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Abstract. We construct a local characteristic map to a symplectic manifold
M via certain cohomology groups of Hamiltonian vector fields. For each p ∈M ,
the Leibniz cohomology of the Hamiltonian vector fields on R2n maps to the
Leibniz cohomology of all Hamiltonian vector fields on M . For a particular
extension gn of the symplectic Lie algebra, the Leibniz cohomology of gn is
shown to be an exterior algebra on the canonical symplectic two-form. The
Leibniz cohomology of this extension is then a direct summand of the Leibniz
cohomology of all Hamiltonian vector fields on R2n .
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1. Introduction

We construct a local characteristic map to a symplectic manifold M via certain
cohomology groups of Hamiltonian vector fields. Recall that the group of affine
symplectomorphisms, i.e., the affine symplectic group ASpn , is given by all trans-
formations ψ : R2n → R2n of the form

ψ(z) = z0 + Az,

where A is a 2n×2n symplectic matrix and z0 a fixed element of R2n [7, p. 55]. Let
gn denote the Lie algebra of ASpn , referred to as the affine symplectic Lie algebra.
Then gn is the largest finite dimensional Lie subalgebra of the Hamiltonian vector
fields on R2n , and serves as our point of departure for calculations. Particular
attention is devoted to the Leibniz homology of gn , i.e., HL∗(gn; R), and proven
is that

HL∗(gn; R) ' Λ∗(ωn),

where ωn =
∑n

i=1
∂

∂xi ∧ ∂
∂yi and Λ∗ denotes the exterior algebra. Dually, for

cohomology,

HL∗(gn; R) ' Λ∗(ω∗n),
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where ω∗n =
∑n

i=1 dx
i ∧ dyi .

For p ∈M , the local characteristic map factors through

ι∗ ◦ ρp : HL∗(XH(R2n); R)→ HL∗(XH(M); C∞(M)),

where XH denotes the Lie algebra of Hamiltonian vector fields, and C∞(M) is the
ring of C∞ real-valued functions on M . The maps ι∗ and ρp are defined in §5.
Using previous work of the author [6], there is a natural map

H∗
dR(M ; R)→ HL∗(X (M); C∞(M)),

where H∗
dR denotes deRham cohomology. Composing with

HL∗(X (M); C∞(M))→ HL∗(XH(M); C∞(M)),

we have
H∗

dR(M ; R)→ HL∗(XH(M); C∞(M)).

The local characteristic map acquires the form

Λ∗(ω∗n) ' HL∗(gn; R)yµp

H∗
dR(M ; R) −−−→ HL∗(XH(M); C∞(M))

for each p ∈M .

The calculational tools for HL∗(gn) include the Hochschild-Serre spectral
sequence for Lie-algebra (co)homology, the Pirashvili spectral sequence for Leibniz
homology, and the identification of certain symplectic invariants of gn which
appear in the appendix.

2. The Affine Symplectic Lie Algebra

As a point of departure, consider a C∞ Hamiltonian function H : R2n → R with
the associated Hamiltonian vector field

XH =
n∑

i=1

∂H

∂xi

∂

∂yi
−

n∑
i=1

∂H

∂yi

∂

∂xi
,

where R2n is given coordinates

(x1, x2, . . . , xn, y1, y2, . . . , yn),

and ∂
∂xi ,

∂
∂yi are the unit vector fields parallel to the xi and yi axes respectively.

The vector field XH is then tangent to the level curves (or hyper-surfaces) of H .
Restricting H to a quadratic function (with no linear terms) in

{x1, x2, . . . , xn, y1, y2, . . . , yn},

yields a family of vector fields isomorphic to the real symplectic Lie algebra spn .
An R-vector space basis, B1 , for spn is given by the families:
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(1) xk
∂

∂yk , k = 1, 2, 3, . . . , n ,

(2) yk
∂

∂xk , k = 1, 2, 3, . . . , n ,

(3) xi
∂

∂yj + xj
∂

∂yi , 1 ≤ i < j ≤ n ,

(4) yi
∂

∂xj + yj
∂

∂xi , 1 ≤ i < j ≤ n ,

(5) yj
∂

∂yi − xi
∂

∂xj , i = 1, 2, 3, . . . , n , j = 1, 2, 3, . . . , n .

It follows that dimR(spn) = 2n2 + n .

Let In denote the abelian Lie algebra of Hamiltonian vector fields arising
from the linear (affine) functions H : R2n → R . Then In has an R-vector space
basis given by

B2 =
{ ∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn
,

∂

∂y1
,

∂

∂y2
, . . . ,

∂

∂yn

}
.

The affine symplectic Lie algebra, gn , has an R-vector space basis B1∪B2 . There
is a short exact sequence of Lie algebras

0 −−−→ In
i−−−→ gn

π−−−→ spn −−−→ 0,

where i is the inclusion map and π is the projection

gn → (gn/In) ' spn.

In fact, In is an abelian ideal of gn with In acting on gn via the bracket of vector
fields.

