Lie Algebras of Hamiltonian Vector Fields and Symplectic Manifolds

Jerry M. Lodder

Communicated by P. Olver

Abstract. We construct a local characteristic map to a symplectic manifold M via certain cohomology groups of Hamiltonian vector fields. For each $p \in M$, the Leibniz cohomology of the Hamiltonian vector fields on \mathbf{R}^{2n} maps to the Leibniz cohomology of all Hamiltonian vector fields on M. For a particular extension \mathfrak{g}_n of the symplectic Lie algebra, the Leibniz cohomology of \mathfrak{g}_n is shown to be an exterior algebra on the canonical symplectic two-form. The Leibniz cohomology of this extension is then a direct summand of the Leibniz cohomology of all Hamiltonian vector fields on \mathbf{R}^{2n} .

Mathematics Subject Classification: 17B56, 53D05, 17A32.

Key Words and Phrases: Leibniz homology, symplectic manifolds, symplectic invariants.

1. Introduction

We construct a local characteristic map to a symplectic manifold M via certain cohomology groups of Hamiltonian vector fields. Recall that the group of affine symplectomorphisms, i.e., the affine symplectic group ASp_n , is given by all transformations $\psi: \mathbf{R}^{2n} \to \mathbf{R}^{2n}$ of the form

$$\psi(z) = z_0 + Az,$$

where A is a $2n \times 2n$ symplectic matrix and z_0 a fixed element of \mathbf{R}^{2n} [7, p. 55]. Let \mathfrak{g}_n denote the Lie algebra of ASp_n , referred to as the affine symplectic Lie algebra. Then \mathfrak{g}_n is the largest finite dimensional Lie subalgebra of the Hamiltonian vector fields on \mathbf{R}^{2n} , and serves as our point of departure for calculations. Particular attention is devoted to the Leibniz homology of \mathfrak{g}_n , i.e., $HL_*(\mathfrak{g}_n; \mathbf{R})$, and proven is that

$$HL_*(\mathfrak{g}_n; \mathbf{R}) \simeq \Lambda^*(\omega_n),$$

where $\omega_n = \sum_{i=1}^n \frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial y^i}$ and Λ^* denotes the exterior algebra. Dually, for cohomology,

$$HL^*(\mathfrak{g}_n; \mathbf{R}) \simeq \Lambda^*(\omega_n^*),$$

where $\omega_n^* = \sum_{i=1}^n dx^i \wedge dy^i$.

For $p \in M$, the local characteristic map factors through

$$\iota^* \circ \rho_p : HL^*(\mathcal{X}_H(\mathbf{R}^{2n}); \mathbf{R}) \to HL^*(\mathcal{X}_H(M); C^{\infty}(M)),$$

where \mathcal{X}_H denotes the Lie algebra of Hamiltonian vector fields, and $C^{\infty}(M)$ is the ring of C^{∞} real-valued functions on M. The maps ι^* and ρ_p are defined in §5. Using previous work of the author [6], there is a natural map

$$H_{dR}^*(M; \mathbf{R}) \to HL^*(\mathcal{X}(M); C^{\infty}(M)),$$

where H_{dR}^* denotes deRham cohomology. Composing with

$$HL^*(\mathcal{X}(M); C^{\infty}(M)) \to HL^*(\mathcal{X}_H(M); C^{\infty}(M)),$$

we have

$$H_{dR}^*(M; \mathbf{R}) \to HL^*(\mathcal{X}_H(M); C^{\infty}(M)).$$

The local characteristic map acquires the form

$$\Lambda^*(\omega_n^*) \simeq HL^*(\mathfrak{g}_n; \mathbf{R})$$

$$\downarrow^{\mu_p}$$

$$H_{dR}^*(M; \mathbf{R}) \longrightarrow HL^*(\mathcal{X}_H(M); C^{\infty}(M))$$

for each $p \in M$.

The calculational tools for $HL_*(\mathfrak{g}_n)$ include the Hochschild-Serre spectral sequence for Lie-algebra (co)homology, the Pirashvili spectral sequence for Leibniz homology, and the identification of certain symplectic invariants of \mathfrak{g}_n which appear in the appendix.

2. The Affine Symplectic Lie Algebra

As a point of departure, consider a C^{∞} Hamiltonian function $H: \mathbf{R}^{2n} \to \mathbf{R}$ with the associated Hamiltonian vector field

$$X_{H} = \sum_{i=1}^{n} \frac{\partial H}{\partial x_{i}} \frac{\partial}{\partial y^{i}} - \sum_{i=1}^{n} \frac{\partial H}{\partial y_{i}} \frac{\partial}{\partial x^{i}},$$

where \mathbf{R}^{2n} is given coordinates

$$(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n),$$

and $\frac{\partial}{\partial x^i}$, $\frac{\partial}{\partial y^i}$ are the unit vector fields parallel to the x_i and y_i axes respectively. The vector field X_H is then tangent to the level curves (or hyper-surfaces) of H. Restricting H to a quadratic function (with no linear terms) in

$$\{x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n\},\$$

yields a family of vector fields isomorphic to the real symplectic Lie algebra \mathfrak{sp}_n . An **R**-vector space basis, \mathcal{B}_1 , for \mathfrak{sp}_n is given by the families:

$$(1) x_k \frac{\partial}{\partial y^k}, \quad k = 1, 2, 3, \dots, n,$$

$$(2) y_k \frac{\partial}{\partial x^k}, \quad k = 1, 2, 3, \dots, n,$$

(3)
$$x_i \frac{\partial}{\partial y^j} + x_j \frac{\partial}{\partial y^i}, \quad 1 \le i < j \le n,$$

(4)
$$y_i \frac{\partial}{\partial x^j} + y_j \frac{\partial}{\partial x^i}, \quad 1 \le i < j \le n,$$

(5)
$$y_j \frac{\partial}{\partial u^i} - x_i \frac{\partial}{\partial x^j}$$
, $i = 1, 2, 3, \dots, n, j = 1, 2, 3, \dots, n$.

It follows that $\dim_{\mathbf{R}}(\mathfrak{sp}_n) = 2n^2 + n$.

Let I_n denote the abelian Lie algebra of Hamiltonian vector fields arising from the linear (affine) functions $H: \mathbf{R}^{2n} \to \mathbf{R}$. Then I_n has an \mathbf{R} -vector space basis given by

$$\mathcal{B}_2 = \left\{ \frac{\partial}{\partial x^1}, \ \frac{\partial}{\partial x^2}, \ \dots, \ \frac{\partial}{\partial x^n}, \ \frac{\partial}{\partial y^1}, \ \frac{\partial}{\partial y^2}, \ \dots, \ \frac{\partial}{\partial y^n} \right\}.$$

The affine symplectic Lie algebra, \mathfrak{g}_n , has an **R**-vector space basis $\mathcal{B}_1 \cup \mathcal{B}_2$. There is a short exact sequence of Lie algebras

$$0 \longrightarrow I_n \stackrel{i}{\longrightarrow} \mathfrak{g}_n \stackrel{\pi}{\longrightarrow} \mathfrak{sp}_n \longrightarrow 0,$$

where i is the inclusion map and π is the projection

$$\mathfrak{g}_n \to (\mathfrak{g}_n/I_n) \simeq \mathfrak{sp}_n$$
.

In fact, I_n is an abelian ideal of \mathfrak{g}_n with I_n acting on \mathfrak{g}_n via the bracket of vector fields.

Let \mathfrak{H}_n denote the Lie algebra of formal Hamiltonian vector fields

$$X_{H} = \sum_{i=1}^{n} \frac{\partial H}{\partial x_{i}} \frac{\partial}{\partial y^{i}} - \sum_{i=1}^{n} \frac{\partial H}{\partial y_{i}} \frac{\partial}{\partial x^{i}},$$

where $H \in R = \mathbf{R}[[x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n]]$. As usual, endow \mathfrak{H}_n with the \mathcal{M} -adic topology, where \mathcal{M} is the maximal ideal of R generated by $\{x_1, \ldots, x_n, y_1, \ldots, y_n\}$. Let $H^*_{\text{Lie}}(\mathfrak{H}_n; \mathbf{R})$ and $HL^*(\mathfrak{H}_n; \mathbf{R})$ denote continuous Lie-algebra and continuous Leibniz cohomology respectively, computed using continuous cochains. For any $H \in C^{\infty}(\mathbf{R}^{2n})$, the Taylor series expansion of H about the origin induces a morphism of Lie algebras

$$T: \mathcal{X}_H(\mathbf{R}^{2n}) \to \mathfrak{H}_n,$$

as well as maps on cohomology

$$T^*: H^*_{\operatorname{Lie}}(\mathfrak{H}_n; \mathbf{R}) \to H^*_{\operatorname{Lie}}(\mathcal{X}_H(\mathbf{R}^{2n}); \mathbf{R}),$$

 $T^*: HL^*(\mathfrak{H}_n; \mathbf{R}) \to HL^*(\mathcal{X}_H(\mathbf{R}^{2n}); \mathbf{R}),$

where $\mathcal{X}_H(\mathbf{R}^{2n})$ is given the strong C^{∞} -topology. See [1] and [6] for further properties of T^* . Also, let $\mathfrak{H}_n^{\text{Poly}}$ denote the Lie algebra of polynomial Hamiltonian vector fields on \mathbf{R}^{2n} . For continuous cohomology, we have

$$H_{\text{Lie}}^*(\mathfrak{H}_n; \mathbf{R}) \simeq \text{Hom}(H_*^{\text{Lie}}(\mathfrak{H}_n^{\text{Poly}}; \mathbf{R}), \mathbf{R}),$$

 $HL^*(\mathfrak{H}_n; \mathbf{R}) \simeq \text{Hom}(HL_*(\mathfrak{H}_n^{\text{Poly}}; \mathbf{R}), \mathbf{R}).$

Also, there are natural inclusions of Lie algebras $\mathfrak{g}_n \hookrightarrow \mathfrak{H}_n^{\text{Poly}} \hookrightarrow \mathfrak{H}_n$.

