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Abstract. We define a product for harmonic spinors on reductive homo-
geneous spaces. We give also some examples where harmonic spinors with
coefficients in a module are expressed as a linear combination of products of
harmonic spinors with coefficients in two other modules. One such example
involves discrete series representations.
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1. Introduction

Non-compact analogues and spinor analogues of the Borel-Weil-Bott Theorem have
provided powerful and elegant tools to study representations of Lie groups. In par-
ticular, discrete series representations of non-compact semisimple Lie groups are
realized on spaces of square integrable vector-valued harmonic Dirac spinors on
non-compact symmetric spaces ([11][13][1]). The introduction of the Dirac opera-
tor, replacing the usual ∂ operator, allows one to treat all non-compact semisimple
Lie groups rather than just the ones whose symmetric space is hermitian.

For the introduction, let G be a connected non-compact semisimple real
Lie group and H a closed connected subgroup of maximal rank of G with Lie
algebras g and h respectively. Some of our results are in fact stated and proved
for general connected reductive Lie groups. We assume that the Killing form of g

restricts to a non-degenerate form on h and we write

g = h⊕ q, q = h⊥

for the corresponding orthogonal decomposition of g . Note that the killing form
is non-degenerate (and possibly indefinite) on q . In particular, we may define the
Clifford algebra of q and the corresponding spin representation S of h . Given a
finite dimensional representation E of h satisfying the property that the tensor
product S⊗E lifts to a representation of H , we have a homogeneous vector bundle
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S ⊗E → G/H of finite rank over G/H and a G-invariant differential operator on
(smooth) sections:

D = DG/H(E) : C∞(G/H,S ⊗ E) → C∞(G/H,S ⊗ E)

known as Kostant’s cubic Dirac operator. As we shall see in the next section,
D is the sum of a first order term (analogous to the usual Dirac operator on
riemannian symmetric spaces) and a zeroth order term defined by some degree
three element of the Clifford algebra of q ([6]). This zeroth order term vanishes
whenever the homogeneous space G/H is symmetric (see Section 2). When H is
a maximal compact subgroup K (of maximal rank) of G , the kernel of the Dirac
operator DG/K(E) on L2 -sections is an irreducible unitary representation of G
in the discrete series of G , and every discrete series representation of G occurs
as the L2 -kernel of DG/K(E) for some bundle E ([11][13][1]). In the case where
H 6= K , the homogeneous space need not be symmetric, the cubic Dirac operator
is not elliptic and traditional L2 -techniques are not available. However, more
recently, analogous results have been proved by constructing explicitly a non zero
interwining operator from principal series representations of G into the kernel of
DG/H(E) for some bundle E ([9][10]). In particular, a complex structure on G/H
is not needed for the construction of interesting representations of G .

On the other hand, when G/H is equipped with an invariant complex
structure, one can show that the Dirac operator DG/H(E) reduces to the Dol-

beault operator ∂ +∂ (upto scaling). For this reason ‘harmonic spinors’, requiring
only a spin structure rather than a complex structure, has long been regarded
as a substitute for holomorphic forms. Since the product of holomorphic forms
(whenever it makes sense) is holomorphic, it is then natural to consider a ‘multi-
plication’ for harmonic spinors. Our first result provides various instances of such
a phenomenon in the context of Kostant’s cubic Dirac operators for general con-
nected reductive Lie groups. The precise statement is a bit technical, however it
can be put as follows:
Theorem 1 (Theorem 3.1): Let E1 and E2 be two finite dimensional representa-
tions of H . The product of a harmonic spinor in Ker(DG/H(E1)) and a harmonic
spinor in a related ‘Hom’ bundle is a harmonic spinor in Ker(DG/H(E2)).

Even though the Borel-Weil-Bott Theorem, along with its non-compact
analogues and spinor analogues, realizes representations as harmonic spinors, it is
better to have a mechanism where this picture can be viewed coherently when the
representation parameters change in a coherent way.

