕ(gSpina) dgχ(e) (2)

we obtain that

〈T,
∫

Spin(m)

fρ〉 6= 0 . (3)

So µ defined by 〈µ, f〉 := 〈T,
∫

Spin(m)
f〉 is a non zero vector distribution of Hπ .

Let us see that µ is π(K)− invariant. We recall that the action of π on
Hπ is by left translations. For u ∈ U, 〈µ, Luf〉 = 〈T,

∫
Spin(m)

Luf〉 . It follows that∫
Spin(m)

Luf dk =
∫
f(uk)dk =

∫
f(ku) dk = ρ(u−1)

∫
Spin(m)

f(k) dk , since Spin(m)

commutes with U . So by the U -invariance of T we have 〈T,
∫

Spin(m)
Luf〉 =

〈ρ−∞(u)T,
∫
f〉 = 〈T,

∫
f〉 . Finally if h ∈ Spin(m), 〈µ, Lhf〉 = 〈T,

∫
Spin(m)

Lhf〉 =

〈T,
∫

Spin(m)
f〉 by the left invariance of the integral.

Recall that by assumption there exist T1 and T2 distribution vectors of Vρ

fixed by Ka and linearly independent. Replacing T above by Tj and choosing
vj 6= 0 such that 〈Tj, vj〉 6= 0, the above argument shows that there exist two non
zero distribution vectors µ1 and µ2 , fixed by K . They are linearly independent:
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indeed, if aµ1 + bµ2 = 0 then 0 = 〈aµ1 + bµ2, f〉 = 〈aT1 + bT2,
∫

Spin(m)
f〉 for

all f ∈ C∞(K; ρ). But 3 implies that aT1 + bT2 = 0 and so a = b = 0. This
contradicts the fact that (K,N) is a generalized Gelfand pair.

⇐) Let (π,Hπ) be an irreducible representation of KN and assume
that there exist two linearly independent distribution vectors µ1, µ2 fixed by K .
Rephrasing Prop. 3.1 in [9], we know that this representation can not be induced

by a character. So, there exist (a 6= 0) ∈ Z , (λ 6= 0) ∈ R , γ ∈ K̂σλ
a and

ρ = γ ⊗ πλωλ such that

Hπ = IndKN
KaN(Vρ) = IndKN

KaNa
(Vρ) .

Define Tj ∈ V −∞
ρ by the rule

〈Tj,

∫
Spin(m)

f〉 := 〈µj, f〉 .

By Lemma 2.1 above, Tj is well defined. Let us see that Tj is defined on
a dense subset of V ∞

ρ : choosing v, ϕ, ψ,and fρ as in the first part of the proof, 2
implies that ∫

Spin(m)

fρ(g) dg = (

∫
Spin(m)

ϕ(gSpina) dg)χ(e)

with χ(e) =
∫
ψ(u)ρ(u)vdu = ρ(ψ)v . By the well known Garding lemma (see

for example [13], page 11 ), the assertion follows. It is easy to see that Ti are
Ka− invariant and linearly independent.

In what follows it is enough to consider λ = 1 and we set ω = ω1 . We
recall that the metaplectic representation of Sp(V, Ja) extends to an ordinary
representation for its double covering. If H is a subgroup of Sp(V, Ja), let p :
Hσ→H the canonical twofold covering homomorphism.

The following theorem is just a slight modification of Theorem 2.1 in [9].

Theorem 2.3. Let H ⊂ Sp(V, Ja) be a subgroup such that every unitary irre-
ducible representation of Hσ has a character distribution. Then the pair (H,Na)
is a generalized Gelfand pair if and only if the restriction to H of the metaplectic
representation ω is multiplicity free (as a projective representation).

Proof. ⇐) Let us consider an irreducible, unitary representation Vρ of HNa ,
and assume that Vρ has two linearly independent fixed distribution vectors. For
h ∈ Hσ define ρ(h) = ρ(p(h)). Since Vρ = W ⊗ ω with W an Hσ− irreducible
module, Theorem 2.1 in [9] asserts that W appears twice in the decomposition of
ω .