Let Hn denote the Lie algebra of formal Hamiltonian vector fields

XH =
n∑

i=1

∂H

∂xi

∂

∂yi
−

n∑
i=1

∂H

∂yi

∂

∂xi
,

where H ∈ R = R[[x1, x2, . . . , xn, y1, y2, . . . , yn]] . As usual, endow Hn

with the M-adic topology, where M is the maximal ideal of R generated by
{x1, . . . , xn, y1, . . . , yn} . Let H∗

Lie(Hn; R) and HL∗(Hn; R) denote continuous
Lie-algebra and continuous Leibniz cohomology respectively, computed using con-
tinuous cochains. For any H ∈ C∞(R2n), the Taylor series expansion of H about
the origin induces a morphism of Lie algebras

T : XH(R2n)→ Hn,

as well as maps on cohomology

T ∗ : H∗
Lie(Hn; R)→ H∗

Lie(XH(R2n); R),

T ∗ : HL∗(Hn; R)→ HL∗(XH(R2n); R),

where XH(R2n) is given the strong C∞ -topology. See [1] and [6] for further
properties of T ∗ . Also, let HPoly

n denote the Lie algebra of polynomial Hamiltonian
vector fields on R2n . For continuous cohomology, we have

H∗
Lie(Hn; R) ' Hom(HLie

∗ (HPoly
n ; R), R),

HL∗(Hn; R) ' Hom(HL∗(H
Poly
n ; R), R).

Also, there are natural inclusions of Lie algebras gn ↪→ HPoly
n ↪→ Hn .
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3. The Lie Algebra Homology of gn

For any Lie algebra g over a ring k , the Lie algebra homology of g , written
HLie
∗ (g; k), is the homology of the chain complex Λ∗(g), namely

k
0←−−− g

[ , ]←−−− g∧2 ←−−− . . . ←−−− g∧(n−1) d←−−− g∧n ←−−− . . . ,

where

d(g1 ∧ g2 ∧ . . . ∧ gn) =∑
1≤i<j≤n

(−1)j (g1 ∧ . . . ∧ gi−1 ∧ [gi, gj] ∧ gi+1 ∧ . . . ĝj . . . ∧ gn).

For actual calculations in this paper, k = R . Additionally, Lie algebra homology
with coefficients in the adjoint representation, written HLie

∗ (g; g), is the homology
of the chain complex g⊗ Λ∗(g), i.e.,

g←− g⊗ g←− g⊗ g∧2 ←− . . .←− g⊗ g∧(n−1) d←− g⊗ g∧n ←− . . . ,

where

d(g1 ⊗ g2 ∧ g3 . . . ∧ gn+1) =
n+1∑
i=2

(−1)i ([g1, gi]⊗ g2 ∧ . . . ĝi . . . ∧ gn+1)

+
∑

2≤i<j≤n+1

(−1)j (g1 ⊗ g2 ∧ . . . ∧ gi−1 ∧ [gi, gj] ∧ gi+1 ∧ . . . ĝj . . . ∧ gn+1).

The canonical projection g ⊗ Λ∗(g) → Λ∗+1(g) given by g ⊗ g∧n → g∧(n+1) is a
map of chain complexes and induces a k -linear map on homology

HLie
n (g; g)→ HLie

n+1(g; k).

Given a (right) g-module M , the module of invariants M g is defined as

M g = {m ∈M | [m, g] = 0 ∀g ∈ g}.

Note that spn acts on In and on the affine symplectic Lie algebra gn via the
bracket of vector fields. The action is extended to I∧k

n by

[α1 ∧ α2 ∧ . . . ∧ αk, X] =
k∑

i=1

α1 ∧ α2 ∧ . . . ∧ [αi, X] ∧ . . . ∧ αk

for αi ∈ In , X ∈ spn , and similarly for the spn action on gn ⊗ I∧k
n . The main

result of this section is the following.

Lemma 3.1. There are natural vector space isomorphisms

HLie
∗ (gn; R) ' HLie

∗ (spn; R)⊗ [Λ∗(In)]spn

HLie
∗ (gn; gn) ' HLie

∗ (spn; R)⊗ [gn ⊗ Λ∗(In)]spn .
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Proof. The lemma follows essentially from the Hochschild-Serre spectral se-
quence [3], the application of which we briefly outline to aid in the identification of
representative homology cycles, and to reconcile the lemma with its cohomological
version in [3]. Consider the filtration Fm , m ≥ −1, of the complex Λ∗(gn) given
by the R-vector spaces:

F−1 = {0},
F0 = Λ∗(In), Fk

0 = I∧k
n , k = 0, 1, 2, 3, . . . ,

Fk
m = Span of {g1 ∧ . . . ∧ gk+m ∈ g∧(k+m)

n | at most m-many gi’s /∈ In}.
Then each Fm is a chain complex, and Fm is a subcomplex of Fm+1 . For m ≥ 0,
we have

E0
m, k = Fk

m/Fk+1
m−1 ' I∧k

n ⊗ (gn/In)∧m.

Since In is abelian and the action of In on gn/In is trivial, it follows that

E1
m, k ' I∧k

n ⊗ (gn/In)∧m.

Using the isomorphism gn/In ' spn , we have

E2
m, k ' Hm(spn; I∧k

n ).

Now, spn is a simple Lie algebra and as an spn -module

I∧k
n ' (I∧k

n )spn ⊕M,

where M ' M1 ⊕M2 ⊕ . . .⊕Mt is a direct sum of simple modules on which spn

acts non-trivially. Hence

H∗(spn; I∧k
n ) ' H∗(spn; (I∧k

n )spn)⊕H∗(spn; M).

Clearly,

H∗(spn; (I∧k
n )spn) ' H∗(spn; R)⊗ (I∧k

n )spn

H∗(spn; M) '
t∑

i=1

H∗(spn; Mi) ' 0,

where the latter isomorphism holds since each Mi is simple with non-trivial spn

action. See [2, Prop. VII.5.6] for more details.

Let θ be a cycle in Λm(spn) representing an element of Hm(spn; R), and

let z ∈ (I∧k
n )spn . Then z ∧ θ ∈ g

∧(m+k)
n represents an absolute cycle in Λ∗(gn),

since, if θ is a sum of elements of the form s1 ∧ s2 ∧ . . . ∧ sm , then [z, si] = 0 for
each si ∈ spn . Thus, E2

m, k ' E∞
m, k , and

H∗(gn; R) ' H∗(spn; R)⊗ [Λ∗(In)]spn .