In order to see how the above result yields such a ‘mechanism’, we illustrate
in the following context: let F (ν) be the finite dimensional representation of gC

(the complexification of g) with highest weight ν , with respect to some positive
system (see Section 4). Let {π(µ)}µ∈Λ be a coherent family of (virtual) represen-
tations of G (see [2]). Typically in a positive cone contained in the parameter
space Λ, this arises via the Zuckerman translation functor

F (ν)? ⊗ π(µ + ν) −→ π(µ)

where F (ν)? denotes the contragredient representation of F (ν). Now assume that:

π(µ) is realized as harmonics in some bundle S ⊗ Eµ ,
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π(µ + ν) is realized as harmonics in some bundle S ⊗ Eµ+ν ,

F (ν)? is realized as harmonics in some bundle Hom+(S ⊗ Eµ+ν , S ⊗ Eµ),

where the ‘Hom ’ bundle Hom+(S ⊗ Eµ+ν , S ⊗ Eµ) over G/H induced by a H -
submodule Hom+(S⊗Eµ+ν , S⊗Eµ) of HomC(S⊗Eµ+ν , S⊗Eµ) defined in Section
3. This gives rise to a setup as in Theorem 3.1.

On the other hand, there has been lot of interest in the representation
theoretic Dirac cohomology with the proof by Huang and Pandžić of a conjecture
of Vogan ([5]), extended by Kostant to the cubic Dirac operator ([7]). In this
context, our second result (Theorem 4.2) illustrates the ‘mechanism’ of Theorem
3.1 in the case of discrete series representations for semisimple Lie groups. More
precisely, when G has a compact Cartan subgroup, it is known that discrete series
representations of G arise as a particular case of Enright-Varadarajan (gC, K)-
modules ([3][12]), where K still denotes a maximal compact subgroup of maximal
rank of G . Moreover, given a (gC, K)-module (π,H), there is a Dirac operator

Dπ : H⊗ S → H⊗ S,

defined by

Dπ =
∑

j

π(Xj)⊗ γ(Xj)

where {Xj} is an orthonormal basis of q and γ is the Clifford multiplication.
Now assume that (π(µ),H(µ)) and (π(µ + ν),H(µ + ν)) are two discrete series
representations of G , regarded as (gC, K)-modules, where µ and ν are some
dominant regular weights with respect to some positive system in gC (see Section
4). Standard inclusions of Verma modules for gC give rise to an inclusion

ϕ : H(µ)⊗ S ↪→ H(µ + ν)⊗ F (ν)⊗ S.

Moreover, we have a map

β : (H(µ + ν)⊗ S)⊗ (F (ν)⊗ S)⊗ S? −→ H(µ + ν)⊗ F (ν)⊗ S

by contracting the second factor S and the fifth factor S? . Our second result can
now be stated:
Theorem 2 (Theorem 4.2):

ϕ(Ker(Dπ(µ))) ⊆ β(Ker(Dπ(µ+ν))⊗Ker(DF (ν))⊗ S?).

In other words, one can relate Dirac spinors for an irreducible representation, a
finite dimensional irreducible representation and a third representation which is
related to the first two via a Zuckerman translation. We have used the Enright-
Varadarajan construction in the proof of this result for a description of the discrete
series representations.

While our first result deals with cubic Dirac operators on general homoge-
neous space G/H (not necessarily symmetric), it should be noted that our second
theorem deals with the case where H = K for which the cubic Dirac operator
reduces to the usual Dirac operator on the symmetric space G/K . Indeed, out-
side of the realm of symmetric spaces (where the cubic term vanishes), not much



36 Mehdi and Parthasarathy

is available in the literature about non-zero solutions for the cubic Dirac (except
for the above mentioned result of Kostant, and a result of Landweber [8], which
anyway account for finite dimensional representations). For infinite dimensional
representations and non-compact homogeneous spaces (not necessarily symmetric)
a beginning is made in [10]. However we do not know any analogue of the Enright-
Varadarajan construction for these modules. In a work in progress we are trying
to do things in the reverse order: constructing representations in a manner similar
to the Enright-Varadarajan method where we hope to be able to deal with cubic
Dirac solutions.

This paper is organized as follows: Section 2 contains the main notations
and the definition of the cubic Dirac operator. Section 3 includes the definition of
the ‘product’ for harmonic spinors and the proof of our first result (Theorem 3.1).
Section 4 is devoted to the proof of the second result (Theorem 4.2), along with
a quick review of the Enright-Varadarajan modules. For the convenience of the
reader, let us mention that Sections 3 and 4 are actually independant. Finally, in
the last section, we address two open questions.