3. The Lie Algebra Homology of \mathfrak{g}_n

For any Lie algebra \mathfrak{g} over a ring k, the Lie algebra homology of \mathfrak{g} , written $H^{\text{Lie}}_*(\mathfrak{g}; k)$, is the homology of the chain complex $\Lambda^*(\mathfrak{g})$, namely

$$k \xleftarrow{0} \mathfrak{g} \xleftarrow{[,]} \mathfrak{g}^{\wedge 2} \longleftarrow \ldots \longleftarrow \mathfrak{g}^{\wedge (n-1)} \xleftarrow{d} \mathfrak{g}^{\wedge n} \longleftarrow \ldots,$$

where

$$d(g_1 \wedge g_2 \wedge \ldots \wedge g_n) = \sum_{1 \leq i < j \leq n} (-1)^j (g_1 \wedge \ldots \wedge g_{i-1} \wedge [g_i, g_j] \wedge g_{i+1} \wedge \ldots \hat{g}_j \ldots \wedge g_n).$$

For actual calculations in this paper, $k = \mathbf{R}$. Additionally, Lie algebra homology with coefficients in the adjoint representation, written $H^{\text{Lie}}_*(\mathfrak{g};\mathfrak{g})$, is the homology of the chain complex $\mathfrak{g} \otimes \Lambda^*(\mathfrak{g})$, i.e.,

$$\mathfrak{g} \longleftarrow \mathfrak{g} \otimes \mathfrak{g} \longleftarrow \mathfrak{g} \otimes \mathfrak{g}^{\wedge 2} \longleftarrow \ldots \longleftarrow \mathfrak{g} \otimes \mathfrak{g}^{\wedge (n-1)} \stackrel{d}{\longleftarrow} \mathfrak{g} \otimes \mathfrak{g}^{\wedge n} \longleftarrow \ldots,$$

where

$$d(g_1 \otimes g_2 \wedge g_3 \dots \wedge g_{n+1}) = \sum_{i=2}^{n+1} (-1)^i ([g_1, g_i] \otimes g_2 \wedge \dots \hat{g}_i \dots \wedge g_{n+1})$$

+
$$\sum_{2 \leq i < j \leq n+1} (-1)^j (g_1 \otimes g_2 \wedge \dots \wedge g_{i-1} \wedge [g_i, g_j] \wedge g_{i+1} \wedge \dots \hat{g}_j \dots \wedge g_{n+1}).$$

The canonical projection $\mathfrak{g} \otimes \Lambda^*(\mathfrak{g}) \to \Lambda^{*+1}(\mathfrak{g})$ given by $\mathfrak{g} \otimes \mathfrak{g}^{\wedge n} \to \mathfrak{g}^{\wedge (n+1)}$ is a map of chain complexes and induces a k-linear map on homology

$$H_n^{\mathrm{Lie}}(\mathfrak{g};\,\mathfrak{g}) \to H_{n+1}^{\mathrm{Lie}}(\mathfrak{g};\,k).$$

Given a (right) \mathfrak{g} -module M, the module of invariants $M^{\mathfrak{g}}$ is defined as

$$M^{\mathfrak{g}} = \{ m \in M \mid [m, g] = 0 \ \forall g \in \mathfrak{g} \}.$$

Note that \mathfrak{sp}_n acts on I_n and on the affine symplectic Lie algebra \mathfrak{g}_n via the bracket of vector fields. The action is extended to $I_n^{\wedge k}$ by

$$[\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_k, X] = \sum_{i=1}^k \alpha_1 \wedge \alpha_2 \wedge \ldots \wedge [\alpha_i, X] \wedge \ldots \wedge \alpha_k$$

for $\alpha_i \in I_n$, $X \in \mathfrak{sp}_n$, and similarly for the \mathfrak{sp}_n action on $\mathfrak{g}_n \otimes I_n^{\wedge k}$. The main result of this section is the following.

Lemma 3.1. There are natural vector space isomorphisms

$$H^{Lie}_*(\mathfrak{g}_n; \mathbf{R}) \simeq H^{Lie}_*(\mathfrak{sp}_n; \mathbf{R}) \otimes [\Lambda^*(I_n)]^{\mathfrak{sp}_n}$$

$$H^{Lie}_*(\mathfrak{g}_n; \mathfrak{g}_n) \simeq H^{Lie}_*(\mathfrak{sp}_n; \mathbf{R}) \otimes [\mathfrak{g}_n \otimes \Lambda^*(I_n)]^{\mathfrak{sp}_n}.$$

Proof. The lemma follows essentially from the Hochschild-Serre spectral sequence [3], the application of which we briefly outline to aid in the identification of representative homology cycles, and to reconcile the lemma with its cohomological version in [3]. Consider the filtration \mathcal{F}_m , $m \geq -1$, of the complex $\Lambda^*(\mathfrak{g}_n)$ given by the **R**-vector spaces:

$$\mathcal{F}_{-1} = \{0\},$$

$$\mathcal{F}_{0} = \Lambda^{*}(I_{n}), \quad \mathcal{F}_{0}^{k} = I_{n}^{\wedge k}, \quad k = 0, 1, 2, 3, \dots,$$

$$\mathcal{F}_{m}^{k} = \text{Span of } \{g_{1} \wedge \dots \wedge g_{k+m} \in \mathfrak{g}_{n}^{\wedge (k+m)} \mid \text{at most } m\text{-many } g_{i}\text{'s} \notin I_{n}\}.$$

Then each \mathcal{F}_m is a chain complex, and \mathcal{F}_m is a subcomplex of \mathcal{F}_{m+1} . For $m \geq 0$, we have

$$E_{m,k}^0 = \mathcal{F}_m^k / \mathcal{F}_{m-1}^{k+1} \simeq I_n^{\wedge k} \otimes (\mathfrak{g}_n / I_n)^{\wedge m}.$$

Since I_n is abelian and the action of I_n on \mathfrak{g}_n/I_n is trivial, it follows that

$$E_{m,k}^1 \simeq I_n^{\wedge k} \otimes (\mathfrak{g}_n/I_n)^{\wedge m}.$$

Using the isomorphism $\mathfrak{g}_n/I_n \simeq \mathfrak{sp}_n$, we have

$$E_{m,k}^2 \simeq H_m(\mathfrak{sp}_n; I_n^{\wedge k}).$$

Now, \mathfrak{sp}_n is a simple Lie algebra and as an \mathfrak{sp}_n -module

$$I_n^{\wedge k} \simeq (I_n^{\wedge k})^{\mathfrak{sp}_n} \oplus M,$$

where $M \simeq M_1 \oplus M_2 \oplus \ldots \oplus M_t$ is a direct sum of simple modules on which \mathfrak{sp}_n acts non-trivially. Hence

$$H_*(\mathfrak{sp}_n; I_n^{\wedge k}) \simeq H_*(\mathfrak{sp}_n; (I_n^{\wedge k})^{\mathfrak{sp}_n}) \oplus H_*(\mathfrak{sp}_n; M).$$

Clearly,

$$H_*(\mathfrak{sp}_n; (I_n^{\wedge k})^{\mathfrak{sp}_n}) \simeq H_*(\mathfrak{sp}_n; \mathbf{R}) \otimes (I_n^{\wedge k})^{\mathfrak{sp}_n}$$
$$H_*(\mathfrak{sp}_n; M) \simeq \sum_{i=1}^t H_*(\mathfrak{sp}_n; M_i) \simeq 0,$$

where the latter isomorphism holds since each M_i is simple with non-trivial \mathfrak{sp}_n action. See [2, Prop. VII.5.6] for more details.