By an application of the Hochschild-Serre spectral sequence to the subalgebra spn

of gn , we have

H∗(gn; gn) ' H∗(spn; R)⊗ [gn ⊗ Λ∗(In)]spn .

Let ωn =
∑n

i=1
∂

∂xi ∧ ∂
∂yi ∈ I∧2

n . One checks that ωn ∈ (I∧2
n )spn against the

basis for spn given in §2. It follows that

ω∧k
n ∈ [I∧2k

n ]spn .

Letting Λ∗(ωn) denote the exterior algebra generated by ωn , we prove in the
appendix that
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Lemma 3.2. There are isomorphisms

[Λ∗(In)]spn ' Λ∗(ωn) :=
∑
k≥0

Λk(ωn)

[gn ⊗ Λ∗(In)]spn ' Λ̄∗(ωn) :=
∑
k≥1

Λk(ωn),

where the first is an isomorphism of algebras, and the second is an isomorphism
of vector spaces.

Combining this with Lemma (3.1), we have

Lemma 3.3. There are vector space isomorphisms

HLie
∗ (gn; R) ' H∗(spn; R)⊗ Λ∗(ωn)

HLie
∗ (gn; gn) ' H∗(spn; R)⊗ Λ̄∗(ωn).

It is known that for cohomology,

H∗
Lie(spn; R) ' Λ∗(u3, u7, u11, . . . , u4n−1),

where ui is a class in dimension i . Also,

HLie
k (spn; R) ' Hk

Lie(spn; R).

See the reference [10, p. 343] for the homology of the symplectic Lie group.

4. The Leibniz Homology of gn

Recall that for a Lie algebra g over a ring k , and more generally for a Leibniz
algebra g [4], the Leibniz homology of g , written HL∗(g; k), is the homology of
the chain complex T (g):

k
0←−−− g

[ , ]←−−− g⊗2 ←−−− . . . ←−−− g⊗(n−1) d←−−− g⊗n ←−−− . . . ,

where

d(g1, g2, . . . , gn) =∑
1≤i<j≤n

(−1)j (g1, g2, . . . , gi−1, [gi, gj], gi+1, . . . ĝj . . . , gn),

and (g1, g2, . . . , gn) denotes the element g1 ⊗ g2 ⊗ . . . ⊗ gn ∈ g⊗n .

The canonical projection π1 : g⊗n → g∧n , n ≥ 0, is a map of chain
complexes, T (g)→ Λ∗(g), and induces a k -linear map on homology

HL∗(g; k)→ HLie
∗ (g; k).

Letting
(kerπ1)n[2] = ker [g⊗(n+2) → g∧(n+2)], n ≥ 0,

Pirashvili [9] defines the relative theory Hrel(g) as the homology of the complex

Crel
n (g) = (ker π1)n[2],
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and studies the resulting long exact sequence relating Lie and Leibniz homology:

· · · ∂−−−→ Hrel
n−2(g) −−−→ HLn(g) −−−→ HLie

n (g)
∂−−−→ Hrel

n−3(g) −−−→

· · · ∂−−−→ Hrel
0 (g) −−−→ HL2(g) −−−→ HLie

2 (g) −−−→ 0

0 −−−→ HL1(g) −−−→ HLie
1 (g) −−−→ 0

0 −−−→ HL0(g) −−−→ HLie
0 (g) −−−→ 0.

An additional exact sequence is required for calculations of HL∗ . Consider
the projection

π2 : g⊗ g∧n → g∧(n+1), n ≥ 0,

and the resulting chain map

π2 : g⊗ Λ∗(g)→ Λ∗+1(g).

Let HRn(g) denote the homology of the complex

CRn(g) = (ker π2)n[1] = ker [g⊗ g∧(n+1) → g∧(n+2)], n ≥ 0.

There is a resulting long exact sequence

· · · ∂−−−→ HRn−1(g) −−−→ HLie
n (g; g) −−−→ HLie

n+1(g)
∂−−−→

· · · ∂−−−→ HR0(g) −−−→ HLie
1 (g; g) −−−→ HLie

2 (g)
∂−−−→

0 −−−→ HLie
0 (g; g) −−−→ HLie

1 (g) −−−→ 0.

The projection π1 : g⊗(n+1) → g∧(n+1) can be written as the composition of
projections

g⊗(n+1) −→ g⊗ g∧n −→ g∧(n+1),

which leads to a natural map between exact sequences

Hrel
n−1(g) −−−→ HLn+1(g) −−−→ HLie

n+1(g)
∂−−−→ Hrel

n−2(g)y y 1

y y
HRn−1(g) −−−→ HLie

n (g; g) −−−→ HLie
n+1(g)

∂−−−→ HRn−2(g)

and an articulation of their respective boundary maps ∂ .

Lemma 4.1. For the affine symplectic Lie algebra gn , there is a natural iso-
morphism

Hk(spn; R)
'−→ HRk−3(gn; R), k ≥ 3,

that factors as the composition

HLie
k (spn; R)

'−→
∂

HRk−3(spn; R)
'−→ HRk−3(gn;R),

and the latter isomorphism is induced by the inclusion spn ↪→ gn .
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Proof. Since spn is a simple Lie algebra, from [2, Prop. VII.5.6] we have

HLie
k (spn; spn) = 0, k ≥ 0.

¿From the long exact sequence

· · · −→ HRk−1(spn; R) −→ HLie
k (spn; spn) −→ HLie

k+1(spn; R)
∂−→ · · · ,

it follows that ∂ : HLie
k (spn; R) → HRk−3(spn; R) is an isomorphism for k ≥ 3.