2. Preliminaries

In this section, we recall some notation and basic definitions following [10]. Let
G be a connected non-compact real reductive Lie group with Lie algebra g0 , i.e.
g0 = z0 ⊕ [g0, g0] , where z0 denotes the Lie algebra of the center Z of G . We
do not assume that Z is finite. In the sequel the subscript 0 will mean that
the base field is the field of real numbers, and we will drop this subscript for the
complexification.

If K/Z is a maximal compact subgroup of G/Z then K is the set of
fixed points of some Cartan involution θ of G . We write the corresponding
Cartan decomposition of g0 as g0 = k0 ⊕ s0 . Let 〈 , 〉 be an Ad-invariant non
degenerate symmetric bilinear form on g which coincides with the Killing form
on the semisimple part [g0, g0] of g0 . We extend linearly both 〈 , 〉 and θ to g ,
and we shall use the same symbols to denote these extensions. Let H be a closed
connected real reductive subgroup of maximal rank of G . We make the following
assumption on H :

Assumption 2.1. The restriction of 〈 , 〉 to h0 × h0 is non-degenerate.

There is therefore an orthogonal decomposition of g0 :

g0 = h0 ⊕ q0, q0
def
= h⊥0 .

In particular [h0, q0] ⊂ q0 and the restriction 〈 , 〉q0 of 〈 , 〉 to q0× q0 remains non-
degenerate. Let so(q0) be the Lie algebra of the group of orthogonal endomor-
phisms of q0 with respect to 〈 , 〉q0 and denote by (σq, Sq) the spin representation
of so(q0). The spin representation (sq, Sq) of h0 is defined by:

sq
def
= σq ◦ ad.

In general this representation does not integrate to a representation of H . So let
(τ, E) be a finite dimensional representation of h0 such that the tensor product
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Sq ⊗ E lifts to an H -representation β . This defines a vector bundle Sq ⊗ E over
G/H whose space of smooth sections C∞(G/H,Sq⊗E) may be identified with the

vector space
(
C∞(G)⊗ (Sq⊗E)

)H

of H -invariants of C∞(G)⊗ (Sq⊗E), for the

H -action R⊗β . Here R denotes the action by right translations on C∞(G). The

space
(
C∞(G)⊗ (Sq⊗E)

)H

carries a natural structure of G-module given by the

left translations on C∞(G). On the other hand, the image, under the Chevalley
isomorphism, of the alternating 3-form on q defined by:

(X, Y, Z) 7→ 〈X , [Y, Z]〉,

is a degree 3 element c in the Clifford algebra Cl(q) of q . In other words, suppose
{Xj} is a basis of q0 satisfying:

〈Xj , Xk〉q0 = ajδjk, aj = ±1 (2.2)

then
c =

∑
j<k<`

ajaka`〈Xj , [Xk, X`]〉XjXkX`. (2.3)

The Kostant’s “cubic” Dirac operator DE , associated with the vector bundle Sq⊗E
over G/H , is the G-invariant differential operator

DE : C∞(G/H,Sq ⊗ E) → C∞(G/H,Sq ⊗ E)

defined by:

DE =
∑

ajR(Xj)⊗ γ(Xj)⊗ 1− 1⊗ γ(c)⊗ 1,

where γ denotes the Clifford multiplication (keeping the same symbol to denote
the differential of R). The cubic Dirac operator does not dependent on the choice
of the basis {Xj} satisfying (2.2). Observe that if H is fixed pointwise by some
involution of G then the cubic term c vanishes, since [q0, q0] ⊂ h0 and h0 ⊥ q0 .
In particular, DE reduces to the ‘usual’ (i.e non cubic) Dirac operator (see [11])

D̂E : C∞(G/H,Sq ⊗ E) → C∞(G/H,Sq ⊗ E)

defined by:

D̂E =
∑

ajR(Xj)⊗ γ(Xj)⊗ 1.

3. A product

In a similar way, we define the cubic Dirac operator

DE ′ : C∞(G/H,Sq ⊗ E ′) → C∞(G/H,Sq ⊗ E ′),

for a finite dimensional representation (τ ′, E ′) of h0 such that the tensor product
Sq⊗E ′ lifts to a representation β′ of H . Let HomC(Sq⊗E, Sq⊗E ′) be the space
of complex homomorphisms Sq ⊗ E → Sq ⊗ E ′ equipped with the structure of
H -module given by:

h · T def
= β′(h) ◦ T ◦ β(h)−1.
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This defines a homogeneous vector bundle HomC(Sq⊗E, Sq⊗E ′) over G/H whose
space of smooth sections C∞(G/H,HomC(Sq⊗E, Sq⊗E ′)) may be identified with:{

φ : G
C∞
→ HomC(Sq⊗E, Sq⊗E ′) | φ(gh) = β′(h)◦φ(g)◦β(h)−1, ∀g ∈ G, ∀h ∈ H

}
'

(
C∞(G)⊗ HomC(Sq ⊗ E, Sq ⊗ E ′)

)H

.