⇒) Assume that W appears in ω more than once as a projective repre-
sentation. Again by Theorem 2.1 in [9] Vρ = W ⊗ ω is a representation of Hσ ,
having more than one fixed distribution vector. Since W has the same cocycle as
ω, Vρ is a representation of H with more than one fixed distribution vector. So
(H,Na) can not be a generalized Gelfand pair.
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3. The main result

According to the results in the previous section we are interested in determining
when the restriction of the metaplectic representation ω ↓Sp(V,Ja)

Ka
is multiplicity

free.

Let N be an irreducible group of type H , the subgroups U of AutV (N)
corresponding to N are :

SL(2,R), ............m ≡ 1 (mod 8)

SL(2,C), ............m ≡ 2 (mod 8)

U(1,H), .............m ≡ 3 (mod 8)

GL(1,H), ...........m ≡ 4 (mod 8)

U(1), .................m ≡ 5 (mod 8)

O(1), .................m ≡ 6 (mod 8)

O(1), .................m ≡ 7 (mod 8)

R∗, ....................m ≡ 8 (mod 8) .

The group U is compact when m ≡ 3, 5, 6, 7(mod 8). It is shown in [11] that in
these cases , with N irreducible, (Spin(m)×U,N) is a Gelfand pair if and only if
m = 5, 6, or 7.

We will therefore study ω↓Sp(V,Ja)
Ka

, the restriction of the metaplectic repre-
sentation, for m ≡1, 2, 4, 8 (mod 8).

First we observe that the groups appearing in the list satisfy the conditions
for H in the above theorem.

Next we will apply a result due to V. Kac. Let H be a compact, connected
subgroup of U(l) and denote by HC its complexification. Assume that the action
of H on Cl is irreducible. In [5] it is given the precise list of pairs (HC,Cl), such
that the corresponding action of HC on the polynomial ring P (Cl) is multiplicity
free, (see also [2]).

Moreover, let us denote by T the one dimensional torus and by Pr(Cl), r ∈
N, the space of homogeneous polynomials of degree α with |α| = r . Then T acts
on Pr(Cl) by eirt . Thus HC acts without multiplicity on each Pr(Cl), r ∈ N, if
and only if the action of HC × C∗ on P (Cl) is multiplicity free.

Remark 3.1. We recall that there are two models for the representations of the
Heisenberg group. The Fock model realized on the space of holomorphic functions
on (V, Ja ) which are square integrable with respect to the measure e−|z|

2
dz and

the Schroedinger model realized on L2(RN), N = dim V
2

. An intertwining operator

sends the monomials zα = zi1
1 z

i2
2 ...z

il
N to hα(x) = hi1(x1)hi2(x2)...hiN (xN) where

hi(t) = Hi(t)e
− t2

2 and Hi(t) is the Hermite polynomial of degree i . We also define
Hα(x) := Hi1(x1)Hi2(x2)...HiN (xN).

Write V = RN ⊕ JaRN and let SO(N) = U(N) ∩ GL(N,R). Then the
metaplectic action of SO(N) on Pr(V ) corresponds to an action on the space
Hr = span{hα : |α| = r} . This action preserves the filtration given by the degree,
and induces an action on Pr(RN) = span{xα : |α| = r} . If Hα(x) = xα+ lower
degree terms and k ∈ SO(N) then k.xα = highest degree terms of (k.Hα). In fact
we obtain the natural action of SO(N) on Pr(RN).
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Remark 3.2. The Mellin transform is the Fourier transform adapted to R>0

and it is defined by Mf(λ) =
∫ ∞

0
f(s)siλ ds

s
. The action of R>0 on L2(R>0,

ds
s
)

given by δtf(s) = f(ts) decomposes, via the Mellin transform, as

L2(R>0,
ds

s
) '

∫ ∞

−∞
Fλ dλ .

where Fλ is the C-vector space generated by siλ (see [13], page 168.)

We notice that the module generated by gr(s) = sre−s , r ∈ N , is
L2(R>0, s

−1ds). Indeed, by a well known Wiener theorem, it is enough to prove
that Mgr(s) 6= 0 for all s, but this holds since Mgr(λ) =

∫
sre−ssiλ ds

s
=

Γ(r − 1 + iλ) 6= 0, where Γ denotes the gamma function.

Now we will consider the cases, according to the congruences of mmod 8.

m ≡ 4(mod 8).