The inclusion of Lie algebras spn ↪→ gn induces a map of exact sequences

−−−→ HRk−1(spn; R) −−−→ HLie
k (spn; spn) −−−→ HLie

k+1(spn; R)
∂−−−→y y y

−−−→ HRk−1(gn; R) −−−→ HLie
k (gn; gn) −−−→ HLie

k+1(gn; R)
∂−−−→

¿From Lemma (3.3)

HLie
∗ (gn; R) ' H∗(spn; R)⊗ Λ∗(ωn)

HLie
∗ (gn; gn) ' H∗(spn; R)⊗ Λ̄∗(ωn).

The map HLie
∗ (gn; gn) → HLie

∗+1(gn; R) is an inclusion on homology with cokernel
HLie
∗+1(spn; R). The result now follows from the map between exact sequences and

a knowledge of the generators of HLie
∗ (gn; R) gleaned from Lemma (3.1).

Theorem 4.2. There is an isomorphism of vector spaces

HL∗(gn; R) ' Λ∗(ωn)

and an algebra isomorphism

HL∗(gn; R) ' Λ∗(ω∗n), ω∗n =
n∑

i=1

dxi ∧ dyi,

where HL∗ is afforded the shuffle algebra.

Proof. Consider the Pirashvili filtration [9] of the complex

Crel
n (g) = ker(g⊗(n+2) → g∧(n+2)), n ≥ 0,

given by

Fk
m(g) = g⊗k ⊗ ker(g⊗(m+2) → g∧(m+2)), m ≥ 0, k ≥ 0.

Then F∗m is a subcomplex of F∗m+1 and the resulting spectral sequence converges
to Hrel

∗ (g). ¿From [9] we have

E2
m, k ' HLk(g)⊗HRm(g), m ≥ 0, k ≥ 0.

¿From the proof of Lemma (4.1), there is an isomorphism

∂ : HLie
3 (gn; R)

'−→ HR0(gn; R) ' R.
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¿From the long exact sequence relating Lie and Leibniz homology, it follows that
HL2(gn; R)→ HLie

2 (gn; R) is an isomorphism. Since

ω̃n =
1

2

n∑
i=1

(
∂

∂xi
⊗ ∂

∂yi
− ∂

∂yi
⊗ ∂

∂xi

)
is a cycle in the Leibniz complex that maps to ωn in the Lie algebra complex, it
follows that ω̃n generates HL2(gn; R).

We claim that all elements in HL0(gn)⊗HR∗(gn) are absolute cycles. The
inclusion spn ↪→ gn induces a map between exact sequences

HLk(spn) −−−→ HLie
k (spn)

∂−−−→ Hrel
k−3(spn) −−−→ HLk−1(spn)y y y y

HLk(gn) −−−→ HLie
k (gn)

∂−−−→ Hrel
k−3(gn) −−−→ HLk−1(gn)

Since spn is a simple Lie algebra, HLk(spn; R) = 0, k ≥ 1 [8]. Thus, ∂ :
HLie

k (spn) → Hrel
k−3(spn) is an isomorphism for k ≥ 3. The inclusion F∗m(spn) ↪→

F∗m(gn) induces a map of spectral sequences, and hence a map

HL0(spn)⊗HR∗(spn) −→ HL0(gn)⊗HR∗(gn).

Since HR∗(spn) ' Hrel
∗ (spn), all classes in HL0(spn) ⊗ HR∗(spn) are absolute

cycles. Now, HR∗(spn) maps isomorphically to HR∗(gn), and by naturality, all
classes in HL0(gn)⊗HR∗(gn) are absolute cycles. Moreover,

∂ : HLie
∗ (gn)→ Hrel

∗−3(gn)

maps the classes in H̄Lie
∗ (spn) injectively to Hrel

∗−3(gn) in the diagram

0 −−−→ HLie
∗ (spn)

∂−−−→ Hrel
∗−3(spn) −−−→ 0y y

· · · −−−→ HLie
∗ (gn)

∂−−−→ Hrel
∗−3(gn) −−−→ · · ·

where the vertical arrows are inclusions.

We claim that all elements in HL2(gn) ⊗ HR∗(gn) are absolute cycles as
well. Let [θ] ∈ HRm(gn) be represented by the sum

θ =
n∑

j=1

X1, j ⊗X2, j ∧X3, j ∧ . . . ∧Xm+1, j ,

where each Xi, j ∈ spn and dθ = 0. By invariance,

[ω̃n, Xi, j] = 0 for each Xi, j.

It follows that d(ω̃n ⊗ θ) = d(ω̃n) ⊗ θ + ω̃n ⊗ dθ = 0, and ω̃n ⊗ θ represents an
absolute cycle in Hrel

∗ (gn). To compute

∂ : HLie
∗ (gn)→ Hrel

∗−3(gn)
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on classes of the form [ωn] ⊗ H̄Lie
∗ (spn), let [θ′] ∈ H̄Lie

∗ (spn) with ∂(θ′) = θ . By
lifting ωn ∧ θ′ to ω̃n ⊗ θ′ in T (gn) and using invariance, we have

∂(ωn ∧ θ′) = ω̃n ⊗ ∂(θ′) = ω̃n ⊗ θ.

At this point Hrel
k (gn) is completely determined for k ≤ 2. By an examination of

Hrel
1 (gn),

ω∧2
n ∈ ker ∂, ∂ : HLie

4 (gn)→ Hrel
1 (gn).