On the other hand, the canonical embedding q ↪→ Cl(q) extends uniquely
to an anti-automorphism

Cl(q) → Cl(q), A 7→ A0

of the Clifford algebra. In particular, we may equip HomC(Sq ⊗ E, Sq ⊗ E ′) with
a structure of a Clifford-module as follows:

A · T def
= T ◦ (γ(A0)⊗ 1), ∀A ∈ Cl(q).

Therefore there is a well defined cubic Dirac operator DE,E ′ associated with the
homogeneous vector bundle HomC(Sq ⊗ E, Sq ⊗ E ′):

DE,E ′ : C∞(G/H,HomC(Sq ⊗ E, Sq ⊗ E ′)) → C∞(G/H,HomC(Sq ⊗ E, Sq ⊗ E ′))

given by:

DE,E ′(f ⊗ T )
def
=

∑
aj(R(Xj)f)⊗ (Xj · T )− f ⊗ c · T.

Note that since c0 = −c , the above equation becomes

DE,E ′(f ⊗ T ) =
∑

aj(R(Xj)f)⊗ (Xj · T ) + f ⊗ T ◦ (γ(c)⊗ 1).

Let us now define the product map

Ψ: C∞(G/H,HomC(Sq ⊗ E, Sq ⊗ E ′))×C∞(G/H,Sq ⊗ E)→C∞(G/H,Sq ⊗ E ′),
Ψ(f ⊗ T, φ⊗ s⊗ v) = fφ⊗ T (s⊗ v),

with the following properties:

(i) Ψ is G-equivariant,

(ii) Ψ(1, B) = B ,

(iii) Ψ(A1A2, B) = Ψ(A1, Ψ(A2, B)) when E = E ′ .

Let Hom+(Sq⊗E, Sq⊗E ′) be the H -submodule of HomC(Sq⊗E, Sq⊗E ′) given
by: Hom+(Sq ⊗ E, Sq ⊗ E ′)

def
=

{
T ∈ HomC(Sq ⊗ E, Sq ⊗ E ′) | (γ(X)⊗ 1) ◦ T = T ◦ (γ(X)⊗ 1), ∀X ∈ q0

}
.

Note that if t ∈ HomC(E, E ′), then 1⊗ t ∈ Hom+(Sq ⊗E, Sq ⊗E ′). It should be
noted that the vector subspace Hom+(Sq⊗E, Sq⊗E ′) is not a Clifford-submodule
of HomC(Sq ⊗ E, Sq ⊗ E ′). Finally, consider the following G-submodules:

Ker(DE) = Ker
(
DE : C∞(G/H,Sq ⊗ E) → C∞(G/H,Sq ⊗ E)

)
,

Ker(DE,E ′) = Ker
(
DE,E ′ : C∞(G/H,HomC(Sq ⊗ E, Sq ⊗ E ′))

−→ C∞(G/H,HomC(Sq ⊗ E, Sq ⊗ E ′))
)
,

Ker+(DE,E ′) = Ker (DE,E ′) ∩ C∞(G/H,Hom+(Sq ⊗ E, Sq ⊗ E ′)).
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We define Ker(D̂E ′) and Ker+(D̂E,E ′) in a similar way. Since G and H are assumed
to have the same complex rank, then, by Theorem 4.6 of [10], we may choose
bundles E and E ′ such that both Ker(DE) and Ker(DE ′) are not reduced to {0} .

Theorem 3.1. We have:

I. Ψ(Ker+(D̂E,E ′),Ker(D̂E)) ⊆ Ker(D̂E ′).

II. Ψ(Ker+(D̂E,E ′),Ker(DE)) ⊆ Ker(DE ′).

III. Ψ(Ker+(DE,E ′),Ker(DE)) ⊆ Ker(D̂E ′).

In other words, the “product” of two usual harmonic spinors is a usual harmonic
spinor, whereas the “product” of a usual harmonic spinor and a cubic harmonic
spinor is a cubic harmonic spinor. Moreover the “product” of two cubic harmonic
spinors is a usual harmonic spinor.