Let θ be a cycle in $\Lambda^m(\mathfrak{sp}_n)$ representing an element of $H_m(\mathfrak{sp}_n; \mathbf{R})$, and let $z \in (I_n^{\wedge k})^{\mathfrak{sp}_n}$. Then $z \wedge \theta \in \mathfrak{g}_n^{\wedge (m+k)}$ represents an absolute cycle in $\Lambda^*(\mathfrak{g}_n)$, since, if θ is a sum of elements of the form $s_1 \wedge s_2 \wedge \ldots \wedge s_m$, then $[z, s_i] = 0$ for each $s_i \in \mathfrak{sp}_n$. Thus, $E_{m,k}^2 \simeq E_{m,k}^{\infty}$, and

$$H_*(\mathfrak{g}_n; \mathbf{R}) \simeq H_*(\mathfrak{sp}_n; \mathbf{R}) \otimes [\Lambda^*(I_n)]^{\mathfrak{sp}_n}.$$

By an application of the Hochschild-Serre spectral sequence to the subalgebra \mathfrak{sp}_n of \mathfrak{g}_n , we have

$$H_*(\mathfrak{g}_n;\,\mathfrak{g}_n)\simeq H_*(\mathfrak{sp}_n;\,\mathbf{R})\otimes [\mathfrak{g}_n\otimes \Lambda^*(I_n)]^{\mathfrak{sp}_n}.$$

Let $\omega_n = \sum_{i=1}^n \frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial y^i} \in I_n^{\wedge 2}$. One checks that $\omega_n \in (I_n^{\wedge 2})^{\mathfrak{sp}_n}$ against the basis for \mathfrak{sp}_n given in §2. It follows that

$$\omega_n^{\wedge k} \in [I_n^{\wedge 2k}]^{\mathfrak{sp}_n}.$$

Letting $\Lambda^*(\omega_n)$ denote the exterior algebra generated by ω_n , we prove in the appendix that

Lemma 3.2. There are isomorphisms

$$\begin{split} & \left[\Lambda^*(I_n) \right]^{\mathfrak{sp}_n} \simeq \Lambda^*(\omega_n) := \sum_{k \geq 0} \Lambda^k(\omega_n) \\ & \left[\mathfrak{g}_n \otimes \Lambda^*(I_n) \right]^{\mathfrak{sp}_n} \simeq \bar{\Lambda}^*(\omega_n) := \sum_{k \geq 1} \Lambda^k(\omega_n), \end{split}$$

where the first is an isomorphism of algebras, and the second is an isomorphism of vector spaces.

Combining this with Lemma (3.1), we have

Lemma 3.3. There are vector space isomorphisms

$$H_*^{Lie}(\mathfrak{g}_n; \mathbf{R}) \simeq H_*(\mathfrak{sp}_n; \mathbf{R}) \otimes \Lambda^*(\omega_n)$$

 $H_*^{Lie}(\mathfrak{g}_n; \mathfrak{g}_n) \simeq H_*(\mathfrak{sp}_n; \mathbf{R}) \otimes \bar{\Lambda}^*(\omega_n).$

It is known that for cohomology,

$$H_{\text{Lie}}^*(\mathfrak{sp}_n; \mathbf{R}) \simeq \Lambda^*(u_3, u_7, u_{11}, \dots, u_{4n-1}),$$

where u_i is a class in dimension i. Also,

$$H_k^{\operatorname{Lie}}(\mathfrak{sp}_n; \mathbf{R}) \simeq H_{\operatorname{Lie}}^k(\mathfrak{sp}_n; \mathbf{R}).$$

See the reference [10, p. 343] for the homology of the symplectic Lie group.

4. The Leibniz Homology of \mathfrak{g}_n

Recall that for a Lie algebra \mathfrak{g} over a ring k, and more generally for a Leibniz algebra \mathfrak{g} [4], the Leibniz homology of \mathfrak{g} , written $HL_*(\mathfrak{g}; k)$, is the homology of the chain complex $T(\mathfrak{g})$:

$$k \xleftarrow{\quad 0 \quad} \mathfrak{g} \xleftarrow{\left[\ , \ \right] \quad} \mathfrak{g}^{\otimes 2} \longleftarrow \dots \longleftarrow \mathfrak{g}^{\otimes (n-1)} \xleftarrow{\quad d \quad} \mathfrak{g}^{\otimes n} \longleftarrow \dots,$$

where

$$d(g_1, g_2, \ldots, g_n) = \sum_{1 \le i < j \le n} (-1)^j (g_1, g_2, \ldots, g_{i-1}, [g_i, g_j], g_{i+1}, \ldots \hat{g}_j \ldots, g_n),$$

and (g_1, g_2, \ldots, g_n) denotes the element $g_1 \otimes g_2 \otimes \ldots \otimes g_n \in \mathfrak{g}^{\otimes n}$.

The canonical projection $\pi_1: \mathfrak{g}^{\otimes n} \to \mathfrak{g}^{\wedge n}, n \geq 0$, is a map of chain complexes, $T(\mathfrak{g}) \to \Lambda^*(\mathfrak{g})$, and induces a k-linear map on homology

$$HL_*(\mathfrak{g}; k) \to H_*^{\text{Lie}}(\mathfrak{g}; k).$$

Letting

$$(\ker \pi_1)_n[2] = \ker [\mathfrak{g}^{\otimes (n+2)} \to \mathfrak{g}^{\wedge (n+2)}], \quad n \ge 0,$$

Pirashvili [9] defines the relative theory $H^{\mathrm{rel}}(\mathfrak{g})$ as the homology of the complex

$$C_n^{\mathrm{rel}}(\mathfrak{g}) = (\ker \pi_1)_n[2],$$

and studies the resulting long exact sequence relating Lie and Leibniz homology:

An additional exact sequence is required for calculations of HL_* . Consider the projection

$$\pi_2: \mathfrak{g} \otimes \mathfrak{g}^{\wedge n} \to \mathfrak{g}^{\wedge (n+1)}, \quad n \geq 0,$$

and the resulting chain map

$$\pi_2: \mathfrak{g} \otimes \Lambda^*(\mathfrak{g}) \to \Lambda^{*+1}(\mathfrak{g}).$$

Let $HR_n(\mathfrak{g})$ denote the homology of the complex

$$CR_n(\mathfrak{g}) = (\ker \pi_2)_n[1] = \ker [\mathfrak{g} \otimes \mathfrak{g}^{\wedge (n+1)} \to \mathfrak{g}^{\wedge (n+2)}], \quad n \ge 0.$$

There is a resulting long exact sequence

The projection $\pi_1: \mathfrak{g}^{\otimes (n+1)} \to \mathfrak{g}^{\wedge (n+1)}$ can be written as the composition of projections

$$\mathfrak{g}^{\otimes (n+1)} \longrightarrow \mathfrak{g} \otimes \mathfrak{g}^{\wedge n} \longrightarrow \mathfrak{g}^{\wedge (n+1)}$$

which leads to a natural map between exact sequences

$$H_{n-1}^{\mathrm{rel}}(\mathfrak{g}) \longrightarrow HL_{n+1}(\mathfrak{g}) \longrightarrow H_{n+1}^{\mathrm{Lie}}(\mathfrak{g}) \stackrel{\partial}{\longrightarrow} H_{n-2}^{\mathrm{rel}}(\mathfrak{g})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$HR_{n-1}(\mathfrak{g}) \longrightarrow H_{n}^{\mathrm{Lie}}(\mathfrak{g}; \mathfrak{g}) \longrightarrow H_{n+1}^{\mathrm{Lie}}(\mathfrak{g}) \stackrel{\partial}{\longrightarrow} HR_{n-2}(\mathfrak{g})$$

and an articulation of their respective boundary maps ∂ .

Lemma 4.1. For the affine symplectic Lie algebra \mathfrak{g}_n , there is a natural isomorphism

$$H_k(\mathfrak{sp}_n; \mathbf{R}) \xrightarrow{\simeq} HR_{k-3}(\mathfrak{g}_n; \mathbf{R}), \quad k \geq 3,$$

that factors as the composition

$$H_k^{Lie}(\mathfrak{sp}_n; \mathbf{R}) \xrightarrow{\simeq} HR_{k-3}(\mathfrak{sp}_n; \mathbf{R}) \xrightarrow{\simeq} HR_{k-3}(\mathfrak{g}_n; \mathbf{R}),$$

and the latter isomorphism is induced by the inclusion $\mathfrak{sp}_n \hookrightarrow \mathfrak{g}_n$.