In this case U = GL(1,H) = SU(2) × R>0 and V = V + ⊕ V − , where
V + and V − are real, inequivalent, irreducible C+(m)-modules, dimV ± = N .
Also V + and V − are real irreducible equivalent Spina(m)-modules. So Spina(m)
embeds in SO(N), via the spin representation. GL(1,H) is embedded in Sp(V, Ja)
as q → aq = (Rq, Rq−1) so that SU(2) acts by right multiplication by q . So, the
metaplectic action of Spina(m) × SU(2) on L2(RN) is the natural one of SO(N)
and setting L2(RN , dx) = L2(SN−1, dσ)⊗L2(R>0, r

n−1dr), we have that the action
of R>0 is given by

ω(at)f(x) = t
N
2 f(tx), t ∈ R>0, x ∈ RN .

This last action is equivalent to δtf(s) = f(ts) on L2(R>0,
ds
s
). Assume that

the action of Spina(m) × SU(2) is multiplicity free on each Pr(V ) and let Vα

be an irreducible representation of Spina(m) × SU(2) in Pr(V ). For p ∈ Vα,we

consider the function p(x)e−
|x|2
2 = p( x

|x|)|x|
re−

|x|2
2 . Then SO(N) acts on p( x

|x|) in

the natural way and by Remark 3.2, the action of R>0 on sre−s generates a space
isomorphic to L2(R>0,

ds
s
). We conclude that the Ka - module generated by Vα,

which is the isotypical component, is Vα ⊗ L2(R>0, s
n−1ds). So

ω↓Sp(V,Ja)
Ka

=
⊕

α

∫ ∞

−∞
α⊗ eiλt dt

and the decomposition is multiplicity free.

On the other hand, if p(x) is a homogeneous polynomial of degree k

ω(at)p(x)e
−|x|2 = t

N
2

+kp(x)e−|x|
2

. (4)

and the infinitesimal action is given by

ω(t
d

dt
)(p(x)e−|x|

2

) = t(k +
N

2
− 2|x|2)p(x)e−|x|2 . (5)

Let W1,W2 two equivalent, irreducible Spina(m)×SU(2)-modules in some Pr(V ),
and let H1, H2 be the R>0 -modules generated by them. Then the above proof
shows that H1 is equivalent to H2 . If the metaplectic action of K is multiplicity
free then H1 = H2 . So H1 ∩ Pr(V ) = H2 ∩ Pr(V ). But 5 implies that W1 = W2 .
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Since m ≡ 4 (mod 8), we have that V is a complex irreducible Spina(m)×SU(2)-
module. By looking at Kac list, we know that the action of Spina(m)×SU(2)×T
on P (V ) is multiplicity free only for m = 4. This case corresponds to the action

of GL(2,C)× SL(2,C) on C2 ⊗ C2 and the decomposition of ω↓Sp(V,Ja)
Ka

was given
in [3].

m ≡ 0 (mod 8).

In this case U = R∗ and the action is given by

ω(at)f(x) = |t|
N
2 f(tx) .

We observe that −I ∈ Spina(m) ∩ U . Thus the action of Ka on L2(RN) is the
same action of Spina(m)×R>0 and we repeat the argument of the above proof to

conclude that ω↓Sp(V,Ja)
Ka

is multiplicity free only for m = 8. See also [3].

m ≡ 1 (mod 8)

The case m = 1 corresponds to the classical Heisenberg group. It is well
known that L2(V ) decomposes under the metaplectic action of U ' SL(2,R) as
a sum of two unequivalent irreducible components corresponding to the even and
odd functions respectively. When m > 1, U ' SL(2,R) and Ka ' Spina(m) ×
SL(2,R). Also, V can be decomposed as Spin(m)-module as an orthogonal direct
sum

V = VΛ ⊕ JaVΛ

where VΛ is the real spin representation of Spin(m), dimVΛ = N . Thus, via the
spin representation, Spina(m) is embedded in SO(N) and as Spina(m)−modules
VΛ = VΛ+ ⊕ VΛ− where VΛ+,VΛ− are the half spin representations. Thus we have
the embeddings

Spina(m) ↪→ SO(
N

2
)× SO(

N

2
) ↪→ SO(N) .