Proof. For all f ⊗ T ∈
(
C∞(G)⊗ HomC(Sq ⊗ E, Sq ⊗ E ′)

)H

,

φ⊗ s⊗ v ∈
(
C∞(G)⊗ (Sq ⊗ E)

)H

and T ∈ HomC(Sq ⊗ E, Sq ⊗ E ′), we have:

DE ′(Ψ(f ⊗ T, φ⊗ s⊗ v))

= Ψ(DE,E ′(f ⊗ T ), φ⊗ s⊗ v) + Ψ(f ⊗ T, DE(φ⊗ s⊗ v))

+
∑

aj(R(Xj)(fφ))⊗
(
(γ(Xj)⊗ 1)(T (s⊗ v))− T ((γ(Xj)⊗ 1)(s⊗ v))

)
− fφ⊗ (γ(c)⊗ 1)(T (s⊗ v)).

In particular, if T ∈ Hom+(Sq ⊗ E, Sq ⊗ E ′), this formula can be rewritten in
different ways:

D̂E ′(Ψ(f ⊗ T, φ⊗ s⊗ v)) = Ψ(D̂E,E ′(f ⊗ T ), φ⊗ s⊗ v) + Ψ(f ⊗ T, D̂E(φ⊗ s⊗ v)),

DE ′(Ψ(f ⊗ T, φ⊗ s⊗ v)) = Ψ(D̂E,E ′(f ⊗ T ), φ⊗ s⊗ v) + Ψ(f ⊗ T,DE(φ⊗ s⊗ v)),

D̂E ′(Ψ(f ⊗ T, φ⊗ s⊗ v)) = Ψ(DE,E ′(f ⊗ T ), φ⊗ s⊗ v) + Ψ(f ⊗ T,DE(φ⊗ s⊗ v)).

4. The discrete series and the Enright-Varadarajan modules

At the outset, we state that while the contents of this section may seem to be
unrelated to the main theorem in the previous section, the purpose of this section is
to illustrate that theorem by resorting to an algebraic construction of discrete series
representations. Let {π(µ)}µ∈Λ be a coherent family of (virtual) representations
(see [2]). Typically in a positive cone contained in the parameter space Λ, this
arises via the Zuckerman translation functor

F (ν)? ⊗ π(µ + ν) −→ π(µ).

where F (ν)? is the contragredient of the finite dimensional g-representation F (ν)
with highest weight ν , with respect to some positive system. Suppose that:
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π(µ) is realized as harmonics in some bundle S ⊗ Eµ ,

π(µ + ν) is realized as harmonics in some bundle S ⊗ Eµ+ν ,

F (ν)? is realized as harmonics in some bundle Hom+(S ⊗ Eµ+ν , S ⊗ Eµ).

This gives rise to a setup as in Theorem 3.1. Putting these ideas in a valid
framework involves:

(a) checking whether it works algebraically (without bothering about geometry
like homogeneous spaces, homogeneous bundles and the geometric Dirac
operator) working purely in the context of the representation theoretic Dirac
operator.

(b) (having accomplished (a)). We try to make a transition from the purely
algebraic considerations to its geometric counterpart. In this endeavour we
are guided by many instances of such a relationship.

1. Kostant’s study of n-cohomology of finite dimensional modules led to
his proof of the Borel-Weil-Bott Theorem.

2. The geometric result: certain spaces of square integrable harmonic
spinors (twisted by a homogeneous bundle) on a symmetric space van-
ish. The underlying algebraic observation: Dirac Inequality for unita-
rizability of a (g, K)-module.

3. Algebraic result (Gross, Kostant, Ramond and Sternberg [4]): certain
multiplets of representations of a Lie subalgebra h ⊂ g associated to
a g-representation occur as the kernel of Kostant’s (algebraic) cubic
Dirac operator. Geometric result (Landweber [8]): the above irreducible
G-representation arises as the kernel of a geometric cubic Dirac oper-
ator twisted by a homogeneous bundle arising from one of the above
H -multiplets. Landweber figuratively refers to this construction as
“putting the algebraic consideration on its head” or “effectively invert-
ing the algebraic construction”.