Proof. Since \mathfrak{sp}_n is a simple Lie algebra, from [2, Prop. VII.5.6] we have

$$H_k^{\text{Lie}}(\mathfrak{sp}_n; \mathfrak{sp}_n) = 0, \quad k \ge 0.$$

¿From the long exact sequence

$$\cdots \longrightarrow HR_{k-1}(\mathfrak{sp}_n; \mathbf{R}) \longrightarrow H_k^{\operatorname{Lie}}(\mathfrak{sp}_n; \mathfrak{sp}_n) \longrightarrow H_{k+1}^{\operatorname{Lie}}(\mathfrak{sp}_n; \mathbf{R}) \stackrel{\partial}{\longrightarrow} \cdots,$$

it follows that $\partial: H_k^{\text{Lie}}(\mathfrak{sp}_n; \mathbf{R}) \to HR_{k-3}(\mathfrak{sp}_n; \mathbf{R})$ is an isomorphism for $k \geq 3$. The inclusion of Lie algebras $\mathfrak{sp}_n \hookrightarrow \mathfrak{g}_n$ induces a map of exact sequences

$$\longrightarrow HR_{k-1}(\mathfrak{sp}_n; \mathbf{R}) \longrightarrow H_k^{\operatorname{Lie}}(\mathfrak{sp}_n; \mathfrak{sp}_n) \longrightarrow H_{k+1}^{\operatorname{Lie}}(\mathfrak{sp}_n; \mathbf{R}) \xrightarrow{\partial}$$

$$\qquad \qquad \qquad \downarrow \qquad \qquad \longrightarrow HR_{k-1}(\mathfrak{g}_n; \mathbf{R}) \longrightarrow H_k^{\operatorname{Lie}}(\mathfrak{g}_n; \mathfrak{g}_n) \longrightarrow H_{k+1}^{\operatorname{Lie}}(\mathfrak{g}_n; \mathbf{R}) \xrightarrow{\partial} \longrightarrow HR_{k+1}^{\operatorname{Lie}}(\mathfrak{g}_n; \mathbf{R}) \longrightarrow H_k^{\operatorname{Lie}}(\mathfrak{g}_n; \mathbf{$$

¿From Lemma (3.3)

$$H_*^{\text{Lie}}(\mathfrak{g}_n; \mathbf{R}) \simeq H_*(\mathfrak{sp}_n; \mathbf{R}) \otimes \Lambda^*(\omega_n)$$

$$H_*^{\text{Lie}}(\mathfrak{g}_n; \mathfrak{g}_n) \simeq H_*(\mathfrak{sp}_n; \mathbf{R}) \otimes \bar{\Lambda}^*(\omega_n).$$

The map $H^{\text{Lie}}_*(\mathfrak{g}_n; \mathfrak{g}_n) \to H^{\text{Lie}}_{*+1}(\mathfrak{g}_n; \mathbf{R})$ is an inclusion on homology with cokernel $H^{\text{Lie}}_{*+1}(\mathfrak{sp}_n; \mathbf{R})$. The result now follows from the map between exact sequences and a knowledge of the generators of $H^{\text{Lie}}_*(\mathfrak{g}_n; \mathbf{R})$ gleaned from Lemma (3.1).

Theorem 4.2. There is an isomorphism of vector spaces

$$HL_*(\mathfrak{g}_n; \mathbf{R}) \simeq \Lambda^*(\omega_n)$$

and an algebra isomorphism

$$HL^*(\mathfrak{g}_n; \mathbf{R}) \simeq \Lambda^*(\omega_n^*), \quad \omega_n^* = \sum_{i=1}^n dx^i \wedge dy^i,$$

where HL^* is afforded the shuffle algebra.

Proof. Consider the Pirashvili filtration [9] of the complex

$$C_n^{\text{rel}}(\mathfrak{g}) = \ker(\mathfrak{g}^{\otimes (n+2)} \to \mathfrak{g}^{\wedge (n+2)}), \quad n \ge 0,$$

given by

$$\mathcal{F}_m^k(\mathfrak{g}) = \mathfrak{g}^{\otimes k} \otimes \ker(\mathfrak{g}^{\otimes (m+2)} \to \mathfrak{g}^{\wedge (m+2)}), \quad m \ge 0, \ k \ge 0.$$

Then \mathcal{F}_m^* is a subcomplex of \mathcal{F}_{m+1}^* and the resulting spectral sequence converges to $H_*^{\text{rel}}(\mathfrak{g})$. From [9] we have

$$E_{m,k}^2 \simeq HL_k(\mathfrak{g}) \otimes HR_m(\mathfrak{g}), \quad m \ge 0, \ k \ge 0.$$

¿From the proof of Lemma (4.1), there is an isomorphism

$$\partial: H_3^{\mathrm{Lie}}(\mathfrak{g}_n; \mathbf{R}) \xrightarrow{\simeq} HR_0(\mathfrak{g}_n; \mathbf{R}) \simeq \mathbf{R}.$$

¿From the long exact sequence relating Lie and Leibniz homology, it follows that $HL_2(\mathfrak{g}_n; \mathbf{R}) \to H_2^{\text{Lie}}(\mathfrak{g}_n; \mathbf{R})$ is an isomorphism. Since

$$\tilde{\omega}_n = \frac{1}{2} \sum_{i=1}^n \left(\frac{\partial}{\partial x^i} \otimes \frac{\partial}{\partial y^i} - \frac{\partial}{\partial y^i} \otimes \frac{\partial}{\partial x^i} \right)$$

is a cycle in the Leibniz complex that maps to ω_n in the Lie algebra complex, it follows that $\tilde{\omega}_n$ generates $HL_2(\mathfrak{g}_n; \mathbf{R})$.

We claim that all elements in $HL_0(\mathfrak{g}_n) \otimes HR_*(\mathfrak{g}_n)$ are absolute cycles. The inclusion $\mathfrak{sp}_n \hookrightarrow \mathfrak{g}_n$ induces a map between exact sequences

Since \mathfrak{sp}_n is a simple Lie algebra, $HL_k(\mathfrak{sp}_n; \mathbf{R}) = 0$, $k \geq 1$ [8]. Thus, $\partial: H_k^{\mathrm{Lie}}(\mathfrak{sp}_n) \to H_{k-3}^{\mathrm{rel}}(\mathfrak{sp}_n)$ is an isomorphism for $k \geq 3$. The inclusion $\mathcal{F}_m^*(\mathfrak{sp}_n) \hookrightarrow \mathcal{F}_m^*(\mathfrak{g}_n)$ induces a map of spectral sequences, and hence a map

$$HL_0(\mathfrak{sp}_n) \otimes HR_*(\mathfrak{sp}_n) \longrightarrow HL_0(\mathfrak{g}_n) \otimes HR_*(\mathfrak{g}_n).$$

Since $HR_*(\mathfrak{sp}_n) \simeq H_*^{\mathrm{rel}}(\mathfrak{sp}_n)$, all classes in $HL_0(\mathfrak{sp}_n) \otimes HR_*(\mathfrak{sp}_n)$ are absolute cycles. Now, $HR_*(\mathfrak{sp}_n)$ maps isomorphically to $HR_*(\mathfrak{g}_n)$, and by naturality, all classes in $HL_0(\mathfrak{g}_n) \otimes HR_*(\mathfrak{g}_n)$ are absolute cycles. Moreover,

$$\partial: H^{\mathrm{Lie}}_*(\mathfrak{g}_n) \to H^{\mathrm{rel}}_{*-3}(\mathfrak{g}_n)$$

maps the classes in $\bar{H}_*^{\text{Lie}}(\mathfrak{sp}_n)$ injectively to $H_{*-3}^{\text{rel}}(\mathfrak{g}_n)$ in the diagram

$$0 \longrightarrow H^{\operatorname{Lie}}_{*}(\mathfrak{sp}_{n}) \stackrel{\partial}{\longrightarrow} H^{\operatorname{rel}}_{*-3}(\mathfrak{sp}_{n}) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow H^{\operatorname{Lie}}_{*}(\mathfrak{g}_{n}) \stackrel{\partial}{\longrightarrow} H^{\operatorname{rel}}_{*-3}(\mathfrak{g}_{n}) \longrightarrow \cdots$$

where the vertical arrows are inclusions.

We claim that all elements in $HL_2(\mathfrak{g}_n) \otimes HR_*(\mathfrak{g}_n)$ are absolute cycles as well. Let $[\theta] \in HR_m(\mathfrak{g}_n)$ be represented by the sum

$$\theta = \sum_{j=1}^{n} X_{1,j} \otimes X_{2,j} \wedge X_{3,j} \wedge \ldots \wedge X_{m+1,j} ,$$

where each $X_{i,j} \in \mathfrak{sp}_n$ and $d\theta = 0$. By invariance,

$$[\tilde{\omega}_n, X_{i,j}] = 0$$
 for each $X_{i,j}$.

It follows that $d(\tilde{\omega}_n \otimes \theta) = d(\tilde{\omega}_n) \otimes \theta + \tilde{\omega}_n \otimes d\theta = 0$, and $\tilde{\omega}_n \otimes \theta$ represents an absolute cycle in $H_*^{\mathrm{rel}}(\mathfrak{g}_n)$. To compute

$$\partial: H^{\mathrm{Lie}}_*(\mathfrak{g}_n) \to H^{\mathrm{rel}}_{*-3}(\mathfrak{g}_n)$$

on classes of the form $[\omega_n] \otimes \bar{H}^{\text{Lie}}_*(\mathfrak{sp}_n)$, let $[\theta'] \in \bar{H}^{\text{Lie}}_*(\mathfrak{sp}_n)$ with $\partial(\theta') = \theta$. By lifting $\omega_n \wedge \theta'$ to $\tilde{\omega}_n \otimes \theta'$ in $T(\mathfrak{g}_n)$ and using invariance, we have

$$\partial(\omega_n \wedge \theta') = \tilde{\omega}_n \otimes \partial(\theta') = \tilde{\omega}_n \otimes \theta.$$

At this point $H_k^{\text{rel}}(\mathfrak{g}_n)$ is completely determined for $k \leq 2$. By an examination of $H_1^{\text{rel}}(\mathfrak{g}_n)$,

$$\omega_n^{\wedge 2} \in \ker \partial, \quad \partial: H_4^{\mathrm{Lie}}(\mathfrak{g}_n) \to H_1^{\mathrm{rel}}(\mathfrak{g}_n).$$