Besides, SL(2,R) is embedded in Sp(V, Ja) as (
a b
c d

) → (
aI −bQ
cQ dI

), where

Q = Qt, QQt = I (see Prop 5.2 in [7] ). It is well known that (see [15], page 443)

ω↓Sp(V,Ja)
SO(N)×SL(2,R)=

⊕
k

VkΛ ⊗Dl(k) .

where VkΛ denotes the irreducible representation of SO(N) on the harmonic
polynomials of degree k on VΛ, and Dl(k) is a discrete series representation of
SL(2,R) and l(k) = k

2
+ N

4
denotes the lowest K-type. Also

VkΛ↓SO(N)

SO(N
2

)×SO(N
2

)
=

⊕
r,s

VrΛ+ ⊗ VsΛ−

where the sum runs over the integers r, s such that k − r − s is an even, non
negative integer (see [15], page 211).

We consider two possibilities for m :

Case m > 9.

We have that as SO(N
2
)-modules, Pr(V

+) = VrΛ+⊕V(r−2)Λ+⊕V(r−4)Λ+⊕ . . .
and Pr(V

−) = VrΛ− ⊕ V(r−2)Λ− ⊕ V(r−4)Λ− ⊕ . . . . As SpinC(m − 1) × C∗ does
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not appear in Kac list, we deduce that there exists r for which the action of
Spina(m) on Pr(V

+) can not be multiplicity free. Thus there exists an irreducible
representation α that appears in V(r−2i)Λ+ and in V(r−2j)Λ+ , for some i 6= j . Then
Vα⊗ VrΛ− appears in V(r−2i)Λ+ ⊗ VrΛ− and in V(r−2j)Λ+ ⊗ VrΛ− concluding that

VkΛ↓
SO(N

2
)×SO(N

2
)

Spina(m) is not multiplicity free.

Case m = 9.

In this case ω↓Sp(V,Ja)
Ka

is multiplicity free and the proof together with the
corresponding decomposition is given in [3].

m ≡ 2 (mod 8)

In this case U ' SL(2,C). When m = 2, the metaplectic representation
of SL(2,C) splits as a sum of two inequivalent irreducible SL(2,C)-modules. So
we can assume m ≥ 10. Then Ka ' Spina(m) × SL(2,C) and V decomposes as
Spina(m)− module as an orthogonal direct sum

V = VΛ ⊕ JaJbVΛ ⊕ JaVΛ ⊕ JbVΛ .

where a is orthogonal to b , and VΛ denotes its real spin representation , dimVΛ =
N
2

. Thus, Spina(m) is embedded in SO(N
2
).

Besides, SL(2,C) is embedded in Sp(V, Ja) as (
a b
c d

) → (
aI −bQ
cQ dI

),

where a, b, c, d belong to C = {α + βJaJb s.t. α, β ∈ R} and Q is given by (4.2)
in [7].

It is well known that (O(N
2
,C), SL(2,C)) is a dual pair in Sp(V, Ja). It

follows from [1] that the restriction of ω to O(N
2
,C)×SL(2,C) is multiplicity free

and decomposes as ω↓Sp(V,Ja)

O(N
2

,C)×SL(2,C)
=

∫
⊕ Pλ(L

2(RN)) dµ(λ), where Pλ(L
2(RN)) '

πλ ⊗ πλ . Moreover, for this pair, the correspondence between πλ and πλ is given
explicitly in terms of the lowest K -types. D. Barbasch pointed to us that we can
consider πλ a tempered representation of SL(2,C) and in that case the restriction
to SO(N

2
,R) of the corresponding πλ is not multiplicity free. Indeed let πλ be a

tempered representation of SL(2,C) then πk := πλ is a unitary principal series of
SL(2,C) with lowest K -type, the k+1−dimensional irreducible module of SU(2).

The corresponding πk := πλ is the unitary principal series of O(N
2
,C) with

lowest K -type the irreducible representation of SO(N
2
,R) given by the harmonic

polynomials on VΛ of degree k .

We will check that the restriction of πk to SO(N
2
,R) is not multiplicity free.