Thus, (ω̃n)∧2 generates a non-zero class in HL4(gn) mapping to the class ω∧2
n ∈

HLie
4 (gn). As before, all classes in HL4(gn)⊗HR∗(gn) are absolute cycles and in

Im ∂ . Thus, Hrel
k (gn) is completely determined for k ≤ 4. By induction on k ,

(ω̃n)∧k is a non-zero class in HL2k(gn), and

Hrel
∗ (gn) ' Λ∗(ωn)⊗HR∗(gn) ' Λ∗(ωn)⊗HLie

∗+3(spn)

HL∗(gn) ' Λ∗(ωn).

For the cohomology isomorphism

HL∗(gn; R) ' Λ∗(ω∗n), ω∗n =
n∑

i=1

dxi ∧ dyi,

where dxi is the dual of ∂
∂xi and dyi the dual of ∂

∂yi with respect to the basis of
gn given by B1 ∪ B2 in §2. Since

HL∗(gn; R) ' Hom(HL∗(gn; R), R),

the result follows by using the full shuffle product on cochains.

Recall that HL∗(gn; R) carries the structure of a dual Leibniz algebra
(Zinbiel algebra) induced on cochains by semi-shuffles [5]. Given α ∈ Hom(g⊗p

n , R)

and β ∈ Hom(g⊗q
n , R), the semi-shuffle α · β ∈ Hom(g

⊗(p+q)
n , R) is given by∑

σ∈Shp−1, q

(sgnσ)α(g1, gσ−1(2), gσ−1(3), . . . , gσ−1(p)) β(gσ−1(p+1), . . . , gσ−1(p+q)),

where the summation is over all (p− 1, q) shuffles of

(2, 3, 4, . . . , p, p+ 1, . . . , p+ q).

The full shuffle product, denoted by ∧ , satisfies

α ∧ β = α · β + (−1)pqβ · α.

Note that in HL∗(gn; R) the Zinbiel product ω∗n ·ω∗n is completely determined by
ω∗n ∧ ω∗n , since

ω∗n ∧ ω∗n = 2ω∗n · ω∗n and ω∗n · ω∗n =
1

2
ω∗n ∧ ω∗n.

The skew-symmetry of ω∗n ·ω∗n can be verified by direct calculation with (co)chains
as well. For example, if f ∈ Hom(g⊗2

n , R) generates HL2(gn; R), then the
cohomology class of f is determined by

f
( n∑

i=1

∂

∂xi
⊗ ∂

∂yi

)
=

n∑
i=1

f
( ∂

∂xi
⊗ ∂

∂yi

)
.
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Since d
(
(yi

∂
∂yi − xi

∂
∂xi )⊗ ∂

∂xi ⊗ ∂
∂yi

)
= ∂

∂xi ⊗ ∂
∂yi + ∂

∂yi ⊗ ∂
∂xi , it follows that f must

be skew-symmetric. Now,

(f · f)(g1, g2, g3, g4) =

f(g1, g2)f(g3, g4)− f(g1, g3)f(g2, g4) + f(g1, g4)f(g1, g3).

Restricting {g1, g2, g3, g4} to { ∂
∂xi ,

∂
∂yi ,

∂
∂xj ,

∂
∂yj } , the reader may check skew-

symmetry of f · f by hand.

We now prove that HL∗(gn; R) is a direct summand of HL∗(Hn; R). We
begin with the Lie algebra homology groups HLie

∗ (HPoly
n ; R).

Lemma 4.3. The vector space HLie
∗ (HPoly

n ; R) contains Λ∗(ωn) as a direct sum-
mand.

Proof. Apply the Hochschild-Serre spectral sequence to the subalgebra spn of
HPoly

n . Then

E2
m, k ' HLie

k (spn; R)⊗Hm((HPoly
n /spn)spn ; R).

As before, Λ∗(ωn) ⊆ (HPoly
n /spn)spn . Since d(ωn) = d(

∑n
i=1

∂
∂xi ∧ ∂

∂yi ) = 0,

ωn and Λ∗(ωn) are infinite cycles. Since the elements Λ∗(ωn) occur along the
horizontal axis (k = 0) in a first-quadrant spectral sequence, these elements are
not boundaries. Thus, Λ∗(ωn) is a subvector space of HLie

∗ (HPoly
n ; R) induced by

the morphism of Lie algebras gn → HPoly
n .

Lemma 4.4. The vector space HL∗(H
Poly
n ; R) contains Λ∗(ωn) as a direct

summand.

Proof. The elements Λ∗(ωn) are cycles in the Leibniz complex that map to
Λ∗(ωn) under the canonical morphism

HL∗(H
Poly
n ; R)→ HLie

∗ (HPoly
n ; R).

Thus, the map on homology

HL∗(gn;R)→ HL∗(H
Poly
n ; R)

induced by gn → HPoly
n is injective.

Lemma 4.5. The vector space HL∗(Hn; R) contains Λ∗(ω∗n) as a direct sum-
mand.

Proof. The proof follows from the isomorphism

HL∗(Hn; R) ' Hom(HL∗(H
Poly
n ; R), R),

using continuous cohomology.
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5. A Characteristic Map

Let M be a symplectic manifold, X (M) the Lie algebra of C∞ vector fields on
M , and XH(M) the Lie algebra of Hamiltonian vector fields [7, p. 85], both
considered in the strong C∞ -topology. The functor HL∗ denotes continuous
Leibniz cohomology when applied to a topological Lie algebra. From [6], there
is a natural map

H∗
dR(M ; R) −→ HL∗(X (M); C∞(M)),

where H∗
dR(M) denotes deRham cohomology, and C∞(M) is also given the strong

C∞ -topology. The inclusion of Lie algebras XH(M) ↪→ X (M) induces a (con-
travariant) map

HL∗(X (M); C∞(M)) −→ HL∗(XH(M); C∞(M))

on cohomology, while the inclusion of coefficients ι : R → C∞(M) induces a
(covariant) map

ι∗ : HL∗(XH(M); R) −→ HL∗(XH(M); C∞(M)).