Thus, $(\tilde{\omega}_n)^{\wedge 2}$ generates a non-zero class in $HL_4(\mathfrak{g}_n)$ mapping to the class $\omega_n^{\wedge 2} \in H_4^{\text{Lie}}(\mathfrak{g}_n)$. As before, all classes in $HL_4(\mathfrak{g}_n) \otimes HR_*(\mathfrak{g}_n)$ are absolute cycles and in Im ∂ . Thus, $H_k^{\text{rel}}(\mathfrak{g}_n)$ is completely determined for $k \leq 4$. By induction on k, $(\tilde{\omega}_n)^{\wedge k}$ is a non-zero class in $HL_{2k}(\mathfrak{g}_n)$, and

$$H_*^{\mathrm{rel}}(\mathfrak{g}_n) \simeq \Lambda^*(\omega_n) \otimes HR_*(\mathfrak{g}_n) \simeq \Lambda^*(\omega_n) \otimes H_{*+3}^{\mathrm{Lie}}(\mathfrak{sp}_n)$$

 $HL_*(\mathfrak{g}_n) \simeq \Lambda^*(\omega_n).$

For the cohomology isomorphism

$$HL^*(\mathfrak{g}_n; \mathbf{R}) \simeq \Lambda^*(\omega_n^*), \quad \omega_n^* = \sum_{i=1}^n dx^i \wedge dy^i,$$

where dx^i is the dual of $\frac{\partial}{\partial x^i}$ and dy^i the dual of $\frac{\partial}{\partial y^i}$ with respect to the basis of \mathfrak{g}_n given by $\mathcal{B}_1 \cup \mathcal{B}_2$ in §2. Since

$$HL^*(\mathfrak{g}_n; \mathbf{R}) \simeq \operatorname{Hom}(HL_*(\mathfrak{g}_n; \mathbf{R}), \mathbf{R}),$$

the result follows by using the full shuffle product on cochains.

Recall that $HL^*(\mathfrak{g}_n; \mathbf{R})$ carries the structure of a dual Leibniz algebra (Zinbiel algebra) induced on cochains by semi-shuffles [5]. Given $\alpha \in \text{Hom}(\mathfrak{g}_n^{\otimes p}, \mathbf{R})$ and $\beta \in \text{Hom}(\mathfrak{g}_n^{\otimes q}, \mathbf{R})$, the semi-shuffle $\alpha \cdot \beta \in \text{Hom}(\mathfrak{g}_n^{\otimes (p+q)}, \mathbf{R})$ is given by

$$\sum_{\sigma \in Sh_{p-1, q}} (\operatorname{sgn} \sigma) \alpha(g_1, g_{\sigma^{-1}(2)}, g_{\sigma^{-1}(3)}, \dots, g_{\sigma^{-1}(p)}) \beta(g_{\sigma^{-1}(p+1)}, \dots, g_{\sigma^{-1}(p+q)}),$$

where the summation is over all (p-1, q) shuffles of

$$(2, 3, 4, \ldots, p, p+1, \ldots, p+q).$$

The full shuffle product, denoted by \wedge , satisfies

$$\alpha \wedge \beta = \alpha \cdot \beta + (-1)^{pq} \beta \cdot \alpha.$$

Note that in $HL^*(\mathfrak{g}_n; \mathbf{R})$ the Zinbiel product $\omega_n^* \cdot \omega_n^*$ is completely determined by $\omega_n^* \wedge \omega_n^*$, since

$$\omega_n^* \wedge \omega_n^* = 2\omega_n^* \cdot \omega_n^*$$
 and $\omega_n^* \cdot \omega_n^* = \frac{1}{2} \omega_n^* \wedge \omega_n^*$.

The skew-symmetry of $\omega_n^* \cdot \omega_n^*$ can be verified by direct calculation with (co)chains as well. For example, if $f \in \text{Hom}(\mathfrak{g}_n^{\otimes 2}, \mathbf{R})$ generates $HL^2(\mathfrak{g}_n; \mathbf{R})$, then the cohomology class of f is determined by

$$f\Big(\sum_{i=1}^n \frac{\partial}{\partial x^i} \otimes \frac{\partial}{\partial y^i}\Big) = \sum_{i=1}^n f\Big(\frac{\partial}{\partial x^i} \otimes \frac{\partial}{\partial y^i}\Big).$$

Since $d(y_i \frac{\partial}{\partial y^i} - x_i \frac{\partial}{\partial x^i}) \otimes \frac{\partial}{\partial x^i} \otimes \frac{\partial}{\partial y^i}) = \frac{\partial}{\partial x^i} \otimes \frac{\partial}{\partial y^i} + \frac{\partial}{\partial y^i} \otimes \frac{\partial}{\partial x^i}$, it follows that f must be skew-symmetric. Now,

$$(f \cdot f)(g_1, g_2, g_3, g_4) = f(g_1, g_2)f(g_3, g_4) - f(g_1, g_3)f(g_2, g_4) + f(g_1, g_4)f(g_1, g_3).$$

Restricting $\{g_1, g_2, g_3, g_4\}$ to $\{\frac{\partial}{\partial x^i}, \frac{\partial}{\partial y^i}, \frac{\partial}{\partial x^j}, \frac{\partial}{\partial y^j}\}$, the reader may check skew-symmetry of $f \cdot f$ by hand.

We now prove that $HL^*(\mathfrak{g}_n; \mathbf{R})$ is a direct summand of $HL^*(\mathfrak{H}_n; \mathbf{R})$. We begin with the Lie algebra homology groups $H^{\mathrm{Lie}}_*(\mathfrak{H}_n^{\mathrm{Poly}}; \mathbf{R})$.

Lemma 4.3. The vector space $H^{Lie}_*(\mathfrak{H}_n^{Poly}; \mathbf{R})$ contains $\Lambda^*(\omega_n)$ as a direct summand.

Proof. Apply the Hochschild-Serre spectral sequence to the subalgebra \mathfrak{sp}_n of $\mathfrak{H}_n^{\mathrm{Poly}}$. Then

$$E_{m,k}^2 \simeq H_k^{\mathrm{Lie}}(\mathfrak{sp}_n; \, \mathbf{R}) \otimes H_m((\mathfrak{H}_n^{\mathrm{Poly}}/\mathfrak{sp}_n)^{\mathfrak{sp}_n}; \, \mathbf{R}).$$

As before, $\Lambda^*(\omega_n) \subseteq (\mathfrak{H}_n^{\operatorname{Poly}}/\mathfrak{sp}_n)^{\mathfrak{sp}_n}$. Since $d(\omega_n) = d(\sum_{i=1}^n \frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial y^i}) = 0$, ω_n and $\Lambda^*(\omega_n)$ are infinite cycles. Since the elements $\Lambda^*(\omega_n)$ occur along the horizontal axis (k=0) in a first-quadrant spectral sequence, these elements are not boundaries. Thus, $\Lambda^*(\omega_n)$ is a subvector space of $H_*^{\operatorname{Lie}}(\mathfrak{H}_n^{\operatorname{Poly}}; \mathbf{R})$ induced by the morphism of Lie algebras $\mathfrak{g}_n \to \mathfrak{H}_n^{\operatorname{Poly}}$.

Lemma 4.4. The vector space $HL_*(\mathfrak{H}_n^{Poly}; \mathbf{R})$ contains $\Lambda^*(\omega_n)$ as a direct summand.

Proof. The elements $\Lambda^*(\omega_n)$ are cycles in the Leibniz complex that map to $\Lambda^*(\omega_n)$ under the canonical morphism

$$HL_*(\mathfrak{H}_n^{\mathrm{Poly}}; \mathbf{R}) \to H_*^{\mathrm{Lie}}(\mathfrak{H}_n^{\mathrm{Poly}}; \mathbf{R}).$$

Thus, the map on homology

$$HL_*(\mathfrak{g}_n; \mathbf{R}) \to HL_*(\mathfrak{H}_n^{\text{Poly}}; \mathbf{R})$$

induced by $\mathfrak{g}_n \to \mathfrak{H}_n^{\text{Poly}}$ is injective.

Lemma 4.5. The vector space $HL^*(\mathfrak{H}_n; \mathbf{R})$ contains $\Lambda^*(\omega_n^*)$ as a direct summand.

Proof. The proof follows from the isomorphism

$$HL^*(\mathfrak{H}_n; \mathbf{R}) \simeq \operatorname{Hom}(HL_*(\mathfrak{H}_n^{\operatorname{Poly}}; \mathbf{R}), \mathbf{R}),$$

using continuous cohomology.