First recall that if O(N
2
,C) = O(N

2
,R)AN denotes the Iwasawa decomposition,

the commutator M of A in O(N
2
,R) is a maximal torus of it. Thus, by Frobenius

reciprocity, the multiplicity of the representation with highest weight 2kΛ in πk ,
[πk : V2kΛ] is equal to m2kΛ(kΛ), the multiplicity of the weight kΛ in V2kΛ .

We compute m2kΛ(kΛ) using Kostant multiplicity formula [4].

Lemma 3.3. We have for k = 2j

m2kΛ(kΛ) =

(
N
4

+ j − 2

j

)
and m2kΛ(kΛ) = 0 otherwise.
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Proof. Let W be the Weyl group, W1 the stabilizer of Λ, ∆ a set of positive
roots, ∆1 = {α ∈ ∆ : 〈α,Λ〉 = 0} and Π a set of simple roots for ∆. Then by
Kostant formula

m2kΛ(kΛ) =
∑
σ∈W

sg(σ)K(ρ− σ(ρ+ 2kΛ) + kΛ)

where K(µ) is the number of ways in which −µ can be written as a sum of positive
roots. We will show that

m2kΛ(kΛ) =
∑

σ∈W1

sg(σ)K(ρ− σ(ρ+ 2kΛ) + kΛ) . (6)

Indeed, to prove 6 we will see that

if σ /∈ W1, then K(ρ− σ(ρ+ 2kΛ) + kΛ) = 0 .

Or equivalently, that if σ /∈ W1 then

ρ− σ(ρ+ 2kΛ) + kΛ =
∑
α∈Π

kαα for some kα ≥ 1 . (7)

To see (7) we do induction on l(σ): for l(σ) ≥ 1, we write σ = τrα with
l(τ) < l(σ) and rα the reflection corresponding to α ∈ Π. Then

ρ− σ(ρ+ 2kΛ) + kΛ = ρ− τρ+ τρ− τrα(ρ+ 2kΛ) + kΛ

= ρ− τρ+ τ(ρ− rαρ)− τrα(2kΛ) + kΛ

= ρ− τρ+ τ(α)− τ(2kΛ− 2
2k〈Λ, α〉
〈α, α〉

α) + kΛ

= ρ− τ(ρ+ 2kΛ) + kΛ + 2
2k〈Λ, α〉
〈α, α〉

τ(α) + τ(α) .

We have two cases:

i) τ /∈ W1 . By induction ρ − τ(ρ + 2kΛ) + kΛ =
∑

β∈Π kββ with some
kβ ≥ 1 and also τ(α) is a positive root.

ii) τ ∈ W1 . Then rα /∈ W1 and so α = α1 and

ρ− τ(ρ+ 2kΛ) + kΛ + 2
2k〈Λ, α〉
〈α, α〉

τ(α) + τ(α)

= ρ− τ(ρ)− kΛ + (2
2k〈Λ, α〉
〈α, α〉

+ 1)τ(α)

= ρ− τ(ρ)− kΛ + (2k + 1)τ(α) .

Let us see that kα1 ≥ 1. We have that ρ − τ(ρ) is a sum of positive roots
and since τ ∈ W1, τ is a product of reflections not involving rα1 . Therefore
τ(α1) = α1 +

∑
β∈Π\α1

kββ, and Λ = α1 +
∑

β∈Π\α1
kββ . So kα1 ≥ k + 1 and this

proves 7.

Thus
m2kΛ(kΛ) =

∑
σ∈W1

sg(σ)K(ρ− σρ− kω1) .
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Now by the proposition in page 317 of [3], with S = Ø, T = ∆, and λ = Λ, we
have ∑

σ∈W1

sg(σ)K(ρ− σρ− kΛ) = K∆\∆1(−kΛ) .

Here KS(µ) is the number of ways in which −µ can be written as a sum of
roots in S . In this case ∆ = {εi ± εj : 1 ≤ i < j ≤ N

4
} , Λ = ε1 and

∆ \ ∆1 = {ε1 ± εj : 2 ≤ j ≤ N
4
} . It is not difficult to check that for even

k = 2j ,

K∆\∆1(−kΛ) =

(
N
4

+ j − 2

j

)
≥ 2 for j ≥ 2 .

and when k = 2j + 1, K∆\∆1(−kΛ) = 0. This completes the proof of the Lemma.
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