Let p ∈ M and let U be an open neighborhood of p homeomorphic to R2n in
the atlas of charts for M . There is a natural morphism of Lie algebras XH(M)→
XH(U) given by the restriction of vector fields from M to U , and resulting linear
maps

HL∗(XH(U); R)→ HL∗(XH(M);R)
ι∗→ HL∗(XH(M); C∞(M)).

Now, XH(U) ' XH(R2n) as Lie algebras, and thus there are local maps

ρp : HL∗(XH(R2n); R)→ HL∗(XH(M); R)

for each p ∈M . Note:

HL∗(gn; R) ' Λ∗(ω∗n) ⊆ HL∗(Hn; R),

HL∗(Hn; R)
T ∗→ HL∗(XH(R2n); R)

ι∗◦ρp−→ HL∗(XH(M); C∞(M)),

where T ∗ is induced by the Taylor series expansion. Let µp be the composition
from HL∗(gn; R) to HL∗(XH(M); C∞(M)), p ∈ M . The local characteristic
map is expressed as:

Λ∗(ω∗n) ' HL∗(gn; R)yµp

H∗
dR(M ; R) −−−→ HL∗(XH(M); C∞(M)),

where p ∈M . The image of µp appears to depend on p .

6. Appendix

The goal of the appendix is to establish Lemma (3.2), namely the vector space
isomorphisms

[Λ∗(In)]spn ' Λ∗(ωn) :=
∑
k≥0

Λk(ωn) (1)

[gn ⊗ Λ∗(In)]spn ' Λ̄∗(ωn) :=
∑
k≥1

Λk(ωn), (2)
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where the former is also an algebra isomorphism. First, note that as an spn -
module, gn ' In ⊕ spn , and

[gn ⊗ Λ∗(In)]spn ' [In ⊗ Λ∗(In)]spn ⊕ [spn ⊗ Λ∗(In)]spn .

Thus, line (2) would follow from the vector space isomorphisms

[In ⊗ Λ∗(In)]spn ' Λ̄∗(ωn)

[spn ⊗ Λ∗(In)]spn = {0}.

We first demonstrate isomorphism (1) in the following lemma.

Lemma 6.1.
[Λ∗(In)]spn ' Λ∗(ωn).

Proof. We proceed by induction on n . For n = 1,

I1 =

〈
∂

∂x1
,

∂

∂y1

〉
sp1 =

〈
x1

∂

∂y1
, y1

∂

∂x1
, y1

∂

∂y1
− x1

∂

∂x1

〉
.

By direct calculation, (I1)
sp1 = {0} , and (I∧2

1 )sp1 = 〈 ∂
∂x1 ∧ ∂

∂y1 〉 .
By the inductive hypothesis, suppose

[Λ∗(In−1)]
spn−1 = Λ∗(ωn−1).

Consider then two cases for I∧k
n , k odd, and k even. For k odd, let z ∈ I∧k

n and
consider

z = z1 + z2 ∧
∂

∂xn
+ z3 ∧

∂

∂yn
+ z4 ∧

∂

∂xn
∧ ∂

∂yn
,

where z1 ∈ I∧k
n−1 , z2 , z3 ∈ I∧(k−1)

n−1 , and z4 ∈ I∧(k−2)
n−1 . Note that

[z, yn
∂

∂yn
− xn

∂

∂xn
] = −z2 ∧

∂

∂xn
+ z3

∂

∂yn
.

For z ∈ (I∧k
n )spn , [z, yn

∂
∂yn − xn

∂
∂xn ] = 0, and

z = z1 + z4 ∧
∂

∂xn
∧ ∂

∂xn
.

For any X ∈ spn−1 ⊆ spn , we have

0 = [z, X] = [z1, X] + [z4, X] ∧ ∂

∂xn
∧ ∂

∂yn
.

If non-zero, the terms [z1, X] and [z4, X] ∧ ∂
∂xn ∧ ∂

∂yn are linearly independent
and would not sum to zero. Thus,

z1 ∈ (I∧k
n−1)

spn−1 = {0}, z4 ∈ (I
∧(k−2)
n−1 )spn−1 = {0}.
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It follows that (I∧k
n )spn = {0} for k odd.

For k even, let k = 2q , z ∈ (I∧2q
n )spn , and repeat the above argument to

the point

z1 ∈ (I∧2q
n−1)

spn−1 = 〈ω∧q
n−1〉

z4 ∈ (I
∧2(q−1)
n−1 )spn−1 = 〈ω∧(q−1)

n−1 〉

Thus, z = c1ω
∧q
n−1 + c2ω

∧(q−1)
n−1 ∧ ∂

∂xn ∧ ∂
∂yn , c1 , c2 ∈ R . Bracketing with X =

x1
∂

∂yn + xn
∂

∂y1 yields

0 = [z, X] = (c2 − qc1)ω∧(q−1)
n−1 ∧ ∂

∂y1
∧ ∂

∂yn
.

Hence, z is a real multiple of

ω∧q
n−1 + qω

∧(q−1)
n−1 ∧ ∂

∂xn
∧ ∂

∂yn
=

(
ωn−1 +

∂

∂xn
∧ ∂

∂yn

)∧q

= ω∧q
n .

Lemma 6.2.
[In ⊗ Λ∗(In)]spn ' Λ̄∗(ωn).