5. A Characteristic Map

Let M be a symplectic manifold, $\mathcal{X}(M)$ the Lie algebra of C^{∞} vector fields on M, and $\mathcal{X}_H(M)$ the Lie algebra of Hamiltonian vector fields [7, p. 85], both considered in the strong C^{∞} -topology. The functor HL^* denotes continuous Leibniz cohomology when applied to a topological Lie algebra. From [6], there is a natural map

$$H_{dR}^*(M; \mathbf{R}) \longrightarrow HL^*(\mathcal{X}(M); C^{\infty}(M)),$$

where $H_{dR}^*(M)$ denotes deRham cohomology, and $C^{\infty}(M)$ is also given the strong C^{∞} -topology. The inclusion of Lie algebras $\mathcal{X}_H(M) \hookrightarrow \mathcal{X}(M)$ induces a (contravariant) map

$$HL^*(\mathcal{X}(M); C^{\infty}(M)) \longrightarrow HL^*(\mathcal{X}_H(M); C^{\infty}(M))$$

on cohomology, while the inclusion of coefficients $\iota: \mathbf{R} \to C^{\infty}(M)$ induces a (covariant) map

$$\iota^*: HL^*(\mathcal{X}_H(M); \mathbf{R}) \longrightarrow HL^*(\mathcal{X}_H(M); C^{\infty}(M)).$$

Let $p \in M$ and let U be an open neighborhood of p homeomorphic to R^{2n} in the atlas of charts for M. There is a natural morphism of Lie algebras $\mathcal{X}_H(M) \to \mathcal{X}_H(U)$ given by the restriction of vector fields from M to U, and resulting linear maps

$$HL^*(\mathcal{X}_H(U); \mathbf{R}) \to HL^*(\mathcal{X}_H(M); \mathbf{R}) \xrightarrow{\iota^*} HL^*(\mathcal{X}_H(M); C^{\infty}(M)).$$

Now, $\mathcal{X}_H(U) \simeq \mathcal{X}_H(\mathbf{R}^{2n})$ as Lie algebras, and thus there are local maps

$$\rho_p: HL^*(\mathcal{X}_H(\mathbf{R}^{2n}); \mathbf{R}) \to HL^*(\mathcal{X}_H(M); \mathbf{R})$$

for each $p \in M$. Note:

$$HL^*(\mathfrak{g}_n; \mathbf{R}) \simeq \Lambda^*(\omega_n^*) \subseteq HL^*(\mathfrak{H}_n; \mathbf{R}),$$

$$HL^*(\mathfrak{H}_n; \mathbf{R}) \xrightarrow{T^*} HL^*(\mathcal{X}_H(\mathbf{R}^{2n}); \mathbf{R}) \xrightarrow{\iota^* \circ \rho_p} HL^*(\mathcal{X}_H(M); C^{\infty}(M)),$$

where T^* is induced by the Taylor series expansion. Let μ_p be the composition from $HL^*(\mathfrak{g}_n; \mathbf{R})$ to $HL^*(\mathcal{X}_H(M); C^{\infty}(M)), p \in M$. The local characteristic map is expressed as:

$$\Lambda^*(\omega_n^*) \simeq HL^*(\mathfrak{g}_n; \mathbf{R})$$

$$\downarrow^{\mu_p}$$

$$H_{dR}^*(M; \mathbf{R}) \longrightarrow HL^*(\mathcal{X}_H(M); C^{\infty}(M)),$$

where $p \in M$. The image of μ_p appears to depend on p.

6. Appendix

The goal of the appendix is to establish Lemma (3.2), namely the vector space isomorphisms

$$[\Lambda^*(I_n)]^{\mathfrak{sp}_n} \simeq \Lambda^*(\omega_n) := \sum_{k>0} \Lambda^k(\omega_n) \tag{1}$$

$$[\mathfrak{g}_n \otimes \Lambda^*(I_n)]^{\mathfrak{sp}_n} \simeq \bar{\Lambda}^*(\omega_n) := \sum_{k \ge 1} \Lambda^k(\omega_n), \tag{2}$$

LODDER 909

where the former is also an algebra isomorphism. First, note that as an \mathfrak{sp}_n module, $\mathfrak{g}_n \simeq I_n \oplus \mathfrak{sp}_n$, and

$$[\mathfrak{g}_n \otimes \Lambda^*(I_n)]^{\mathfrak{sp}_n} \simeq [I_n \otimes \Lambda^*(I_n)]^{\mathfrak{sp}_n} \oplus [\mathfrak{sp}_n \otimes \Lambda^*(I_n)]^{\mathfrak{sp}_n}.$$

Thus, line (2) would follow from the vector space isomorphisms

$$[I_n \otimes \Lambda^*(I_n)]^{\mathfrak{sp}_n} \simeq \bar{\Lambda}^*(\omega_n)$$
$$[\mathfrak{sp}_n \otimes \Lambda^*(I_n)]^{\mathfrak{sp}_n} = \{0\}.$$

We first demonstrate isomorphism (1) in the following lemma.

Lemma 6.1.

$$[\Lambda^*(I_n)]^{\mathfrak{sp}_n} \simeq \Lambda^*(\omega_n).$$

Proof. We proceed by induction on n. For n = 1,

$$I_{1} = \left\langle \frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial y^{1}} \right\rangle$$

$$\mathfrak{sp}_{1} = \left\langle x_{1} \frac{\partial}{\partial y^{1}}, y_{1} \frac{\partial}{\partial x^{1}}, y_{1} \frac{\partial}{\partial y^{1}} - x_{1} \frac{\partial}{\partial x^{1}} \right\rangle.$$

By direct calculation, $(I_1)^{\mathfrak{sp}_1} = \{0\}$, and $(I_1^{\wedge 2})^{\mathfrak{sp}_1} = \langle \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial y^1} \rangle$. By the inductive hypothesis, suppose

$$[\Lambda^*(I_{n-1})]^{\mathfrak{sp}_{n-1}} = \Lambda^*(\omega_{n-1}).$$

Consider then two cases for $I_n^{\wedge k}$, k odd, and k even. For k odd, let $z \in I_n^{\wedge k}$ and consider

$$z = z_1 + z_2 \wedge \frac{\partial}{\partial x^n} + z_3 \wedge \frac{\partial}{\partial y^n} + z_4 \wedge \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n},$$

where $z_1 \in I_{n-1}^{\wedge k}$, z_2 , $z_3 \in I_{n-1}^{\wedge (k-1)}$, and $z_4 \in I_{n-1}^{\wedge (k-2)}$. Note that

$$[z, y_n \frac{\partial}{\partial y^n} - x_n \frac{\partial}{\partial x^n}] = -z_2 \wedge \frac{\partial}{\partial x^n} + z_3 \frac{\partial}{\partial y^n}.$$

For $z \in (I_n^{\wedge k})^{\mathfrak{sp}_n}$, $[z, y_n \frac{\partial}{\partial y^n} - x_n \frac{\partial}{\partial x^n}] = 0$, and

$$z = z_1 + z_4 \wedge \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial x^n}.$$

For any $X \in \mathfrak{sp}_{n-1} \subseteq \mathfrak{sp}_n$, we have

$$0 = [z, X] = [z_1, X] + [z_4, X] \wedge \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n}.$$

If non-zero, the terms $[z_1, X]$ and $[z_4, X] \wedge \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n}$ are linearly independent and would not sum to zero. Thus,

$$z_1 \in (I_{n-1}^{\wedge k})^{\mathfrak{sp}_{n-1}} = \{0\}, \quad z_4 \in (I_{n-1}^{\wedge (k-2)})^{\mathfrak{sp}_{n-1}} = \{0\}.$$

It follows that $(I_n^{\wedge k})^{\mathfrak{sp}_n} = \{0\}$ for k odd.

For k even, let $k=2q,\ z\in (I_n^{\wedge 2q})^{\mathfrak{sp}_n},$ and repeat the above argument to the point

$$\begin{split} z_1 &\in (I_{n-1}^{\wedge 2q})^{\mathfrak{sp}_{n-1}} = \langle \omega_{n-1}^{\wedge q} \rangle \\ z_4 &\in (I_{n-1}^{\wedge 2(q-1)})^{\mathfrak{sp}_{n-1}} = \langle \omega_{n-1}^{\wedge (q-1)} \rangle \end{split}$$

Thus, $z = c_1 \omega_{n-1}^{\wedge q} + c_2 \omega_{n-1}^{\wedge (q-1)} \wedge \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n}$, c_1 , $c_2 \in \mathbf{R}$. Bracketing with $X = x_1 \frac{\partial}{\partial y^n} + x_n \frac{\partial}{\partial y^1}$ yields

$$0 = [z, X] = (c_2 - qc_1)\omega_{n-1}^{\wedge (q-1)} \wedge \frac{\partial}{\partial u^1} \wedge \frac{\partial}{\partial u^n}.$$

Hence, z is a real multiple of

$$\omega_{n-1}^{\wedge q} + q\omega_{n-1}^{\wedge (q-1)} \wedge \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n} = \left(\omega_{n-1} + \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n}\right)^{\wedge q} = \omega_n^{\wedge q}.$$

Lemma 6.2.

$$[I_n \otimes \Lambda^*(I_n)]^{\mathfrak{sp}_n} \simeq \bar{\Lambda}^*(\omega_n).$$