We did not really pursue the lead (b) above as it involves an elaborate
lay-out which, in our opinion, may not be worth the time demanded of a prospec-
tive reader at present. Instead we stopped after following lead (a) as we felt it
was sufficiently interesting for its own sake. Outside of the realm of symmetric
spaces (where the cubic term vanishes) not much is available in the literature about
non-zero solutions for the cubic Dirac (except for the above mentioned results of
Kostant, Landweber - which anyway account for finite dimensional representa-
tions). For infinite dimensional representations and non-compact homogeneous
spaces a beginning is made in [10]. Since we do not know any analogue of the
Enright-Varadarajan construction for these modules we did not attempt to write
this section in the context of the cubic Dirac operator.

In this section, we assume that G is semisimple with finite center and
H = K . In particular, the assumption (2.1) is satisfied and the cubic term (2.3)
vanishes. Moreover the form 〈 , 〉q0 (restriction of the Killing form to q0 × q0 ) is
positive definite on q0 = s0 , so that the basis (2.2) is now an orthonormal basis of
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s0 with aj = 1 for all j . We shall simply write (s, S) for the spin representation
of k0 . In particular, a (g, K)-module (π,H) defines a Dirac operator:

Dπ : H⊗ S → H⊗ S,

Dπ
def
=

∑
j

π(Xj)⊗ γ(Xj). (4.1)

As we have already mentioned in the introduction, when G has a com-
pact Cartan subgroup, discrete series representations arise as a particular case of
Enright-Varadarajan modules ([3][12]). More precisely, let r be a θ -stable Borel
subalgebra of g . Fix a θ -stable Cartan subalgebra c of g such that c ⊂ r and

b
def
= c ∩ k is a Cartan subalgebra of k . Let Π be the corresponding (θ -stable)

system of positive roots. We fix a Borel subalgebra rk of k by rk
def
= r∩k . The cor-

responding positive system of roots of k with respect to b is denoted Πk . We shall
denote by δ and δk the half-sums of Π and Πk respectively. Let µ be a regular
integral weight which is dominant with respect to Π. Consider the Verma module
Vg,Π,−µ−δ for g with highest weight −µ−δ with respect to Π and the Verma mod-
ules Vk,Πk,−µ−δ for k with Πk -highest weight given by the restriction of −µ−δ to b .
Evidently, Vk,Πk,−µ−δ can be canonically identified with the U(k)-module generated
by the highest weight vector of Vg,Π,−µ−δ . There is a unique Πk -dominant integral
weight η such that Vk,Πk,−µ−δ ⊆ Vk,Πk,η . The k-module Vk,Πk,η and the g-module
Vg,Π,−µ−δ can both be simultaneously imbedded in a g-module Wr,µ , compatible
with the prolongement Vk,Πk,−µ−δ ⊂ Vk,Πk,η and having nice properties. Some of
the important properties of the inclusions Vg,Π,−µ−δ ⊆ Wr,µ and Vk,Πk,η ⊆ Wr,µ are
the following (see [3]):

(i) Wr,µ has a unique irreducible quotient g-module Dr,µ which is k-finite,

(ii) the irreducible finite dimensional k-module Fk,η with Πk - highest weight η
occurs with multiplicity one in Dr,µ ,

(iii) if χΠ,−µ denotes the algebra homomorphism from U(g)k into C defining the
scalar by which u ∈ U(g)k acts on the highest weight vector of Vg,Π,−µ−δ ,
then the same homomorphism defines the action of U(g)k on Fk,η ⊆ Dr,µ .

When G has a compact Cartan subgroup, which we assume to hold, it is a result
due to Wallach ([12]) that the (g, K)-module Dr,µ is isomorphic to the space of
k-finite vectors in a discrete class representation of G .

Let ν be Π-dominant integral and F (ν) the finite dimensional irreducible
representation for g with highest weight ν . Assume that µ + ν is Π-dominant
and regular, so that we have the irreducible (g, K)-modules Dr,µ and Dr,µ+ν as
above both belonging to the discrete series. We have a canonical inclusion

ϕ : Dr,µ ↪→ Dr,µ+ν ⊗ F (ν)

which is a consequence of the inclusion of Verma modules for g :

Vg,Π,−µ−δ ↪→ Vg,Π,−µ−ν−δ ⊗ F (ν).