Proof. The proof proceeds by induction on n . For n = 1, a direct verification
yields

(I1)
sp1 = {0}, (I1 ⊗ I1)sp1 =

〈
∂

∂x1
∧ ∂

∂y1

〉
,

where ∂
∂x1 ∧ ∂

∂y1 = ∂
∂x1 ⊗ ∂

∂y1 − ∂
∂y1 ⊗ ∂

∂x1 . Also, (I1 ⊗ I∧2
1 )sp1 = {0} by direct

calculation. The inductive hypothesis states

[In−1 ⊗ Λ∗(In−1)]
spn−1 ' Λ̄∗(ωn−1).

Let v ∈ In ⊗ I∧k
n , v = u1 + u2 , where

u1 ∈ In−1 ⊗ I∧k
n−1, u2 ∈ (In ⊗ I∧k

n )/(In−1 ⊗ I∧k
n−1).

A vector space basis of (In⊗I∧k
n )/(In−1⊗I∧k

n−1) is given by the families of elements:

(1) ∂
∂xn ⊗ ∂

∂xn ∧ ∂
∂yn ∧ ∂

∂z1 ∧ ∂
∂z2 ∧ . . . ∧ ∂

∂zk−2

(2) ∂
∂yn ⊗ ∂

∂xn ∧ ∂
∂yn ∧ ∂

∂z1 ∧ ∂
∂z2 ∧ . . . ∧ ∂

∂zk−2

(3) ∂
∂xn ⊗ ∂

∂xn ∧ ∂
∂z1 ∧ ∂

∂z2 ∧ . . . ∧ ∂
∂zk−1

(4) ∂
∂xn ⊗ ∂

∂yn ∧ ∂
∂z1 ∧ ∂

∂z2 ∧ . . . ∧ ∂
∂zk−1

(5) ∂
∂yn ⊗ ∂

∂xn ∧ ∂
∂z1 ∧ ∂

∂z2 ∧ . . . ∧ ∂
∂zk−1

(6) ∂
∂yn ⊗ ∂

∂yn ∧ ∂
∂z1 ∧ ∂

∂z2 ∧ . . . ∧ ∂
∂zk−1

(7) ∂
∂z1 ⊗ ∂

∂xn ∧ ∂
∂yn ∧ ∂

∂z2 ∧ . . . ∧ ∂
∂zk−1
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(8) ∂
∂z1 ⊗ ∂

∂xn ∧ ∂
∂z2 ∧ ∂

∂z3 ∧ . . . ∧ ∂
∂zk

(9) ∂
∂z1 ⊗ ∂

∂yn ∧ ∂
∂z2 ∧ ∂

∂z3 ∧ . . . ∧ ∂
∂zk ,

where, for each family, the zi ’s are elements of

{x1, x2, . . . , xn−1, y1, y2, . . . , yn−1}.

Let v ∈ (In ⊗ I∧k
n )spn and X = yn

∂
∂yn − xn

∂
∂xn . Then

0 = [v, X] = [u1 + u2, X] = [u2, X].

To compute the spn -invariants, consider u2 ∈ ker(adX), where adX(w) = [w, X] .
The families (4), (5) and (7) above fall into ker(adX). Now consider X = xn

∂
∂yn .

Family (7) along with

∂

∂xn
⊗ ∂

∂yn
∧ ∂

∂z1
∧ . . . ∧ ∂

∂zk−1
− ∂

∂yn
⊗ ∂

∂xn
∧ ∂

∂z1
∧ . . . ∧ ∂

∂zk−1

are elements of ker(adX), X = xn
∂

∂yn . Then v = u1 + s1 + s2 ,

s1 =
∑

z1,...,zk−1

c1, ∗

(
∂

∂xn
⊗ ∂

∂yn
∧ ∂

∂z1
∧ . . . ∧ ∂

∂zk−1

− ∂

∂yn
⊗ ∂

∂xn
∧ ∂

∂z1
∧ . . . ∧ ∂

∂zk−1

)

s2 =
∑

z1,...,zk−1

c2, ∗

(
∂

∂z1
⊗ ∂

∂xn
∧ ∂

∂yn
∧ ∂

∂z2
∧ . . . ∧ ∂

∂zk−1

)
For X ∈ spn−1 ,

0 = [v, X] = [u1, X] + [s1, X] + [s2, X].

Note that

[u1, X] ∈ In−1 ⊗ I∧k
n−1, [s1, X] /∈ In−1 ⊗ I∧k

n−1, [s2, X] /∈ In−1 ⊗ I∧k
n−1.

If non-zero, the summands of [s1, X] and [s2, X] would be linearly independent.
Thus, [s1, X] = 0, [s2, X] = 0, and u1 ∈ (In−1 ⊗ I∧k

n−1)
spn−1 . For k even,

(In−1 ⊗ I∧k
n−1)

spn−1 = {0} , u1 = 0,

[s2, X] =
∑

z1,...,zk−1

c2, ∗[
∂

∂z1
⊗ ∂

∂z2
∧ . . . ∧ ∂

∂zk−1
, X] ∧ ∂

∂xn
∧ ∂

∂yn
,

∑
z1,...,zk−1

c2, ∗
∂

∂z1
⊗ ∂

∂z2
∧ . . . ∧ ∂

∂zk−1
∈ (In−1 ⊗ I∧(k−2)

n−1 )spn−1 = {0}.

Thus, v = s1 . From

0 = [s1, xn
∂

∂yi
+ xi

∂

∂yn
], 0 = [s1, yi

∂

∂xn
+ yn

∂

∂xi
],
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for 1 ≤ i ≤ n− 1, it follows that s1 = 0.