Proof. The proof proceeds by induction on n. For n = 1, a direct verification yields

$$(I_1)^{\mathfrak{sp}_1} = \{0\}, \quad (I_1 \otimes I_1)^{\mathfrak{sp}_1} = \left\langle \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial y^1} \right\rangle,$$

where $\frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial y^1} = \frac{\partial}{\partial x^1} \otimes \frac{\partial}{\partial y^1} - \frac{\partial}{\partial y^1} \otimes \frac{\partial}{\partial x^1}$. Also, $(I_1 \otimes I_1^{\wedge 2})^{\mathfrak{sp}_1} = \{0\}$ by direct calculation. The inductive hypothesis states

$$[I_{n-1} \otimes \Lambda^*(I_{n-1})]^{\mathfrak{sp}_{n-1}} \simeq \bar{\Lambda}^*(\omega_{n-1}).$$

Let $v \in I_n \otimes I_n^{\wedge k}$, $v = u_1 + u_2$, where

$$u_1 \in I_{n-1} \otimes I_{n-1}^{\wedge k}, \quad u_2 \in (I_n \otimes I_n^{\wedge k})/(I_{n-1} \otimes I_{n-1}^{\wedge k}).$$

A vector space basis of $(I_n \otimes I_n^{\wedge k})/(I_{n-1} \otimes I_{n-1}^{\wedge k})$ is given by the families of elements:

(1)
$$\frac{\partial}{\partial x^n} \otimes \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n} \wedge \frac{\partial}{\partial z^1} \wedge \frac{\partial}{\partial z^2} \wedge \dots \wedge \frac{\partial}{\partial z^{k-2}}$$

$$(2) \ \frac{\partial}{\partial y^n} \otimes \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n} \wedge \frac{\partial}{\partial z^1} \wedge \frac{\partial}{\partial z^2} \wedge \ldots \wedge \frac{\partial}{\partial z^{k-2}}$$

(3)
$$\frac{\partial}{\partial x^n} \otimes \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial z^1} \wedge \frac{\partial}{\partial z^2} \wedge \ldots \wedge \frac{\partial}{\partial z^{k-1}}$$

$$(4) \ \frac{\partial}{\partial x^n} \otimes \frac{\partial}{\partial y^n} \wedge \frac{\partial}{\partial z^1} \wedge \frac{\partial}{\partial z^2} \wedge \ldots \wedge \frac{\partial}{\partial z^{k-1}}$$

(5)
$$\frac{\partial}{\partial y^n} \otimes \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial z^1} \wedge \frac{\partial}{\partial z^2} \wedge \ldots \wedge \frac{\partial}{\partial z^{k-1}}$$

(6)
$$\frac{\partial}{\partial y^n} \otimes \frac{\partial}{\partial y^n} \wedge \frac{\partial}{\partial z^1} \wedge \frac{\partial}{\partial z^2} \wedge \ldots \wedge \frac{\partial}{\partial z^{k-1}}$$

(7)
$$\frac{\partial}{\partial z^1} \otimes \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n} \wedge \frac{\partial}{\partial z^2} \wedge \ldots \wedge \frac{\partial}{\partial z^{k-1}}$$

LODDER 911

(8)
$$\frac{\partial}{\partial z^1} \otimes \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial z^2} \wedge \frac{\partial}{\partial z^3} \wedge \ldots \wedge \frac{\partial}{\partial z^k}$$

(9)
$$\frac{\partial}{\partial z^1} \otimes \frac{\partial}{\partial u^n} \wedge \frac{\partial}{\partial z^2} \wedge \frac{\partial}{\partial z^3} \wedge \ldots \wedge \frac{\partial}{\partial z^k}$$
,

where, for each family, the z^i 's are elements of

$$\{x^1, x^2, \ldots, x^{n-1}, y^1, y^2, \ldots, y^{n-1}\}.$$

Let $v \in (I_n \otimes I_n^{\wedge k})^{\mathfrak{sp}_n}$ and $X = y_n \frac{\partial}{\partial u^n} - x_n \frac{\partial}{\partial x^n}$. Then

$$0 = [v, X] = [u_1 + u_2, X] = [u_2, X].$$

To compute the \mathfrak{sp}_n -invariants, consider $u_2 \in \ker(\operatorname{ad}_X)$, where $\operatorname{ad}_X(w) = [w, X]$. The families (4), (5) and (7) above fall into $\ker(\operatorname{ad}_X)$. Now consider $X = x_n \frac{\partial}{\partial y^n}$. Family (7) along with

$$\frac{\partial}{\partial x^n} \otimes \frac{\partial}{\partial y^n} \wedge \frac{\partial}{\partial z^1} \wedge \ldots \wedge \frac{\partial}{\partial z^{k-1}} - \frac{\partial}{\partial y^n} \otimes \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial z^1} \wedge \ldots \wedge \frac{\partial}{\partial z^{k-1}}$$

are elements of ker(ad_X), $X = x_n \frac{\partial}{\partial y^n}$. Then $v = u_1 + s_1 + s_2$,

$$s_{1} = \sum_{z^{1},\dots,z^{k-1}} c_{1,*} \left(\frac{\partial}{\partial x^{n}} \otimes \frac{\partial}{\partial y^{n}} \wedge \frac{\partial}{\partial z^{1}} \wedge \dots \wedge \frac{\partial}{\partial z^{k-1}} \right)$$
$$- \frac{\partial}{\partial y^{n}} \otimes \frac{\partial}{\partial x^{n}} \wedge \frac{\partial}{\partial z^{1}} \wedge \dots \wedge \frac{\partial}{\partial z^{k-1}} \right)$$
$$s_{2} = \sum_{z^{1},\dots,z^{k-1}} c_{2,*} \left(\frac{\partial}{\partial z^{1}} \otimes \frac{\partial}{\partial x^{n}} \wedge \frac{\partial}{\partial y^{n}} \wedge \frac{\partial}{\partial z^{2}} \wedge \dots \wedge \frac{\partial}{\partial z^{k-1}} \right)$$

For $X \in \mathfrak{sp}_{n-1}$,

$$0 = [v, X] = [u_1, X] + [s_1, X] + [s_2, X].$$

Note that

$$[u_1, X] \in I_{n-1} \otimes I_{n-1}^{\wedge k}, \quad [s_1, X] \notin I_{n-1} \otimes I_{n-1}^{\wedge k}, \quad [s_2, X] \notin I_{n-1} \otimes I_{n-1}^{\wedge k}.$$

If non-zero, the summands of $[s_1, X]$ and $[s_2, X]$ would be linearly independent. Thus, $[s_1, X] = 0$, $[s_2, X] = 0$, and $u_1 \in (I_{n-1} \otimes I_{n-1}^{\wedge k})^{\mathfrak{sp}_{n-1}}$. For k even, $(I_{n-1} \otimes I_{n-1}^{\wedge k})^{\mathfrak{sp}_{n-1}} = \{0\}$, $u_1 = 0$,

$$[s_2, X] = \sum_{z^1, \dots, z^{k-1}} c_{2,*} \left[\frac{\partial}{\partial z^1} \otimes \frac{\partial}{\partial z^2} \wedge \dots \wedge \frac{\partial}{\partial z^{k-1}}, X \right] \wedge \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n},$$
$$\sum_{z^1, \dots, z^{k-1}} c_{2,*} \frac{\partial}{\partial z^1} \otimes \frac{\partial}{\partial z^2} \wedge \dots \wedge \frac{\partial}{\partial z^{k-1}} \in (I_{n-1} \otimes I_{n-1}^{\wedge (k-2)})^{\mathfrak{sp}_{n-1}} = \{0\}.$$

Thus, $v = s_1$. From

$$0 = [s_1, x_n \frac{\partial}{\partial y^i} + x_i \frac{\partial}{\partial y^n}], \quad 0 = [s_1, y_i \frac{\partial}{\partial x^n} + y_n \frac{\partial}{\partial x^i}],$$

for $1 \le i \le n-1$, it follows that $s_1 = 0$. For k odd, let k = 2q - 1. Then

$$u_{1} \in (I_{n-1} \otimes I_{n-1}^{\wedge k})^{\mathfrak{sp}_{n-1}} = \langle \omega_{n-1}^{\wedge q} \rangle$$

$$\theta := \sum_{z^{1}, \dots, z^{k-1}} c_{2, *} \frac{\partial}{\partial z^{1}} \otimes \frac{\partial}{\partial z^{2}} \wedge \dots \wedge \frac{\partial}{\partial z^{k-1}} \in (I_{n-1} \otimes I_{n-1}^{\wedge (k-2)})^{\mathfrak{sp}_{n-1}} = \langle \omega_{n-1}^{\wedge (q-1)} \rangle$$

$$u_{1} = \lambda_{1} \omega_{n-1}^{\wedge q}, \quad \theta = \lambda_{2} \omega_{n-1}^{\wedge (q-1)}, \quad \lambda_{1}, \ \lambda_{2} \in \mathbf{R}.$$

Note that

$$[\lambda_1 \omega_{n-1}^{\wedge q} + \lambda_2 \omega_{n-1}^{\wedge (q-1)} \wedge \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n}, \ y_i \frac{\partial}{\partial x^n} + y_n \frac{\partial}{\partial x^i}]$$
$$= (q\lambda_1 - \lambda_2) \omega_n^{\wedge (q-1)} \wedge \frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial x^n}.$$