In turn this gives rise to an inclusion

ϕS : Dr,µ ⊗ S ↪→ Dr,µ+ν ⊗ F (ν)⊗ S.
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Moreover, we have a map

β : (Dr,µ+ν ⊗ S)⊗ (F (ν)⊗ S)⊗ S? → Dr,µ+ν ⊗ F (ν)⊗ S

by contracting the second factor S and the fifth factor S? . Now, we can state our
result.

Theorem 4.2. Denote by W1 , W2 and W3 the kernel of the Dirac operator
(4.1) associated with Dr,µ+ν , F (ν) and Dr,µ respectively. We have:

ϕS(W3) ⊆ β(W1 ⊗W2 ⊗ S?). (4.3)

Proof. To show this we first study the kernel of the Dirac operator acting on
Vg,Π,−µ−ν−δ ⊗ S , Vg,Π,−µ−δ ⊗ S and F (ν)⊗ S .

It is easy to describe the kernel of the Dirac operator acting on F (ν)⊗ S .
This kernel is the U(k)-span of x⊗ s where x is a weight vector of F (ν) of weight
w ·ν in the Weyl group orbit of ν and is Πk -dominant and s is a Πk -highest weight
vector of an irreducible component of S of weight −δk + w · δ .

Next, we describe the kernel of the Dirac operator D acting on Dr,µ+ν ⊗ S
as in (4.1). (Similar remarks for Dr,µ ⊗ S will hold.) Since Dr,µ+ν ⊗ S is a
discrete class module, the kernel of the Dirac operator D acting on Dr,µ+ν ⊗ S is
an irreducible k-module. We describe its highest weight.

Let y′ be a Πk -highest weight vector of weight γ′ in Vg,Π,−µ−ν−δ ⊗ S an-
nihilated by the Dirac operator. Assume that γ′ + δk is −Πk -dominant and non-
singular. Let γ be a Πk -dominant integral weight such that γ + δk ∈ Wk · (γ′+ δk).
Then there is a Πk -highest weight vector ỹ of Wr,µ+ν ⊗ S of weight γ such that
U(k) · y′ ⊆ U(k) · ỹ . It is not difficult to show that ỹ (hence, also its image y in
Dr,µ+ν ⊗S ) is in the kernel of the Dirac operator. We apply these observations by
making the simplest choice for y′ . Namely, y′ = x⊗ s , where x is the Π-highest
weight vector of Vr,Π,−µ−ν−δ and s is the Πk -highest weight vector of S of weight
δ − δk .

Let y′ be a Πk -highest weight vector of weight γ′ in Vg,Π,−µ−δ⊗S annihilated
by the Dirac operator. Assume that γ′+δk is −Πk -dominant and non-singular. Let
γ be a Πk -dominant integral weight such that γ + δk ∈ Wk · (γ′+ δk). Then there is
a Πk -highest weight vector ỹ of Wr,µ⊗S of weight γ such that U(k) ·y′ ⊆ U(k) · ỹ .
One can show that ỹ (hence, also its image y in Dr,µ ⊗ S ) is in the kernel of the
Dirac operator. Apply these observations by choosing y′ = x⊗ s , where x is the
Π-highest weight vector of Vr,Π,−µ−δ and s is the Πk -highest weight vector of S
of weight δ − δk .

The statement analogous to result stated in (4.3) relating

(Vg,Π,−µ−ν−δ ⊗ S)⊗ (F (ν)⊗ S)⊗ S?

and (Vg,Π,−µ−δ ⊗S), namely the fact that ϕS(y′⊗ s) ∈ β(y′⊗W2⊗S?), is evident
and this can be traced to statements relating (Wr,µ+ν ⊗S)⊗ (F (ν)⊗S)⊗S? and
(Wr,µ⊗S) and these in turn can finally be related to (Dr,µ+ν⊗S)⊗(F (ν)⊗S)⊗S?

and (Dr,µ ⊗ S).
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5. Open questions

In this section, we let G be a connected non-compact real reductive Lie group. As
in section 2, we do not assume that the center of G is finite.

Question 5.1. Under which condition(s), do we have Ker+(DE,E ′) 6= {0}?
Note that if the cubic term c vanishes (as is the case when G/H is a symmetric
space) then Ker+(DE,E) 6= {0} .

Question 5.2. Prove the most general results analogous to Theorem 4.2 for any
coherent family of virtual modules, for the Zuckerman translation functor which
goes forward from µ to µ + ν and for the other which goes backward from µ + ν
to µ.
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