For k odd, let k = 2q − 1. Then

u1 ∈ (In−1 ⊗ I∧k
n−1)

spn−1 = 〈ω∧q
n−1〉

θ :=
∑

z1,...,zk−1

c2, ∗
∂

∂z1
⊗ ∂

∂z2
∧ . . . ∧ ∂

∂zk−1
∈ (In−1 ⊗ I∧(k−2)

n−1 )spn−1 = 〈ω∧(q−1)
n−1 〉

u1 = λ1ω
∧q
n−1, θ = λ2ω

∧(q−1)
n−1 , λ1, λ2 ∈ R.

Note that

[λ1ω
∧q
n−1 + λ2ω

∧(q−1)
n−1 ∧ ∂

∂xn
∧ ∂

∂yn
, yi

∂

∂xn
+ yn

∂

∂xi
]

= (qλ1 − λ2)ω
∧(q−1)
n ∧ ∂

∂xi
∧ ∂

∂xn
.

From

0 = [λ1ω
∧q
n−1 + λ2ω

∧(q−1)
n−1 ∧ ∂

∂xn
∧ ∂

∂yn
+ s1, X]

for X = xn
∂

∂yi + xi
∂

∂yn , X = yi
∂

∂xn + yn
∂

∂xi , 1 ≤ i ≤ n− 1, it follows that s1 = 0,

and (qλ1 − λ2) = 0. Letting λ1 = 1, we have λ2 = q , and

v = ω∧q
n−1 + qω∧q

n−1 ∧
∂

∂xn
∧ ∂

∂yn
= ω∧q

n .

Lemma 6.3.
[spn ⊗ Λ∗(In)]spn = {0}.

Proof. We apply induction on n . For n = 1, write a general element of
sp1⊗Λ∗(I1) as a linear combination of the basis elements given in B1 and B2 of §2
(n = 1). Then apply adX for X = (y1

∂
∂y1 − x1

∂
∂x1 ). The result [sp1⊗Λ∗(I1)]

sp1 =

{0} follows from linear algebra.

Suppose that [spn−1 ⊗ Λ∗(In−1)]
spn−1 = {0} . Since spn is a simple Lie

algebra, we have (spn)spn = {0} . Let B1 be the vector space basis for spn−1 given
in §2, and let

S = {x1, x2, . . . , xn, y1, y2, . . . , yn}
S ′ = {x1, x2, . . . , xn−1, y1, y2, . . . , yn−1}.

A vector space basis of (spn ⊗ I∧k
n )/(spn−1 ⊗ I∧k

n−1) is given by the families of
elements:

(1) e⊗ ∂
∂xn ∧ ∂

∂yn ∧ ∂
∂z1 ∧ ∂

∂z2 ∧ . . . ∧ ∂
∂zk−2 , e ∈ B1, z

i ∈ S ′

(2) e⊗ ∂
∂xn ∧ ∂

∂z1 ∧ ∂
∂z2 ∧ . . . ∧ ∂

∂zk−1 , e ∈ B1, z
i ∈ S ′

(3) e⊗ ∂
∂yn ∧ ∂

∂z1 ∧ ∂
∂z2 ∧ . . . ∧ ∂

∂zk−1 , e ∈ B1, z
i ∈ S ′

(4) (xn
∂

∂yn )⊗ ∂
∂z1 ∧ ∂

∂z2 ∧ . . . ∧ ∂
∂zk , zi ∈ S
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(5) (xn
∂

∂yi + xi
∂

∂yn )⊗ ∂
∂z1 ∧ ∂

∂z2 ∧ . . . ∧ ∂
∂zk , i < n, zj ∈ S

(6) (yn
∂

∂xn )⊗ ∂
∂z1 ∧ ∂

∂z2 ∧ . . . ∧ ∂
∂zk , zi ∈ S

(7) (yi
∂

∂xn + yn
∂

∂xi )⊗ ∂
∂z1 ∧ ∂

∂z2 ∧ . . . ∧ ∂
∂zk , i < n, zj ∈ S

(8) (yn
∂

∂yn − xn
∂

∂xn )⊗ ∂
∂z1 ∧ ∂

∂z2 ∧ . . . ∧ ∂
∂zk , zi ∈ S

(9) (yi
∂

∂yn − xn
∂

∂xi )⊗ ∂
∂z1 ∧ ∂

∂z2 ∧ . . . ∧ ∂
∂zk , i < n, zj ∈ S

(10) (yn
∂

∂yi − xi
∂

∂xn )⊗ ∂
∂z1 ∧ ∂

∂z2 ∧ . . . ∧ ∂
∂zk , i < n, zj ∈ S

Given w ∈ (spn ⊗ I∧k
n )spn , let w = u+ v , where

u ∈ (spn−1 ⊗ I∧k
n−1), v ∈ (spn ⊗ I∧k

n )/(spn−1 ⊗ I∧k
n−1).

For all X ∈ spn , 0 = adX(w) = adX(u) + adX(v). Restricting to X ∈ spn−1 ,
notice that if non-zero, the elements adX(u) and adX(v) are linearly independent.
Thus, adX(u) = 0, and

u ∈ (spn−1 ⊗ I∧k
n−1)

spn−1 = {0}.

Now, v can be written as a linear combination of the elements in families (1)–(10).
We prove that v = 0 by applying the condition adX(v) = 0 for successive choices
of X ∈ spn . First apply X = (yn

∂
∂yn − xn

∂
∂xn ), then X ∈ spn−1 together with the

inductive hypothesis. Third, apply X = xn
∂

∂yn , fourth X = (yi
∂

∂yi − xi
∂

∂xi ), fifth

X = xi
∂

∂yi , and finally X = (xn
∂

∂yi + xi
∂

∂yn ), where 1 ≤ i ≤ n− 1.
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