From

$$0 = \left[\lambda_1 \omega_{n-1}^{\wedge q} + \lambda_2 \omega_{n-1}^{\wedge (q-1)} \wedge \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n} + s_1, X\right]$$

for $X = x_n \frac{\partial}{\partial y^i} + x_i \frac{\partial}{\partial y^n}$, $X = y_i \frac{\partial}{\partial x^n} + y_n \frac{\partial}{\partial x^i}$, $1 \le i \le n-1$, it follows that $s_1 = 0$, and $(q\lambda_1 - \lambda_2) = 0$. Letting $\lambda_1 = 1$, we have $\lambda_2 = q$, and

$$v = \omega_{n-1}^{\wedge q} + q\omega_{n-1}^{\wedge q} \wedge \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n} = \omega_n^{\wedge q}.$$

Lemma 6.3.

$$[\mathfrak{sp}_n \otimes \Lambda^*(I_n)]^{\mathfrak{sp}_n} = \{0\}.$$

Proof. We apply induction on n. For n=1, write a general element of $\mathfrak{sp}_1 \otimes \Lambda^*(I_1)$ as a linear combination of the basis elements given in \mathcal{B}_1 and \mathcal{B}_2 of §2 (n=1). Then apply ad_X for $X=(y_1\frac{\partial}{\partial y^1}-x_1\frac{\partial}{\partial x^1})$. The result $[\mathfrak{sp}_1\otimes \Lambda^*(I_1)]^{\mathfrak{sp}_1}=\{0\}$ follows from linear algebra.

Suppose that $[\mathfrak{sp}_{n-1} \otimes \Lambda^*(I_{n-1})]^{\mathfrak{sp}_{n-1}} = \{0\}$. Since \mathfrak{sp}_n is a simple Lie algebra, we have $(\mathfrak{sp}_n)^{\mathfrak{sp}_n} = \{0\}$. Let \mathcal{B}_1 be the vector space basis for \mathfrak{sp}_{n-1} given in $\S 2$, and let

$$S = \{x^1, x^2, \dots, x^n, y^1, y^2, \dots, y^n\}$$

$$S' = \{x^1, x^2, \dots, x^{n-1}, y^1, y^2, \dots, y^{n-1}\}.$$

A vector space basis of $(\mathfrak{sp}_n \otimes I_n^{\wedge k})/(\mathfrak{sp}_{n-1} \otimes I_{n-1}^{\wedge k})$ is given by the families of elements:

(1)
$$e \otimes \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial u^n} \wedge \frac{\partial}{\partial z^1} \wedge \frac{\partial}{\partial z^2} \wedge \dots \wedge \frac{\partial}{\partial z^{k-2}}, \quad e \in \mathcal{B}_1, \ z^i \in S'$$

(2)
$$e \otimes \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial z^1} \wedge \frac{\partial}{\partial z^2} \wedge \ldots \wedge \frac{\partial}{\partial z^{k-1}}, \quad e \in \mathcal{B}_1, \ z^i \in S'$$

(3)
$$e \otimes \frac{\partial}{\partial y^n} \wedge \frac{\partial}{\partial z^1} \wedge \frac{\partial}{\partial z^2} \wedge \ldots \wedge \frac{\partial}{\partial z^{k-1}}, \quad e \in \mathcal{B}_1, \ z^i \in S'$$

$$(4) (x_n \frac{\partial}{\partial y^n}) \otimes \frac{\partial}{\partial z^1} \wedge \frac{\partial}{\partial z^2} \wedge \ldots \wedge \frac{\partial}{\partial z^k}, \quad z^i \in S$$

LODDER 913

(5)
$$(x_n \frac{\partial}{\partial u^i} + x_i \frac{\partial}{\partial u^n}) \otimes \frac{\partial}{\partial z^1} \wedge \frac{\partial}{\partial z^2} \wedge \dots \wedge \frac{\partial}{\partial z^k}, \quad i < n, \ z^j \in S$$

(6)
$$(y_n \frac{\partial}{\partial x^n}) \otimes \frac{\partial}{\partial z^1} \wedge \frac{\partial}{\partial z^2} \wedge \ldots \wedge \frac{\partial}{\partial z^k}, \quad z^i \in S$$

(7)
$$(y_i \frac{\partial}{\partial x^n} + y_n \frac{\partial}{\partial x^i}) \otimes \frac{\partial}{\partial z^1} \wedge \frac{\partial}{\partial z^2} \wedge \ldots \wedge \frac{\partial}{\partial z^k}, \quad i < n, \ z^j \in S$$

(8)
$$(y_n \frac{\partial}{\partial y^n} - x_n \frac{\partial}{\partial x^n}) \otimes \frac{\partial}{\partial z^1} \wedge \frac{\partial}{\partial z^2} \wedge \dots \wedge \frac{\partial}{\partial z^k}, \quad z^i \in S$$

$$(9) (y_i \frac{\partial}{\partial y^n} - x_n \frac{\partial}{\partial x^i}) \otimes \frac{\partial}{\partial z^1} \wedge \frac{\partial}{\partial z^2} \wedge \ldots \wedge \frac{\partial}{\partial z^k}, i < n, z^j \in S$$

$$(10) \ (y_n \frac{\partial}{\partial y^i} - x_i \frac{\partial}{\partial x^n}) \otimes \frac{\partial}{\partial z^1} \wedge \frac{\partial}{\partial z^2} \wedge \ldots \wedge \frac{\partial}{\partial z^k}, \quad i < n, \ z^j \in S$$

Given $w \in (\mathfrak{sp}_n \otimes I_n^{\wedge k})^{\mathfrak{sp}_n}$, let w = u + v, where

$$u \in (\mathfrak{sp}_{n-1} \otimes I_{n-1}^{\wedge k}), \quad v \in (\mathfrak{sp}_n \otimes I_n^{\wedge k})/(\mathfrak{sp}_{n-1} \otimes I_{n-1}^{\wedge k}).$$

For all $X \in \mathfrak{sp}_n$, $0 = \operatorname{ad}_X(w) = \operatorname{ad}_X(u) + \operatorname{ad}_X(v)$. Restricting to $X \in \mathfrak{sp}_{n-1}$, notice that if non-zero, the elements $\operatorname{ad}_X(u)$ and $\operatorname{ad}_X(v)$ are linearly independent. Thus, $\operatorname{ad}_X(u) = 0$, and

$$u \in (\mathfrak{sp}_{n-1} \otimes I_{n-1}^{\wedge k})^{\mathfrak{sp}_{n-1}} = \{0\}.$$

Now, v can be written as a linear combination of the elements in families (1)–(10). We prove that v=0 by applying the condition $\operatorname{ad}_X(v)=0$ for successive choices of $X\in \mathfrak{sp}_n$. First apply $X=(y_n\frac{\partial}{\partial y^n}-x_n\frac{\partial}{\partial x^n})$, then $X\in \mathfrak{sp}_{n-1}$ together with the inductive hypothesis. Third, apply $X=x_n\frac{\partial}{\partial y^n}$, fourth $X=(y_i\frac{\partial}{\partial y^i}-x_i\frac{\partial}{\partial x^i})$, fifth $X=x_i\frac{\partial}{\partial y^i}$, and finally $X=(x_n\frac{\partial}{\partial y^i}+x_i\frac{\partial}{\partial y^n})$, where $1\leq i\leq n-1$.

References

- [1] Bott, R., and G. Segal, *The Cohomology of the Vector Fields on a Manifold*, Topology **16** (1977), 285–298.
- [2] Hilton, P. J., and U. Stammbach, "A Course in Homological Algebra," Springer Verlag, 1971.
- [3] Hochschild, G., and J.-P. Serre, *Cohomology of Lie Algebras*, Annals of Math.**57** (1953), 591–603.
- [4] Loday, J.-L., and T. Pirashvili, *Universal enveloping algebras of Leibniz algebras and (co)-homology*, Math. Annalen **296** (1993), 139–158.
- [5] Loday, J., Cup-product for Leibniz cohomology and dual Leibniz algebras, Math. Scand. 77 (1995), 189–196.
- [6] Lodder, J., Leibniz cohomology for differentiable manifolds, Annales de l'Institut Fourier, Grenoble 48 (1998), 73–95.
- [7] McDuff, D., and D. Salamon, "Introduction to Symplectic Topology," Second Ed., Oxford University Press, 1998.
- [8] Ntolo, P., Homologie de Leibniz d'algèbres de Lie semi-simple, Comptes rendus de l'Académie des sciences Paris, Série I **318** (1994), 707–710.
- [9] Pirashvili, T., On Leibniz Homology, Annales de l'Institut Fourier, Grenoble 44 (1994), 401–411.

[10] Whitehead, G. W., "Elements of Homotopy Theory," Springer Verlag, 1978.

Jerry M. Lodder Mathematical Sciences, Dept. 3MB Box 30001 New Mexico State University Las Cruces, NM 88003, USA jlodder@nmsu.edu

Received 08-06-16 and in final form 08-12-18